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Let G = (V, E) be a simple connected undirected graph. Each vertex v ∈ V has a cost c(v) and
provides a positive coverage radius R(v). A distance duv is associated with each edge {u, v} ∈ E,
and d(u, v) is the shortest distance between every pair of vertices u, v ∈ V . A vertex v can cover all
vertices that lie within the distance R(v), except the vertex itself. The conditional covering problem
is to minimize the sum of the costs required to cover all the vertices in G. This problem is NP-
complete for general graphs, even it remains NP-complete for chordal graphs. In this paper, an
O(n2) time algorithm to solve a special case of the problem in a trapezoid graph is proposed,
where n is the number of vertices of the graph. In this special case, duv = 1 for every edge {u, v} ∈ E,
c(v) = c for every v ∈ V (G), and R(v) = R, an integer >1, for every v ∈ V (G). A new data structure
on trapezoid graphs is used to solve the problem.

1. Introduction

Let G = (V, E) be a finite, connected, undirected, and simple graph where V = {1, 2, . . . , n} is
the set of vertices and E is the set of edges with |E| = m. A distance duv is associated with each
edge {u, v} ∈ E, and d(u, v) is the shortest distance between every pair of vertices u, v ∈ V .
Each vertex v ∈ V has a cost c(v) and provides a positive coverage radius R(v). The vertex
u ∈ V is covered by a vertex v ∈ V if and only if v /=u and d(v, u) ≤ R(v). The conditional
covering problem (CCP, for short) is to minimize the sum of the costs of the vertices required to
cover all the vertices in V . One closely related problem to the CCP is the total dominating set
problem, which is a special case of the CCP inwhich all distances and coverage radii are equal
to 1. The total dominating set problem is NP-complete even on bipartite graphs [1]. Since the
total dominating set is a special case of CCP, the CCP is also NP-complete for generalgraphs.
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In this paper a special case of CCP on trapezoid graphs is considered. For the case, we
take duv = 1 for all {u, v} ∈ E, c(v) = c for all v ∈ V , and the coverage radius R(v) = R, a
fixed positive integer > 1 for all v ∈ V . That is, all edge weights are unity, coverage radii are
uniform, and vertex costs are constant.

Trapezoid graphswere first investigated in [2, 3]. Trapezoid graphs are the intersection
graphs of finite collections of trapezoids between two parallel lines [3]. Both the interval
graphs and the permutation graphs form subclasses of the trapezoid graphs [3] and trapezoid
graphs are subclasses of cocomparability graphs [4].

A trapezoid diagram consists of two horizontal lines (top channel and bottom channel)
and a set of trapezoids. A trapezoid i between these lines has four corner points tl(i), tr(i),
bl(i), and br(i) which represent the top left, top right, bottom left, and bottom right corner
points of the trapezoid i, respectively. Let T = 1, 2, . . . , n denote the set of trapezoids in the
trapezoid diagram for a trapezoid graph G = (V, E) with |V | = n. For trapezoid i, tl(i) < tr(i)
and bl(i) < br(i) holds. A graph, G = (V, E), is a trapezoid graph when a trapezoid diagram
exists with trapezoid set T , such that each vertex i ∈ V corresponds to a trapezoid i ∈ T and an
edge {i, j} ∈ E if and only if trapezoids i and j intersect within the trapezoid diagram. There
is an O(n2) time recognition algorithm for trapezoid graphs [5]. Moreover, this algorithm
also computes a trapezoid diagram, if the given graph G is a trapezoid graph. Any trapezoid
diagram can be transformed into another trapezoid diagram with all corner points distinct,
when the two representations still correspond to the same trapezoid graph. Without loss of
generality, it is assumed that no two trapezoids share a common endpoint. The points on each
horizontal line of the trapezoid diagram are labeled with distinct integers between 1 and 2n
from left to right. The terms vertex and trapezoid are used interchangeably whenever the
context is unambiguous. In this paper, it is assumed that a trapezoid diagram is given and
the trapezoids are labeled in increasing order of their top right corner point, that is, i < j if
and only if tr(i) < tr(j).

