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Abstract

We use administrative panel data to decompose worker performance into components
relating to general talent, task-specific talent, general experience, and task-specific ex-
perience. We consider the context of high school teachers, in which tasks consist of
teaching particular subjects in particular tracks. Using the timing of changes in the
subjects and levels to which teachers are assigned to provide identifying variation, we
show that much of the productivity gains to teacher experience estimated in the liter-
ature are actually subject-specific. By contrast, very little of the variation in the per-
manent component of productivity among teachers is subject-specific or level-specific.
Counterfactual simulations suggest that maximizing the value of task-specific expe-
rience could produce nearly costless efficiency gains on the order of .02 test score
standard deviations. JEL Codes: I21, I28, J24, J45, L23.

Keywords: Task-Specific Human Capital, Teacher Experience, Teacher Value-Added,
Teacher Quality
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1. Introduction

An extensive literature in labor economics, exemplified by Mincer (1974), has modeled
worker productivity as depending on a human capital stock that combines a component
related to the worker’s innate talent/formal education with a component related to the
worker’s experience. A parallel literature, originating with Becker (1964), has con-
sidered the degree to which a worker’s stock of human capital is portable across firms,
industries, or occupations. A smaller and more recent literature has considered the pos-
sibility that a considerable portion of a worker’s human capital might be specific to the
particular tasks the worker has performed at the jobs the worker has held.3 The litera-
ture on task-specific human capital either has assumed that only the experience compo-
nent of human capital is task-specific4, has assumed that the degree of task-specificity
is common between the talent and experience components of human capital5, or has
instrumented to remove the influence of the task-specific talent component in order to
focus on task-specific experience6.

However, knowledge of the relative importance of task-specific talent versus task-
specific experience is essential for employers wishing to maximize the productivity of
their workforces. For tasks with larger potential experience gains and smaller variance
in task-specific innate talent, the key to a productive workforce is employee retention:
the optimal strategy is to keep employees of all talent levels at their originally assigned
tasks to benefit from experience. Conversely, for tasks yielding smaller experience
gains with a larger variance in task-specific talent, the optimal strategy is to lay off or
reassign low performing workers in an attempt to either improve general worker skill
or identify superior worker-task matches.

Thus, in this paper we introduce a method for decomposing worker productivity into
components relating to general talent, task-specific talent, general experience, and task-
specific experience. Our decomposition requires data featuring (1) signals (possibly
noisy) of individual workers’ task-specific output, (2) histories of worker task assign-
ments, and (3) considerable worker mobility across tasks. We implement our method
using the context of high school teachers, in which tasks consist of teaching particular
subjects in particular tracks.

Myriad papers have estimated education production functions featuring both teacher
fixed effects and a common experience profile. The bulk of the evidence suggests
that the standard deviation of permanent teacher quality is between .1 and .2 standard
deviations at either the primary 7 or secondary school level8, while teachers tend to

3See, for example, Gibbons and Waldman (2004), Clement et al. (2007), Polataev and Robinson (2008),
Gathmann and Schoenberg (2010), DeAngelo and Owens (2012).

4e.g. Gibbons and Waldman (2004), Clement et al. (2007), DeAngelo and Owens (2012).
5e.g. Polataev and Robinson (2008)
6e.g. Gathmann and Schoenberg (2010).
7e.g. Rockoff (2004), Hanushek et al. (2005), Clotfelter et al. (2006), Harris and Sass (2006), Boyd et al.

(2008), Jackson and Bruegmann (2009), Harris (2009), Harris and Sass (2011), Jackson (2013).
8e.g. Aaronson et al. (2007), Jackson (2014), Mansfield (2015). Harris (2009) finds little evidence of
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improve with experience by around .05 test score standard deviations in their first year,
another .03 to .05 over the next couple of years, and another .03 to .05 over the next
several years, with the profile for mid-career teachers flattening out at between .1 and
.2 standard deviations better than a novice teacher.9. More recent studies relax the
functional form assumptions imposed in these early studies and find somewhat larger
returns to late-career teaching.10

However, this literature has generally ignored the possibility that the baseline effec-
tiveness of a teacher and/or the gains to teaching experience might be specific to a
particular classroom environment. In such a context, models that impose homogeneity
of productivity across different classroom environments will return a weighted average
of teacher productivity across the environments each teacher actually faced (weighted
by the fraction of time spent in each environment). To the extent that a teacher faces dif-
ferent classroom contexts over their career, models that impose homogeneity of returns
to experience across different classroom environments may underestimate the gains to
context-specific experience. Similarly, to the extent that a teacher’s classroom environ-
ment has remained somewhat stable during their career, such models may overestimate
the returns to general experience.

A few papers, though, have addressed various aspects of the context-specificity of
teacher productivity. Most of this work as been at the elementary or middle school
level. Jackson (2013) shows that a substantial portion of the variation in teacher contri-
butions to student achievement is specific to the school in which a teacher has worked.
Lockwood and McCaffrey (2009) and Aucejo (2011) examine the degree to which
teachers have comparative advantages at teaching relatively high versus low ability
students, and find evidence that a small component of teaching productivity is specific
to student ability level. Perhaps more closely related to our paper is work by Ost (2013)
showing that teachers who always repeat elementary grade assignments improve 35%
faster than teachers who never repeat grade assignments. Similarly, Master et al. (2012)
show that the efficacy of a teacher teaching English-language learners (ELL) depends
on his/her experience teaching the ELL population. The paper most closely related to
ours is Condie et al. (2014), who also consider subjects as tasks. They demonstrate
the existence of meaningful comparative advantages of elementary teachers at teaching
English vs. math. These papers, however, focus either on context-specific experience
or context-specific skill, rather than providing a unified treatment of both factors.

Of course, the distinction between context-specific and general talent or experience
may not be critical if most teachers spend the bulk of their careers in a single context.
However, at the elementary school level, Jacob and Rockoff (2011) document substan-
tial rotation of teachers across grades: only 28 percent of third-year teachers had taught
the same grade in each of their first three years.

Similarly, at the high school level teachers are routinely asked to teach courses in dif-

returns to experience using high school data from Florida.
9e.g. Rivkin et al. (2005), Clotfelter et al. (2007).

10Wiswall (2013) and Papay and Kraft (2011).
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ferent subjects and in different difficulty tracks. Indeed, teacher certification in most
states is at the level of the field (math, science, history, etc.) rather than the subject (Bi-
ology, Chemistry, Physics), and is not specific to a level of difficulty (special education
excepted). If teacher productivity is in fact specific to the subject or level, then such
changes in teaching assignments may have important implications for student achieve-
ment.

To see this, suppose first that teachers have pre-determined comparative advantages
for particular subjects or difficulty levels. Then mutually advantageous swaps among
teachers could produce efficiency gains if both teachers move toward their relatively
more effective subjects or levels. More generally, observing a teacher in a number
of different classroom contexts early in the teacher’s career might produce valuable
information about the teacher’s relative teaching strengths. Permanent subject-specific
skill might exist, for example, if a teacher’s undergraduate major was in a particular
subject (e.g. Physics rather than Biology). Permanent level-specific skill might exist,
for example, if a teacher has strong classroom control skills due to natural charisma or
sense of humor, which may be comparatively more important in remedial or basic level
courses, where students may tend to be less engaged.

On the other hand, suppose task-specific skill is primarily learned through experience
rather than being predetermined at the time of hire. Then rotating the classroom envi-
ronments to which teachers are assigned will waste a component of each teacher’s skill,
and slow each teacher’s progress toward his/her full potential. Subject-specific experi-
ence might be important, for example, if a teacher’s knowledge of the subject content
deepens over time. Level-specific experience might also be significant if the appropri-
ate pace at which to deliver content depends on student skill and is slowly calibrated
over time. In addition, experience teaching a certain subject-level combination (e.g.
honors biology) might be particularly valuable if it allows teachers to hone particular
lectures over time that would be inappropriate for either a different level or a different
subject.

Thus, in order to determine the nature of the optimal teacher personnel and class-
room assignment policy, we use administrative panel data from North Carolina Ed-
ucation Research Data Center to decompose teacher effectiveness at improving student
achievement into (1) a set of permanent components capturing general talent, subject-
specific talent, level-specific talent, and subject-level specific talent, and (2) a set of
functions capturing returns from general experience, subject-specific experience, level-
specific experience, and subject-level specific experience. The data track teachers and
students in the universe of public high schools in North Carolina from 1997-2009.
Critically, the data feature 74,000 within-teacher changes in subject assignment and
over 45,000 academic-level switches. Such rich data permit estimation of an education
production function that includes general, subject-specific, level-specific, and subject-
level-specific experience profiles as well as a full set of school-teacher-subject-level
fixed effects. The flexibility of our model allows us to control for many potential bi-
ases that might otherwise accompany endogenous course assignment decisions.

To preview our results, we find that a substantial portion of the returns to years of
experience that have been estimated in the value-added literature is actually specific to
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the subject that the teacher taught. We find little evidence of returns to level-specific
experience and no evidence of returns to subject-level experience. In agreement with
the rest of the value-added literature, we find that the variation in fixed teaching skill
is comparable in magnitude to the gains to experience; in a mild contrast to gains
from experience, however, over 80% of the variance in permanent skill is general to
all subjects and levels. Our estimates suggest only a minor role for subject-specific or
level-specific teaching talent.

We test for and fail to find convincing evidence of estimation biases driven by dy-
namic assignment responses to classroom shocks, school-year shocks, or heteroge-
neous teacher-specific growth with experience. However, we do find evidence of sub-
modularity in the production function that maps general experience, subject-specific
experience, and level-specific experience into teacher productivity. Specifically, gains
from general and subject-specific experience accrue primarily when the teacher has
relatively low levels of level-specific experience. Incorporating a richer production
function that accommodates such non-separability removes a meaningful negative bias
from estimates of the returns to subject-level experience from our baseline model, but
does not significantly alter the qualitative conclusions outlined above.

Of course, the knowledge that a large fraction of the gains from experience are subject-
specific may be of limited value to principals if most changes in course assignments
are driven by necessity. For example, parental leave may require principals to reas-
sign teachers to unfamiliar subjects or tracks. Using our estimated experience pro-
files, we address this possibility by performing a counterfactual simulation in which
we assess the potential achievement gains from a course assignment mechanism that
maximizes the value of the stocks of context-specific experience that teachers possess.
Specifically, for each year of our data, we reassign the teachers observed teaching in
each school-field combination in the chosen year to the courses that were offered at
their school at the time in order to maximize student performance, given the four-
dimensional stocks of experience that these teachers possessed as of the beginning of
the year. To ensure that our counterfactual allocation was feasible for the principal at
the time, we impose that each teacher must teach the same number of classrooms that
the teacher was actually observed teaching in the chosen year.

While we can only observe the prior subject and level histories of the subset of teachers
who began teaching after 1995, our simulations based on this subsample indicate that
the statewide average gain from efficient use of context-specific experience (relative
to the observed allocation) are as large as .025 student-level standard deviations by
2009, and would likely continue to grow over time. Since there are no changes in total
teaching load for any teacher, these efficiency gains could potentially be reaped with
essentially zero cost. These simulated gains are quite close in magnitude to the gains
from subject-specialization in elementary school projected by Condie et al. (2014). We
also show that they are larger than the gains administrators could expect to reap from
a policy in which the bottom 10% of teachers were removed and replaced by average
teachers.

The rest of the paper proceeds as follows. Section 2 presents the education production
function whose parameters we estimate. Section 3 describes how comparisons of teach-
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ers with different course assignment histories can provide joint identification of both
school-teacher-subject-level fixed effects and general, subject-specific, level-specific,
and subject-level-specific experience profiles. Section 4 discusses the North Carolina
administrative data and provides summary statistics displaying the variation in teacher
course assignments. Section 5 presents the parameter estimates from our main specifi-
cation. Section 6 discusses possible threats to our identifying assumptions and presents
results from several specification tests and robustness checks (which are described in
detail in the Appendix). Notably, Section 6 demonstrates the existence of non-trivial
interactions between different components of context-specific experience. Section 7
describes the counterfactual simulation in which teachers’ course assignments are cho-
sen to maximize gains from context-specific experience and presents the results from
the simulation. Finally, Section 8 concludes.

2. Model Specification

Because our focus is on the relative importance of context-specific teacher skill and
experience to test score performance, we craft our specification of the achievement
production function so as to isolate the contribution of these components. Let Yict
represent the standardized test score of student i in classroom c at time t. Let r(i, c, t)
denote the teacher that taught student i in classroom c at time t. Similarly, let s(i, c, t)
denote the school at which student i experienced classroom c at time t, let j(i, c, t)
denote the subject taught in student i’s classroom c at time t, and let l(i, c, t) denote
the difficulty level or track associated with the classroom. l(i, c, t) ∈ {b, h}, where
b denotes “basic” and h denotes “honors”.11 Since North Carolina used different test
forms for each subject in each year, we standardize each test score Yict so that the
distribution of test scores in each subject-year combination has zero mean and unit
variance.

By suppressing the dependence of s, r, j, and l on (i, c, t), we can represent the pro-
duction of test score performance compactly via:

Yict = Xictβjl+δsjl+µsrjl+d
gen(expgenrt )+dj(expjrt)+d

l(explrt)+d
jl(expjlrt)+εict

(1)

Xict represents a vector of student observable characteristics and middle school reading
and math test scores, along with a vector of the average levels of observable character-
istics and past test scores in classroom c. We allow the impact of student and classroom
characteristics and past scores to differ by subject-level combination. This allows the
students’ past test scores to reveal comparative advantages in particular subjects, so that
a high 8th grade math score might be a stronger predictor of performance in Algebra 1
than in English 1. Similarly, classroom composition might matter more in a particular
subject or level if more group work takes place in say, basic biology (e.g. labs) than in

11Section 4.2 describes how courses were assigned to difficulty levels.
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honors math. Xict is included to partly control for non-random sorting of students to
particular teachers within school-subject-level cells (discussed further in Section 4.2).

δsjl represents a full set of school-subject-level fixed effects. These will capture the
average residual achievement at each school-subject-level combination, after removing
the part of achievement that can be predicted based on observable student and class-
room characteristics. The set of {δ} parameters will not only capture any school-level
inputs such as principal quality, neighborhood quality, or quality of the school facilities,
they will also capture any variation in the quality of curricula or textbooks across sub-
jects and levels within the school. Importantly, they will also capture the contribution
of average unobserved inputs of the students who sort into particular school-subject-
level combinations. Thus, the inclusion of δsjl acts as a control function that absorbs
school inputs as well as any potential sorting biases that might otherwise be created by
students’ endogenous choices of school, subject, and level.

