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ABSTRACT: 

 
The fast measurement rate of today’s Airborne Laser Scanners results in billions of points for single ALS projects. Efficient 
algorithms and data management methods are, therefore, a precondition for successful project handling. The software package 
OPALS (Orientation and Processing of Airborne Laser Scanning data) was especially designed to meet those criteria. Central core of 
the package is the OPALS Data Manager (ODM). It provides both, fast spatial access to huge point clouds, as well as a flexible 
attribute schema to store additional point related quantities. 
Concepts of the spatial data organization and implementation details about the attribute handling are presented. Additionally, design 
rationales of the ODM, its file format and the system performance are described. 
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1. INTRODUCTION 

Point clouds from Airborne Laser Scanning (ALS), also termed 
airborne LiDAR (Light Detection And Ranging), has proven to 
be an efficient acquisition method for a wide range of 
topographic applications. Nowadays, forestry, geology, 
hydrology, cartography, and other geo-disciplines and 
applications, including natural hazard studies, make use of 
digital models or specific parameter sets derived from laser 
scanning point clouds. The fast technological advances within 
the last two decades have opened up new areas of research and 
applications of LiDAR data.  
A typical density of 10 laser echoes per m² covering a project 
area of 100km² results in 109 points. As ALS data sets may 
contain billions of points in a single project, efficient 
algorithms and data management methods are a precondition for 
successful project handling. 
 
Modern LiDAR sensors acquire range data at an enormous rate 
but also provide valuable attributes for each detected echo. 
(Axelsson, 1999) argues that the full potential of airborne laser 
scanning can only be exploited, if conversions like vector to 
raster, or the omission of additional attributes (e.g., echo 
number, recording time) are avoided. Especially full-waveform 
scanners, which record the emitted and backscattered signals as 
a function of time, allow applying more sophisticated detection 
and extraction routines (Wagner et al., 2006). Extracted 
waveform quantities such as amplitude or echo width are useful 
for all sorts of applications (Doneus and Briese, 2006; 
Alexander et. al., 2010). Hence, it is an absolute requirement 
for state-of-the-art LiDAR data management to support a 
flexible schema in order to preserve these valuable point 
attributes. 
 
ALS data are acquired by a series of distinct, overlapping flight 
strips. Several processing steps like quality control and 
documentation or georeferencing of the raw point clouds (Ressl 
et. al., 2008) rely on strip-wise data handling. On the other 

hand, when computing a feature for each LiDAR point (surface 
normal vector, surface roughness, etc…), information from all 
overlapping strips in the vicinity of the point should be taken 
into account. This argument favors a project or block-wise data 
handling in which the original strip ID may be an attribute. 
Obviously, access to the data in strip-wise or in a compound 
manner depends on the processing stage. There is no optimal 
single state. Therefore, the data management tools should 
support both handling strategies.  
 
1.1 State-of-the-Art Point Cloud Handling 

Driven by the demand for high-resolution data, various 
strategies, new file formats, and point cloud libraries have been 
developed in the last couple of years. 
 
Isenburg (2011) is the developer of LAStools, a set of tools for 
handling and processing LiDAR data based on the LAS file 
format. A fork of this project is libLAS, a LiDAR data 
translation toolset (libLAS, 2012). A comprehensive library for 
processing 3D point data is the Point Cloud Library (PCL) 
(Rusu and Cousins, 2011) which has a strong computer vision 
background. The Point Data Abstraction Library (PDAL, 2012) 
is focusing on import, export and filtering point data. However, 
it has not been released yet. 
 
David et. al. (2008) proposed a library concept that stores 
LiDAR scan lines as pixel lines within multi layer raster files 
providing spatial access based on the natural acquisition 
topology. It has been implemented within the FullAnalyse 
project. Bunting et. al. (2011) proposed a new file format for 
discrete and full-waveform data sets implemented in the Sorted 
Pulse Data Library (SPDLib). Another interesting new 
development is the E57 file format, a compact, vendor-neutral 
format for storing point clouds, images, and metadata produced 
by any 3D imaging system defined within the ASTM E2807 
standard. An implementation is available through the libE57 
(2012) Library. 
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Beside the fact that most of the aforementioned developments 
are quite new, OPALS favors its own data handling strategies 
because of supporting: 

 database features like dynamic and extendable attribute 
schema, data views and null values 