As mentioned earlier, the CCP on arbitrary graphs is NP-complete. Several important
graph problems that are NP-hard in general case have polynomial time algorithms for
trapezoid graphs. Solving these problems on special graphs is of great importance because
solutions to a problem on special classes of graphs might shed new light on solutions for
the problem on general graphs. Also, solutions to problems on special graphs can be used to
approximate solutions to the problems on general graphs. Many real world problems can be
modeled as special graphs, and hence simpler solutions are needed compared to the ones for
general graphs.

1.1. Review of Previous Work

Moon and Chaudhry [6] were the first to address CCP as constrained facility location
model. They present an integer programming model for this problem. Efficient heuristic
algorithms for the CCP have been extensively studied in [7–10]. Moon and Papayanopoulos
[11] consider one variation of CCP on trees. Complexity issues regarding the placement of
facilities in CCP were considered in [1, 12, 13]. For the CCP on a path graph with uniform
coverage radii, Lunday et al. [13] presented a linear time algorithm to solve the unweighted
cost CCP and an O(n2) dynamic programming algorithm to solve the weighted cost CCP.
Horne and Smith [1] studied the weighted cost CCP on path and extended star graphs with
nonuniform coverage radius and developed an O(n2) dynamic programming algorithm. In
an another article, Horne and Smith [12] considered weighted cost CCP on tree graphs and
presented an O(n4) dynamic programming algorithm. Recently, Sivan et al. [14] have shown
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that algorithm for CCP on paths, presented by Horne and Smith, is erroneous and further
present a correctO(n3) algorithm for the same. They also propose anO(n2) algorithm for the
CCP on paths when all vertices are assigned unit costs and further extend this algorithm to
interval graphs without an increase in time complexity. In our previous work [15], we solved
the CCP on unweighted interval graphs with uniform coverage radius which runs in O(n)
time.

1.2. Application

Trapezoid graphs are applied in various fields, including modeling channel routing problems
in VLSI design [3] and identifying the optimal chain of nonoverlapping fragments in
bioinformatics [16]. See also [17] for other practical applications of trapezoid graphs. The
application area of the CCP includes locating facilities in distribution systems, emergency
systems, communication systems, energy supply systems, and so forth.

1.3. Main Result

To the best of our knowledge, no algorithm is available to solve the CCP on trapezoid graphs.
In this paper, a special case of the CCP on trapezoid graphs is considered with unit edge
weights, uniform coverage radius R > 1 and uniform vertex costs. An O(n2) time algorithm
is designed to solve the problem.

1.4. Organization of the Paper

The rest of this paper is organized as follows. Section 2 establishes basic notations and
some properties of trapezoid graphs. In Section 3, a new data structure, called caterpillar,
is constructed and important properties of caterpillar are proved. In Section 4, an O(n2) time
algorithm is designed for solving conditional covering problem on a trapezoid graph. The
time complexity is also calculated in this section. Finally, Section 5 contains some conclusions.

2. Preliminaries

This section presents the preliminaries on which the desired algorithm depends.
A trapezoid i is left to the trapezoid j if i < j and i does not intersect j in the trapezoid

diagram. Similarly, a trapezoid i is right to the trapezoid j if i > j and i does not intersect j in
the trapezoid diagram.

For a vertex v ∈ V of a graph G = (V, E), the open neighborhood of v are defined as
N(v) = {u : {u, v} ∈ E}. For each v ∈ V , N(v) can be computed in O(n2) time.

T(i) is the highest trapezoid intersecting the trapezoid i such that tr(T(i)) > tr(i) or
T(i) = i if such trapezoid does not exist.

B(i) is the trapezoid with highest bottom right point intersecting the trapezoid i such
that br(B(i)) > br(i) or B(i) = i if such trapezoid does not exist.

For example, as occurred in Figure 1, T(1) = 2, T(3) = 6, B(1) = 1, B(2) = 3, and so
forth.

The symbol x ∼ y is used to indicate the adjacency between the vertices x and y, that
is, there is an edge between x and y. It should be noted that x ∼ y implies y ∼ x.
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Figure 1: A trapezoid graph and one of its trapezoid representation.

The following properties of trapezoid graphs are useful for our proofs.

Lemma 2.1. For i < j two vertices i and j are adjacent in G if and only if either tl(j) < tr(i) or
bl(j) < br(i).