µsrjl represents a full set of school-teacher-subject-level fixed effects. The average
school-teacher-subject-level will be normalized to 0 for each school-subject-level in
our baseline specification (see Section 3.2 for further discussion), so that µsrjl can be
thought of as the deviation of a particular teacher’s performance in a particular subject-
level combination from the mean (student-weighted) performance of all teachers that
taught in the chosen teacher’s school-subject-level combination during the sample.
This specification of the contribution of teacher quality allows the estimation of a fully
non-parametric joint distribution of general teacher talent and subject-specific, level-
specific, and even subject-level-specific permanent comparative advantages within and
across teachers. Note that by including the identity of the school in the definition of
the fixed effect, we are allowing each teacher to have a completely different average
skill and set of comparative advantages for particular subjects and levels at each school
at which they teach (a teacher who teaches in two schools is essentially treated as two
different teachers).12 Variation in µsrjl around a given average µsrl will provide ev-
idence of subject-specific skill, while variation in µsrjl around a given average µsrj

will provide evidence of level-specific skill. One can then average the contribution of
each teacher across all subject-level combinations (µsr) and compare these averages
across teachers to examine the variation in general persistent teacher quality (Section
3.2 provides further details concerning this decomposition).

expgenrt represents the total number of years of general teaching experience that teacher
r possessed at the beginning of year t (i.e. number of previous years in which any
subject-level was taught). dgen(∗) is a function that captures how additional years
of general experience increase a teacher’s ability to improve student performance (re-
gardless of the subjects and levels in which this experience was earned). Analogously,
expjrt, exp

l
rt, and expjlrt represent previous years of experience in the current sub-

ject, level, and subject-level combination respectively. The dj(∗), dl(∗), and djl(∗)
functions capture how additional years of subject-specific experience, level-specific
experience, and subject-level specific experience affect a teacher’s ability to increase

12Jackson (2013) documents the existence of meaningful teacher-school match components.
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student test scores. dgen(∗), dj(∗), dl(∗), and djl(∗) are each flexibly parametrized
using indicators for narrow ranges of experience.

Finally, εict represents an error component which combines time-varying inputs not
captured by the other components of the model. In particular, we model the error
component as:

εict = νrt + φst + ζct + eict (2)

νrt represents year-specific deviations in a teacher’s quality from what would be ex-
pected based on his/her long run skill and level of experience in the appropriate subject-
level combination (e.g. due to teacher illness). φst captures year-specific deviations in
school inputs or student sorting relative to the sample-wide average for the school-
subject-level (e.g. due to school renovation). ζct captures classroom level shocks,
such as an uncontrollably disruptive student or the archetypal dog barking outside the
classroom window on test day. Finally, eict represents the contributions of residual
student-level inputs unpredictable based on observables as well as measurement error
that captures the extent to which the student’s performance on the particular exam de-
viates from what the student could have expected to score, given his/her accumulated
knowledge in the subject. We adjust standard errors to account for the existence of
each of these error components.

3. Identification

3.1. Identifying the Return to General and Task-Specific Experience

Let exrt = (exgenrt , exjrt, ex
l
rt, ex

jl
rt) represent the four-dimensional stock of experi-

ence components accumulated by teacher r as of year t. To identify the experience
profiles dgen(∗), dj(∗), dl(∗), and djl(∗), we assume that the following condition
holds13:

Assumption 1: Conditional Mean Independence of
Time-Varying Unobserved Inputs and Teacher Experience

E[εict|exrt = ẽx, (s, r, j, l) = (s̃, r̃, j̃, l̃), X̃ict] =

E[εict|(s, r, j, l) = (s̃, r̃, j̃, l̃), X̃ict] ∀ ẽx ∈ EX , (s̃, r̃, j̃, l̃) ∈ SRJL, X̃ ∈ X (3)

Assumption 1 states that knowledge of the four-dimensional experience stock of the
teacher does not provide further information about any unobserved component of in-
puts, conditional on observed student inputs and the identity of the school, teacher,
subject, and level. Put another way, the timing of experience accumulation in each
dimension of experience is assumed to be exogenous.

13This condition is slightly stronger than is necessary for our baseline specification, but will be a necessary
condition for the specifications introduced in Section 6.
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There are a number of possible threats to the validity of Assumption 1, each of which
relates to the exact timing of changes in experience. For example, suppose that when
a school is in decline, teacher turnover begins to increase, and the teachers that remain
are forced to teach both new subjects and new difficulty levels more frequently. In this
case, we may be more likely to observe zero subject-specific or level-specific expe-
rience when the value of φst is low. Since year-specific deviations in school quality
from the sample-wide average are included in εict, this scenario violates Assumption
1 and could potentially produce an overestimate of the returns to task-specific experi-
ence. Alternatively, suppose principals are reluctant to force a teacher to take on new
subjects or levels when the teacher faces other short-term obstacles (such as illness, a
new child, or a divorce). In that case, zero subject-specific or level-specific experience
may be observed more frequently when the value of νrt is high. This scenario also vi-
olates Assumption 1, and might cause an underestimate of the returns to task-specific
experience. Similarly, if teachers respond to a particularly unruly classroom by quit-
ting teaching, or switching levels or subjects, we might underestimate the returns to
experience (since those who survive to the next year of experience will have observed
above-average shocks, thereby hiding the gains to the next year of experience). We
address the possibility of such violations of Assumption 1 in Section 6. We find very
little evidence of violations of sufficient magnitude to produce a substantial bias to any
of our profiles.

Despite these concerns, however, note that Assumption 1 is still much weaker than the
assumptions required to identify experience profiles in most of the literature, since it
conditions on the identity of the school, teacher, level, and course. Essentially, the
inclusion of school-teacher-subject-level fixed effects (µsrcl) controls for any arbitrary
selection of teachers into experience categories based on the fixed component of gen-
eral or context-specific productivity. Conditioning on r accounts for the possibility that
better teachers persist long enough to gain more experience. Similarly, conditioning on
r and j accounts for the possibility that the teachers allowed to gain more subject-
specific experience in a particular subject are those with comparative advantages in
teaching the subject, while conditioning on r and l accounts for the possibility that per-
sistence at teaching honors courses might signal a comparative advantage for teaching
such courses.

Even if the timing of experience accumulation is conditionally independent of the error
components, the simultaneous identification and estimation of each of the four expe-
rience profiles also requires considerable variation in the history of subject and level
assignments across teachers. Such variation is necessary to satisfy the OLS rank con-
dition and more importantly, to produce sufficiently precise estimates. Appendix B
illustrates how identification of the task-specific experience profile in each task dimen-
sion might be secured, and provides insight into the patterns of student performance in
the data that inform estimates of the experience profile parameters.

The examples in Appendix B reveal that the experience profiles are fully identified from
comparisons of different teachers’ rates of performance growth (divergence/convergence
of average student residuals) across years in which the same subject-level combination
was taught. Because the average performance of each teacher in each school-subject-
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level combination is perfectly fit by the unrestricted school-teacher-subject-level and
school-subject-level fixed effects, such cell averages provide no identifying variation
for the experience profiles. Put another way, the inclusion of these fixed effects forces
the identification of the experience profiles to be delivered exclusively from the path of
productivity growth within school-teacher-subject-level combinations.

3.2. Identification of the General and Context-Specific Components
of Fixed Teaching Skill

Identifying fixed or pre-determined general and context-specific teaching skill is more
difficult. In particular, there is a fundamental identification problem that our model
cannot overcome: we cannot distinguish average teaching quality in a particular school-
subject-level from school or unobserved student inputs that are school-subject-level
specific. For example, suppose a school’s students score 0.1 student-level standard
deviations higher in Biology than in Chemistry. In the absence of restrictions on the
distribution of subject-specific teacher skill, we cannot tell whether all the teachers at
the school are particularly effective at teaching Biology relative to Chemistry, or if
instead the Biology textbook is superior to the Chemistry textbook (or many of the
student’s parents are biologists). To address this issue, we consider two polar opposite
assumptions and one moderate assumption, and decompose the variance in teacher
time-invariant productivity into general, subject-specific, level-specific, and subject-
level-specific components under each assumption. The first assumption is that average
teacher effectiveness is uniform across all levels, subjects, and schools:

Assumption 2A: Uniform Average Teacher Quality Across Contexts

E[µsrjl|(s, j, l) = (s̃, j̃, l̃)] = k for some constant k, ∀ (s̃, j̃, l̃) ∈ SJL (4)

This would hold if the relatively more effective teachers do not sort into particular
schools, subjects, or levels. Assumption 2A implies that all the variation in aver-
age residual student performance (after removing the part that is predictable based
on student observables) across subjects, levels, and schools can be attributed to ei-
ther school inputs or unobserved student inputs. Assumption 2A can be imposed on
the model by including school-subject-level fixed effects (δsjl), and normalizing the
student-weighted average teacher-school-subject-level fixed effect to be zero at each
school-subject-level 1

Nsjl

∑
i∈sjl µ̂srjl = 0. Under Assumption 2A, a teacher whose

Biology students perform 0.1 standard deviations better than her Chemistry students
will be assumed to be equally effective at teaching both Biology and Chemistry if the
school average performance difference between Biology and Chemistry is 0.1 standard
deviations. The polar opposite approach is to assume that all the variation in average
residual student performance across subjects, levels, and schools can be attributed to
differences in average teacher quality:

Assumption 2B: Uniform School and Unobserved Student Quality Across
Contexts

E[δsjl|(s, j, l) = (s̃, j̃, l̃)] = k for some constant k, ∀ (s̃, j̃, l̃) ∈ SJL (5)
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Assumption 2B would hold if students sort into high schools, subjects, and levels
based only on observable characteristics and past performance, and all high schools
and subject-level combinations within high schools provide the same contribution to
student achievement. Assumption 2B can be imposed on the model by excluding
school-subject-level fixed effects (δsjl = 0 ∀ (s, j, l)), and matching the between
school-subject-level residual variation using a full set of teacher-school-subject-level
fixed effects (without any normalizations). Under Assumption 2B, a teacher whose Bi-
ology students perform 0.1 standard deviations better than her Chemistry students will
be assumed to be 0.1 standard deviations more effective at teaching both Biology and
Chemistry if the school average performance difference between Biology and Chem-
istry is 0.1 standard deviations. In other words, even though the teacher is at the mean
of the performance distribution in both subjects, the comparison set of Biology teach-
ers is assumed to be 0.1 standard deviations superior on average to the comparison set
of Chemistry teachers.

A third intermediate assumption assumes that between-school variation in residual test
scores is attributable to school quality and student sorting, but that the variation in
residual performance that is within-schools but across subject-level combinations is
attributable to differences in average teacher quality across these combinations:

Assumption 2C: Uniform Teacher Quality Across Schools, Uniform
Student/School Quality Across Subjects and Levels

E[δsjl|(s, j, l) = (s̃, j̃, l̃)] = E[δsjl|s = s̃] ∀ (s̃, j̃, l̃) ∈ SJL
E[µsrjl|s = s̃] = k for some constant k, ∀ s̃ ∈ S (6)

Estimates from such a model are useful for a principal who needs to make classroom
assignments for her existing stock of teachers. She may only be interested in the de-
composition of the within-school variance in time-invariant teacher productivity, and
may believe that school inputs are divided relatively equally across subjects and levels.

While Assumptions 2A-2C allow us to separate school inputs from teacher inputs,
identification of {µsrcl} also requires that other unobserved inputs are not correlated
with the observation of a particular teacher in a particular subject-level combination.
Assumptions 3A-3C capture this additional condition for each of the three cases con-
sidered:

Assumption 3A-3C: Conditional Mean Independence of
Students’ Unobserved Inputs and Teacher Identity

3A : E[εict|(s, r, j, l) = (s̃, r̃, j̃, l̃), ex = ẽx, Xict = X ′ict] =

E[εict|(s, j, l) = (s̃, j̃, l̃), ex = ẽx, Xict = X ′ict] ∀ (s̃, r̃, j̃, l̃) ∈ SRJL
3B : E[εict|(s, r, j, l) = (s̃, r̃, j̃, l̃), ex = ẽx, Xict = X ′ict] =

E[εict|ex = ẽx, Xict = X ′ict] ∀ (s̃, r̃, j̃, l̃) ∈ SRJL
3C : E[εict|(s, r, j, l) = (s̃, r̃, j̃, l̃), ex = ẽx, Xict = X ′ict] =

E[εict|s = s̃, ex = ẽx, Xict = X ′ict] ∀ (s̃, r̃, j̃, l̃) ∈ SRJL (7)
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Assumption 3A states that the identify of the teacher does not provide further informa-
tion about any unobserved inputs, conditional on the identities of the school, subject,
and track, along with the levels of both general and context-specific experience of the
teacher and the observable characteristics of the student. Note that by conditioning
on all four dimensions of teacher experience, we remove the concern that a teacher
will be perceived to have greater general skill because he/she has more general expe-
rience, or that a teacher will be perceived to have a comparative advantage at teaching
in a particular context because many of the test-score observations from that context
are accompanied by considerable context-specific experience. Assumption 3B is much
stronger, since it does not condition on the identity of the school, subject, or level,
while Assumption 3C conditions on the identity of the school only.

There remain several potential threats to the validity of the fixed effect estimates even
in the case of Assumption 3A. Suppose, for example, that a particular teacher R is
assigned to a room with broken air conditioning each time she teaches honors physics
(PH), but is assigned to functioning rooms whenever she teaches honors chemistry. In
this case, conditioning on context-specific experience will not remove the correlation
between the classroom-level error component ζct and the fixed effect µsrPH . Simi-
larly, a teacher who happens to be assigned to basic English 1 (EB) classes during the
years her kids are young (when she has little time to prepare for class) might exhibit a
correlation between νrt and µsrEB .14

Appendix B provides a concrete example that illustrates the kinds of moments in the
data that identify time-invariant teaching skill. The example in Appendix B reveals
that each µsrjl fixed effect will be estimated using only a single teacher’s performance
during the few years in which they taught the subject-level associated with the fixed
effect. As such, sampling error for any given µ̂srjl estimate will not converge to zero
even with the fairly long panel we employ. Consequently, we do not focus on in-
dividual µ̂srjl estimates, but instead seek to characterize the joint distribution of the
components of time-invariant teaching skill. Specifically, we decompose the variance
in performance across teachers and contexts into components attributable to general
teaching talent, subject-specific talent, level-specific talent, and subject-level specific
talent. To see how this may be done, note first that we can rewrite each effect µsrjl via:

µsrjl = µsr + (µsrjl − µsr) (8)

The first component in (8) can be interpreted as the contribution of teacher talent that
may be school-specific, but is general across tasks (subject-level combinations) within

14An additional concern stems from the possibility that unobservably superior students are able to dis-
proportionately select a particular teacher. Rothstein (2010) documents non-random student sorting into
particular classrooms within North Carolina elementary schools. However, Kinsler (2012) retests the same
data, accounting for small sample sizes, and fails to reject such non-random sorting. Additionally, at the high
school level, class assignments are frequently generated by scheduling algorithms (given students’ subject-
level choices), making it difficult for students to select into particular classrooms within a subject-level. We
rely on our rich set of student covariates to absorb any within-subject-level sorting on the predictable compo-
nent of student inputs. Mansfield (2013) finds some evidence of remaining dynamic tracking, but not enough
to generate concern.
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the school. We will refer to V ar(µsr) as the variance in general teaching talent. The
second component contains the teacher’s persistent subject-level-specific deviation in
quality from her average level across all subject-level combinations. This can be in-
terpreted as her comparative advantage or disadvantage at teaching subject-level com-
bination (j, l). This second component can then be decomposed into three further
components:

(µsrjl − µsr) ≡ µ̃srjl = µ̃srj + µ̃srl + (µ̃srjl − µ̃srj − µ̃srl) (9)

The first component of (9) can be interpreted as the part of her comparative advantage at
subject-level combination (j, l) that is common to all levels. We will refer to V ar(µ̃srj)
as the variance in subject-specific teaching talent. The second component of (9) can
be interpreted as the part of her comparative advantage at subject-level combination
(j, l) that is common to all subjects. We will refer to V ar(µ̃srl) as the variance in
level-specific teaching talent. The third component of (9) is the part of a teacher’s
comparative advantage at (j, l) that could not have been predicted based on the sum
of her subject-specific skill and her level-specific skill. We will refer to V ar(µ̃srjl −
µ̃srj − µ̃srj) as the variance in subject-level-specific teaching skill.