 point, line, and polygon data  
 
1.2 OPALS 

The software package OPALS is developed at the Institute of 
Photogrammetry and Remote Sensing at the Vienna University 
of Technology. It is designed for Orientation and Processing of 
Airborne Laser Scanning point clouds providing tools for the 
entire processing chain starting from analysis of the full-
waveform signal, quality control, geo-referencing, structure line 
extraction and terrain model derivation, to subsequent 
applications (forestry, city modeling, etc.).  
Important concepts of OPALS are flexible automatic work 
flows for processing huge data sets. This was achieved by a 
modular design based on small, well-defined components and 
extensive scripting support. Each component (module) can be 
accessed as command line executable, as python module or via 
a C++ API. This gives the user full control to compose arbitrary 
processing chains. More details about OPALS and its 
framework can be found in (Mandlburger et. al., 2009) and 
(OPALS, 2012) 
 
Central core of most OPALS modules is the OPALS Data 
Manager (ODM). Main feature of the ODM is to support, both, 
efficient spatial queries and a dynamically extendable attribute 
schema. The ODM comes into play after raw georeferencing of 
the point cloud. Hence, data processing is enabled on a per strip 
basis as well as for the entire flight block. OPALS modules 
potentially compute new point features, which are then 
appended to the existing point attributes. In most cases, the 
neigbhourhood of the points based on metric measures are 
analysed. E.g. opalsNormals estimates the three components of 
the surface normal vector (nx, ny, nz) by fitting a robust 
regression plane through the k-nearest points; opalsAddInfo 
allows computing new arbitrary attributes by combining 
existing attributes and (potentially) raster data sets in a generic 
mathematic formula. Furthermore, OPALS modules support 
powerful filters to sub-select the input data based on attributes. 
Obviously, attributes play an important role in the flexible and 
modular concept of OPALS. 
 

2. ODM CONCEPT  

One of the major issues for processing ALS projects is to tackle 
the huge amount of data. Memory limits usually prevent the 
entire point cloud from being loaded into random access 
memory. Hence, it is necessary to use strategies that split the 
overall data set in appropriate chunks and process them 
automatically considering a certain overlap. In case of 
topographic data, the horizontal extent exceeds the vertical 
range by far. Thus, indexing the ground plane domain is of 
higher importance than indexing the elevation. 
Within OPALS LiDAR data are imported into the ODM in an 
initial step. Using opalsImport one or multiple input files can 
be imported into a single ODM. Thereby, the full information 
of the input data including all attributes is preserved. For each 
point, the correspondence to the original file is stored such that 
the original file structure can be restored from the ODM after 
processing. 

To save disk space the ODM uses a global reduction point 
(double precision) which allows storing the actual geometry 
objects with single precision. 
 
2.1 Spatial indices 

Laser scanning data, as well as data from automatic image 
matching (digital photogrammetry) consist of point data only. 
However, the support of polygonal data is crucial for certain 
projects. E.g. terrain structure lines, water bodies in the form of 
shore and coast lines, river axes or boundaries of vegetation 
classes may either be measured manually or result from (semi-
)automatic extraction processes (Briese, 2006; Mandlburger et. 
al., 2011). Therefore, a versatile data handling concept has to 
support, both, point and polygonal data in a unified manner. 
Over the last three decades a variety of different spatial indices 
have be developed, which all have one thing in common; they 
subdivide the index space domain in a regular or irregular 
manner. Depending on data types (point, line, polygon, etc.), 
data distribution, query types and potential update operations 
different indexing methods should be used. There is no optimal 
index for all situations. E.g. the k-d tree (Bentley, 1975) is a 
very fast indexing method for nearest neighbor queries but does 
not support line data. Additionally, the k-d tree rapidly gets 
unbalanced in case of update operations (insert or delete 
points). Quad- and octtree structures are well suited for update 
operations and support point and polygonal data. However, they 
cannot compete in terms of speed regarding nearest neighbor 
queries.  
 

 
Figure 1. k-d trees are an extension of binary search trees 

 
Whereas quad- and octrees are limited in adapting to 
inhomogeneous data distributions, R-trees group nearby objects 
using minimum bounding rectangles or boxes in the next higher 
level of the tree. The key difficulty of R-trees is to build 
balanced trees and to minimize, both, coverage and overlap of 
node bounding hyperboxes (Beckmann et al., 1990). 
 

 
Figure 2. R-trees partition space based on bounding 

rectangles/boxes (hyperboxes) 
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However, R-trees tend to outperform quad- or octtrees (Kanth 
and Kothuri, 2002; Kim and Patel, 2010) since it is possible to 
build balanced trees even for inhomogeneous data distributions. 
Heavy update activity can lead to unbalanced trees which may 
outweigh the aforementioned advantage.  
 
