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Abstract. The rapid rotation of planets causes cyclonic ther-
mal turbulence in their cores which may generate the large-
scale magnetic fields observed outside the planets. We inves-
tigate numerically a model based on the geodynamo equa-
tions in simplified geometry, which enables us to reproduce
the main features of small-scale geostrophic flows in physical
and wave vector spaces. We find fluxes of kinetic and mag-
netic energy as a function of the wave number and demon-
strate the co-existence of forward and inverse cascades. We
also explain the mechanism of magnetic field saturation at
the end of the kinematic dynamo regime.

1 Introduction

Many astrophysical objects such as galaxies, stars, the Earth,
and some planets have large-scale magnetic fields that are
believed to be generated by a common universal mechanism
– the conversion of kinetic energy into magnetic energy in a
turbulent rotating shell. The details, however, and thus the
nature of the resulting field, differ greatly. The challenge for
the dynamo theory, see, e.g.,Hollerbach and R̈udiger(2004),
is to provide a model that can explain the visible features
of the field with realistic assumptions of the model param-
eters. Calculations for an entire planet are done using ei-
ther spectral models (Kono and Roberts, 2002) finite-volume
methods (Hejda and Reshetnyak, 2004; Harden and Hansen,
2005) or finite differences (Kageyama and Sato, 1997) and
have demonstrated beyond reasonable doubt that the turbu-
lent 3-D convection of the conductive fluid can generate a
large-scale magnetic field similar to the one associated with
small random fluctuations. However, both of these meth-
ods cannot cover the enormous span of scales required for
a realistic parameter set. Even for the geodynamo (which
is quite a modest case on the astrophysical scale) the hydro-
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dynamic Reynolds number estimated on the west-drift ve-
locity is Re∼109. In addition, planets are rapidly rotating
bodies. Thus, the time scale of the large-scale convection
in the Earth’s core is∼103 years, during which the planet
itself makes∼106 revolutions (in other words, the Rossby
number Ro∼10−6). As a result, there is an additional spatial
scale∼ E−1/3 L, whereL is a large scale,E∼10−15 is the
Ekman number (Chandrasekhar, 1961; Busse, 1970), asso-
ciated with the cyclonic structures elongated along the axis
of rotation, which is much larger than Kolmogorov’s dissipa-
tion scaleld∼ Re−4/3 L, but, however, is still too small to be
resolved in the numerical simulations with the present reso-
lution l∼(10−3

÷10−2)L.
The presence of rapid rotation leads not only to a change

from the spatially uniform, isotropic, Kolmogorov-like so-
lution to the quasi-geostrophic (magnetostrophic) form, but
to rather more fundamental consequences. The rapid rota-
tion leads to the degeneration of the third dimension (along
the axis of rotation) and can cause an inverse cascade in the
system. Inverse cascades are a well-known phenomenon in
two-dimensional turbulence and are a good example of self-
organization when the large-scale structures are fed by small-
scale turbulence (Frisch et al., 1975; Kraichnan and Mont-
gomery, 1980; Tabeling, 2002), see also review of the re-
cent results inAlexakis(2007); Verma(2004). As the quasi-
geostrophy is an intermediate state between two-dimensional
and three-dimensional flows, the quasi-geostrophic turbu-
lence may exhibit simultaneously features similar to both the
extreme cases: 2-D and 3-D1. Below we consider the be-
havior of the energy fluxes in the wave space for regimes
based on the Boussinesque thermal convection. For simplic-
ity we consider the Cartesian geometry, which is simpler for
the modeling of rapidly rotating dynamo systems and was
used in many geodynamo research projects (Roberts, 1999;
Jones and Roberts, 2000; Buffett, 2003).

1As the magnetic field generation is a three-dimensional pro-
cess, see, e.g.,Zeldovich et al.(1983), existence of the third dimen-
sion in the full dynamo problem is crucial.
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2 Dynamo equations

2.1 Equations in physical space

The geodynamo equations for an incompressible fluid
(∇·V =0) in a layer of the height L rotating with angular ve-
locity � in the Cartesian system of coordinates(x, y, z) in
its traditional dimensionless form can be expressed as fol-
lows:

∂B

∂t
= ∇ × (V × B) + q−1 1B

EPr−1
[
∂V

∂t
+ (V · ∇) V

]
= −∇P − 1z × V +

RaT z1z + (∇ × B) × B + E1V
∂T

∂t
+ (V · ∇) (T + T0) = 1T.