Note that we do not observe the true variance of school-teacher-subject-level effects,
V ar(µsrjl), but rather the sample variance, which contains sampling error: V ar(µ̂srjl).
To recover the true latent variance decomposition, we follow the method of Aaronson
et al. (2007) and Mansfield (2015). Appendix C describes this sampling error correc-
tion in detail.

Because we can only estimate a value of µ̂srjl for those combinations that we actually
observe in the data, the variance in subject-specific and level-specific skill that we
estimate will represent the variance among the range of subject and level combinations
that principals actually assign. This is likely to be a selected sample; since principals
may have knowledge of the relative skills of their teachers, they may avoid assigning
teachers to subjects or levels at which they are likely to be particularly ineffective. For
example, teaching two subjects in completely different fields (Geometry and English)
may be more difficult than teaching two subjects in the same field (Algebra 1 and
Geometry). Indeed, in Section 4.4, we will show that the vast majority of the subject
mobility observed in the data is within field.

While we are likely to underestimate the variance in subject-specific (or level-specific)
talent across the full range of possible subjects (or levels), the estimates we do obtain
are more relevant or interesting to principals and administrators; the choice principals
generally face is between hiring a new teacher to teach exactly the courses taught by
an exiting teacher and hiring a new teacher to teach different courses while rotating
existing teachers who are certified in the chosen field to new subjects or levels (for
example, rewarding stayers by letting them teach the honors class that was vacated
by the exiting teacher). Given the limited support for the distribution of comparative
advantages that underlies our estimates, in our simulations below we only reallocate
teachers across classrooms within fields.
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4. Data

4.1. Overview

The decomposition of worker productivity developed in Sections 2 and 3 requires that
the data 1) contain signals of worker output in each task, 2) allow the construction of
accurate measures of general and task-specific experience, and 3) exhibit considerable
worker mobility among tasks. We employ administrative data provided by the North
Carolina Education Research Data Center (NCERDC) that satisfies each of these three
conditions for the context of high school teaching.

4.2. Task-Specific Output and Sample Restrictions

The NCERDC data consists of standardized test scores for the universe of public
high school students in North Carolina from 1997 - 2009 in eleven subjects and two
course difficulty levels.15 During the sample period, North Carolina provided a stan-
dardized curriculum in each subject, and assessed achievement via statewide end-
of-course tests.16 The eleven subjects, which can be grouped into four fields based
on common certification requirements, are as follows: Math: Algebra 1, Algebra 2,
Geometry; Science: Biology, Chemistry, Physical Science, Physics; Social Studies:
Econ/Law/Politics, Civics and Economics, U.S. History; English: English 1.17 Be-
cause statewide achievement tests were administered immediately at the conclusion of
each year-long course, and the subjects are (largely) distinct from one another, average
student performance in each course represents a signal (albeit a noisy, possibly biased
one) of the task-specific output of the teacher. In principle one might worry that dif-
ferences in teacher performance may be reflecting the extent to which teachers adhere
to the state curriculum rather than differences in ability to foster learning. Fortunately,
several features of the North Carolina context mitigate such concerns.18

15The data originally provide nine difficulty level delineations: Special Education, Remedial, Basic, Ap-
plied/Technical, Honors, Cooperative Education, Advanced Placement, International Baccalaureate, and
Non-Classroom. We drop student observations coming from classes labeled as Special Education, Coop-
erative Education, and Non-Classroom. We consider Remedial, Basic, and Applied/Technical classes as
“basic” and Advanced Placement, International Baccalaureate, and Honors as “honors”.

16Note that these tests are subject-specific but not level-specific.
17Testing began for Physics, Geometry, Chemistry, Physical Science, and Algebra 2 in 1999. In addition,

Econ/Law/Politics was discontinued in 2004 and replaced by Civics and Economics in 2006. U.S. History
was not tested between 2004 and 2005.

18First, in recent years No Child Left Behind legislation has put pressure on principals to ensure that
teachers teach the standard curriculum, since schools that fail to meet state standards are subject to sanctions
and possible closure. Second, the North Carolina end-of-course exam scores we use as outcome measures
must comprise 25% of the student’s year-end grade in a given subject, so that parents are likely to complain
about teachers that ignore the standard curriculum. Finally, during the sample period, teacher bonuses of up
to $1,500 were linked to average test scores of the students in the school at which they teach. Thus, teachers
are under considerable pressure to teach the tested material.
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In our framework, accurately distilling the signal of a teacher’s task-specific productiv-
ity from student sorting requires rich data on student inputs. Fortunately, the NCERDC
data contain information about a variety of current student inputs (or proxies for such
inputs),19 as well as past student inputs20 and year-specific teacher inputs capturing
workload.21

Properly measuring teacher contributions to achievement also requires that each stu-
dent test score observation be matched to the teacher who taught the class in which the
student’s test score was generated. Unfortunately, the teacher ID provided in the test
score data corresponds to the test administrator, who may or may not be the true teacher
of the class. However, personnel records contain information on the demographic com-
position of each class taught by each teacher, and since the student achievement data
can be aggregated to the classroom level, we utilize a fuzzy matching algorithm that
matches on classroom-average demographics. See Mansfield (2015) for a detailed de-
scription of the algorithm and summary statistics regarding its efficacy.

We drop from the sample test score observations for which we cannot match a teacher
or verify a difficulty level, as well as scores from classes with fewer than 5 students
(since these are likely to represent data entry errors). Since past test scores are critical
for controlling for student sorting, we also drop observations with fewer than two past
test scores. We also drop test score observations associated with teachers for whom
we cannot construct the components of task-specific experience (discussed in Section
4.3). Our final sample consists of 1,168,867 test scores, 8,967 teachers, and 771 high
schools.

4.3. Generating the Experience Profile

The second key data requirement is that measures of both general and task-specific
experience can be accurately constructed. The NCERDC data contain all classroom
assignments (subject and level) for each teacher in each of the years included in our
sample (1995-2009), even in non-tested subjects. However, complete histories of class-
room assignments, necessary to construct subject-specific, level-specific, and subject-
level-specific experience, can only be assembled for teachers who began teaching after
the data collection begins in 1995 (as indicated by an entry level paycode). Because
our identification strategy relies on observing each teacher’s full history of subject- and

19Observable student inputs include classroom composition (including class size, racial composition, and
number of gifted students in math and reading), as well as indicators for parental education, race, gender,
gifted status, current or ever having Limited English Proficiency status, free/reduced price lunch eligibility,
learning disability in math, reading, or writing, for whether the student intends to attend community college,
attend four-year college, or work after high school, as well as indicators for participation in a sport, vocational
club, academic club; service club, or arts club, and finally missing indicators for 7th and 8th grade math
and reading scores.

20The student’s 7th and 8th grade math and reading scores as well as the class’s average 8th grade math
and reading scores

21These include the number of classes and number of different course-levels taught contemporaneously
by the student’s teacher

14



level-specific experience at each point in time, we keep only test scores associated with
teachers who begin teaching during our sample.

We allow a flexible experience profile by creating indicators for eight experience cate-
gories: 0 years of experience, 1 year, 2 years, 3 years, 4 years, 5-6 years, 7-10 years,
and 11 or more years of experience. Using this formulation, we track four types of
teacher experience: general experience, subject-specific experience, difficulty-level-
specific experience, and subject-level-specific experience. Note that experience is mea-
sured by the number of previous years in which at least one classroom was taught in
the relevant context for the chosen experience dimension. We posit that teaching a sec-
ond classroom in the same year, when there is no opportunity to alter the lesson plan
or assignments, is unlikely to provide the same experience value as teaching a class-
room in a different year. However, the estimated experience profiles have very similar
shapes and relative magnitudes when experience is measured using the total number of
classrooms taught prior to the year of the observation. To capture depreciation in the
value of teacher experience, we also include a set of indicators for whether the sub-
ject, level, and subject-level were taught in the previous year, as well as an indicator
for whether the teacher taught at all in the previous year. We experimented with alter-
native specifications for capturing depreciation in experience, and the results did not
change substantially. Finally, to account for possible endogenous responses to class-
room shocks (explained fully in Section 6.1) we also include four indicators that equal
one if the observation is from a classroom that represents the teacher’s last year teach-
ing the school-subject combination, the school-level combination, the school-subject-
level combination, and at the school in any classroom, respectively.

4.4. Teacher Mobility

The third data requirement for our decomposition is that we observe considerable
worker mobility across tasks. Table 2 depicts teacher mobility in our final sample
across subjects. The top entry in each cell (i, j) represents the number of teachers in
our sample who ever taught in subject i that also taught in subject j, while the bottom
entry represents the fraction of teachers who ever taught in subject i that also taught in
subject j. The table reveals that there is considerable mobility across subjects, though
the vast majority of mobility occurs within fields. This reflects the fact that certifica-
tion is field-specific. Table 3 represents the corresponding transition matrix for levels.
It reveals that almost all teachers who ever teach an honors class also teach at least one
basic class during their career. The converse is not true; only half of teachers observed
teaching at least one basic class are also observed teaching an honors class at some
point during their careers. This finding partly reflects the fact that there tend to be
more basic courses than honors courses to staff at most schools, but is also driven by
a substantial fraction of schools that do not track their classes (so that all classrooms
at the school are coded as being taught at the basic level). Taken together, these ta-
bles demonstrate that teaching in multiple levels and subjects during one’s career is the
norm, rather than the exception.

Table 4 displays the considerable mobility across subject-level combinations for teach-
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ers in the field of mathematics. The table illustrates that teachers do not merely teach
multiple levels of the same subject, or multiple subjects at the same level, but are
frequently observed teaching at the basic level in one subject and at the honors level
in a different subject. It is this variation that allows us to distinguish the returns to
subject-level-specific experience from the returns to subject-specific and level-specific
experience, respectively.

Finally, Table 1 displays how experience evolves for the second- and third- year teach-
ers in our final sample. Only about 70% of classrooms taught by 2nd year teachers are
in subject-level combinations that the assigned teachers taught in their first years, while
only 50% of classrooms taught by 3rd year teachers are in subject-level combinations
that the assigned teachers taught in their both of their first two years.

4.5. Estimation and Calculation of Standard Errors

We estimate the model via OLS by exploiting the sparsity of the design matrices for the
school-subject-level and school-teacher-subject-level fixed effects. Analytical asymp-
totic standard errors are calculated for all parameters. In order to make estimation of
the variance-covariance matrix computationally feasible22, the calculation is broken
down into several pieces and a parametric error components form is imposed in which
there are idiosyncratic error components at the test score, classroom, teacher-year, and
school-year levels (as specified in 2). Mansfield (2015) describes the details of stan-
dard error computation for OLS regressions with large numbers of both observations
and parameters.

5. Results

5.1. General and Task-Specific Experience Profiles

Table 5 displays the estimated experience profiles for each type of experience.23 Col-
umn 1 contains estimates of the returns to teaching experience that are general to all
subject-level combinations. There are considerable gains to the first two years of gen-
eral experience, such that teachers teaching in their third year can expect to improve
student performance by .071 test score standard deviations more than a novice teacher,
even if they are teaching at a new level in a new subject. These gains persist, but are not
compounded by additional years of general experience. The results become quite noisy
for higher levels of experience; since we must observe the entire history of teacher as-

22the full variance-covariance matrix of estimated fixed effects is necessary for the sampling error correc-
tion described in Appendix C

23Experience is measured at the beginning of the year, e.g. a teacher starting their second teaching will be
counted as having one year of experience.
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signments, only the cohorts of new teachers from the late 1990’s are observed at the
higher levels of experience in our sample.

The magnitudes of these estimates are somewhat smaller than the standard returns to
experience estimated in the literature. The results in Column 2 shed light on the source
of this discrepancy: a substantial portion of the returns to experience generally esti-
mated in the literature are actually specific to the subject the teacher taught. Since
teachers frequently reteach the same subject many times, subject-specific experience
and total years of experience are highly correlated. Thus, when returns to subject-
specific experience are not separated from returns to overall years of experience, the
returns to subject-specific experience will generally be reflected in larger estimated
returns to general experience.

Column 2 also shows that teaching a subject for the second time increases the teacher’s
expected performance by .023 test-score standard deviations, relative to the first at-
tempt. An additional year of subject-specific experience increases performance by an
additional .024 standard deviations, while a third year of subject-experience adds an
additional .023 standard deviations. Gains seem to slow beyond the third year of sub-
ject experience, but do not fully level off. Overall, teachers with more than 7 years of
subject-specific experience are between .08 and .09 student level standard deviations
more effective than teachers with the same total years of general teaching experience
but who are teaching the subject for the first time.

Columns 3 and 4, by contrast, show that the returns to level-specific and subject-level-
specific experience seem to be virtually non-existent, once years of subject-specific and
general experience have been taken into account. In fact, the returns to level-specific
and subject-level specific experience seem to be negative. In Section 6.4, we present
evidence suggesting that these negative estimates are spurious, and result from incor-
rectly imposing that the separate components of experience are additively separable in
the education production function. Even with a more general specification, however,
we find relatively small returns to level- and subject-level-specific experience.

Column 5 in Table 5 sums across the first four columns to provide the returns to expe-
rience for a teacher who never changes the subject-level he/she teaches. After 4 years,
such a teacher is predicted to perform 0.11 standard deviations better than a novice
teacher. Since many teachers teach the same subject-level every year (perhaps in ad-
dition to other courses), this sum is particularly well identified. Most of the sampling
error in the estimates comes from decomposing this sum into the four experience com-
ponents.

Given the failure to observe meaningful level-specific and subject-level-specific experi-
ence effects, in the first two columns of Table 6, we present results from a specification
in which all elements of the level-specific and subject-level specific experience profiles
are restricted to be zero. The basic pattern of results for total and subject-specific expe-
rience do not change much; there are still meaningful gains from the first two years of
total and subject-specific experience, and these gains generally seem to persist, but do
not further accumulate. However, the magnitudes of the estimates are only about 2/3
as large as the baseline specification. Imposing the restrictions increases the precision
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of the estimates considerably, however, so that experienced teachers are still statisti-
cally significantly more effective than novice teachers at nearly all experience levels
for either general or subject-specific experience.

