
THE OPALS DATA MANAGER –

EFFICIENT DATA MANAGEMENT FOR PROCESSING LARGE AIRBORNE LASER

SCANNING PROJECTS

J. Otepka a, *, G. Mandlburger a, W. Karel a

a Institute of Photogrammertry and Remote Sensing, Vienna University of Technology Vienna, Karlsplatz 13, 1040
Wien, Austria - (jo, gm, wk)@ipf.tuwien.ac.at

Commission III, WG III/2

KEY WORDS: Airborne Laser Scanning, LIDAR, data management, software concept, spatial indices, point clouds

ABSTRACT:

The fast measurement rate of today’s Airborne Laser Scanners results in billions of points for single ALS projects. Efficient
algorithms and data management methods are, therefore, a precondition for successful project handling. The software package
OPALS (Orientation and Processing of Airborne Laser Scanning data) was especially designed to meet those criteria. Central core of
the package is the OPALS Data Manager (ODM). It provides both, fast spatial access to huge point clouds, as well as a flexible
attribute schema to store additional point related quantities.
Concepts of the spatial data organization and implementation details about the attribute handling are presented. Additionally, design
rationales of the ODM, its file format and the system performance are described.

* Corresponding author

1. INTRODUCTION

Point clouds from Airborne Laser Scanning (ALS), also termed
airborne LiDAR (Light Detection And Ranging), has proven to
be an efficient acquisition method for a wide range of
topographic applications. Nowadays, forestry, geology,
hydrology, cartography, and other geo-disciplines and
applications, including natural hazard studies, make use of
digital models or specific parameter sets derived from laser
scanning point clouds. The fast technological advances within
the last two decades have opened up new areas of research and
applications of LiDAR data.
A typical density of 10 laser echoes per m² covering a project
area of 100km² results in 109 points. As ALS data sets may
contain billions of points in a single project, efficient
algorithms and data management methods are a precondition for
successful project handling.

Modern LiDAR sensors acquire range data at an enormous rate
but also provide valuable attributes for each detected echo.
(Axelsson, 1999) argues that the full potential of airborne laser
scanning can only be exploited, if conversions like vector to
raster, or the omission of additional attributes (e.g., echo
number, recording time) are avoided. Especially full-waveform
scanners, which record the emitted and backscattered signals as
a function of time, allow applying more sophisticated detection
and extraction routines (Wagner et al., 2006). Extracted
waveform quantities such as amplitude or echo width are useful
for all sorts of applications (Doneus and Briese, 2006;
Alexander et. al., 2010). Hence, it is an absolute requirement
for state-of-the-art LiDAR data management to support a
flexible schema in order to preserve these valuable point
attributes.

ALS data are acquired by a series of distinct, overlapping flight
strips. Several processing steps like quality control and
documentation or georeferencing of the raw point clouds (Ressl
et. al., 2008) rely on strip-wise data handling. On the other

hand, when computing a feature for each LiDAR point (surface
normal vector, surface roughness, etc…), information from all
overlapping strips in the vicinity of the point should be taken
into account. This argument favors a project or block-wise data
handling in which the original strip ID may be an attribute.
Obviously, access to the data in strip-wise or in a compound
manner depends on the processing stage. There is no optimal
single state. Therefore, the data management tools should
support both handling strategies.

1.1 State-of-the-Art Point Cloud Handling

Driven by the demand for high-resolution data, various
strategies, new file formats, and point cloud libraries have been
developed in the last couple of years.

Isenburg (2011) is the developer of LAStools, a set of tools for
handling and processing LiDAR data based on the LAS file
format. A fork of this project is libLAS, a LiDAR data
translation toolset (libLAS, 2012). A comprehensive library for
processing 3D point data is the Point Cloud Library (PCL)
(Rusu and Cousins, 2011) which has a strong computer vision
background. The Point Data Abstraction Library (PDAL, 2012)
is focusing on import, export and filtering point data. However,
it has not been released yet.