(1)

Velocity V , magnetic fieldB, pressureP and the typical
diffusion time t are measured in units ofκ/L,

√
2�κµρ;,

ρκ2/L2 and L2/κ, respectively, whereκ is the thermal dif-

fusivity, ρ is the density,µ the permeability, Pr=
κ

ν
is

the Prandtl number,E=
ν

2�L2
is the Ekman number,ν is

the kinematic viscosity,η is the magnetic diffusivity, and

q=κ/η is the Roberts number. Ra=
αg0δTL

2�κ
is the mod-

ified Rayleigh number,α is the coefficient of volume ex-
pansion,δT is the unit of temperature, for more details
see (Jones, 2000) , g0 is the gravitational acceleration, and
T0=1−z is the heating from below. The problem is closed
with periodical boundary conditions in the(x, y) plane. In
the z-direction, we use simplified conditions (Cattaneo et

al., 2003): T =0, Vz=
∂Vx

∂z
=

∂Vy

∂z
=0, Bx=By=

∂Bz

∂z
=0 at

z=0, 1.

2.2 Equations in wave space

To solve problem Eq. (1) we apply the pseudo-spectral ap-
proach (Orszag, 1971) frequently used in geodynamo simu-
lations (Jones and Roberts, 2000; Buffett, 2003). The equa-
tions are solved in the wave space. To calculate the non-
linear terms one needs to make the inverse Fourier trans-
form, then calculate the product in physical space, make the
Fourier transform of the product, and finally calculate the
derivatives in wave space. After eliminating the pressure us-
ing the divergence-free conditionk·V =0, k·B=0, we arrive
at:[

∂B

∂t
+ q−1 k2B

]
k

= [∇ × (V × B)]k

E

[
Pr−1 ∂V

∂t
+ k2V

]
k

= kPk + F k

[
∂T

∂t
+ k2T

]
k

= − [(V · ∇) T + Vr ]k

(2)

with

Pk = −
k · F k

k2
, k2

= kβkβ , β = 1 . . . 3

F k =

[
Pr−1 V × (∇ × V ) + RaT 1z−

1z × V + (B · ∇) B
]
k
.

(3)

For integration in time we use the explicit Adams-Bashforth
(AB2) scheme for non-linear terms. The linear terms are
treated using the Crank-Nicolson (CN) scheme. To resolve
the diffusion terms we use the well-known trick which helps
to increase the time step significantly. Consider equation

∂A

∂t
+ k2A = U. (4)

Alter it to read

∂Aek2γ t

∂t
= U ek2γ t (5)

and then apply the CN scheme.
The most time-consuming part of our MPI code are the

Fast Fourier transforms. To make our code more efficient we
use various modifications of known FFT algorithms, which
take into account special kinds of symmetry of the fields. The
optimal number of processors for the grids 1283 is n∼50.
The scalability tests demonstrated even the presence of su-
peracceleration if the number of processors<n.

3 Basic properties of the fields

We consider simulations without rotation similar to
Meneguzzi and Pouquet(1989) and with rotation for two
regimes with different amplitudes of the heat sources:

NR: Regime without rotation (the Coriolis term is dropped)2.
Ra=6·106, Pr=1, E=1, q=10, Re∼2.5·103.

R1: Regime with rotation, Ra=1.3·103, Pr=1, E=2·10−6,
q=10, Re∼1.6·103.

R2: Regime with rotation, Ra=2.1·103, Pr=1, E=2·10−6,
q=10, Re∼3·103.

The first (NR) regime is close to the typical Kolmogorov
convection; for more details seeMeneguzzi and Pouquet
(1989). Inclusion of rotation (regime R1, Figs. 1–5) leads
to the transform of the isotropic convective structures to the
cyclonic state with the horizontal scale∼ E1/3 (kc∼ E−1/3)
(Chandrasekhar, 1961). Inclusion of the magnetic field (the
full dynamo regime with magnetic energy comparable with

2As there is no rotation, Ra andE do not retain their physical
meaning defined in Sect. 2.1. More details on parametrization of
non-rotational magnetoconvection can be found inMeneguzzi and
Pouquet(1989).
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Fig. 1. Regime R1. Sections of temperature distribution. All sections correspond to the middle of the cube. The field ranges are(0, 1) – left,
(0.46, 0.54) – right.

Fig. 2. Distribution of theVx -component of the velocity field with ranges(−248, 253), (−143, 144).

the kinetic energy in order of magnitude) does not change the
structure of the convective patterns very much (Jones, 2000).
At the same time, the spectra of magnetic energy are quite
different and have no well-pronounced maximum atkc.