The third column of Table 6 presents estimates from the standard specification in the
literature, in which only general experience enters the production function. We see that
this experience profile matches fairly closely those found in the literature,24 suggesting
that the smaller returns to general experience are indeed driven by properly accounting
for context-specific experience, rather than the focus on high school teachers versus
elementary or middle school teachers.

Finally, both our baseline specification and restricted specification impose that the re-
turns to general and subject-specific experience are the same across fields. In Table 7,
we present separate general and subject-specific experience profiles for math, science,
social studies, and English subjects. Comparing the first six columns, we see that gen-
eral and subject-specific returns to experience are quite similar across math, science,
and social studies, providing support for the pooled specifications above. However,
only the first year of general experience seems to have any value for English teachers,
and we find no evidence of any returns to re-teaching English 1, relative to general
experience teaching other English classes. This coincides with Mansfield (2015), who
finds that the variance in productivity among teachers is quite stable across 9 of the
10 tested subjects, but that the variance in productivity among English teachers is only
half as large. This evidence suggests that perhaps the English 1 exam does a particu-
larly poor job of capturing the contributions of teachers. In light of these results, we
do not include English classrooms in our simulations of efficiency gains from optimal
assignment of teachers to classrooms presented in Section 7.

5.2. The Variance of General and Task-Specific Components of Time-
Invariant Teacher Productivity

Table 8 contains the results of the decomposition of the variance in time-invariant
teacher productivity into general, subject-specific, level-specific, and subject-level spe-
cific components. The first column displays the decomposition obtained from imposing
Assumption 2A, in which all between school-subject-level variation in student perfor-
mance is attributed to differences in school and unobserved student inputs. The row
labeled “School-Subject-Level-Teacher Combos” provides the total estimated variance
in teaching effectiveness across randomly sampled school-teacher-subject-level com-
binations, which combines all four components of time-invariant teacher productivity.
The point estimate is .0145, implying that a one standard deviation increase in com-
bined permanent teaching effectiveness is associated with a .120 standard deviation
increase in expected student performance. 79% of this variance in permanent teacher
quality can be attributed to general teacher talent that is common to all subject-level
combinations (See the row labeled “General Talent”). A student assigned to a teacher

24See Figure 1 of Atteberry et al. (2013) for a synthesis of the literature.
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whose average effectiveness across the subject-level combinations he/she teaches is
one standard deviation above the school average can expect a .107 standard deviation
increase in test score performance relative to being assigned the average teacher at
the school in the absence of knowledge about the chosen teacher’s level-specific or
subject-specific skill.

Subject-specific skill and level-specific skill make up about 13% and 6% of the to-
tal variance in permanent teaching effectiveness, respectively, across randomly chosen
school-teacher-subject-level combinations. Getting a teacher whose subject-specific
skill is one standard deviation above the average for a particular subject increases ex-
pected student achievement by about .044 test score standard deviations. Note that this
is still enough to move a student who would have otherwise scored at the 50th percentile
to the 52nd percentile statewide. However, the variation in permanent subject-specific
skill is fairly small relative to the returns to subject-specific experience discussed above.
Getting a teacher whose level-specific skill is one standard deviation above the aver-
age for a particular level increases expected performance by .030 test score standard
deviations, only enough to move a student from the 50th to the 51st percentile.

Finally, the subject-specific, level-specific, and general components of time-invariant
teacher productivity combine to explain nearly the full variance in time-invariant teacher
productivity across classroom contexts. There does not seem to be such a thing as
subject-level-specific talent. In other words, a teacher’s permanent talent for teach-
ing, say, honors biology, can be fully explained by the teacher’s general teaching tal-
ent across subjects and levels, combined with his/her talent for teaching honors-level
courses and his/her talent for teaching biology courses, respectively.

Columns 5 and 6 of Table 8 shows the alternative decomposition of permanent teacher
skill that comes from imposing Assumption 2B, in which all variation in average stu-
dent performance across school-subject-level combinations is attributed to differences
in average teacher quality. Not surprisingly, this increases each of the variance com-
ponents substantially. Note, though, that the fractions of variance explained by each
component stay roughly similar to what they were under Assumption 2A. Perhaps the
most compelling result from Column 5 is that the variance in level-specific skill is still
only .0012, even under an assumption designed to maximize the variation attributed
to teacher talent. Similarly, subject-level-specific talent does not appear to exist un-
der Assumption 2B either. Under Assumption 2B, a one standard deviation increase
in general teacher talent is associated with a .201 increase in average student perfor-
mance across subject-level combinations, while a one standard deviation increase in
subject-specific teacher talent is associated with a .067 increase in expected student
performance relative to a teacher with no comparative advantage or disadvantage at
teaching the chosen subject.

The results under Assumption 2C (Columns 3 and 4) stem from removing only the
between-school variation from the component attributed to general teacher talent. They
provide a middle ground estimate of the standard deviation in general teacher talent of
.166 test score standard deviations. These results are roughly in line with those of
Mansfield (2015).
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6. Testing the Validity of the Identifying Assumptions

6.1. Controlling for Endogenous Responses to Classroom Shocks

In Section 3.1 we discussed the possibility that teachers’ future classroom assign-
ments, or their willingness to continue teaching more generally, might be driven by
the classroom-level shocks they have received, which would violate Assumption 1.
For example, a teacher may be so vexed by a group of particularly troublesome stu-
dents that he quits teaching or switches schools. Similarly, assignment to a particularly
poor physical classroom for Biology that undermines student learning may cause the
teacher to advocate for a switch to Chemistry. These scenarios would imply that the
set of teachers who make it to the next year of teaching (or teaching in a particular
context) are those whose classroom shocks were not too negative. Assuming class-
room shocks are serially uncorrelated, the expected change in classroom shock would
be negative among those who persist. Since experience profiles are entirely identified
by the growth in teacher performance from one experience category to the next, such
scenarios could produce underestimates of the returns to experience. We address this
possibility by including in all our specifications four indicator variables that are set
to one if the observation is from a classroom that represents the teacher’s last year
teaching at the school in any classroom, in the current school-subject combination, in
the current school-level combination, and in the current school-subject-level combina-
tion, respectively. In addition to controlling for the most plausible dynamic response
to classroom shocks, these dummies also control for the possibility that teachers who
anticipate quitting try less hard in their final year (which could also bias downward the
estimated experience profile).

6.2. Testing for Endogenous Responses to School-Year Shocks

A second potential bias in the experience profile estimates stems from the possibility
that reallocation of teachers across subjects and levels might be more likely when a
school is enduring its relatively ineffective years (independently of the contributions
of its teachers). This could occur if an inexperienced principal enters the school who
has a different conception of how teachers should be allocated. It could also occur if
teachers are more likely to quit during a school’s relatively ineffective years, creating
holes in subject or level offerings that other teachers must be forced to fill. One way
to test for this possibility is to examine whether schools’ relatively low (or relatively
high) year-specific residuals disproportionately occur with particular experience pro-
files. However, if we use residuals from the estimated model, any correlation between
experience profiles and school-year deviations will already be reflected in biased expe-
rience profile estimates, so that the residual will have been purged of any information
it might have contained about endogenous responses to school-year shocks. On the
other hand, if we use residuals in which the estimated experience profiles have not
been removed, then school-year average residuals will naturally be correlated with the
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experience profile composition of the teachers in the school-year via the causal effect
of teacher context-specific experience.

The second problem can be solved, however, by re-weighting the classroom residual
averages that compose school-year averages. Appendix D.1 describes this re-weighting
estimator in detail. Essentially, we construct estimates of the idiosyncratic shock φst
for each school-year combination by weighting classroom average residuals based on
the frequency with which the experience vector of the teacher associated with the class-
room occurs in the full sample, rather than the school-year. The reweighted distribution
of four-dimensional experience stocks used to construct this alternative school-year av-
erage matches the distribution observed in the full sample, thereby removing any causal
effect on school-year average performance of employing more experienced teachers.

Once the reweighted school-year shock estimates have been constructed, we calculate
averages of these shocks for each four dimensional experience profile, then regress
these averages on the design matrix for the four additively separable experience profiles
to ascertain the degree to which the bias will be reflected in each of the four dimensions.

The estimates, displayed in Table 9, suggest biases of less than .01 student-level stan-
dard deviations in magnitude for nearly all levels of experience across the four profiles.
Furthermore, as emphasized in Appendix D.1, the test itself is biased in the direction of
the estimates of returns from Table 5, so that the true bias from endogenous responses
to school-year shocks is likely to be even smaller.

6.3. Misspecification Tests: Testing for Classroom Assignment based
on Heterogeneous Teacher Growth

A third possible violation of Assumption 1 could arise if particular experience profiles
are more likely to be observed during years in which teachers are experiencing positive
or negative year-specific deviations in productivity relative to their predicted produc-
tivity based on their performance in the full sample and their observed levels of each
dimension of experience.

While there are a variety of scenarios that could bring about such a correlation,25 one
particularly plausible mechanism stems from the possibility of heterogeneity in the
gains to experience among teachers.26

Since the main specification in equation 1 constrains the gains from general experience
to be common to all teachers, any heterogeneity in rates of growth among teachers in
the sample will be reflected in the teacher-year error component, νrt. If assignments to
particular subjects or levels are nearly evenly distributed between the later and earlier
years of the teacher’s career within the sample, a given teacher’s value of νrt would

25For example, teachers who divorce (and would otherwise have below-average productivity during the
year of the divorce process) may be less likely to request or be assigned new subjects or levels while coping
with the problems at home.

26 Atteberry et al. (2013) finds evidence of heterogeneous teacher growth in New York City.
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not be predictable based on the identity of the teacher and the subject-level, so that es-
timates of µsrjl would be unbiased. Furthermore, to the extent that assignments to par-
ticular subjects or levels are not evenly distributed, such heterogeneity would generally
tend to inflate the estimated variances of the context-specific components of permanent
talent (since we would see spurious within-teacher variation in student performance
across the teacher’s subject-level combinations).27 Given that the estimated true vari-
ances of subject-specific, level-specific, and subject-level specific permanent talent are
all fairly trivial, we ignore the possibility of bias in our estimates of context-specific
permanent talent.28

However, our context-specific experience profiles could be biased upward if teachers
with faster than average growth rates are more likely to stay in the courses and levels
they are teaching, since the average value of νrt would be higher for higher values of
course-specific or level-specific experience. One plausible scenario in which this could
occur is one in which rapidly improving teachers are rewarded with the opportunity to
continue teaching their classes (while forcing others to adjust to changing classroom
demand created by, say, teacher turnover or variation in student cohort size). We test
this hypothesis by examining whether the trend in a teacher’s performance (relative to
the estimated experience profile) predicts the teacher’s future teaching assignments.

Specifically, let Zsrjlt represent the average test score residuals of students taught by
teacher r in school s in subject j and level l in year t:

Zsrjlt =
1

Nsrjlt

∑
ict∈srjlt

Yict−Xictβ̂jl−δ̂sjl−µ̂srjl−f̂(expgenrt , expjrjt, exp
l
rlt, exp

jl
rjlt)

We estimate specifications of the following form:

1(Assignment Change) = β0 + β1(Zsrjlt′′ − Zsrjlt′) + εstcly (10)

To operationalize these specifications, three choices must be made. First, the future
period over which the pre-existing trend is allowed to affect assignment patterns must
be specified. We consider two choices: whether the assignment is repeated in the
following year, and whether the assignment is ever repeated in the remaining years of
the sample.

Second, the past period over which the pre-existing trend is allowed to affect assign-
ment patterns must be specified. We consider several possibilities: the first two, three,
four, five, or six years of (general or context-specific) teaching (denoted “1-2”, “1-3”,
etc. in Table 10) as well as the most recent two years, and the most recent four years
(denoted “2yr pooled” and “4yr pooled” in Table 10, respectively).

27This would be true unless the teachers who were improving faster than the sample average were system-
atically moving to their relatively ineffective subjects, which does not seem particularly plausible.

28Recall that νrt is orthogonal to general permanent talent µsr by construction, since νrt reflects devia-
tions from a teacher’s average performance over the full sample.
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Third the context-specificity of the pre-existing trend must be specified. We consider
four choices: the general trend in average student residual performance across all sub-
jects and levels, the performance trend within a particular subject, the trend within a
particular level, and the trend within a particular subject-level combination. The defini-
tion of an assignment change then matches the choice of context-specificity. If we con-
sider a general performance trend, the outcome variable (denoted 1(Assignment Change)
above) will either be an indicator for whether the teacher taught any classroom in the
chosen school in the following year (denoted “Next Year” in Table 10), or an indicator
for whether the teacher taught any classroom in the chosen school ever again during
the sample period (denoted “Ever” in Table 10). If we consider a subject-specific trend,
1(Assignment Change) will indicate whether the teacher taught the same subject the
next year (or, alternatively, in any future year during the sample). Level-specific and
subject-level-specific assignment change indicators are defined analogously.

Each specification is estimated as a linear probability model, and the parameter of
interest in each specification is β1, which can be interpreted as the increase in the
probability of an assignment change per 1 test-score level standard deviation increase
in the existing trend.

Table 10 displays the value of β̂1 for each specification of equation 10. No clear pat-
tern of dynamic assignment emerges for any dimension of context specificity. While a
handful of the specifications report statistically significant coefficient values, the signs
of the coefficients are split between positives and negatives, even within each dimen-
sion of context-specificity. Furthermore, the magnitudes of the coefficients are quite
small. Note that even a large trend in teacher performance would consist of an im-
provement of .1 standard deviations per year. Thus, a coefficient of -.1 (among the
largest of those observed) indicates that a teacher whose average student residual is
increasing by .1 standard deviation per year over the chosen prior period is a mere one
percent less likely to change assignments the following year (or ever, depending on the
specification). Thus, we find very little evidence that teacher classroom assignments
(or teacher quits) are dynamically chosen on the basis of heterogeneous teacher-specific
growth rates or short-term teacher-specific productivity shocks.

6.4. Misspecification Tests: Testing the Additive Separability of Task-
Specific Experience Profiles

Another form of misspecification bias could arise from the restriction in equation 1 that
the effect of the four dimensions of general and task-specific experience can be repre-
sented as the sum of four additively separable dimension-specific experience profiles:
d(expgen, expj , expl, expjl) = dgen(expgen) + dj(expj) + dl(expl) + djl(expjl).
However, general experience and different dimensions of task-specific experience may
interact with one another. For example, perhaps students only learn if the teacher has
developed effective ways to both explain a subject’s content and maintain control of
the classroom. Lectures that deliver content effectively may require subject-specific
experience, whereas classroom control skills may be learned through general or level-
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specific experience. Alternatively, perhaps a teacher can keep student attention by
either having exceptional command of the content or by having excellent classroom
control skills, making the production function submodular.