David et. al. (2008) proposed a library concept that stores
LiDAR scan lines as pixel lines within multi layer raster files
providing spatial access based on the natural acquisition
topology. It has been implemented within the FullAnalyse
project. Bunting et. al. (2011) proposed a new file format for
discrete and full-waveform data sets implemented in the Sorted
Pulse Data Library (SPDLib). Another interesting new
development is the E57 file format, a compact, vendor-neutral
format for storing point clouds, images, and metadata produced
by any 3D imaging system defined within the ASTM E2807
standard. An implementation is available through the libE57
(2012) Library.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

153

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195241158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Beside the fact that most of the aforementioned developments
are quite new, OPALS favors its own data handling strategies
because of supporting:

 database features like dynamic and extendable attribute
schema, data views and null values

 point, line, and polygon data

1.2 OPALS

The software package OPALS is developed at the Institute of
Photogrammetry and Remote Sensing at the Vienna University
of Technology. It is designed for Orientation and Processing of
Airborne Laser Scanning point clouds providing tools for the
entire processing chain starting from analysis of the full-
waveform signal, quality control, geo-referencing, structure line
extraction and terrain model derivation, to subsequent
applications (forestry, city modeling, etc.).
Important concepts of OPALS are flexible automatic work
flows for processing huge data sets. This was achieved by a
modular design based on small, well-defined components and
extensive scripting support. Each component (module) can be
accessed as command line executable, as python module or via
a C++ API. This gives the user full control to compose arbitrary
processing chains. More details about OPALS and its
framework can be found in (Mandlburger et. al., 2009) and
(OPALS, 2012)

Central core of most OPALS modules is the OPALS Data
Manager (ODM). Main feature of the ODM is to support, both,
efficient spatial queries and a dynamically extendable attribute
schema. The ODM comes into play after raw georeferencing of
the point cloud. Hence, data processing is enabled on a per strip
basis as well as for the entire flight block. OPALS modules
potentially compute new point features, which are then
appended to the existing point attributes. In most cases, the
neigbhourhood of the points based on metric measures are
analysed. E.g. opalsNormals estimates the three components of
the surface normal vector (nx, ny, nz) by fitting a robust
regression plane through the k-nearest points; opalsAddInfo
allows computing new arbitrary attributes by combining
existing attributes and (potentially) raster data sets in a generic
mathematic formula. Furthermore, OPALS modules support
powerful filters to sub-select the input data based on attributes.
Obviously, attributes play an important role in the flexible and
modular concept of OPALS.

2. ODM CONCEPT

One of the major issues for processing ALS projects is to tackle
the huge amount of data. Memory limits usually prevent the
entire point cloud from being loaded into random access
memory. Hence, it is necessary to use strategies that split the
overall data set in appropriate chunks and process them
automatically considering a certain overlap. In case of
topographic data, the horizontal extent exceeds the vertical
range by far. Thus, indexing the ground plane domain is of
higher importance than indexing the elevation.
Within OPALS LiDAR data are imported into the ODM in an
initial step. Using opalsImport one or multiple input files can
be imported into a single ODM. Thereby, the full information
of the input data including all attributes is preserved. For each
point, the correspondence to the original file is stored such that
the original file structure can be restored from the ODM after
processing.

To save disk space the ODM uses a global reduction point
(double precision) which allows storing the actual geometry
objects with single precision.

2.1 Spatial indices

Laser scanning data, as well as data from automatic image
matching (digital photogrammetry) consist of point data only.
However, the support of polygonal data is crucial for certain
projects. E.g. terrain structure lines, water bodies in the form of
shore and coast lines, river axes or boundaries of vegetation
classes may either be measured manually or result from (semi-
)automatic extraction processes (Briese, 2006; Mandlburger et.
al., 2011). Therefore, a versatile data handling concept has to
support, both, point and polygonal data in a unified manner.
Over the last three decades a variety of different spatial indices
have be developed, which all have one thing in common; they
subdivide the index space domain in a regular or irregular
manner. Depending on data types (point, line, polygon, etc.),
data distribution, query types and potential update operations
different indexing methods should be used. There is no optimal
index for all situations. E.g. the k-d tree (Bentley, 1975) is a
very fast indexing method for nearest neighbor queries but does
not support line data. Additionally, the k-d tree rapidly gets
unbalanced in case of update operations (insert or delete
points). Quad- and octtree structures are well suited for update
operations and support point and polygonal data. However, they
cannot compete in terms of speed regarding nearest neighbor
queries.