The increase of the Rayleigh number leads to the decrease
of the relative role of rotation and should decrease the peak
of the kinetic spectra energy, which is in accordance with the
spectra for regime R2, Fig. 5. In principle, a further increase
of Ra should lead to the original Kolmogorov state, similar

to NR with the spectrum law∼k−5/3, Fig. 5. However, we
emphasize that the information on the spectra is not enough
to judge, if the role of rotation is negligible or not, and addi-
tional analysis is needed. The argument is as follows: rota-
tion leads to the degeneration of the third dimension (along
the z-axis) (Batchelor, 1953). On the other hand, in isotropic
two-dimensional systems, the spectrum of the kinetic energy
also has a−5/3-slope, but the direction of the energy trans-
fer at the large scales is inverse (there is also a direct cascade

www.nonlin-processes-geophys.net/15/873/2008/ Nonlin. Processes Geophys., 15, 873–880, 2008
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Fig. 3. Distribution of theVz-component of the velocity field with ranges(−675, 701), (−153, 157)

Fig. 4. Distribution of theBz-component of the magnetic field with ranges(−1.44, 1.14), (−1.88, 2.37)

of the enstrophy at the small scales with a−3-slope). As the
quasi-geostrophic turbulence inherits the properties of both
systems, 2-D and 3-D, (Hossain, 1994; Constantin, 2002),
we will consider the behavior of the energy fluxes in wave
space more carefully.

4 Energy fluxes

To analyze the energy transfer in the wave space, we follow
Frisch (1995). Let us decompose the physical fieldf into
a sum of low-frequency and high-frequency counterparts:
f (r)=f <(r)+f >(r), where

f <(r) =

∑
|k|≤K

f̂k eikr , f >(r) =

∑
|k|>K

f̂k eikr . (6)
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Fig. 5. On the left is the spectrum of the kinetic energy for NR (red), R1 (green), R2 (blue). On the right is the spectrum of the magnetic
energy. The straight line corresponds to Kolmogorov’s spectrum∼k−5/3.

For any periodical functionsf andg one has the relation
(Frisch, 1995):

<
∂f

∂x
>= 0, <

∂g

∂x
>= 0,

< g
∂f

∂x
>= − < f

∂g

∂x
>, < f >g< >= 0,

(7)

where

< f (r) >= V−1
∫
V

f (r) dr3
(8)

stands for averaging off over volumeV. Multiplying the
Navier-Stokes equation byV < and the induction equation by
B< leads to the equations of the integral fluxes of the kinetic
EK=V 2/2 and magneticEM=B2/2 energies fromk≥K to
k<K:

5K(K) =< (V × rotV ) · V < >,

5M(K) =< rot(V × B) · B< >

(9)

and for the flux of the Lorentz work:

5L(K) =< (rotB × B) · V < > . (10)

Here subscriptsK, M andL correspond to kinetic, magnetic
and Lorentz fluxes. Introducing

TK(k) = −
∂5K(k)

∂k
, (11)

where we changedK to k, leads to the obvious relation for
EK in k-space:

∂EK(k)

∂t
= TK(k) + F(k) + D(k), (12)

wherek=|k|, TK(k) is the kinetic energy flux from harmon-
ics with differentk, F(k) is the work of external forces and
D(k)=−k2EK(k) is a dissipation. The accurate form ofT

reads:

TK = −
∂5K

∂k
,

∞∫
k=0

TK(k) dk = 0,

TM =
∂5M

∂k
, TL =

∂5L

∂k
.

(13)

We introduce advective fluxTN=TM+TL with zero average:

∞∫
k=0

TN (k) dk = 0. (14)

Figure 6 shows the fluxes of kineticTK and magneticTM

energies for the regimes mentioned above. Regime NR
for TK demonstrates the well-known behavior for the di-
rect Kolmogorov’s cascade in 3-D. For large scalesTK<0,
these scales are donors and provide energy to the system.
On the other hand, the harmonics with the largek absorb
energy. The two-dimensional turbulence exhibits mirror-
symmetrical behavior relative to the axis of the absciss
(Kraichnan and Montgomery, 1980). In this case the energy
cascade is inverse.

Rotation essentially changes the behavior of the fluxes of
kinetic energy. The leading order wave number iskc. For
k>kc we also observe the direct cascade of energyTK>0.
The maximum ofTK is shifted relative to the maximum of
the energy to largek; the more Re, the stronger the shift. For
k<kc, the behavior is more complex: for smallk, the inverse
cascade of kinetic energy takes place,TK>0. On the other
hand, for the larger region ofk (0 . . . kc) we still have the di-
rect cascadeTK<0. The increase of Re leads to the narrow-
ing of the region with the inverse cascade and to the increase

www.nonlin-processes-geophys.net/15/873/2008/ Nonlin. Processes Geophys., 15, 873–880, 2008
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Fig. 6. Normalized fluxes of kineticTK (on the left) and magneticTM (on the right) energies in wave space: NR (red), R1 (green), R2 (blue).
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Fig. 7. Normalized fluxes of the generation term−TL (on the left) and advective cTN (on the right) terms in wave space: NR (red), R1
(green), R2 (blue).

of the inverse flux. One may suggest that the change of the
sign of fluxTK at k<kc is connected with the appearance of
the non-local energy transfer: so that the energy to the large-
scalesk1 comes from modes|k2|∼|k3|�|k1|, k1=k2+k3
(Waleffe, 1992). In the absence of the magnetic field the
maximum ofTK(k=1) appears. Hence, in the case of rota-
tion, two cascades of kinetic energy (direct and inverse) take
place simultaneously.