We relax the additive separability assumption by allowing the experience contribution
to productivity to be captured by a non-parametric function of the four components of
teacher experience:

Yict = Xictβjl + δsjl + µsrjl + d(expgen, expj , expl, expjl) + εict (11)

We implement this specification by replacing the four dimension-specific experience
profiles with a full set of four-dimensional experience cell fixed effects. This specifi-
cation is isomorphic in structure to a model with worker and firm fixed effects. Thus,
satisfying the rank condition for identification in this specification requires that four-
dimensional experience cells and school-teacher-subject-level cells form a connected
graph, with the experience cells as vertices and school-teacher-subject-level cells as
edges (or vice versa). The largest connected component of the full graph in our sample
includes 414 out of the 470 observed four-dimensional experience cells and 1,168,867
out of the 1,171,133 observations that satisfy our other sample restrictions. In prac-
tice, we actually estimate all of our specifications using this restricted sample for ease
of comparison and to make sure that our identification of school-teacher-subject-level
effects comes primarily from within-experience cell variation.29

Not surprisingly, the estimated experience cell fixed effects are measured with con-
siderable sampling error, making it difficult to discern potential complementarities. To
better reveal the underlying structure of the experience production function, we smooth
estimates for each experience cell by using a normal kernel to give weight to “nearby”
estimates. The distance between two experience cells that is used as an input to the
kernel is the L1 distance over all 4 dimensions. These L1-normed distances, after pass-
ing through the normal PDF, are weighted by the fraction of observations in the sample
associated with each observed experience profile. Appendix D.2.1 provides a more
detailed explanation of this smoothing procedure.

Providing a concise characterization of the nature of non-linearities in a function fea-
turing four inputs is challenging. One approach, adopted in Figures 1 - 3, is to plot the
gains to increasing the values of a single dimension of experience while conditioning on
different subsets of the other three dimensions of experience. For example, Figure 1a
plots the average marginal gains from each additional year of subject experience over
subsets of the other 3 dimensions featuring exgen <= 2 (red line), 3 <= exgen <= 5
(green line), or exgen > 5 (blue line). In nearly every figure, we see that the gains to ad-
ditional years of experience in one dimension are decreasing in the stock of experience
in the second dimension, suggesting that the true production function is submodular:
alternative components of experience seem to be strong substitutes for one other.

29Results change very little if we use the full sample to estimate the baseline specification.
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6.4.1. Cross-Partial Derivatives

An alternative approach to assessing interactions in the production function is to cal-
culate cross-partial derivatives. While our production function is estimated at only
a finite number of four-dimensional cells, there are nonetheless several combinations
of cells at which approximate cross-partial derivatives can be estimated. For exam-
ple, if the cells (2,1,1,1), (2,2,1,1), (2,1,2,1), and (2,2,2,1) are all observed somewhere
in the sample, then we can use the smoothed profile above to estimate a discrete ap-
proximation to the cross-partial derivative ∂d(2,1,1,1)

∂expj∂expl via the difference-in-differences

estimator (d̂(2, 2, 2, 1)− d̂(2, 2, 1, 1))− (d̂(2, 1, 2, 1)− d̂(2, 1, 1, 1)).

For each pair of two dimensions, we find the set of all initial four-dimensional cells30

at which a cross-partial derivative for the chosen two dimensions can be calculated
and take a weighted31 average of the difference-in-difference estimates associated with
each experience combination in the set. For further detail, see Appendix D.2.2.

Averaging these derivative estimates across all levels of the d(∗) function obscures the
possibility that two dimensions may be complements at some experience cell levels and
substitutes at others. However, such averaging is necessary to obtain a sufficient degree
of precision, and provides a useful general sense of the magnitude of submodularity or
supermodularity. Table 11 provides the matrix of these cross-partial averages for all
two-dimension pairs. The table reveals fairly strong submodularity among general
experience, subject-specific experience, and level-specific experience. On average, in-
creasing level experience by one year reduces the return to an additional year of general
experience and subject experience by .036 and .031 student-level standard deviations,
respectively.

Such strong submodularity has the potential to explain the negative subject-level ex-
perience profile observed in Table 5. High values of both subject-specific and level-
specific experience will necessarily be strongly correlated with high values of subject-
level-specific experience. If subject-specific experience is the least valuable when
paired with high values of level-specific experience, then OLS will best fit the ad-
ditively separable baseline specification to the observed data by setting the subject-
specific profile to capture the high returns to subject-specific experience that exist at
lower values of level-specific experience, and then choosing negative values of subject-
level specific experience to offset the overstatement of teacher productivity that will
occur when both subject- and level-specific experience are high.

To test this potential explanation, we construct a table comparable to Table 5 that in-
stead utilizes the smoothed non-parametric experience production function estimated in

30The cell (2, 1, 1, 1) above would be an element of the set associated with subject- and level-specific
experience.

31The weight is composed of the product of four sub-weights associated with each of the cells included in
the difference-in-difference estimate. Each sub-weight represents the fraction of all teacher-school-subject-
level-year cells that featured the chosen experience combination. The weights are then re-scaled to sum to
1.
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(11). For each initial value of each component of experience, we calculate a weighted32

average marginal effect of an extra year of the chosen component of experience (hold-
ing the other experience components fixed). The weighted average is taken over all
combinations of the other three experience dimensions that are observed among ex-
perience cells that feature the chosen initial value in the chosen dimension. Refer to
Appendix D.2.3 for a detailed example.

These marginal effects are then accumulated into a profile along each experience di-
mension so that the sum of the marginal effects accumulated as of year t can be com-
pared to a teacher with 0 experience in the chosen dimension (as in Table 5).

The results of this exercise are displayed in Table 12. The large negative effects of
subject-level experience turn slightly positive once additive separability is not imposed.
Furthermore, modest but non-negligible gains to level-specific experience appear as
well. A teacher with 5-6 years of level-specific experience is now estimated to be
.05 student-level standard deviations more effective than they would be with no level-
specific experience and identical values of the other three dimensions of experience.

However, we still find that the bulk of the gains from experience stem from general
and subject-specific experience, so that the basic qualitative conclusions drawn from
the baseline results remain largely unchanged. Indeed, the gains from both subject
and general experience are even larger under this methodology than in Table 5. Note,
though, that the sum across columns of the year t row of Table 12 no longer captures the
predicted productivity as of year t of a teacher who has taught the same subject-level
every year. This is because the cross-partial derivatives, restricted to be 0 everywhere
in the baseline specification, were shown above to be quite negative in the more general
specification.

7. Gauging the Magnitude of Achievement Gains from
Efficient Use of Task-Specific Teacher Experience

7.1. Methodology

The sizeable gains to subject-specific experience, combined with the smaller gains to
level-specific experience uncovered in Section 6.4, suggest that rotating teachers across
subjects and levels could potentially result in non-trivial efficiency losses. To gauge
the magnitude of such losses, in this section, we present a counterfactual simulation in
which we project the performance gains that could be achieved statewide if each princi-
pal exploited the full value of the accumulated stock of task-specific experience of the
members of his or her teaching staff. To ensure that the simulation captures feasible re-

32The weight is composed of the product of two sub-weights associated with the two cells included in the
partial derivative estimate. Each sub-weight represents the fraction of all teacher-school-subject-level-year
cells that featured the chosen experience combination. The weights are then re-scaled to sum to 1.

26



allocations, we hold fixed the number of classrooms of each subject-level combination
at the levels that actually prevailed at each school in each year. Furthermore, we also
hold fixed the total number of classrooms taught by each teacher in each year, since
principals may have been constrained in the workload they could assign to their more
experienced teachers.33 Also, because we do not observe the full teaching histories of
any teacher who began teaching before the sample begins in 1995, we do not reallocate
the classrooms taught by such teachers. Thus, the efficiency gains produced by our
simulation will be a lower bound on the true efficiency gains available to be reaped,
though this lower bound will increase toward the true predicted efficiency gain as we
move through years of the sample.

Note, however, that although we only observe student test scores in the 11 tested sub-
jects, we observe the full set of assignments to non-tested subjects for each teacher as
well. Hence, we can construct post-1995 teaching histories across all standard subjects
in North Carolina (such as English 2, or Calculus). Consequently, we can accurately
update general and level experience stocks for each teacher, even when they do not
teach the tested subjects. However, the results only capture efficiency gains from reallo-
cating classrooms in which the tested subjects were taught, since these are the subjects
on which the general and task-specific experience profiles were estimated. We also do
not reallocate classrooms in which English 1 was taught, since our field-specific results
above suggested minimal gain to subject-specific experience among English classes.

To see how such a simulation might be implemented, consider the allocation of teach-
ers to classrooms that takes place at a particular school in a particular field over the
set of years in our sample. In theory, we might want to solve the dynamic problem
of choosing sequences of yearly allocations to maximize the average test score per-
formance over the entire sample. A priori, one would expect that a primary source of
dynamic gains would stem from principals experimenting to learn each teacher’s com-
parative teaching advantages. The results presented in the previous section, though,
suggest that subject-specific and level-specific permanent teaching talent is quite small
relative to either task-specific experience or permanent teaching skill that is general
across contexts. Consequently, to highlight the potential gains from exploiting task-
specific experience, we ignore any potential efficiency gains from matching teachers to
their permanent comparative advantages in the simulations below.34

Furthermore, solving the dynamic problem requires specifying principals’ expectations
about the probability that each teacher will remain at the school in each future year as
well as expectations about the number of classrooms they will need to fill in each
subject-level combination in each future year. This is particularly problematic for the
last few years of the sample, where we cannot observe what will happen in the future.

Consequently, we instead simulate the dynamic effects of re-solving at the beginning of

33For example, these teachers may also have been teaching untested classes, or performing other valuable
services to the school, such as lunchroom monitoring, advising student clubs, or coaching student athletic
teams.

34Specifically, we impose µsrjl = µsr ∀ (s, r, j, l) ∈ SRJL.
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each year the static optimization problem in which the expected average test score for
the year is maximized, taking the set of classrooms and teachers to be matched in the
chosen year as exogenously given at the start of the year. Four-dimensional experience
stocks are then updated for the next year based on the efficient static allocation. While
this approach necessarily understates the true gains to dynamic optimization, it repre-
sents an allocation rule that principals can easily implement each fall without making
any projections about enrollment and teacher attrition.

This procedure captures the gains that could have been reaped by the end of each year
had the principal maximized the value of context-specific experience in each school
starting in 1995 (the first year of the sample). However, estimates in the first few
years of the sample conflate the fact that past switching has limited potential gains
from re-optimizing with the fact that relatively few teachers are being reallocated.35

Thus, we focus on efficiency gains among classrooms assigned in the last 5 years of
the sample, when a substantial fraction of teachers are eligible for reassignment. This
counterfactual simulation can be rewritten as a binary integer programming problem.
The formal presentation of the problem is located in Appendix D.3.

We also compare the results of the “dynamic” simulation to a fully static simulation that
solves the binary integer programming problem in each year t holding fixed observed
teacher assignments up through t−1. These results reflect the payoff to the first year of
optimal static reallocation. The static simulation serves to illustrate the decomposition
of gains into the part stemming from initial reassignment to better match teachers’
context-specific experience to the classrooms they teach and the part stemming from
longer run gains associated with the specialization of the teacher work force.

7.2. Results from Counterfactual Simulations

Table 13 presents the fraction of classrooms whose teacher assignments in the simula-
tion differed from the teachers actually observed in the data, for both the single-year
“static” simulation and the “dynamic” simulation in which static re-assignments affect
the following year’s experience stocks. Because the scope for efficiency gains from
matching and specialization increases in the size of the teaching force, the classroom
reallocation rate is presented separately by number of teachers in the school-field-year
combination eligible to be reallocated (i.e. the number who taught at least one class-
room in that school-field-year combination in the actual data for whom the full teach-
ing history is observed).36 The fraction of classrooms reassigned across simulations
is fairly stable across math, science, and social studies classes, and rises nearly mono-
tonically in the number of teachers eligible for reallocation. For the static simulation,
efficient allocation requires 20 percent of classrooms to be reassigned in two-teacher

35This is because we do not observe the classroom assignment histories for the vast majority of the teachers
in the first few years.

36In the case where only one teacher is observed teaching all of the courses in the field, there can be no
gains from teacher reallocation. Thus, school-field-years featuring only one teacher are omitted from Table
13
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fields, with the fraction rising to around 45 percent for fields with seven or more teach-
ers. The reallocation rate is only slightly higher in the dynamic simulation, rising from
around 25 percent for two-teacher fields to over 50 percent for fields with seven or
more teachers.

The high rate of reallocation even in the static simulations suggests that there is a con-
siderable amount of excess mobility among teachers across levels and subjects beyond
what is necessary to staff the courses offered, given the set of teachers available. How-
ever, the simulations may be reallocating a large number of classes to achieve a negli-
gible efficiency gain. Thus, Table 14 shows the student-weighted average expected test
score gain from optimal reallocation among all school-field-year combinations, where
school-field-year combinations are grouped, as above, by the number of teachers eligi-
ble to be reallocated.

The efficiency gains for two-teacher fields are between .006 and .009 test score standard
deviations in the dynamic simulation. Small gains are not surprising for this case, given
the limited scope for specialization and the relatively low reallocation rates observed in
Table 14. However, the gains grow fairly rapidly in the number of teachers eligible to be
reallocated. Four-teacher fields reap efficiency gains of .012 to .018 standard deviations
from optimal reallocation, while fields with seven or more teachers reap gains between
.013 and .025, with the largest gains typically occurring in social studies.

On one hand, these magnitudes are clearly not large enough to dramatically shift the
distribution of student achievement; even a .025 test score gain is only enough to move
an average student from the 50th to the 51st percentile of the state test score distribu-
tion. However, a number of other considerations suggest a more optimistic interpreta-
tion of these efficiency gains.

First, note that these gains are virtually costless: no change in existing staff is required,
and all teaching loads are held fixed. It is rare to find the potential for across-the-board
gains from policy changes that require so little upheaval. Indeed, given that the vast
majority of the test-score variation is within classes, most other school-level policies
are likely to have a similarly-sized impact. For example, consider a policy that aims
to identify and replace the worst 10 percent of teachers with new hires. Using the
estimates from Table 8, a teacher at the 10th percentile of general skill reduces test
scores by about -.17 test score standard deviations, so that if such teachers teach only
10 percent of students, average test scores would increase by .017 standard deviations
even under the optimistic assumption that replacement teachers were of average quality.