Proof. Let us consider the case i < j and tl(j) < tr(i). By the ordering of trapezoids, tr(i) < tr(j)
as i < j. Then tl(j) < tr(i) < tr(j). Therefore, in the corresponding trapezoid representation,
the trapezoid i intersects the trapezoid j, so i is adjacent to j in G. Now consider the case
when i < j and bl(j) < br(i). In this case, bl(j) < br(i) and tr(i) < tr(j). Therefore in trapezoid
representation, the chord joining the corner points bl(j) and tr(j) of j always intersects i, that
is, the trapezoids i and j have a nonempty intersection in the trapezoid representation and
hence i is adjacent to j in G. Conversely, let i is adjacent to j in G and i < j. Therefore in
the trapezoid representation i and j have a nonempty intersection and tr(i) < tr(j). This is
possible only when either tl(j) < tr(i) or bl(j) < br(i) or both. Hence the lemma holds.

Lemma 2.2. For any three vertices u, v,w ∈ V , if u < v < w and {u,w} ∈ E then either, {u, v} ∈ E
or {v,w} ∈ E.

Proof. As u < v < w, so by the ordering of trapezoids we have tr(u) < tr(v) < tr(w).
The condition {u,w} ∈ E implies that either tl(w) < tr(u) or bl(w) < br(u). Therefore any
trapezoid v, satisfying the inequality tr(u) < tr(v) < tr(w), either intersects u or w or both,
that is, either {u, v} ∈ E or {v,w} ∈ E.

The following result is used to test whether two trapezoids are adjacent or not.

Lemma 2.3. For i < j two vertices i and j of the trapezoid graph G are not adjacent if and only if
tr(i) < tl(j) and br(i) < bl(j).

Proof. Let tr(i) < tl(j) and br(i) < bl(j). Since always tl(i) < tr(i), bl(i) < br(i), tl(j) < tr(j), and
bl(j) < br(j) holds. It follows that tl(i) < tr(i) < tl(j) < tr(j) and bl(i) < br(i) < bl(j) < br(j).
This means that in the trapezoid representation, the trapezoid i lie on the left of the trapezoid
j, implying that in the graph the vertices i and j are not adjacent. Conversely, in the trapezoid
graph the vertices i and j are nonadjacent only when in the trapezoid representation the
trapezoids i and j have no common region, that is, only when i is completely on the left of j,
that is, tr(i) < tl(j) and br(i) < bl(j). Hence the lemma follows.
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To compute all T(i), the trapezoids on the top and bottom channels of the matching
diagram are scanned. The following lemma computes all T(i).

Lemma 2.4. For all u ∈ V , T(u) can be computed in O(n) time.

Proof. Recall that T(u) is the trapezoid having highest top right point among all trapezoids
intersecting the trapezoid u. Let t be the last top right point in the trapezoid representation.
Then t = 2n. Let t1 = b1 = 2n, t2 be the tl(k) and let b2 be the bl(k) where k is the trapezoid
whose top right point is t. Initially, we scan the points on the top channel between t2 and t1
and on the bottom channel between b2 and b1. For each such point p, let i be its corresponding
trapezoid. If T(i) is not found yet, then T(i) is q, where q corresponds to the trapezoid whose
top right point is t. Continue the same process with the following adjustment on t, t1, b1, t2,
and b2 until all points are scanned. Let t1 be t2 − 1, b1 = b2 − 1, t be the previous top right point
before t, t2 = min{t2, tl(k)} and b2 = min{b2, bl(k)} where k corresponds to the trapezoid
whose top right point is t.

Clearly, algorithm TOP takes O(n) time to compute all T(i), i = 1, 2, . . . , n.
Similarly, all B(i), i = 1, 2, . . . , n can be computed in O(n) time.

The difficulty of the problem comes from the fact that the neighbor of a vertex of
trapezoid graphs can be spread everywhere in the two channels of the trapezoid diagram.
To overcome this difficulty a caterpillar is constructed from the given trapezoid diagram.

3. Scheme to Construct a Caterpillar

A caterpillar is a tree in which a single path is incident to every edge. The single path is called
the spine of the caterpillar. The vertices not on the spine of a caterpillar are leaves of the
caterpillar.