2.2 Spatial ODM concept 

There are three requirements that a considerable spatial 
indexing structure for ALS data has to meet (in priority order): 

1. Support of swapping strategies since memory 
limitations prevent the entire point cloud being loaded 
into random access memory 

2. Maximum performance for point data on spatial 
queries, such as k nearest neighbor and range queries 

3. Support of point, line, and polygonal data 
4. Thread safety to support Multi-Core CPUs 

 
Combining those requirements with the background knowledge 
of spatial indices from the previous section, it becomes evident 
that maximum performance for spatial queries of point data and 
the support of polygonal data cannot be provided within a 
single spatial index. Within typical ALS projects the point data 
exceed the amount of line and polygon data by far, justifying 
the usage of the optimal index for point data. This is why the 
ODM uses different spatial indices for point and polygon data.  
 
2.2.1 Point Index of the ODM 
Point data are spatially indexed in two levels within the ODM. 
First, the data are sorted into a regular grid of quadratic tiles 
allowing the implementation of a straight forward swapping 
strategy. The tile size can be manually set or is, else, 
automatically computed based on point density estimations. 
Currently, OPALS uses relative small tiles containing 150.000 
to 200.000 points in average. Hence, the ODM can keep a 
decent number of tiles in memory at once. Several OPALS 
modules (opalsNormals, opalsEchoRatio, etc.) use tiles as 
processing units. Considering a certain data overlap (which 
requires neighboring tiles to be kept in memory as well) and 
multiple processing threads (potentially assigning a new tile to 
each thread) the memory limit is easily exceeded if the tiles are 
too big. Furthermore, the ODM uses tile caching based on a list 
of recently used tiles to minimize IO operations. 
 

 
Figure 3. Two level point index structure of the ODM 

 
In the second level, the points of a single tile are indexed using 
a k-d tree. Whereas the first level tile index is made persistent, 
the k-d trees are build on the fly after reading the tile points into 
memory. This has several advantages: 

 Less disk space is required since no second level index 
information is stored 

 Different indices can be used depending on processing 
needs (e.g., 2D or 3D k-d trees) 

 During data import new points are always appended at 
the end of the tile. Therefore, it is never necessary to 
reorganize the point data within a tile which saves 
additional IO operations. 

 
The implementation of the k-d tree is based on the respective 
implementation of the Computational Geometry Algorithms 
Library (CGAL, 2012). K-d trees use coordinate axis aligned 
hyperplanes for space-partitioning. The original k-d tree 
algorithm uses the median of all x coordinates to split the root 
node. Then, the median of the y coordinates is used for 
partitioning the sub nodes; and so on. In case of a 2D k-d tree 
the median search utilizes the x, y coordinates in a circular 
manner (c.f. Figure 1). This leads to a balanced tree (all leaf 
nodes are at the same tree level). However, depending on the 
data distribution and application a balanced tree does not 
necessarily result in the best performance for certain operations. 
Within a tile with strongly varying extents (e.g. at the edge of a 
flight strip), the distance between splitting k-d tree hyperplanes 
will reflect the specific variation of the data extents. Hence, the 
non-directional nearest neighbor search has to investigate more 
tree nodes as in situation with homogeneous hyperplane 
distances. This is why the CGAL k-d tree implementation has a 
flexible splitting concept and comes along with a set of 
predefined splitting strategies. 
 

 
Figure 4: Splitting lines using the original k-d tree algorithm 

(left) and a median of maximum spread split (right)  
 
The ODM uses the CGAL median of maximum spread splitting 
strategy in two and three dimensions with some improvements 
to increase the robustness in case of odd point arrangements. 
Although median splitters are expensive to compute, tests have 
shown that the limited number of points per tile result in 
negligible differences regarding tree building times. 
The selected implementation does not support dynamic 
insertion or deletion. However, this is in line with the overall 
OPALS concept as certain point measurements are rather 
disregarded for processing (using attribute filters) than 
permanently deleted from the data set.  
 