Figure 1. k-d trees are an extension of binary search trees

Whereas quad- and octrees are limited in adapting to
inhomogeneous data distributions, R-trees group nearby objects
using minimum bounding rectangles or boxes in the next higher
level of the tree. The key difficulty of R-trees is to build
balanced trees and to minimize, both, coverage and overlap of
node bounding hyperboxes (Beckmann et al., 1990).

Figure 2. R-trees partition space based on bounding

rectangles/boxes (hyperboxes)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

154

However, R-trees tend to outperform quad- or octtrees (Kanth
and Kothuri, 2002; Kim and Patel, 2010) since it is possible to
build balanced trees even for inhomogeneous data distributions.
Heavy update activity can lead to unbalanced trees which may
outweigh the aforementioned advantage.

2.2 Spatial ODM concept

There are three requirements that a considerable spatial
indexing structure for ALS data has to meet (in priority order):

1. Support of swapping strategies since memory
limitations prevent the entire point cloud being loaded
into random access memory

2. Maximum performance for point data on spatial
queries, such as k nearest neighbor and range queries

3. Support of point, line, and polygonal data
4. Thread safety to support Multi-Core CPUs

Combining those requirements with the background knowledge
of spatial indices from the previous section, it becomes evident
that maximum performance for spatial queries of point data and
the support of polygonal data cannot be provided within a
single spatial index. Within typical ALS projects the point data
exceed the amount of line and polygon data by far, justifying
the usage of the optimal index for point data. This is why the
ODM uses different spatial indices for point and polygon data.

2.2.1 Point Index of the ODM
Point data are spatially indexed in two levels within the ODM.
First, the data are sorted into a regular grid of quadratic tiles
allowing the implementation of a straight forward swapping
strategy. The tile size can be manually set or is, else,
automatically computed based on point density estimations.
Currently, OPALS uses relative small tiles containing 150.000
to 200.000 points in average. Hence, the ODM can keep a
decent number of tiles in memory at once. Several OPALS
modules (opalsNormals, opalsEchoRatio, etc.) use tiles as
processing units. Considering a certain data overlap (which
requires neighboring tiles to be kept in memory as well) and
multiple processing threads (potentially assigning a new tile to
each thread) the memory limit is easily exceeded if the tiles are
too big. Furthermore, the ODM uses tile caching based on a list
of recently used tiles to minimize IO operations.

Figure 3. Two level point index structure of the ODM

In the second level, the points of a single tile are indexed using
a k-d tree. Whereas the first level tile index is made persistent,
the k-d trees are build on the fly after reading the tile points into
memory. This has several advantages:

 Less disk space is required since no second level index
information is stored

 Different indices can be used depending on processing
needs (e.g., 2D or 3D k-d trees)

 During data import new points are always appended at
the end of the tile. Therefore, it is never necessary to
reorganize the point data within a tile which saves
additional IO operations.

The implementation of the k-d tree is based on the respective
implementation of the Computational Geometry Algorithms
Library (CGAL, 2012). K-d trees use coordinate axis aligned
hyperplanes for space-partitioning. The original k-d tree
algorithm uses the median of all x coordinates to split the root
node. Then, the median of the y coordinates is used for
partitioning the sub nodes; and so on. In case of a 2D k-d tree
the median search utilizes the x, y coordinates in a circular
manner (c.f. Figure 1). This leads to a balanced tree (all leaf
nodes are at the same tree level). However, depending on the
data distribution and application a balanced tree does not
necessarily result in the best performance for certain operations.
Within a tile with strongly varying extents (e.g. at the edge of a
flight strip), the distance between splitting k-d tree hyperplanes
will reflect the specific variation of the data extents. Hence, the
non-directional nearest neighbor search has to investigate more
tree nodes as in situation with homogeneous hyperplane
distances. This is why the CGAL k-d tree implementation has a
flexible splitting concept and comes along with a set of
predefined splitting strategies.