The caterpillar T ∗(G) from a given trapezoid diagram is constructed as follows.
First, compute two arrays T(i) and B(i) for all i ∈ V . Then construct a path such that

in the path the distance between any two vertices in the trapezoid graph is shortest. Initialize
i = 1. If T(i) = n or B(T(i)))/=B(i) or BTBT(i)/=BTB(i) (BTBT(i) is the composition of B and
T , that is, BTBT(i) = B(T(B(T(i))))) then i is adjacent to T(i), otherwise i is adjacent to B(i).
Let i be adjacent to the vertex t (either T(i) or B(i)). Replace i by t and repeat the process
until t is adjacent to n. This path is the spine of the caterpillar. Let P(G) be the spine of the
caterpillar. The length of a vertex u in the spine is the number of edges in the path from the
vertex 1 to u and is denoted by dist1(u). We define the length of the vertex 1 as 0. The vertex
on the spine at length l is denoted by u∗

l
. The set of leaves of the caterpillar at length l is

denoted by Xl. Next, compute the leaves of the caterpillar as follows:

Xl = N
(
u∗
l

) − {
u∗
l−1

}
,

Xl−1 = N
(
u∗
l−1

) − {
u∗
l−2, u

∗
l

} ∪Xl,

Xl−i = N
(
u∗
l−i
) −

{
u∗
l−(i+1), u

∗
l−(i−1)

}
∪Xl−(i−1) ∪Xl−(i−2), for i = 2, 3, . . . , l − 1,

X0 = N(1) − {
u∗
1

} ∪X1 ∪X2.

(3.1)
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Figure 2: The caterpillar of the graph of Figure 1.

Finally, connect u and u∗
i by an edge, for all u ∈ Xi. The resulting graph is the caterpillar

T ∗(G). The caterpillar T ∗(G) for the graph of Figure 1 is shown in Figure 2.
If u ∈ Xi then we define dist1(u) = i, i = 0, 1, . . . , l. The elements of the set Xi are

the leaves of u∗
i , i = 0, 1, . . . , l. Let vi be any leave at length i and and Yi be the collection of

elements of the caterpillar at length i, That is, vi ∈ Xi and Yi = Xi ∪ {u∗
i }.

Lemma 3.1. The caterpillar T ∗(G) of a connected trapezoid graph G exists and is unique for a given
trapezoid diagram.

Proof. The existence of the caterpillar T ∗(G) follows from the construction of caterpillar. Since
for a given trapezoid diagram the order of a vertex i ∈ V is unique, B(i) and T(i) are also
unique. Thus the caterpillar is unique for any trapezoid graph G.

3.1. Properties of the Caterpillar

The vertices of P(G) satisfy the following results.
By the construction of the caterpillar it is easy to see that, if u, v ∈ P(G) such that

|dist1(u) − dist1(v)| > 1 then {u, v} /∈ E.

Lemma 3.2. If u, v ∈ P(G) such that dist1(u) − dist1(v) > 1 then u > v.

Proof. Let u and v be two arbitrary vertices of P(G) such that dist1(u) − dist1(v) > 1. Observe
that there exists a vertex w ∈ P(G) in between u and v such that v ∼ w. Then there are two
cases that may arise.

Case 1. {w,u} ∈ E. In this case tr(u) > tr(v), since else tr(u) < tr(v) implies that {v, u} ∈ E
which contradicts Lemma 3.1. Hence u > v.

Case 2. {w,u} /∈ E. It is clear that dist1(v) < dist1(w) < dist1(u). Then, since {u, v} /∈ E
(Lemma 3.1) and {v,w} ∈ E, in the trapezoid diagram u lie on the right of v. Therefore u > v.

Lemma 3.3. If u ∈ P(G) and v ∈ Xi such that dist1(v) − dist1(u) > 2 then {u, v} /∈ E.

Proof. Without loss of generality, let u = u∗
l
and v ∈ Xl+i where i > 2. Then (v, u∗

l+i) ∈ E. There
exists a path in T ∗(G) such that u∗

l ∼ u∗
l+1 ∼ · · · ∼ u∗

l+i ∼ v.
Since v is adjacent to u∗

l+i, if v is adjacent to u∗
l
then v has highest top right and bottom

right point intersecting u∗
l
in the trapezoid diagram. But u∗

l+1 has highest top right or bottom
right point intersecting u∗

l
, a contradiction.
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Hence v is not adjacent to u∗
l and the lemma follows.