2.2.2 Polygonal data index of the ODM 
The ODM manages all non point data in a second independent 
index. Typical linear data of interest are terrain structure lines 
or river networks, but also 2-dimensional polygons, such as 
catchment polygons, parcels, buiding outlines or vegetation 
boundaries. The ODM uses an R*-tree index implementation of 
the Spatial Index Library developed by (Hadjieleftheriou et al., 
2002). As mentioned in 2.1 minimal coverage and overlap of 
the bounding hyperboxes is crucial to the performance of R-
trees. For this reason different R-tree variants have been 
developed using heuristics to minimize overlap and coverage.  
The R*-tree combines a revised node split algorithm and the 
concept of forced reinsertion at node overflow. Deletion and 
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reinsertion of entries allow "finding" a new position that may be 
more appropriate than their original location within the tree 
(Wikipedia, 2012). 
 

             
Figure 5:  Examples of visualized indices of different splitting 

heuristics; left: R-tree quadratic split; right: R*-tree 
topological split (Wikipedia, 2012). 

 
In contrast to the CGAL k-d tree implementation, the Spatial 
Index Library already contains thread-safety support and 
swapping strategies to handle big data set. However, the amount 
of polygonal data in typical ALS application is noncritical. 
 
In order to query point and line related data in a uniform way, 
the ODM provides a common interface for the separated 
indices, but it is possible to access both indices separately as 
well. 
 
2.3 Attribute schema 

As pointed out in 1.2, additional point attributes are of crucial 
importance for ALS data processing. The implemented ODM 
concepts are comparable to tables of relational databases and 
support an unlimited number of attributes and a variety of 
different data types for efficient storage usage. 
 

Data type Memory consumption 

Byte 1 byte 
unsigned byte 1 byte 
Short 2 byte 
unsigned short 2 byte 
Integer 4 byte 
unsigned integer 4 byte 
64bit integer 8 byte 
float 4 byte 
double 8 byte 
fixed length string n bytes 
variable length string 4 + n bytes 
Boolean 1 byte in memory 

1 bit on disk 
 
Table 1. Supported data attribute types and their memory 

consumption 
 
ODM attributes can be dynamically added while processing, 
thus, the attribute layout does not have to be defined in 
advance. As a consequence, each geometry object (point and 
polygonal object) can have a different set of attributes. This 
feature helps to save storage space if data within an ODM are 
only partly processed or data from different acquisition methods 
(e.g. laser scanning and photogrammetric image matching) are 
combined within one ODM. Additionally, a null flag is 
provided for each attribute value; hence, a specific no-data 
indicator is not required. 
The ODM also supports the database concept of views. They 
are used by OPALS modules to inspect a specific set of 

attributes. A view guarantees access to the sought-after 
attributes in the corresponding order. The ODM is not limited 
to one view. Hence, a module can use multiple views on the 
same data set at once. 
 
ODM attributes are differentiated into two groups: 

 Predefined attributes (with semantic) 
 User-defined attributes (without semantic) 

 
Predefined attributes have fixed names and data types, as well 
as a well-defined semantic and unit. Examples are attributes that 
are defined in the LAS format (ASPRS, 2012), or attributes 
computed by specific OPALS modules (e.g. opalsNormals).  
On the other hand, the name and type of user-defined attributes 
are freely selectable. Those attributes can come from the data 
import or from the generic attribute generation module 
opalsAddInfo. Although user-defined attributes have an 
unknown semantic, it is well possible to use them in filters or as 
processing attributes in most OPALS modules. This powerful 
functionality allows investigating and establishing new 
processing concepts on a user level. 
A special ODM feature is the on-the-fly statistics computation 
(count, minium, maximum, average and sigma) of all attribute 
columns. The statistics give a good overview about the attribute 
values and help to speed up certain processing tasks. The actual 
computation is carried out in a background thread to secure a 
minimal effect on the overall performance. 
 
With the flexible attribute schema and the spatial indices the 
ODM is comparable to geo-relational database systems. So why 
not using mature database systems like PostgreSQL/PostGIS 
(Refraction Research, 2012) or Oracle Spatial (Oracle, 2012) 
offering full administration capabilities, concerning both, 
geometry and attributes? The answer is performance and 
dynamic extendabilty. The ODM is an efficient light-weight 
tool tuned for high-speed processing and flexibility but not for 
transactions control or user security functionality. The strength 
of database systems is the long-term archiving and persistence, 
rather than a fast and optimized data access as necessary for 
ALS projects.  
 
