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The Casimir stress on a spherical shell in de Sitter spacetime for a massless scalar field is calculated
using Krein space quantization. In this method, the auxiliary negative frequency states have
been utilized, the modes of which do not interact with the physical states and are not affected
by the physical boundary conditions. These unphysical states just play the role of an automatic
renormalization tool for the theory.

1. Introduction

The Casimir effect is a small attractive force acting between two parallel uncharged
conducting plates and it is regarded as one of the most striking manifestation of vacuum
fluctuations in quantum field theory. It is due to the quantum vacuum fluctuation of the field
operator between two parallel plates. In other words, the Casimir effect can be viewed as the
polarization of the vacuum by boundary conditions or geometry. The presence of reflecting
boundaries alters the zero-point modes of a quantized field and results in the shifts in the
vacuum expectation values of quantities quadratic in the field, such as the energy density
and stresses.

In particular, vacuum forces arise acting on the constraining boundaries. The
particular features of these forces depend on the nature of the quantum field, the type
of spacetime manifold and its dimensionality, the boundary geometries, and the specific
boundary conditions imposed on the field. Since the original work by Casimir in 1948 [1],
many theoretical and experimental works have been done on this problem [2–14].

The time dependence of boundary conditions or geometries, the so-called dynamical
Casimir effect, is also a new element which has to be taken into account. In particular, in [15]
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the Casimir effect has been calculated for a massless scalar field satisfying Dirichlet boundary
conditions on the spherical shell in de Sitter space. The Casimir stress is calculated for inside
and outside of the shell with different backgrounds corresponding to different cosmological
constants.

It should be remarked that the procedures of renormalization and regularization have
been applied for eliminating the divergences appeared in physical quantities [16–20]. The
Casimir effect has been also investigated for two parallel plates in Krein space quantization
[21].

The historical background of Krein space quantization goes back to the covariant
quantization of minimally coupled scaler field in de Sitter spacetime. It has been
shown that the linear quantum gravity in the background field method is perturbatively
nonrenormalizable and also there appears an infrared divergence. This infrared divergence
does not manifest itself in the quadratic part of the effective action in the one-loop
approximation. This means that the pathological behavior of the graviton propagator may
be gauge dependent and so should not appear in an effective way as a physical quantity
[22]. The infrared divergence which appears in the linear gravity in de Sitter space is the
same as the minimally coupled scalar field in de Sitter space [23–27]. It is shown that one
cannot construct a covariant quantization of the minimally coupled scalar field with only
positive norm states [28]. It has been proved that the use of the two sets of solutions (positive
and negative norm states) is an unavoidable feature if one wants to preserve causality
(locality), covariance, and elimination of the infrared divergence in quantum field theory for
the minimally coupled scalar field in de Sitter space [29, 30], that is, Krein space quantization.

The singular behavior of Green’s function at short relative distances (ultraviolet
divergence) or in the large relative distances (infrared divergence) leads to main divergences
in the quantum field theory. It was conjectured that quantummetric fluctuations might smear
out the singularities of Green’s functions on the light cone, but it does not remove other
ultraviolet divergences [31]. However, it has been shown that quantization in Krein space
removes all ultraviolet divergences of quantum field theory (QFT) except the light cone
singularity [32]. By using the Krein space quantization and the quantum metric fluctuations
in the linear approximation, it has been showed that the infinities in the Green’s function are
disappeared [31, 33].

Quantization in Krein space instead of Hilbert space has some interesting features. For
example, in this method, the vacuum energy becomes zero naturally, so the normal ordering
would not be necessary [29, 32]. The auxiliary negative norm states, which are used in the
Krein space quantization, play the regularization of the theory.

Applying the unphysical negative frequency states and defining the field operator
in Krein space, we can calculate the gravitational pressure on a spherical shell yielding the
standard result obtained.

2. Scalar Casimir Effect for a Sphere in de Sitter Space

The Casimir force due to fluctuations of a free massless scalar field satisfying Dirichlet
boundary conditions on a spherical shell in Minkowski space time has been studied in [34].
Doing the calculations in Krein space, the two-point Green’s functionGK(x, t;x′, t′) is defined
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as the vacuum expectation value of the time-ordered product of two fields (K and T stand
for quantities in Krein space and the time-ordered product, resp.)