The following lemma can be proved by arguments similar to those used in the above
lemma.

Lemma 3.4. If u ∈ Xl and v ∈ Xl+3 such that {u, v} ∈ E then {v, u∗
l+1} ∈ E.

Lemma 3.5. If u, v ∈ T ∗(G) such that dist1(u) − dist1(v) > 3 then {u, v} /∈ E.

Proof. There are four cases that may arise.

Case 1. u, v ∈ P(G). Since dist1(u) − dist1(v) > 3 and u, v ∈ P(G), by the construction of the
caterpillar, it follows that {u, v} /∈ E.

Case 2. u, v /∈ P(G). If {u, v} /∈ E, then u or v must be a member of P(G) which is a
contradiction.

Case 3. u ∈ P(G) and v /∈ P(G). Since dist1(u) > dist1(v), u ∈ P(G) and v /∈ P(G), therefore
{u, v} /∈ E.

Case 4. u ∈ P(G) and v /∈ P(G). If {u, v} /∈ E, then v must be a member of P(G) which is a
contradiction. Hence the lemma follows.

The following lemma follows from the properties of the caterpillar.

Lemma 3.6. If u, v, andw be three vertices of the caterpillar of length l1, l2, and l3, respectively such
that l1 < l2 < l3. If d(u,w) ≤ R then, d(v,w) ≤ R.

Observe that, if {u, v} ∈ E such that u ∈ Xi and v ∈ Xi+3 then there does not exist
w ∈ Xi−j , j > 2 with {w,u} ∈ E. Also, there does not exist t ∈ Xi+j , j > 2 with {v, t} ∈ E.

Lemma 3.7. For any two vertices u, v ∈ P(G), the distance between u and v is minimum along
P(G).

Proof. Let u and v be two arbitrary vertex of P(G) such that d(u, v) = m. We will show that
there does not exist any path from u to vwith d(u, v) < m. Without loss of generality let u = u∗

i

and v = u∗
i+m. For m = 1, the possible paths from u to v are u∗

i ∼ u∗
i+1 and u∗

i ∼ vi ∼ vi+1 ∼ u∗
i+1.

Therefore, the distance between u and v is minimum along P(G), that is, the lemma is true for
m = 1. Form = 2, the possible paths from u to v are u∗

i ∼ u∗
i+1 ∼ u∗

i+2, u
∗
i ∼ vi ∼ vi+1 ∼ u∗

i+1 ∼ u∗
i+2,

u∗
i ∼ vi ∼ vi+1 ∼ vi+2 ∼ u∗

i+2, and u∗
i ∼ vi ∼ vi+2 ∼ u∗

i+2. That is, the lemma is true for m = 2 also.
Let the lemma be true for m = k. Then a shortest path from u to v is u∗

i ∼ u∗
i+1 ∼ · · · ∼

u∗
i+k. Since vi+k+1 may adjacent to the leaves vi+k, vi+k−1 and vi+k−2, the possible shortest paths

from u to v are u∗
i ∼ u∗

i+1 ∼ · · · ∼ u∗
i+k ∼ u∗

i+k+1 and u∗
i ∼ u∗

i+1 ∼ · · · ∼ u∗
i+k−2 ∼ vi+k−2 ∼ vi+k+1 ∼

u∗
i+k+1. Hence u∗

i ∼ u∗
i+1 ∼ · · · ∼ u∗

i+k ∼ u∗
i+k+1 is a shortest path.

The following definitions are crucial in designing our algorithm.

Definition 3.8. Two vertices u, v (u < v) in a set form a dominating pair if and only if d(u, v) ≤
R and there is no other vertex w in the set with d(v,w) ≤ R.

Definition 3.9. Three vertices u, v, and w (u < v < w) in a set form a dominating triple if and
only if d(u, v) ≤ R, d(v,w) ≤ R and and there is no other vertexw in the set with d(v,w) ≤ R.
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Input: A trapezoid graph with a trapezoid diagram and coverage radius R.
Output: A conditional covering set D in V .