Figure 4: Splitting lines using the original k-d tree algorithm

(left) and a median of maximum spread split (right)

The ODM uses the CGAL median of maximum spread splitting
strategy in two and three dimensions with some improvements
to increase the robustness in case of odd point arrangements.
Although median splitters are expensive to compute, tests have
shown that the limited number of points per tile result in
negligible differences regarding tree building times.
The selected implementation does not support dynamic
insertion or deletion. However, this is in line with the overall
OPALS concept as certain point measurements are rather
disregarded for processing (using attribute filters) than
permanently deleted from the data set.

2.2.2 Polygonal data index of the ODM
The ODM manages all non point data in a second independent
index. Typical linear data of interest are terrain structure lines
or river networks, but also 2-dimensional polygons, such as
catchment polygons, parcels, buiding outlines or vegetation
boundaries. The ODM uses an R*-tree index implementation of
the Spatial Index Library developed by (Hadjieleftheriou et al.,
2002). As mentioned in 2.1 minimal coverage and overlap of
the bounding hyperboxes is crucial to the performance of R-
trees. For this reason different R-tree variants have been
developed using heuristics to minimize overlap and coverage.
The R*-tree combines a revised node split algorithm and the
concept of forced reinsertion at node overflow. Deletion and

0

1

1

2

2

2

3

3 0

1

2

2

2

3

3

Tiles in
memory

k-d tree

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

155

reinsertion of entries allow "finding" a new position that may be
more appropriate than their original location within the tree
(Wikipedia, 2012).

Figure 5: Examples of visualized indices of different splitting

heuristics; left: R-tree quadratic split; right: R*-tree
topological split (Wikipedia, 2012).

In contrast to the CGAL k-d tree implementation, the Spatial
Index Library already contains thread-safety support and
swapping strategies to handle big data set. However, the amount
of polygonal data in typical ALS application is noncritical.

In order to query point and line related data in a uniform way,
the ODM provides a common interface for the separated
indices, but it is possible to access both indices separately as
well.

2.3 Attribute schema

As pointed out in 1.2, additional point attributes are of crucial
importance for ALS data processing. The implemented ODM
concepts are comparable to tables of relational databases and
support an unlimited number of attributes and a variety of
different data types for efficient storage usage.

Data type Memory consumption

Byte 1 byte
unsigned byte 1 byte
Short 2 byte
unsigned short 2 byte
Integer 4 byte
unsigned integer 4 byte
64bit integer 8 byte
float 4 byte
double 8 byte
fixed length string n bytes
variable length string 4 + n bytes
Boolean 1 byte in memory

1 bit on disk

Table 1. Supported data attribute types and their memory

consumption

ODM attributes can be dynamically added while processing,
thus, the attribute layout does not have to be defined in
advance. As a consequence, each geometry object (point and
polygonal object) can have a different set of attributes. This
feature helps to save storage space if data within an ODM are
only partly processed or data from different acquisition methods
(e.g. laser scanning and photogrammetric image matching) are
combined within one ODM. Additionally, a null flag is
provided for each attribute value; hence, a specific no-data
indicator is not required.
The ODM also supports the database concept of views. They
are used by OPALS modules to inspect a specific set of

attributes. A view guarantees access to the sought-after
attributes in the corresponding order. The ODM is not limited
to one view. Hence, a module can use multiple views on the
same data set at once.