Second, note that the vast majority of students are taught in high schools that feature 7
or more teachers in a field. The small numbers of teachers eligible for reallocation in
many of the schools in our simulations were driven by two factors. First, we required
that full teacher assignment histories were observed; such histories could likely be
easily ascertained for all teachers by a principal in an actual school. Second, we only
reallocated classrooms in tested courses, so that, for example, teachers who only taught
calculus were not available for reallocation. Thus, the largest efficiency gains from our
simulations are probably the relevant gains in most situations, and in fact may still be
underestimates for most large schools.
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Third, our dynamic simulated gains may be further understated because we keep teacher-
school matches fixed as they were in the data. If the simulated allocations had actually
been realized, the teacher transfer and hire patterns would have likely evolved in a way
that preserves more of the efficiency gains from specialization.37

Of course, our simulated efficiency gains could overstate the true gains if, for example,
teachers have a taste for variety, and quit more frequently if they are forced to teach the
same subject-level combination repeatedly. Similarly, while our results suggest a small
role for permanent context-specific skill, it is possible that we are reallocating teachers
away from their permanent comparative advantages. However, if these comparative ad-
vantages were known ex ante, principals should be able to ensure that teachers become
specialists in the subjects or levels in which they already had a comparative advantage.

8. Conclusions

This paper introduces and implements a method for decomposing worker productivity
into task-specific and general components of both experience and persistent talent. For
high school teachers, about half of the productivity gains from experience are specific
to the tasks (subjects and levels) to which a teacher has been assigned, while the bulk
of experience-invariant talent is general across all subject-level combinations.

Since the variation in general talent, the value of general experience and the value of
subject-specific experience are similar in magnitude, effective personnel management
for high school administrators requires a mix of selecting/deselecting teachers com-
bined with retaining and holding the course assignments fixed of teachers who have
considerable experience in a particular subject. Since neither level-specific skill nor
level-specific experience seem to be particularly important for teacher productivity,
honors classes may be used as a non-pecuniary reward for effective teaching or other
undesirable tasks (e.g. lunch duty) without much efficiency loss, to the extent that
teachers prefer to teach them. Thus, in addition to the practical importance of identify-
ing potential efficiency gains for public high schools, the teacher-classroom assignment
context also represents a case in which allowing the task-specificity of worker produc-
tivity to vary across both permanent and experiential components turns out to be critical
for determining efficient worker task allocation and personnel policy more generally.

Note, however, that the results of the decomposition we estimate may not generalize to
other occupations or even to alternative definitions of teachers’ tasks. In particular, the
set of tasks we consider are still fairly similar in scope. For example, we might observe
greater variation in task-specific talent among teachers if we included serving as a

37For example, a teacher who in reality split time between Biology and Chemistry is instead allocated
only to Biology classrooms in the simulation, but then is observed moving to a school to replace a retir-
ing Chemistry teacher. Chemistry students at the second school will be predicted to perform worse under
the simulation than under the original allocation. However, if our assignment algorithm had actually been
employed by schools, a different teacher would have been hired to replace the retiring Chemistry teacher.

30



high school athletic coach as one of a teacher’s tasks. Similarly, developing students’
cognitive and non-cognitive skills might represent two different tasks facing a teacher
even within a given classroom context.38

The methodology, however, does generalize: a similar decomposition may be esti-
mated in any context in which worker productivity may be measured at the task level
and where the mix of tasks changes over time. Further, there are many other organiza-
tional contexts in which we might also expect productivity to reflect a mix of general
and task-specific talent as well as general and task-specific experience, and in which the
structure of this mix may not be easily observable by employers or managers. A com-
pany employing a sales team to sell different products to different types of clientele,
for example, might have both the werewithal and the need to implement our decompo-
sition.
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11. Tables and Figures

Table 1: Experience Distribution among Classes taught by 2nd and 3rd year Teachers

Years of Experience % of

Subject Level Subj.-Lvl Classes

Second-Year
Teachers

1 1 1 70.7%
1 1 0 2.8%
1 0 0 4.5%
0 1 0 19.5%
0 0 0 2.5%

Total classes taught by 10,347a 2nd-year teacher:

Third-Year
Teachers

2 2 2 54.7%
2 2 1 3.1%
2 2 0 0.6%
2 1 1 4.1%
2 1 0 0.6%
2 0 0 2.2%
1 2 1 17.7%
1 2 0 1.0%
1 1 1 1.7%
1 1 0 0.8%
1 0 0 1.1%
0 2 0 10.5%
0 1 0 0.8%
0 0 0 1.1%

Total classes taught by 8,812a 3rd-year teacher:

Notes: The table presents the classroom-weighted distribution
of four-dimensional experience stocks among 2nd and 3rd year
teachers in our final sample. Note that multiple subject-level
combinations can be taught in a year.
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Table 2: Teacher Mobility Across Subjects: Regression Sample

Subject
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Algebra 1 1,780 594 29 8 5 9 20 637 15 36 17
1 0.334 0.016 0.004 0.003 0.005 0.011 0.358 0.008 0.020 0.010

Algebra 2 594 741 6 3 2 3 3 380 10 8 4
0.802 1 0.008 0.004 0.003 0.004 0.004 0.513 0.013 0.011 0.005

Biology 29 6 754 133 7 20 25 7 41 339 19
0.038 0.008 1 0.176 0.009 0.027 0.033 0.009 0.054 0.450 0.025

Chemistry 8 3 133 369 1 1 2 4 82 213 1
0.022 0.008 0.360 1 0.003 0.003 0.005 0.011 0.222 0.577 0.003

Civics 5 2 7 1 440 141 9 2 0 5 245
0.011 0.005 0.016 0.002 1 0.320 0.020 0.005 0.000 0.011 0.557

E/L/P 9 3 20 1 141 572 32 3 0 22 311
0.016 0.005 0.035 0.002 0.247 1 0.056 0.005 0.000 0.038 0.544

English 20 3 25 2 9 32 892 7 0 16 27
0.022 0.003 0.028 0.002 0.010 0.036 1 0.008 0.000 0.018 0.030

Geometry 637 380 7 4 2 3 7 855 9 10 5
0.745 0.444 0.008 0.005 0.002 0.004 0.008 1 0.011 0.012 0.006

Physics 15 10 41 82 0 0 0 9 169 114 1
0.089 0.059 0.243 0.485 0.000 0.000 0.000 0.053 1 0.675 0.006

Physical 36 8 339 213 5 22 16 10 114 734 16
Sciences 0.049 0.011 0.462 0.290 0.007 0.030 0.022 0.014 0.155 1 0.022
U.S. 17 4 19 1 245 311 27 5 1 16 783
History 0.022 0.005 0.024 0.001 0.313 0.397 0.034 0.006 0.001 0.020 1

Notes: The top entry in the (i,j)-th cell is the number of teachers who are observed teaching in both the i-th and the
j-th difficulty level (not necessarily in the same year). The bottom entry of the (i,j)-th cell is the fraction of teachers ever
observed teaching the i-th difficulty level who are also observed teaching the j-th difficulty level at some point during the
sample.
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Table 3: The Pattern of Teacher Mobility Across Difficulty Levels

Difficulty Level

Low High

D
iff

.L
ev

el Low 5,956 2,974
1 0.499

High 2,974 3,003
0.990 1

Notes: The top entry in the (i,j)-th cell is the number of teachers who are ob-
served teaching in both the i-th and the j-th difficulty level (not necessarily in the
same year). The bottom entry of the (i,j)-th cell is the fraction of teachers ever
observed teaching the i-th difficulty level who are also observed teaching the j-th
difficulty level at some point during the sample.
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Table 4: The Pattern of Teacher Mobility Across Subject-Levels for the Mathematics Field

Subject-Level

Algebra 1 Algebra 2 Geometry
Low High Low High Low High

Su
bj

ec
t-

L
ev

el

A
lg

eb
ra

1 Low Level 1,767 71 551 238 587 248
1 0.040 0.312 0.135 0.332 0.140

High Level 71 84 20 15 23 17
0.845 1 0.238 0.179 0.274 0.202

A
lg

eb
ra

2 Low Level 551 20 682 236 330 138
0.808 0.029 1 0.346 0.484 0.202

High Level 238 15 236 295 128 78
0.807 0.051 0.800 1 0.434 0.264

G
eo

m
et

ry

Low Level 587 23 330 128 786 270
0.747 0.029 0.420 0.163 1 0.344

High Level 248 17 138 78 270 339
0.732 0.050 0.407 0.230 0.796 1

Notes: The top entry in the (i,j)-th cell is the number of teachers who are observed teaching
in both the i-th and the j-th subject-level combination (not necessarily in the same year). The
bottom entry of the (i,j)-th cell is the fraction of teachers ever observed teaching the i-th subject-
level combination who are also observed teaching the j-th subject-level at some point during
the sample.
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Table 5: The Effect of General, Subject, Level, and Subject-Level Experience on Student Test Scores

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.056*** 0.023*** -0.009 0.005 0.076***
[0.011] [0.010] [0.010] [0.009] [0.003]

2 yrs 0.071*** 0.047*** -0.009 -0.006 0.103***
[0.015] [0.014] [0.014] [0.013] [0.004]

3 yrs 0.072*** 0.070*** -0.010 -0.023* 0.109***
[0.019] [0.018] [0.018] [0.018] [0.005]

4 yrs 0.077*** 0.076*** -0.016 -0.027* 0.111***
[0.022] [0.022] [0.022] [0.021] [0.005]

5-6 yrs 0.081*** 0.077*** -0.013 -0.038* 0.108***
[0.025] [0.025] [0.026] [0.025] [0.006]

7-10 yrs 0.088*** 0.080*** -0.027 -0.050** 0.091***
[0.030] [0.030] [0.031] [0.030] [0.007]

11-14 yrs 0.063** 0.092*** 0.010 -0.088** 0.077***
[0.036] [0.038] [0.037] [0.039] [0.013]

N = 1, 168, 867 student-class observations. Robust standard errors are in brackets. Significance at the
10%, 5%, and 1% levels are represented by ***, **, and * respectively. Columns 1 through 4 present
the results from estimating Equation (1). Column 5 sums across the first four columns to provide the
returns to experience for a teacher who never changes the subject-level he/she teaches. Experience is
measured at the beginning of the year.
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Table 6: The Effect of Total and Course Experience on Student Test Scores
(Restricted Specification)

Years Experience Restricted Spec. Standard Spec.

Total Subject Total Only

(1) (2) (3)

1 yr 0.048*** 0.027*** 0.073***
[0.006] [0.005] [0.0034]

2 yrs 0.063*** 0.041*** 0.102***
[0.008] [0.008] [0.0039]

3 yrs 0.061*** 0.050*** 0.109***
[0.010] [0.009] [0.0044]

4 yrs 0.063*** 0.049*** 0.114***
[0.012] [0.011] [0.0049]

5-6 yrs 0.068*** 0.040** 0.115***
[0.014] [0.013] [0.0051]

7-10 yrs 0.064*** 0.029** 0.104***
[0.017] [0.016] [0.0059]

11-14 yrs 0.060*** 0.020 0.093***
[0.021] [0.022] [0.0088]

N = 1, 168, 867 student-class observations. Robust standard errors are in brack-
ets. Significance at the 10%, 5%, and 1% levels are represented by ***, **, and
* respectively. Columns 1 and 2 present the results from an restricted version of
equation (1) in which returns to level and subject-level experience are constrained
to be 0. Column 3 presents the results from alternative restricted version of equa-
tion (1) in which returns to subject experience, level experience and subject-level
experience are all constrained to be 0. Experience is measured at the beginning
of the year.
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Table 7: Subject-Specific Experience Profiles by Field

Years Math Science Social Studies English

Exp. Total Subj. Total Subj. Total Subj. Total Subj.

(1) (2) (3) (4) (5) (6) (7) (8)

1 yr 0.062*** 0.021*** 0.062*** 0.039*** 0.055*** 0.029*** 0.025* 0.004
[0.011] [0.009] [0.011] [0.011] [0.012] [0.011] [0.016] [0.016]

2 yrs 0.079*** 0.035*** 0.078*** 0.053*** 0.085*** 0.041*** 0.022 0.021
[0.014] [0.012] [0.015] [0.014] [0.017] [0.015] [0.023] [0.022]

3 yrs 0.083*** 0.056*** 0.081*** 0.056*** 0.081*** 0.050*** 0.027 0.008
[0.017] [0.015] [0.019] [0.018] [0.020] [0.019] [0.028] [0.027]

4 yrs 0.083*** 0.053*** 0.061*** 0.066*** 0.109*** 0.048** 0.036 0.002
[0.019] [0.018] [0.022] [0.021] [0.024] [0.022] [0.032] [0.032]

5-6 yrs 0.109*** 0.043** 0.061*** 0.062*** 0.108*** 0.042* 0.020 -0.009
[0.022] [0.021] [0.025] [0.025] [0.028] [0.027] [0.037] [0.037]

7-10 yrs 0.125*** 0.032 0.029 0.061** 0.101*** 0.036 0.016 -0.016
[0.027] [0.026] [0.031] [0.031] [0.035] [0.033] [0.044] [0.044]

N = 1, 168, 867 student-class observations. Standard errors are in brackets. Significance at the 10%, 5%, and 1% levels are represented by
***, **, and * respectively. Columns 1-8 present the results from estimating a version of Equation (1) in which returns to level and subject-
level experience are constrained to be zero but returns to general and subject experience effects are allowed to vary across fields. Experience
is measured at the beginning of the year.
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Table 8: True Variances in Fixed Effects

Lower Bound Intermediate Upper Bound

Var. SD Var. SD Var. SD

(1) (2) (3) (4) (5) (6)

Sch-Subj-Lvl-Tch Combos 0.0145 0.120 0.0321 0.179 0.0450 0.212

General Talent 0.0115 0.107 0.0277 0.166 0.0406 0.201

Subj-Lvl Combos 0.0029 0.054 0.0044 0.067 0.0044 0.067

Sch-Subj-Tch Combos 0.0136 0.117 0.0308 0.175 0.0438 0.209

Level Talent 0.0009 0.030 0.0012 0.034 0.0012 0.034

Sch-Lvl-Tch Combos 0.0126 0.112 0.0294 0.171 0.0423 0.206

Subject Talent 0.0019 0.044 0.0027 0.052 0.0027 0.052

Subject-Level Talent 0.0001 0.014 0.0004 0.021 0.0004 0.021

Notes: “Lower Bound” estimates allocate all of the between school-subject-level variance in residual test scores
to school and student inputs (Assumption 2A). “Intermediate” estimates allocate the between school variance in
residual test scores to school and student inputs, and the within-school/between subject-level variance to teachers.
“Upper Bound” estimates allocate all of the between school-subject-level variance in residual test scores to teachers.
See Section 3.2 for details.
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Table 9: Estimates of the Bias in Experience Profiles Due to Endogenous Teacher
Assignment Responses to School-Year Shocks

Years Experience Total Subject Level Subj.-Level

(1) (2) (3) (4)

1 yr 0.002 0.002 -0.006 0.003
[0.003] [0.003] [0.003] [0.003]

2 yrs 0.001 0.007 -0.004 0.002
[0.004] [0.004] [0.004] [0.004]

3 yrs -0.005 0.006 -0.007 0.001
[0.005] [0.004] [0.005] [0.004]

4 yrs -0.010 0.012 0.006 -0.006
[0.005] [0.005] [0.005] [0.005]

5-6 yrs -0.003 0.008 0.002 -0.002
[0.005] [0.006] [0.005] [0.006]

7-10 yrs -0.009 0.006 0.003 -0.001
[0.006] [0.007] [0.006] [0.007]

N = 1, 168, 867 student-class observations. Robust standard errors are in brack-
ets. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and
* respectively.