Initially D = φ and i = 0.
Step 1: Compute the sets T(u), B(u) and N(u) for each vertex u ∈ V .
Step 2: Construct the caterpillar. Compute the vertices of the spine and the sets Xi for

i = 0, 1, 2, . . . , l; where l is the highest length of the caterpillar.
Step 3: Compute p = i + R.

If d(u, vj) ≤ R, j > p + 2 and for all u ∈ Yi then
D = D ∪ {vj} such that j is maximum, replace i by j − 1, p = i + R, goto Step 4;

elseif Xp = ∅ or u ∈ N(u∗
p−1) ∪N(u∗

p−2) for all u ∈ Xp then
D = D ∪ {u∗

p}, replace i by p, p = i + R, goto Step 5;
else D = D ∪ {u∗

p−1}, replace i by p − 1, p = i + R, goto Step 5;
endif

Step 4: If p > l then
D = D ∪ {v} such that d(v, vj) ≤ R and finish;

elseif p = l then
D = D ∪ {u∗

p} and finish;
else go to step 6;
endif;

Step 5: If p > l then
D = D ∪ {v} such that d(v, u) ≤ R and finish;// u is the latest selected member

of D//
elseif p = l then D = D ∪ {u∗

p} and finish;
else go to step 6;
endif;

Step 6: If d(u, vj) ≤ R, j > p + 2 and for all u ∈ Yi then
D = D ∪ {vj} such that j is maximum, replace i by j − 1, p = i + R, goto Step 7;

elseif Xp = ∅ or u ∈ N(u∗
p−1) ∪N(u∗

p−2) for all u ∈ Xp then
D = D ∪ {u∗

p}, replace i by p, p = i + R, goto Step 7;
else D = D ∪ {u∗

p−1}, replace i by p − 1, p = i + R, goto Step 7;
endif;

Step 7: If p > l then
D is the required solution;

elseif p = l then
If Xp = ∅ or u ∈ N(u∗

p−1) ∪N(u∗
p−2) for all u ∈ Xp then

D is the required solution;
else D = D ∪ {u∗

p} and finish;
endif;

else go to Step 8;
endif;

Step 8: If d(u, vj) ≤ R, j > p + 2 and for all u ∈ Yi and j − 1 + R > l then
D = D ∪ {vj} and finish;

elseif p + R > l then
D = D ∪ {u∗

p} and stop;
elseif p + R = l and Xp+R = ∅ or u ∈ N(u∗

p+R−1) ∪N(u∗
p+R−2) for all u ∈ Xp+R then

D = D ∪ {u∗
p} and stop;

else goto next Step;
endif;

Step 9: If u ∈ N(u∗
p−1) ∪N(u∗

p−2), for all u ∈ Xp then
replace i by p + 1 and goto Step 3;

else replace i by p and goto Step 3;
endif;

Algorithm 1: Algorithm CCP.
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4. Minimum Cardinality Conditional Covering

The algorithm proceeds by covering the vertices of the caterpillar from left to right. The
algorithm selects the members of conditional covering set in such a way that each member
belongs to a dominating pair or a dominating triple.

A formal algorithm is presented in Algorithm 1.

4.1. Proof of Correctness

By the process of computation of D, it is easy to see that every vertex of the caterpillar is
covered by a vertex in D. Also, any member of D is included in a dominating pair or triple.
Therefore each vertex of the induced subgraph of D in G is covered by at least one other
vertex in D.

Observe that the set D consists entirely of dominating pairs and triples of vertices. If
not, then there exists a minimum cardinality conditional covering setD that does not contain
entirely is covering pairs and triples. So, there must exists a set of four vertices x, y, z,w such
that d(x, y) ≤ R, d(y, z) ≤ R and d(z,w) ≤ R. Now, if a vertex t be chosen as a member of D
instead of z such that dist1(t) > dist1(w) and d(t,w) ≤ R then also each vertex of the induced
subgraph of D in G is covered by at least one other vertex in D. Again, the set of vertices
covered by x, y, z,w is a proper subset of the set of vertices covered by x, y,w, t. Since the
aim is to minimize |D|, later selection is better. Again, at each stage, the algorithm selects the
member of D of maximum length of the caterpillar, such that the newly selected member
covers the vertices of maximum length on the right and covers all uncovered vertices on the
left. Therefore the solution set D is of minimum cardinality.