ODM attributes are differentiated into two groups:

 Predefined attributes (with semantic)
 User-defined attributes (without semantic)

Predefined attributes have fixed names and data types, as well
as a well-defined semantic and unit. Examples are attributes that
are defined in the LAS format (ASPRS, 2012), or attributes
computed by specific OPALS modules (e.g. opalsNormals).
On the other hand, the name and type of user-defined attributes
are freely selectable. Those attributes can come from the data
import or from the generic attribute generation module
opalsAddInfo. Although user-defined attributes have an
unknown semantic, it is well possible to use them in filters or as
processing attributes in most OPALS modules. This powerful
functionality allows investigating and establishing new
processing concepts on a user level.
A special ODM feature is the on-the-fly statistics computation
(count, minium, maximum, average and sigma) of all attribute
columns. The statistics give a good overview about the attribute
values and help to speed up certain processing tasks. The actual
computation is carried out in a background thread to secure a
minimal effect on the overall performance.

With the flexible attribute schema and the spatial indices the
ODM is comparable to geo-relational database systems. So why
not using mature database systems like PostgreSQL/PostGIS
(Refraction Research, 2012) or Oracle Spatial (Oracle, 2012)
offering full administration capabilities, concerning both,
geometry and attributes? The answer is performance and
dynamic extendabilty. The ODM is an efficient light-weight
tool tuned for high-speed processing and flexibility but not for
transactions control or user security functionality. The strength
of database systems is the long-term archiving and persistence,
rather than a fast and optimized data access as necessary for
ALS projects.

2.4 Persistent form of the ODM

Figure 6. Internal structure of the ODM

OPALS module

Thread 1 Thread 2 Thread n …

 ODM C++ interface

Point index
(Tiling, k-d tree)

Polygonal data index
(R*-tree)

Cache Cache

ODM disk manager

Permanent storage
(Harddisk, SSD)

O
D

M

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

156

So far design rationales of the general data organization and the
used spatial indices have been discussed. This leads to a few
basic conditions on how the data have to be made persistent.
However, the format of the point tiles and attributes is not
defined by the index implementation. All IO operations within
the ODM are carried out by a specific disk manager component.
High-level objects (e.g. full data tiles) are passed to the ODM
disk manager storing the data in the corresponding format. The
disk manager is decoupled from the actual managing structure
(see). Hence, from a conceptional point of view, it is straight
forward to support a different persistent form. At the current
state, all data are stored in a single file as described in the
following section. However, new possibilities in LAS 1.4 to
describe attributes in a generic way, will lead to an additional
ODM disk manager implementations in the near future (see
section 5)

2.4.1 Single file disk manager
The current disk manager implementation stores a full ODM in
a single file making ALS project management flexible and
straight forward. Since the disk manager has to support dynamic
IO operation of independent data streams (e.g. one stream for
each point tile), a simple file system structure was used for
realization. Such a file is always structured in chunks (or
sectors). The ODM uses IDs to identify different streams. A
stream itself consists of a list of chunks that can grow or shrink
dynamically. If a stream is deleted, all corresponding chunks are
added to a simple garbage collection. In case a new chunk is
required, it is either requested from the garbage collection or
appended at the end of the file. Beside the actual data chunks,
the administration information (ID chunk lists and garbage
collection) must be stored within the file as well. It is most
common to store this information at the beginning or at the end
of file (header/trailer). Both options have different advantages
and disadvantages. The ODM disk manager stores the
administration information in a trailer at the end of the file.

Figure 7. Internal structure of the ODM file

A unique ID is assigned to each high level object that is passed
to the disk manager. Hence, if such an object is updated, the
entire object has to be re-written by the disk manager. Each tile
is represented by two independent streams; a coordinate stream
and an attribute stream. This allows reducing write operations
and, thus, improving the overall performance.

2.5 Processing Strategies

Nearly all OPALS Modules process the input data in
rectangular chunks from the upper left to lower right corner.
The size of the processing window either corresponds to the
native ODM tiling structure (e.g. opalsNormals,
opalsEchoRatio, etc.) or is adapted to the output format (e.g.
titled GeoTiff). Most modules use an additional overlap for data

selection (e.g. opalsNormals, opalsGrid, etc.) to avoid artifacts
at the border of the processing window. In case of multiple
processing threads, each thread processes a different chunk to
minimize the synchronization effort. Each thread holds a shared
pointer (with reference counting) to its corresponding ODM
point tile object. This allows an easy detection of tiles that can
be dropped from memory without explicitly releasing them.