2.4 Persistent form of the ODM 

 
Figure 6. Internal structure of the ODM 
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So far design rationales of the general data organization and the 
used spatial indices have been discussed. This leads to a few 
basic conditions on how the data have to be made persistent. 
However, the format of the point tiles and attributes is not 
defined by the index implementation. All IO operations within 
the ODM are carried out by a specific disk manager component. 
High-level objects (e.g. full data tiles) are passed to the ODM 
disk manager storing the data in the corresponding format. The 
disk manager is decoupled from the actual managing structure 
(see ). Hence, from a conceptional point of view, it is straight 
forward to support a different persistent form. At the current 
state, all data are stored in a single file as described in the 
following section. However, new possibilities in LAS 1.4 to 
describe attributes in a generic way, will lead to an additional 
ODM disk manager implementations in the near future (see 
section 5) 
 
2.4.1 Single file disk manager 
The current disk manager implementation stores a full ODM in 
a single file making ALS project management flexible and 
straight forward. Since the disk manager has to support dynamic 
IO operation of independent data streams (e.g. one stream for 
each point tile), a simple file system structure was used for 
realization. Such a file is always structured in chunks (or 
sectors). The ODM uses IDs to identify different streams. A 
stream itself consists of a list of chunks that can grow or shrink 
dynamically. If a stream is deleted, all corresponding chunks are 
added to a simple garbage collection. In case a new chunk is 
required, it is either requested from the garbage collection or 
appended at the end of the file. Beside the actual data chunks, 
the administration information (ID chunk lists and garbage 
collection) must be stored within the file as well. It is most 
common to store this information at the beginning or at the end 
of file (header/trailer). Both options have different advantages 
and disadvantages. The ODM disk manager stores the 
administration information in a trailer at the end of the file. 
 

 
Figure 7. Internal structure of the ODM file 

 
A unique ID is assigned to each high level object that is passed 
to the disk manager. Hence, if such an object is updated, the 
entire object has to be re-written by the disk manager. Each tile 
is represented by two independent streams; a coordinate stream 
and an attribute stream. This allows reducing write operations 
and, thus, improving the overall performance. 
 
2.5 Processing Strategies 

Nearly all OPALS Modules process the input data in 
rectangular chunks from the upper left to lower right corner. 
The size of the processing window either corresponds to the 
native ODM tiling structure (e.g. opalsNormals, 
opalsEchoRatio, etc.) or is adapted to the output format (e.g. 
titled GeoTiff). Most modules use an additional overlap for data 

selection (e.g. opalsNormals, opalsGrid, etc.) to avoid artifacts 
at the border of the processing window. In case of multiple 
processing threads, each thread processes a different chunk to 
minimize the synchronization effort. Each thread holds a shared 
pointer (with reference counting) to its corresponding ODM 
point tile object. This allows an easy detection of tiles that can 
be dropped from memory without explicitly releasing them. 
 
 

 
 
 
Figure 8. Processing strategy of opalsNormals (left) and 

opalsGrid (right) 
 
 

3. PROCESSING PERFORMANCE 

Although a detailed discussion of the processing performance is 
beyond the scope of this paper, a few computation times are 
presented in the following since the performance is crucial to 
efficient LiDAR software.  
 
The test procedure consists of typical tasks performed within 
most LiDAR projects: 

 Derivation of a digital surface model (DSM) using 
moving least squares interpolation with a tilted plane 
model (opalsGrid) 

 Computation of a point density image to secure that the 
tendering specifications are met (opalsCell) 

 Estimation of a local surface plane for each point 
(opalsNormals) for subsequent use in radiometric 
calibration, segmentation, classification, etc.. 

 Computation of the echo ratio (ER) for each point 
(opalsEchoRatio). The ER is a local measure of 
transparency and roughness useful for building 
detection (Höfle et. al., 2009) and forest delineation 
(Eysn et. al., 2012) 

 
The processing times of two data sets with 11 and 36 million 
points (see Figure 9) given in LAS format (274 MB and 979 
MB) are listed in Table 2. The data sets were processed on an 
Intel Core i7 Computer with 8 GB Ram running on Windows 7 
64 bit. 
 

 
Table 2. Processing times of different OPALS modules on a 

Core i7 64bit Computer 
 

 Data set 1  

11 million pts 

Data set 2  

36 million pts 

opalsImport 26.3 [s] 105.2 [s] 
opalsGrid (1m grid size) 24.5 [s]   67.6 [s] 
opalsCell (5m cell size) 30.0 [s]   58.5 [s] 
opalsNormals 69.4 [s] 216.1 [s] 
opalsEchoRatio 60.0 [s] 192.6 [s] 