42



Table 10: Testing Dynamic Teacher Assignment

Total Subject Level Subj-Lvl

Next Year Ever Next Year Ever Next Year Ever Next Year Ever

1-2 Yrs -0.043 -0.041 -0.048 -0.052 -0.057 -0.081** -0.052* -0.076***
[0.048] [0.044] [0.036] [0.033] [0.040] [0.037] [0.030] [0.028]

N=2,273 N=3,342 N=2,934 N=4,217

1-3 Yrs 0.091** 0.046 0.009 -0.028 -0.021 0.013 0.016 0.011
[0.040] [0.057] [0.028] [0.044] [0.032] [0.047] [0.027] [0.038]

N=1,327 N=1,838 N=1,695 N=2,226

1-4 Yrs 0.117** -0.122* 0.003 0.079 -0.025 0.044 -0.018 0.104**
[0.054] [0.070] [0.042] [0.057] [0.043] [0.063] [0.041] [0.049]

N=833 N=1,009 N=1,039 N=1,200

1-5 Yrs 0.132** 0.074 0.112* 0.119 0.048 -0.089 -0.027 0.028
[0.066] [0.099] [0.059] [0.078] [0.057] [0.081] [0.051] [0.065]

N=598 N=650 N=733 N=770

1-6 Yrs -0.146* 0.034 0.037 0.230** 0.073 0.151 -0.070 -0.029
[0.088] [0.124] [0.082] [0.099] [0.073] [0.108] [0.081] [0.085]

N=417 N=407 N=489 N=459

2 Yr Pooled -0.031 -0.033 -0.019 -0.022 -0.042* -0.061*** -0.018 -0.040**
[0.027] [0.024] [0.021] [0.019] [0.023] [0.021] [0.018] [0.016]

N=8,425 N=10,372 N=10,262 N=12,108

4 Yr Pooled 0.063** -0.033 -0.011 0.019 -0.003 0.033 -0.022 0.043
[0.025] [0.038] [0.024] [0.032] [0.022] [0.033] [0.023] [0.027]

N=3,638 N=3,682 N=4,239 N=4,007

Notes: Each entry presents the results from a separate regression. “1-2”, “1-3”, etc. represent different choices (the
first two year and the first three years, respectively) for the past period over which the pre-existing trend is allowed
to affect assignment patterns. “2yr pooled” and “4yr pooled” allow for patterns in the most recent two years and four
year, respectively, to affect assignment patterns. “Next Year” refers to specifications in which the dependent variable is
an indicator for whether the teacher taught any classroom in the chosen school in the following year. “Ever” refers to
specifications in which the dependent variable is an indicator for whether the teacher taught any classroom in the chosen
school ever again during the sample period. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and
* respectively.
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Table 11: Average Cross-Partial Effects Derived from Non-Parametric Experience
Production Function

Total Subject Level Subj.-Level

(1) (2) (3) (4)

Total – -0.019 -0.036** 0.009
– [0.015] [0.017] [0.018]

Subject -0.019 – -0.031*** -0.012
[0.015] – [0.013] [0.010

Level -0.036** -0.031*** – 0.003
[0.017] [0.013] – [0.012]

Subj.-Level 0.009 -0.012 0.003 –
[0.018] [0.010] [0.012] –

N = 1, 168, 867 student-class observations. Standard errors are in brackets,
and were computed using the delta method. Significance at the 1%, 5%, and
10% levels are represented by ***, **, and * respectively. Each entry is an
approximate average cross-partial derivative of teacher productivity with respect
to both the row experience category and the column experience category, where
the average is across all four-dimensional experience cells for which the data
permit an approximate cross-partial derivative estimate. See Appendix D.2.2 for
details
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Table 12: Average Accumulated Marginal Effects Derived from Non-Parametric
Experience Production Function

Years Experience Total Subject Level Subj.-Level

(1) (2) (3) (4)

1 yr 0.016*** 0.029*** 0.032*** 0.014***
[0.004] [0.012] [0.008] [0.004]

2 yrs 0.065*** 0.056*** 0.036*** 0.021***
[0.024] [0.019] [0.012] [0.008]

3 yrs 0.090** 0.089*** 0.032** 0.021**
[0.040] [0.026] [0.016] [0.011]

4 yrs 0.086** 0.111*** 0.042** 0.018*
[0.044] [0.033] [0.019] [0.014]

5-6 yrs 0.117** 0.115*** 0.049*** 0.016
[0.062] [0.043] [0.021] [0.016]

7-10 yrs 0.110* 0.123*** 0.034* 0.016
[0.071] [0.048] [0.023] [0.018]

11-14 yrs 0.109 0.127** 0.048** 0.004
[0.100] [0.058] [0.026] [0.022]

Notes: N = 1, 168, 867 student-class observations. Standard errors are in brackets,
and were computed using the delta method. Significance at the 1%, 5%, and 10% levels
are represented by ***, **, and * respectively. See Appendix D.2.3 for methodological
details.
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Table 13: Counterfactual Simulations: Fraction of Classrooms Reallocated

Math Science Social Studies

# Eligible Static Dynamic Static Dynamic Static Dynamic
Teachers (1) (2) (3) (4) (5) (6)

2 tch 0.214 0.238 0.175 0.282 0.192 0.268

3 tch 0.294 0.335 0.275 0.385 0.323 0.393

4 tch 0.385 0.432 0.320 0.454 0.378 0.442

5-6 tch 0.383 0.439 0.364 0.479 0.424 0.485

7-10 tch 0.421 0.450 0.414 0.475 0.484 0.554

11+ tch 0.437 0.513 — — 0.489 0.535

Notes: Each cell presents the fraction of classrooms whose teacher assignments in the simulation
differed from the teachers actually observed in the data, for both the single-year “static” simulation
and the “dynamic” simulation in which static re-assignments affect the following year’s experience
stocks. Each row specifies the number of teachers in the school-field-year combination eligible to be
reallocated (i.e. the number who taught at least one classroom in that school-field-year combination in
the actual data for whom the full teaching history is observed).
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Table 14: Counterfactual Simulations: Achievement Gains

Math Science Social Studies

# Eligible Static Dynamic Static Dynamic Static Dynamic
Teachers (1) (2) (3) (4) (5) (6)

1 tch — -0.001 — 0.002 — 0.002

2 tch 0.005 0.006 0.004 0.009 0.005 0.009

3 tch 0.007 0.007 0.008 0.013 0.009 0.015

4 tch 0.011 0.012 0.008 0.013 0.012 0.018

5-6 tch 0.012 0.011 0.010 0.015 0.015 0.021

7-10 tch 0.014 0.013 0.009 0.017 0.019 0.025

11+ tch 0.018 0.016 — — 0.025 0.023

Notes: Each cell presents the student-weighted average expected test score gain from reallocating
teachers to maximizing the value of teacher task-specific experience among all school-field-year com-
binations. The “static” simulations for each year t hold all teacher assignments fixed up through year
t− 1, while the “dynamic” simulations allow static re-assignments in earlier years to affect subsequent
years’ experience stocks. Each row specifies the number of teachers in the school-field-year combina-
tion eligible to be reallocated (i.e. the number who taught at least one classroom in that school-field-
year combination in the actual data for whom the full teaching history is observed).
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Figure 1: A Graphical Depiction of Complementarity Between Dimensions of
Experience (Part 1)

(a) Gains to Subject Experience Across Values of General Experience

(b) Gains to Subject Experience Across Values of Level-Specific Experience

Notes: The figure plots the gains to increasing a single dimension of experience while
conditioning on different subsets of the other dimensions of experience. These estimates
are taken from the four-dimensional experience function estimated in Equation 11 that have
been smoothed as is explained fully in Appendix D.2.1.

48



Figure 2: A Graphical Depiction of Complementarity Between Dimensions of
Experience (Part 2)

(a) Gains to Level Experience Across Values of General Experience

(b) Gains to Level Experience Across Values of Subject Experience

Notes: The figure plots the gains to increasing a single dimension of experience while
conditioning on different subsets of the other dimensions of experience. These estimates
are taken from the four-dimensional experience function estimated in Equation 11 that have
been smoothed as is explained fully in Appendix D.2.1.
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Figure 3: A Graphical Depiction of Complementarity Between Dimensions of
Experience (Part 3)

(a) Gains to Subject-Level Experience Across Values of General Experience

Notes: The figure plots the gains to increasing a single dimension of experience while
conditioning on different subsets of the other dimensions of experience. These estimates
are taken from the four-dimensional experience function estimated in Equation 11 that have
been smoothed as is explained fully in Appendix D.2.1.
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Technical Appendices

Appendix A. Identification of Experience Profiles

To see how identification might be secured, consider a simple case in which there are
only two subjects, chemistry (C) and physics (P), and only two difficulty levels, basic
(B) and honors (H). Suppose that four different teachers (not necessarily at the same
school) each teach different subject-level combinations in their first years: Teacher 1
teaches basic physics (BP) in her first year, while teacher 2 teaches honors physics
(HP), teacher 3 teaches basic chemistry (BC) and teacher 4 teaches honors chemistry
(HC). Suppose then that all four teach honors chemistry (HC) every year thereafter.
To keep the example simple, suppose further that the gains from each of the compo-
nents of experience are fully persistent (no depreciation), and that each teacher only
teaches classes in one subject-level per year. Panel A of Table E.15 displays the course
assignment paths taken by each teacher, along with the observed stocks of general,
subject-specific, level-specific, and subject-level specific experience that teachers will
possess at the beginning of each of their school years.

Consider a difference-in-difference estimator that compares the change in teacher 1’s
average student test scores between years 2 and 3 with the corresponding change for
teacher 2. Since each teacher teaches the same subject-level (HC) in both year 2
and year 3, focusing on changes over time differences out the permanent general and
context-specific skills of the two teachers. Furthermore, comparing across teachers re-
moves the common gains from the second year of (previous) general experience and
the first year of subject-specific and subject-level specific experience. Because teacher
2 taught at the honors level in her first year, the extent to which teacher 1’s performance
converges to or diverges from teacher 2’s performance between years 2 and 3 will re-
flect the relative value of the 2nd year of level-specific experience compared to the 1st
year: (dl(2) − dl(1)) − (dl(1) − 0).39 If instead we compare the change in student
performance between years 3 and 4 for the same two teachers (1 and 2), we recover
the relative value of the 3rd year of level-specific experience compared to the 2nd year:
(dl(3)−dl(2))− (dl(2)−dl(1)). Indeed, conditional on knowing the value of the first
year of experience, dl(1), we can trace out the entire path of returns to level-specific
experience by comparing the divergence/convergence in the performance of teachers 1
and 2 as they progress through their careers. If we replace teacher 2 with teacher 3 in
the comparisons above, we instead trace out the path of returns to subject-specific expe-
rience. Now that the returns to subject-specific and level-specific experience have been
identified, replacing teacher 3 with teacher 4 identifies the path of returns to subject-
level-specific experience. Finally, the growth path of teacher 4, who never switched
subjects or levels, identifies the path of returns to general experience.

39Note that since returns to experience can only be identified relative to other levels of experience, we
must normalize one value for each function. We do so by setting dk(0) = 0 for k ∈ {gen, j, l, lk}.
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To see how the value of the first year of experience might be identified for each compo-
nent of experience, consider a second scenario in which teacher 1 teaches the following
sequence of courses in her first four years: BC → HC → BP → HC. Teacher 2
teaches the same set of courses, but in a different sequence: BP → HC → BC →
HC. Panel B of Table E.15 illustrates the stocks of general and context-specific ex-
perience each teacher possesses at the beginning of each year of teaching. Since both
teachers teach honors chemistry with the same accumulated experience profile in year
4, comparing the performance of the two teachers identifies the difference in perma-
nent teaching skill between the two teachers (part of which may be honors-chemistry
specific): µ2CH −µ1CH . Once relative permanent skill has been identified, comparing
the same two teachers’ average student residuals in year 2 (when both were teaching
honors chemistry) identifies the return to the 1st year of subject-specific experience,
dj(1). Replacing basic chemistry with honors physics in this example would instead
identify the return to the 1st year of level-specific experience (dl(1)), while replacing it
with honors chemistry would identify the return to the 1st year of subject-level specific
experience (djl(1)). The return to the first year of general experience (dt(1)) can then
be identified via the growth in student average residuals from the 1st to the 2nd year
from teachers who teach the same subject-level in each of their first two years.

While the sample histories used in these scenarios are stylized, note that there are
many alternative moments that also provide identifying variation. Indeed, given the
frequency with which subject and level switching occurs, we frequently observe mul-
tiple teachers who have taught the same set of subjects and levels over their careers at
the school, but have taught them in different orders, or in different proportions. Since
each different sequence also implies a different pattern of potential depreciation for a
given model of depreciation, such comparisons allow us to simultaneously estimate the
rates at which different experience components depreciate.40

Furthermore, each subject or level switch, regardless of the point in the career, provides
a further source of identifying variation for the various context-specific experience pro-
files. Consequently, not only are these experience profiles estimable with reasonable
precision (at least for the first several years of experience), but there are myriad overi-
dentifying tests that can be implemented if one worries that particular sequences may
be likely to occur in conjunction with particular changes in unobserved inputs (in vi-
olation of Assumption 1). Indeed, in Section 6 we show that the function linking
four-dimensional stocks of general and context-specific teacher experience to student
performance is non-parametrically identified, and we present estimates from a more
flexible (though noisily estimated) specification.

40In practice, after some experimentation, we include in our estimated specifications four dummy variables
indicating whether the teacher taught the current subject last year, the current level last year, the current
subject-level last year, and whether the teacher taught any class last year.
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Appendix B. Identification of Permanent Teaching Skill

To illustrate how µ̂srjl can be identified given any of Assumptions 2A-2C paired with
3A-3C, consider a teacher r′ who teaches subject j′ and level l′ in school s′ during
years t1 to t2. Let Zict = Yict −Xictβ represent the residual of student i’s test score
in course c at time t, after removing the component predictable based on student and
classroom inputs. Then the average residual performance of students taught by teacher
r′ in school-subject-level combination (s′, j′, l′) is given by:

E[Zict|(s, r, j, l) = (s′, r′, j′, l′)]

= δsjl + µsrjl +

t2∑
t′=t1

wt′ [d
gen(exgenrt′ ) + dj(exjrt′) + dl(exlrt′) + djl(exjlrt′)] (B.1)

where the weight wt′ captures the fraction of all the students teacher r′ taught in com-
bination (s′, j′, l′) that were taught in year t′. Since the experience profiles dgen(∗),
dj(∗), dl(∗), and djl(∗) were identified using comparisons of changes in performance
across years in , the average level of performance of teacher r′ while teaching in school-
subject level combination (s′, j′, l′) identifies δs′j′l′ +µs′r′j′l′ . Under Assumption 2B,
δsjl = 0 ∀ (s, j, l), so this moment identifies µs′r′j′l′ directly. Under Assumption 2A,
we can use the fact that the (student weighted) average teacher quality in each school-
subject-level is assumed to be zero. Specifically, the average residual performance of
students in a particular school-subject-level is given by:

E[Zict|(s, j, l) = (s′, j′, l′)]

= δs′j′l′ + E[dgen(exgen) + dj(exj) + dl(exl) + djl(exjl)|(s, j, l) = (s′, j′, l′)],
(B.2)

which identifies δs′j′l′ , leaving the teacher-specific average to identify µs′r′j′l′ . To
identify δs′ under Assumption 2C, we simply average at the school level instead of
the school-subject-level level. Thus, µsrjl can be identified for each combination of
school-teacher-subject-level that we actually observe in the data.