Figure 8. Processing strategy of opalsNormals (left) and

opalsGrid (right)

3. PROCESSING PERFORMANCE

Although a detailed discussion of the processing performance is
beyond the scope of this paper, a few computation times are
presented in the following since the performance is crucial to
efficient LiDAR software.

The test procedure consists of typical tasks performed within
most LiDAR projects:

 Derivation of a digital surface model (DSM) using
moving least squares interpolation with a tilted plane
model (opalsGrid)

 Computation of a point density image to secure that the
tendering specifications are met (opalsCell)

 Estimation of a local surface plane for each point
(opalsNormals) for subsequent use in radiometric
calibration, segmentation, classification, etc..

 Computation of the echo ratio (ER) for each point
(opalsEchoRatio). The ER is a local measure of
transparency and roughness useful for building
detection (Höfle et. al., 2009) and forest delineation
(Eysn et. al., 2012)

The processing times of two data sets with 11 and 36 million
points (see Figure 9) given in LAS format (274 MB and 979
MB) are listed in Table 2. The data sets were processed on an
Intel Core i7 Computer with 8 GB Ram running on Windows 7
64 bit.

Table 2. Processing times of different OPALS modules on a

Core i7 64bit Computer

 Data set 1

11 million pts

Data set 2

36 million pts

opalsImport 26.3 [s] 105.2 [s]
opalsGrid (1m grid size) 24.5 [s] 67.6 [s]
opalsCell (5m cell size) 30.0 [s] 58.5 [s]
opalsNormals 69.4 [s] 216.1 [s]
opalsEchoRatio 60.0 [s] 192.6 [s]

Chunk 0 Chunk 1 Chunk 2

Chunk 3 Chunk 4 Chunk 5

Chunk 6 Chunk 7 Chunk 8

Chunk 9 Chunk 10 Chunk 11

…

Administration information

Stream 1
Stream 2
…

Free chunks

1 2

3

1 2 3 4

5 6

Overlap

ODM tile size Output tile size

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

157

Figure 9. DSM of data set 2; elevation coding overlayed with

hill shading; data: Province of Tyrol

4. IMPLEMENTATION DETAILS

The ODM is programmed in ISO C++ using a set of modern
standard open-source libraries:

 Standard Template Library (STL)
 (Boost, 2012) Libraries (Exception, Filesystem, Serializa-

tion, Smart Ptr, Thread, etc.)
 CGAL
 Geospatial Data Abstraction Library (GDAL, 2012)

Like most of the aforementioned libraries, the ODM uses
templates to a high degree. Templates allow programming in a
generic way that is far beyond the possibilities of classic C++.
Additionally, the compiler can optimize the code to a higher
degree, since less virtual function calls are usually needed. The
downside of template programming is the harder readability of
the code and, especially, the slower compile times in case of a
larger software project. This is why the C++ Interface of the
ODM does not contain templates, but only uses abstract
interfaces favoring the loose coupling principle.
Parallelization of computationally intensive tasks is state-of-
the-art to support modern multi-core CPUs. OPALS and the
ODM use (OpenMP, 2012) and the Boost Thread Library to
fulfill this requirement.

Although OPALS and the ODM are programmed in ISO C++
and multi-platform libraries are used, at the moment only a
Windows version is available. However, efforts are currently
made to port the code to Linux.

5. SUMMARY AND OUTLOOK

Processing large ALS projects requires efficient algorithms and
data handling strategies. In this paper we presented the ODM as
a central core of the software packages OPALS providing, both,
efficient spatial access to billions of points and a flexible
attribute schema to store arbitrary quantities along with each
point. Combined with the extensive scripting functionality of
OPALS individual processing strategies can be established.