Chunk 0 Chunk 1 Chunk 2 

Chunk 3 Chunk 4 Chunk 5 

Chunk 6 Chunk 7 Chunk 8 

Chunk 9 Chunk 10 Chunk 11 

… 

Administration information 

Stream 1 
Stream 2 
… 
 
Free chunks 

1 2 

3 

1 2 3 4 

5 6 

Overlap 

ODM tile size Output tile size 
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Figure 9. DSM of data set 2; elevation coding overlayed with 

hill shading; data: Province of Tyrol 
 
 

4. IMPLEMENTATION DETAILS 

The ODM is programmed in ISO C++ using a set of modern 
standard open-source libraries: 

 Standard Template Library (STL) 
 (Boost, 2012) Libraries (Exception, Filesystem, Serializa-

tion, Smart Ptr, Thread, etc.) 
 CGAL 
 Geospatial Data Abstraction Library (GDAL, 2012) 

 
Like most of the aforementioned libraries, the ODM uses 
templates to a high degree. Templates allow programming in a 
generic way that is far beyond the possibilities of classic C++. 
Additionally, the compiler can optimize the code to a higher 
degree, since less virtual function calls are usually needed. The 
downside of template programming is the harder readability of 
the code and, especially, the slower compile times in case of a 
larger software project. This is why the C++ Interface of the 
ODM does not contain templates, but only uses abstract 
interfaces favoring the loose coupling principle. 
Parallelization of computationally intensive tasks is state-of-
the-art to support modern multi-core CPUs. OPALS and the 
ODM use (OpenMP, 2012) and the Boost Thread Library to 
fulfill this requirement. 
 
Although OPALS and the ODM are programmed in ISO C++ 
and multi-platform libraries are used, at the moment only a 
Windows version is available. However, efforts are currently 
made to port the code to Linux. 
 

5. SUMMARY AND OUTLOOK 

Processing large ALS projects requires efficient algorithms and 
data handling strategies. In this paper we presented the ODM as 
a central core of the software packages OPALS providing, both, 
efficient spatial access to billions of points and a flexible 
attribute schema to store arbitrary quantities along with each 
point. Combined with the extensive scripting functionality of 
OPALS individual processing strategies can be established. 

The ODM uses two different indices to optimize the 
performance of spatial queries. One index manages all point 
data whereas the second index organizes polygonal data. The 
point index is structured in two levels. First, the point data are 
sorted into regular tiles whereas k-d trees are built on the fly as 
a second level for each tile. 
The persistent format of the ODM is controlled by the ODM 
disk manager. Currently, a single file in a proprietary format is 
used due to the lack of an appropriate open standard format. 
The situation has changed with the draft specification of LAS 
1.4 which has been released in October 2011. Whereas LAS has 
always supported an additional memory block per point (extra 
bytes), there was no possibility to generically describe its 
content. The new specification now provides an appropriate 
way of describing additional point attributes. Based on this new 
feature, it would be possible to organize each tile in a separate 
LAS file containing all attributes. The ODM would, 
consequently, change from a single file to a directory containing 
all point tiles as LAS files and some additional metadata files. 
As a result, the user would have direct access to the ODM data 
structure. This additional disk manager is a medium-term goal 
of the ODM developments. 
Although the ODM supports a variety of simple data types, 
compound data types like vectors, matrices, and lists are 
interesting for certain attributes (e.g. normal vector, beam 
vector, etc.). Virtual attributes, combining existing attributes by 
a specific formula, are another planed feature (e.g. beam vector 
length, incident angle, etc.) This reduces disk consumption and 
avoids redundancy. 
The static first-level tiling concept of the ODM turned out to be 
reliable for ALS because of the homogenous point distribution 
over the ground plane domain. Only in very rare cases with 
exotic point arrangements, OPALS modules ran into problems 
because the tile size was selected inappropriately. At the 
Institute of Photogammetry and Remote Sensing, OPALS and 
the ODM was already successfully used to process Terrestrial 
Laser Scanning (TLS) data. As expected, the tile size selection 
is the crucial point for processing such data. For TLS (or 
combined ALS/TLS) processing within OPALS, it is planned to 
replace the first level index by a quad- or octtree structure to 
support more heterogeneous data distributions. 
Another interesting topic of research is loss-less compression. 
(Isenburg, 2011) has developed an efficient LAS file 
compressor. The compressed files are about 10% of the original 
file size. In the face of such high compression rates, it is 
tempting to use compression within the ODM. Though, the IO 
of compressed data is usually slower than uncompressed IO, it 
is foreseen to add compression to the ODM while at the same 
time preserving the key features of performance and flexibility.  
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