GK

(
x, t;x′, t′

) ≡ −i〈0∣∣TΦK(x, t)ΦK

(
x′, t′
)∣∣0
〉
, (2.1)

ΦK(x, t) =
∑

�k

[(
a�k + b†

�k

)
up(k, x) +

(
a†
�k
+ b�k

)
un(k, x)

]
. (2.2)

The operators a†(�k) and a(�k) create and destroy, respectively, the mode up(k, x) with
positive energy (k0 = ω�k), which may be considered as the operators of creation and
annihilation of a particle and the operators b†(�k) and b(�k) create and destroy, respectively,
the mode un(k, x) with negative energy (−k0 = −ω�k), which may be considered as the
operators of creation and annihilation of an “antiparticle” in the inverse time direction. The
two sets of modes do not affect each other and in the standard QFT, the negative energy
states are eliminated in the quantum field operators, which are the origin of the appearance
of divergence. On the contrary, the divergence disappears by taking these states into account.

The two-point Green’s function has to satisfy the Dirichlet boundary conditions on the
shell:

GK

(
x, t;x′, t′

)∣∣
|x|=a = 0, (2.3)

where a is radius of the spherical shell. The stress-energy tensor in Krein space T
μν

K (x, t) is
given by

T
μν

K (x, t) ≡ ∂μΦK(x, t)∂νΦK(x, t)

− 1
2
ημν∂λΦK(x, t)∂λΦK(x, t).

(2.4)

The radial Casimir force per unit area F/A on the sphere, called Casimir stress, is
obtained from the radial-radial component of the vacuum expectation value of the stress-
energy tensor:

F

A
=
〈
0
∣∣Trr

in − Trr
out

∣∣0
〉∣∣

r=a. (2.5)

Taking into account the relation (2.1) between the vacuum expectation value of the
stress-energy tensor Tμν

K (x, t) and the Green’s function at equal times GK(x, t;x′, t), we obtain

F

A
=

i

2

[
∂

∂r

∂

∂r ′
GK

(
x, t;x′, t

)
in

− ∂

∂r

∂

∂r ′
GK

(
x, t;x′, t

)
out

]∣∣∣∣
x=x′,|x|=a

.

(2.6)
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One may use of the above flat space calculation in de Sitter space time by taking the
de Sitter metric in conformally flat form

ds2 = Ω
(
η
)[
dη2 −

∑3

ı=1
(dxı)2

]
, (2.7)

where Ω(η) = α/η and η is the conformal time

−∞ < η < 0. (2.8)

Assuming a canonical quantization of the scalar field in Krein space, the conformally
transformed quantized scalar field in de Sitter spacetime is given by

ΦK

(
x, η
)
=
∑

k

[(
a�k + b†

�k

)
uk

(
η, x
)
+
(
a†
�k
+ b�k

)
u∗
k

(
η, x
)]
, (2.9)

where a†
k and ak are creation and annihilation operators, respectively, and the vacuum states

associated with the physical modes uk defined by ak|0〉 = 0 are called conformal vacuum.
Given the flat space Green’s function (2.1), we obtain

GK = −i
〈
0
∣∣∣TΦK

(
x, η
)
ΦK

(
x′, η′)

∣∣∣0
〉
= Ω−1(η

)
Ω−1(η′)GK, (2.10)

where ΦK(x, η) = Ω−1(η)ΦK(x, η) has been used. Therefore, using (2.5), (2.6), and (2.10), we
obtain the total stress on the sphere in de Sitter spacetime and using Krein space quantization
as

F

A
=

η2

α2

F

A
, (2.11)

in accordance with the standard result.

3. Spherical Shell with Different Vacua in Krein Space Quantization

We assume different vacua inside and outside, corresponding to different αin and αout for
the Lorentzian metric (2.7) and use the following relation for the stress on the shell due to
boundary conditions in flat spacetime [8]:

F

A
=

−1
4πa2

∂E

∂a
, (3.1)

where the Casimir energy E is the sum of Casimir energies Ein and Eout for inside and outside
of the shell. The corresponding relation in de Sitter spacetime and applying Krein method
leads to the following result [15]:

F

A
=

−1
4πa2

∂E

∂a
=

η2

8πa4

(
c1

α2
in

+
c2

α2
out

)

, (3.2)
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where we have used the automatically renormalized total zero-point energy in Krein Space

E =
η2

2a

(
c1

α2
in

+
c2

α2
out

)

, (3.3)

in which c1 = 0.008873, c2 = −0.003234.
Now, we obtain the pure effect of vacuum polarization due to the gravitational field

without any boundary conditions in Euclidean (outside) region with the following metric:

ds2 = −Ω(η)
[
dη2 +

∑3

ı=1
(dxı)2

]
. (3.4)