The ODM uses two different indices to optimize the
performance of spatial queries. One index manages all point
data whereas the second index organizes polygonal data. The
point index is structured in two levels. First, the point data are
sorted into regular tiles whereas k-d trees are built on the fly as
a second level for each tile.
The persistent format of the ODM is controlled by the ODM
disk manager. Currently, a single file in a proprietary format is
used due to the lack of an appropriate open standard format.
The situation has changed with the draft specification of LAS
1.4 which has been released in October 2011. Whereas LAS has
always supported an additional memory block per point (extra
bytes), there was no possibility to generically describe its
content. The new specification now provides an appropriate
way of describing additional point attributes. Based on this new
feature, it would be possible to organize each tile in a separate
LAS file containing all attributes. The ODM would,
consequently, change from a single file to a directory containing
all point tiles as LAS files and some additional metadata files.
As a result, the user would have direct access to the ODM data
structure. This additional disk manager is a medium-term goal
of the ODM developments.
Although the ODM supports a variety of simple data types,
compound data types like vectors, matrices, and lists are
interesting for certain attributes (e.g. normal vector, beam
vector, etc.). Virtual attributes, combining existing attributes by
a specific formula, are another planed feature (e.g. beam vector
length, incident angle, etc.) This reduces disk consumption and
avoids redundancy.
The static first-level tiling concept of the ODM turned out to be
reliable for ALS because of the homogenous point distribution
over the ground plane domain. Only in very rare cases with
exotic point arrangements, OPALS modules ran into problems
because the tile size was selected inappropriately. At the
Institute of Photogammetry and Remote Sensing, OPALS and
the ODM was already successfully used to process Terrestrial
Laser Scanning (TLS) data. As expected, the tile size selection
is the crucial point for processing such data. For TLS (or
combined ALS/TLS) processing within OPALS, it is planned to
replace the first level index by a quad- or octtree structure to
support more heterogeneous data distributions.
Another interesting topic of research is loss-less compression.
(Isenburg, 2011) has developed an efficient LAS file
compressor. The compressed files are about 10% of the original
file size. In the face of such high compression rates, it is
tempting to use compression within the ODM. Though, the IO
of compressed data is usually slower than uncompressed IO, it
is foreseen to add compression to the ODM while at the same
time preserving the key features of performance and flexibility.

References

Alexander, C., Tansey, K., Kaduk, J., Holland, D., Tate, N. J.,
2010. Backscatter coefficient as an attribute for the
classification of full-waveform airborne laser scanning data in
urban areas. ISPRS Journal of Photogrammetry and Remote
Sensing 65 (5), pp. 423-432.

ASPRS, 2011. LAS file format exchange activities,
http://www.asprs.org/Committee-General/LASer-LAS-File-
Format-Exchange-Activities.html (15.1.2011).

Axelsson, P., 1999. Processing of laser scanner data –
algorithms and applications. ISPRS Journal of Photogrammetry
and Remote Sensing 54, 138-147.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

158

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B., 1990.
The r*-tree: An efficient and robust access method for points
and rectangles. Garcia-Molina, H., Jagadish, H. V. (Eds.),
Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, May 23-
25, 1990. ACM Press, pp. 322-331.

Bentley, J. L., 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM 18 (9),
pp. 509-517.

Boost, 2012, Homepage of Boost C++ Libraries
http://www.boost.org (15.1.2012)

Briese C., 2006. Structure line modelling based on terrestrial
laserscanner data, Symposium of ISPRS Commission V - Image
Engineering And Vision Metrology, H. Maas, D. Schneider
(Ed.); XXXVI/5 (2006), 1682-1750

Bunting P., Armston, J., Clewley, D., Lucas, R., 2011. Sorted
Pulse Data (SPD) Format: A new file structure for storing and
processing LiDAR data, SilviLaser 2011

CGAL, 2012. Homepage of the Computational Geometry
Algorithms Library
http://www.cgal.org (12.1.2012)

David, N., Mallet, C. and Bretar, F., 2008. Library concept and
design for lidar data processing. In: GEOgraphic Object Based
Image Analysis (GEOBIA) Conference, Calgary, Canada.

Doneus, M., Briese, C., 2006. Digital terrain modelling for
archaeological interpretation within forested areas using full-
waveform laserscanning. In: The 7th International Symposium
on Virtual Reality, Archaeology and Cultural Heritage VAST.
Cyprus.