Now we consider the magnetic part. In contrast toTK ,
TM includes not only the advective term, but also the gener-
ative term. This leads to integralTM being positive over all
k. Moreover,TM is positive for anyk. The position of the
maximum ofTM is close to those in the spectra ofEM , TK .

It is evident that, for planetary cores, the distance be-
tween the maxima in fluxesTM for NR and R1, R2 can be
quite large, however, not as large askc. This statement con-
cerns the condition on magnetic field generation, which holds
when the local magnetic Reynolds number rm>1 on the scale

1/k: rm=
vk

kη
>1 and that for the planetsη�ν. At the same

moment, the fluxes with smallk are small, i.e., the system
is in a state of statistical equilibrium: dissipation on small
scales is negligible.

Now we examine the origin of the magnetic energy on
scale 1/k: Is it connected with the energy transfer from the
other scales or is it a product of real generation on this scale?

Figure 7 demonstrates the fluxes of−TL concerned with
magnetic field generation. The maximum of the generation
term without rotation is on a large scale, while for the ro-
tating system it is at∼1/kc. Interestingly, for the rotating
system there is a region−TL<0 for largek, where the mag-
netic field reinforces convection. For regime NR,−TL drops
quickly because of the kinetic energy decrease (Fig. 5). As
a result we have: for the rotating system, the magnetic field
is produced by the cyclones, while the large-scale dynamo
operates for the non-rotating system.
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Now we estimate the role of the advective termTN sepa-
rately. For the non-rotating regime,TN andTK are similar:
the direct cascade takes place. For the rotating system, re-
gion k∼kc is a source of energy. In contrast toTK , TN has
no positive regions at smallk, i.e. the inverse cascade of the
magnetic energy, related to the advective term in this region
is absent. We draw attention to the amplitudes of fluxesTM ,

−TL, TN : for all three cases it holds that
|T M |

|TL|
∼10−1, i.e.,

there exist two fluxes of magnetic energy in wave space with
opposite directions. The first flux is related to the traditional
energy transfer over the spectrum (advective term) and with
the flux of the Lorentz work. The regions of maximal mag-
netic field generation coincide with the regions of the most
effective magnetic energy transferTN (from smallk to large
k). This balance leads to an equipartional state, when dissi-
pation takes place at largek.

Note that the full magnetic fluxTM (Fig. 6) is localized at
k�1. For the non-rotating system, this is because the mean
helicity andα-effect are zero (Zeldovich et al., 1983). Thus
the inverse cascade of the magnetic energy to smallk is ab-
sent.

For the rotating system there is a balance of the energy
injection due to the Lorentz force and its advection to the
largek. This effect reduces theα-effect.

5 Conclusions

The magnetic fields of the planets are the main sources of
information on the processes in their liquid cores on the time
scales of 102−103 years or longer. While the poloidal part
of the magnetic field can be observed on the planet’s sur-
face, the largest component of field (toroidal) as well as the
kinetic energy distrubution over the scales is absolutely in-
visible for the observer outside the core. Moreover, due to
the finite conductivity of the mantle, even the poloidal part
of the magnetic field is cut off atk�kc. In other words,
the part of the spectrum observable on the planets’ surface
is only small (not even the largest) of the whole spectrum of
the field. That is why the importance of the numerical sim-
ulation can hardly be overestimated. Here we have shown
that, in considering the quasigeostrophic state, both the cas-
cades (direct and inverse) exist simulataneously. This is a
challenge for the turbulent models of the geodynamo. The
other interesting point is the nearly balance of the magnetic
energy generation and the magnetic energy advection, which
makes the net magnetic energy flux very small. Following
our modelling the major part (up to 90% of the all generated
magnetic energy) is advected to the largek. Then we could
expect that the exponential growth of the magnetic energy
in the kinematic regime (TL/TN∼kB/kV �1, wherekB , kV

are the integral wave numbers of the magnetic and velocity
fields) stops and the system comes to the state, whenkB∼kV

andTL is substantial.
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