Theorem 4.1. Algorithm 1 finds a minimum cardinality conditional covering set on trapezoidgraphs
in O(n2) time.

Proof. Step 1 can be computed usingO(n) time. Step 2 requiresO(n2) time. Step 3 can be done
in constant time. So the caterpillar is constructed in O(n2) time. In worst case Step 4 is to be
repeated for O(n) time. Therefore, the total running time of the algorithm CCP is O(n2).

5. Concluding Remarks

To date no algorithms have been proposed for CCP on trapezoid graphs. In this paper,
we proposed an O(n2) time algorithm for solving CCP on trapezoid graphs. The proposed
algorithm was designed based on the strategy: first, construct the caterpillar and then solve
the problem on the constructed caterpillar. Since the class of permutation graphs is a subclass
of trapezoid graphs, this problem on permutation graphs can also be solved inO(n2) time by
our algorithm. It would be interesting to develop more efficient algorithms of low complexity
for these problems. A future study could also continue to examine one of several practical
variations of the CCP.

References

[1] J. A. Horne and J. C. Smith, “Dynamic programming algorithms for the conditional covering problem
on path and extended star graphs,” Networks, vol. 46, no. 4, pp. 177–185, 2005.



10 ISRN Discrete Mathematics

[2] D. G. Corneil and P. A. Kamula, “Extensions of permutation and interval graphs,” in Proceedings of the
18th Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton,
Fla., 1987), Congr. Numer. 58, pp. 267–275, 1987.

[3] I. Dagan, M. C. Golumbic, and R. Y. Pinter, “Trapezoid graphs and their coloring,” Discrete Applied
Mathematics, vol. 21, no. 1, pp. 35–46, 1988.

[4] F. Cheah and D. G. Corneil, “On the structure of trapezoid graphs,” Discrete Applied Mathematics, vol.
66, no. 2, pp. 109–133, 1996.

[5] T. H. Ma and J. P. Spinrad, “On the 2-chain subgraph cover and related problems,” Journal of
Algorithms, vol. 17, no. 2, pp. 251–268, 1994.

[6] I. D. Moon and S. S. Chaudhry, “An analysis of network location problems with distance constraints,”
Management Science, vol. 30, no. 3, pp. 290–307, 1984.

[7] S. S. Chaudhry, “New heuristics for the conditional covering problem,” Opsearch, vol. 30, pp. 42–47,
1993.

[8] S. S. Chaudhry, I. D. Moon, and S. T. McCormick, “Conditional covering: greedy heuristics and
computational results,” Computers & Operations Research, vol. 14, no. 1, pp. 11–18, 1987.

[9] V. Lotfi and I. D. Moon, “Hybrid heuristics for conditional covering problems,” International Journal
of Modelling and Simulation, vol. 17, no. 3, pp. 185–190, 1997.

[10] I. D. Moon, “Conditional covering: worst case analysis of greedy heuristics,” Journal of the Korean
Operations Research and Management Science Society, vol. 15, no. 2, pp. 97–104, 1990.

[11] I. D. Moon and L. Papayanopoulos, “Facility location on a tree with maximum distance constraints,”
Computers & Operations Research, vol. 22, no. 9, pp. 905–914, 1995.

[12] J. A. Horne and J. C. Smith, “A dynamic programming algorithm for the conditional covering problem
on tree graphs,” Networks, vol. 46, no. 4, pp. 186–197, 2005.

[13] B. J. Lunday, J. C. Smith, and J. B. Goldberg, “Algorithms for solving the conditional covering problem
on paths,” Naval Research Logistics, vol. 52, no. 4, pp. 293–301, 2005.

[14] B. Sivan, S. Harini, and C. Pandu Rangan, “On conditional covering problem,” Mathematics in
Computer Science, vol. 3, no. 1, pp. 97–107, 2010.

[15] A. Rana, A. Pal, and M. Pal, “The conditional covering problem on unweighted interval graphs,”
Journal of Applied Mathematics and Informatics, vol. 28, pp. 1–11, 2010.

[16] M. I. Abouelhoda and E. Ohlebusch, “Chaining algorithms for multiple genome comparison,” Journal
of Discrete Algorithms, vol. 3, no. 2–4, pp. 321–341, 2005.

[17] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, NY, USA,
1980.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