Eysn, L., Hollaus, M., Schadauer, K., Pfeifer, N., 2012, Forest
Delineation Based on Airborne LIDAR Data, Remote Sensing,
4 (2012), 3, pp. 762 - 783

GDAL, 2012. Homepage of the Geospatial Data Abstraction
Library
http://www.gdal.org (15.1.2012)

Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.,
2002. Efficient indexing of spatiotemporal objects. 8th
International Conference on Extending Database Technology
(EDBT). Prague, Czech Republic.

Höfle, B., Mücke, W., Dutter, M., Rutzinger, M. and
Dorninger, P., 2009. Detection of building regions using
airborne LiDAR – A new combination of raster and point cloud
based GIS methods. GI_Forum 2009 - International Conference
on Applied Geoinformatics, Salzburg, pp. 66-75.

Isenburg, M. 2011, LASzip: lossless compression of LiDAR
data, European LiDAR Mapping Forum 2011 (ELMF)

Kanth, R., Kothuri, V., 2002. Quadtree and r-tree indexes in
oracle spatial: a comparison using gis data. In: Proceedings of
ACM SIGMOD Conference, 546-557.

Kim, Y. J., Patel, J. M., 2010. Performance comparison of the
r*-tree and the quadtree for knn and distance join queries. IEEE
Transactions on Knowledge and Data Engineering 22 (7), 1014-
1027.

libE57, 2012. Homepage of libE57: Software Tools for
Managing E57 Files
http://www.libe57.org/index.html (19.4.2012)

libLAS, 2012. Homepage of libLAS
http://liblas.org// (19.4.2012)

Mandlburger, G., Otepka, J., Karel, W., Wagner, W., Pfeifer,
N., 2009. Orientation and processing of airborne laser scanning
data (opals) - concept and first results of a comprehensive als
software. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences38 (Part
3/W7). Paris, France, pp. 55-60.

Mandlburger, G., Vetter, M., Milenkovic, M., Pfeifer, N., 2011.
Derivation of a countrywide river network based on Airborne
Laser Scanning DEMs - results of a pilot study, 19th
International Congress on Modelling and Simulation.
Modelling and Simulation Society of Australia and New
Zealand, 2423 - 2429.

OPALS, 2012. Homepage of OPALS
http://www.ipf.tuwien.ac.at/opals (12.1.2012)

OpenMP, 2012, Homepage of the OpenMP Architecture
Review Board
http://openmp.org/wp/ (15.1.2012)

Oracle, 2012. Homepage of Oracle Spatial
http://www.oracle.com/technology/products/spatial (15.1.2012).

PDAL, 2012. Homepage of Point Data Abstraction Library
http://pointcloud.org/ (19.4.2012)

Refraction Research, 2012. Homepage of PostGIS
http://postgis.refractions.net (15.1.2012)

Ressl, C., Kager, H., Mandlburger, G., 2008. Quality Checking
of ALS Projects Using Statistics of Strip Differences. In:
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 37 (Part B3b). pp. 253-260.

Rusu, R. B., Cousins, R., 2011. 3D is here: Point Cloud Library
(PCL), International Conference on Robotics and Automation
2011 (ICRA)

Wagner, W., Ullrich, A., Ducic, V., Melzer, T., Studnicka, N.,
2006. Gaussian decomposition and calibration of a novel small-
footprint full-waveform digitising airborne laser scanner. ISPRS
Journal of Photogrammetry and Remote Sensing 60 (2), pp.
100-112.

Wikipedia, 2012, R*-tree article in wikipedia
http://en.wikipedia.org/wiki/R*_tree (15.1.2012)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

159

http://www.boost.org/
http://www.cgal.org/
http://www.gdal.org/
http://www.libe57.org/index.html
http://liblas.org/
http://www.ipf.tuwien.ac.at/opals
http://openmp.org/wp/
http://www.oracle.com/technology/products/spatial
http://pointcloud.org/
http://postgis.refractions.net/
http://en.wikipedia.org/wiki/R*_tree