To this end, we calculate the automatically renormalized stress tensor in Krein space
quantization for the massless scalar field in de Sitter spacetime with Euclidean signature. One
may use [2]

〈
0
∣∣∣Tν

μ

[
gkl
]∣∣∣0
〉∣∣∣

K
=
(
g̃

g

)1/2〈
0
∣∣∣Tν

μ

[
g̃kl
]∣∣∣0
〉∣∣∣

K

− 1
2880π2

[
1
6

(1)Hν
μ − (3)Hν

μ

]
,

(3.5)

where g̃kl is the flat Euclidean metric for which 〈0|Tν
μ [g̃kl]|0〉|K = 0, and

(1)Hν
μ = 0,

(3)Hν
μ =

3
α4

δν
μ.

(3.6)

We then obtain

〈
0
∣∣∣Tν

μ

[
gkl
]∣∣∣0
〉∣∣∣

K
=

1
960π2α4

δν
μ, (3.7)

which is exactly the same result for the Lorentzian case [2]. Therefore, the corresponding
effective radial pressures for the Euclidean (outside) and Lorentzian (inside) regions with
αout and αin, due to pure effect of gravitational vacuum polarization without any boundary
condition, are given, respectively, by

PE
out = −〈0|Tr

r [gkl]|0〉
∣∣
K = − 1

960π2α4
out

,

PL
in = −〈0∣∣Tr

r

[
gkl
]∣∣0
〉∣∣

K = − 1
960π2α4

in

.

(3.8)
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The corresponding gravitational pressure on the spherical shell in Krein space
quantization is then given by

PG = PL
in − PE

out = − 1
960π2

(
1
α4
in

− 1
α4
out

)

. (3.9)

4. Conclusion

The Casimir effect has been studied for spherical bubbles with different vacua inside and
outside, corresponding to de Sitter metrics. The metrics inside and outside are taken by
Lorentzian and Euclidean, respectively. The case of different vacua in a Lorentzian de Sitter
spacetime has already been studied in [15]. In the present work, we have shown that the same
results could be attained using Krein space quantization. Presence of the unphysical negative
frequency states plays the role of an automatic renormalization tool.

Appendix

In this appendix, we review the elementary facts about Krein space quantization. As we
know, the origin of divergences in standard quantum field theory lies in the singularity of the
Green’s function. The divergence appears in the imaginary part of the Feynman propagator,
and the real part is convergent [35]:

GP
F

(
x, x′) = − 1

8π
δ(σ0)

+
m2

8π
θ(σ0)

⎡

⎢
⎣
J1
(√

2m2σ0

)
− iN1

(√
2m2σ0

)

√
2m2σ0

⎤

⎥
⎦

− im2

4π2
θ(−σ0)

K1

(√
2m2(−σ0)

)

√
2m2(−σ0)

.

(A.1)

Consideration of negative frequency states removes singularity of the Green’s function
with exception of delta function singularity:

GT

(
x, x′) = − 1

8π
δ(σ0)

+
m2

8π
θ(σ0)

J1
(√

2m2σ0

)

√
2m2σ0

, σ0 ≥ 0.

(A.2)
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However, considering the quantum metric fluctuations removes the latter singularity:

〈
GT

(
x, x′)〉 = − 1

8π

√
π

2
〈
σ2
1

〉 exp

(

− σ2
0

2
〈
σ2
1

〉

)

+
m2

8π
θ(σ0)

J1
(√

2m2σ0

)

√
2m2σ0

,

(A.3)

where 〈σ2
1〉 is related to the density of gravitons. When σ0 = 0, due to the metric quantum

fluctuation 〈σ2
1〉/= 0, and we have

〈GT (0)〉 = − 1
8π

√
π

2
〈
σ2
1

〉 +
m2

16π
. (A.4)

By using the Fourier transformation, we obtain [36]

〈
G̃T

(
p
)〉

= G̃T

(
p
)
+ PP

m2

p2
(
p2 −m2

) . (A.5)

However, in the one-loop approximation, the contribution of delta function is
negligible and the Green’s function in Krein space quantization appearing in the transition
amplitude is

〈
G̃T

(
p
)〉∣∣∣

one-loop
≡ G̃T

(
p
)∣∣∣

one-loop
≡ PP

m2

p2
(
p2 −m2

) . (A.6)
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