Appendix C. Recovering the Latent Variance Decompo-
sition

This section shows how to distill the true decomposition of time-invariant skill into
general, subject-specific, level-specific, and subject-level specific components from
the estimated cell fixed effects {µ̂srjl}. We first assume that each estimated school-
teacher-subject-level fixed effect µ̂srjl can be written as the sum of the teacher’s true
context-specific skill and an uncorrelated error component: µ̂srjl = µsrjl + ξsrjl.
Then the (student-weighted) sample variance in estimated context-specific skill can be
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decomposed as:

1

N

∑
(i,c,t)∈ICT

(µ̂srjl)
2 =

1

N

∑
(i,c,t)∈ICT

(µsrjl)
2 +

1

N

∑
(i,c,t)∈ICT

(ξsrjl)
2 (C.1)

where N is the number of test scores in the sample, and ICT is the set of (i, c, t) test
score observations in the sample. As usual, the dependence of (s, r, j, l) on i, c, and t
has been omitted.

One would like to estimate the variance in true teacher quality as:

ˆV ar(µsrjl) =
1

N

∑
(i,c,t)∈ICT

(µ̂srjl)
2 − 1

N

∑
(i,c,t)∈ICT

(ξsrjl)
2. (C.2)

ξsrjl is not observed, but

1

N

∑
(i,c,t)∈ICT

(ξsrjl)
2 ≈ 1

N

∑
(i,c,t)∈ICT

E[(ξsrjl)
2] =

1

N

∑
(i,c,t)∈ICT

(se(ξsrjl))
2, (C.3)

so I estimate the error variance component using the standard error estimates for each
school-teacher-subject-level fixed effect:

ˆV ar(µsrjl) =
1

N

∑
(i,c,t)∈ICT

(µ̂srjl)
2 − 1

N

∑
(i,c,t)∈ICT

(se(ξsrjl))
2. (C.4)

By using the delta method to estimate standard errors for ˜̂µsrjl, denoted se(ξ̃srjl), we
can estimate ˆV ar(µ̃srjl) analogously. Then, ˆV ar(µsr) can be estimated via:

ˆV ar(µsr) = ˆV ar(µsrjl)− ˆV ar(µ̃srjl) (C.5)

To prevent teachers who only taught a single subject-level combination from biasing
our estimate of ˆV ar(µsr) downward, when calculating ˆV ar(˜̂µsrjl) we restrict the sam-
ple of school-teacher-subject-level combinations to those in which the relevant school-
teacher combination was observed in at least two school-teacher-subject-level combi-
nations.

Further use of the delta method allows the same procedure to be applied in recovering
the true variance of subject-specific, level-specific, and subject-level-specific teacher
talent.41

41Specifically, we calculate the true variances as follows. First, consider the alternative decomposition
µ̃srjl = µ̃srj + (µ̃srjl − µ̃srj). We estimate the true variance of the second component by first using

the delta method to calculate standard errors for ̂(µ̃srjl − µ̃srj) and then applying the same method as
above. We then obtain the variance in subject-specific teaching talent, ˆV ar(µ̃srj), via ˆV ar(µ̃srj) =
ˆV ar(˜̂µsrjl) − ˆV ar((µ̃srjl − µ̃srj)). The variance in level-specific teaching talent, ˆV ar(µ̃srl), can be

calculated using an identical approach. Finally, we estimate the variance in subject-level-specific teaching
talent using: ˆV ar(µ̃srjl − µ̃srj − µ̃srj) = ˆV ar(˜̂µsrjl)− ˆV ar(µ̃srj)− ˆV ar(µ̃srl).
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Appendix D. Robustness Check Methodology

Appendix D.1. Testing for Endogenous Responses to School-Year Shocks

To test for endogenous responses to school-year-shocks, recall that if we use residuals
in which the estimated experience profiles have not been removed, then school-year
average residuals will naturally be correlated with the experience profile composition
of the teachers in the school-year via the causal effect of teacher context-specific expe-
rience.

This problem can be solved, however, by re-weighting the classroom residual aver-
ages that compose school-year averages to account for differences in experience pro-
file composition across school-years. To see how this might be done, let Zict represent
student i’s residual test score in classroom c at time t, where the predicted effects of all
inputs in the baseline model except teacher experience have been removed:

Zict = Yict −Xictβ̂jl − δ̂sjl − µ̂srjl

= dgen(expgenrt ) + dj(expjrt) + dl(explrt) + djl(expjlrt) + ε̂ict (D.1)

We can form student-weighted school-year average residuals by weighting the average
residuals of the classrooms in the school-year by the number of students they contained:

Zst =
1

Cst

∑
c∈(s,t)

wcZc

=
1

Cst

∑
c∈(s,t)

wc(d
gen

c + d
j

c + d
l

c + djlc + εc)

≈ 1

Cst

∑
c∈(s,t)

wc(d
gen

c + d
j

c + d
l

c + d
jl

c + φst) (D.2)

where wc = Nc

Nsy
, and we have assumed for simplicity that classroom, teacher-year,

and student error components average to approximately zero within a school-year.42

Equation D.2 makes clear that schools which have a disproportionate fraction of class-
rooms taught by teachers with low stocks of context-specific experience will tend to
have negative school-year average residuals. However, we can remove this effect of
experience composition by replacing wc with wexp(c), where wexp(c) is the fraction of
classrooms in the full sample featuring teachers with the same stocks of experience as
the teacher who taught classroom c. Imagine for now that each school-year featured
the full support of four-dimensional experience stocks (though perhaps with different
frequencies). Then the re-weighted school-year average residual yields:

42To the extent that there are relatively few teacher-years represented in some school-years, our test statis-
tic also will reflect endogenous responses to teacher-year shocks, another potential threat to validity.
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Z̃st =
∑

c∈(s,t)

wexp(c)Zc

≈
∑

exp∈EX
wexp(d̂

gen

(exp) + d̂
j

(exp) + d̂
l

(exp) + d̂jl(exp) + φst)

= K + φst (D.3)

whereK is a constant that reflects the average contribution of teacher experience in the
full sample (given the normalization chosen). Thus, the reweighted school-year aver-
age residual gives us an unbiased estimator of the school-year deviation in quality from
the school’s long run average. Given the set {Z̃st}, we can then examine whether par-
ticular experience levels disproportionately occur during schools’ relatively ineffective
years by taking an experience-cell-specific weighted average of Z̃st, where the weight
on each school-year is the fraction of classrooms in the full sample featuring the four-
dimensional experience stock in question that appeared within the chosen school-year:

E[φst|expkrt = exp′] =
∑

st∈ST
wst(exp

′)(Z̃st −K) (D.4)

We regress these weighted averages on our four additively separable experience profiles
to recover estimates of bias from endogenous responses to school-year shocks.

Unfortunately, each four-dimensional experience profile is not observed in each school-
year (a failure of common support), so that we cannot fully purge the effect of experi-
ence stock composition within a school-year by reweighting observed classroom aver-
ages. We approximate the true reweighted average as best we can by distributing the
weight that would have been placed on unobserved profiles to observed profiles based
on the L1 distance between the unobserved and observed profiles (passed through a
normal kernel to smooth this distribution).

While this method increases substantially the weight placed on profiles in the under-
represented region of the distribution of four-dimensional experience profiles for each
school-year, in school-years where all of the teachers have a relatively low predicted
experience component of productivity, no amount of reweighting will possibly allow
the observed experience composition of the school-year to approximate the full sample
distribution. However, this failure of common support biases our test against us, since
our test statistic will identify spurious differences in average school-year shocks across
profiles. Thus, our reweighting estimator allows us to place an upper bound on the bias
produced from endogenous responses to school-year shocks.

Table 9 displays these upper bound estimates of bias from endogenous responses to
school-year shocks. The estimates are less than .01 student-level standard deviations
for nearly all levels of experience across the four profiles. While there may be a slight
downward bias in the returns to general experience and a slight upward bias in the
returns to subject-specific experience, the magnitudes are far too small to explain the
general pattern of results.
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Appendix D.2. Misspecification Tests: Testing the Additive Separa-
bility of Context-Specific Experience Profiles

Appendix D.2.1. Smoothing the Nonparametric Experience Contribution Func-
tion

To address the volatility of our experience cell fixed effect estimates, we assume that
the true structural function d(∗, ∗, ∗, ∗) is differentiable everywhere, and smooth our es-
timates using a kernel function featuring the normal PDF with zero mean and standard
deviation 0.5 (denoted φ despite the non-unity standard deviation):

d̃(ex) =

∑
ex′∈EX wex′φ(|ex′ − ex|)d̂(ex′)∑

ex′∈EX wex′φ(|ex′ − ex|)
, (D.5)

where d̂(ex′) is the estimate on the given experience profile from equation (11). The
argument to the normal density |ex′ − ex| is the L1 norm or taxicab distance between
the two experience profiles: |ex′ − ex| = |exgen′ − exgen| + |exj′ − exj | + |exl′ −
exl|+|exjl′−exjl|. The weightwex′ represents the fraction of observations in the sam-
ple in which the experience profile ex′ is observed. Thus, the impact of d̂(1, 1, 1, 1) on
d̃(1, 1, 1, 0) will be greater than that of d̂(1, 1, 0, 0), despite equal L1 distances, because
d̂(1, 1, 1, 1) is much more precisely estimated than d̂(1, 1, 0, 0). The chosen bandwidth
yields a four-dimensional function d̃(∗, ∗, ∗, ∗) that is smooth enough to remove con-
siderable sampling error, yet is still flexible enough to reveal true complementarities
where they may occur.

Appendix D.2.2. Cross-Partial Derivative Example

To see how the cross-partial derivatives of the function capturing the experience con-
tribution may be approximated, consider the case of the cross-partial with respect to
subject- and level-specific experience. Let D represent the set of experience cells ob-
served in the sample. Then let Pj,l represent the set of cells at which a cross-partial
derivative between subject- and level-specific experience may be calculated:

Pj,l = {(expgen, expj , expl, expsl) :
(expgen, expj , expl, expsl) ∈ D, (expgen, expj + 1, expl, expsl) ∈ D,
(expgen, expj , expl + 1, expsl) ∈ D, (expgen, expj + 1, expl + 1, expsl) ∈ D}
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We estimate

d(∗)
∂expj , ∂expl

=
∑

k∈Pj,l

ωk[(d̂(exp
gen
k , expjk + 1, explk + 1, expslk )

− d̂(expgenk , expjk + 1, explk, exp
sl
k ))

− (d̂(expgenk , expjk, exp
l
k + 1, expslk )

− d̂(expgenk , expjk, exp
l
k, exp

sl
k ))].

The weight ωk is composed of the product of four sub-weights associated with each
of the cells included in the difference-in-difference estimate. Each sub-weight repre-
sents the fraction of all teacher-school-subject-level-year cells that featured the chosen
experience combination. The ωk are then re-scaled to sum to 1.

Appendix D.2.3. Marginal Effects Example

This subsection shows how we estimate profiles of returns to single dimensions of
experience from the smoothed nonparametric experience cell estimates. These profiles
can then be compared with the corresponding dimension-specific profiles from our
additively-separable baseline specification.

Let Qj,v denote the set of experience cells at which a partial derivative for subject-
specific experience at initial value v may be calculated:

Qj,v = {(expt, expj , expl, expsl) :
expj = v, (expt, expj , expl, expsl) ∈ D, (expt, expj + 1, expl, expsl) ∈ D}.

Then the average marginal effect of subject-specific experience among cells featuring
expj = v can be calculated via:

∂d(expt, v, expl, expsl)

∂expj
=∑

k∈Qj,v

wk[d̂(exp
t
k, v + 1, explk, exp

sl
k )− d̂(exptk, v, explk, expslk )]

The weight wk is composed of the product of two sub-weights associated with the two
experience cells included in the partial derivative estimate. Each sub-weight repre-
sents the fraction of all teacher-school-subject-level-year cells that featured the chosen
experience combination. The wk are then re-scaled to sum to 1.

Appendix D.3. Formulation of the Counterfactual Simulation

To formulate the static problem, first let J represent the set of subjects offered within a
given school-field combination. Similarly, let L represent the set of levels, and let JL
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represent the set of subject-level combinations. Let Cjl represent the number of classes
to be staffed in subject-level combination jl ∈ JL, with Nc =

∑
jl∈JL Cjl denoting

the total number of classes to be staffed. Let R represent the set of teachers, with R
elements. As before, exgenr captures the number of years in which teacher r has taught
any classroom, and exjr, exlr, and exjlr capture the number of years in which teacher
r has taught at least one classroom in subject j, level l, and subject-level combination
jl, respectively. Student contributions Xitβ can be ignored, since they are assumed
to be constant across counterfactual reallocations (and are assumed to be additively
separable from teacher inputs).

Using the estimated smoothed non-parametric experience production function intro-
duced in Section 6, we can predict the counterfactual performance of teacher r in
classroom c in a given year t via:

Ŷ
c

rt = d̂(expgenrt , exp
j(c)
rt , exp

l(c)
rt , exp

jl(c)
rt ) (D.6)

The goal is to choose the mapping f : C → R from classrooms to teachers that
maximizes the sum of student test scores, subject to the constraints that each teacher
can only teach as many classrooms as they were observed teaching at time t (denoted
Cr), and every classroom must be taught by exactly one teacher43:

max
f :C→R

∑
c∈C

Ŷ
c

f(c)

s.t.
∑
r

1(f(c) = r) = 1 ∀ c

s.t.
∑
c

1(f(c) = r) = Cr ∀ r (D.7)

where 1(f(c) = r) indicates that teacher r is assigned to classroom c.

This optimization problem can be recast as a binary integer programming problem:

max
x

a ∗ x

s.t. Mc ∗ x = 1 ∀ c
s.t. Nr ∗ x = Cr ∀ r
s.t. x ∈ {0, 1} (D.8)

a consists of a 1 × (C ∗ R) row vector of predicted student performances for each
potential teacher-classroom combination:

43We suppress dependence on the year (t) in what follows
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a =
(
Ŷ

1

1 . . . Ŷ
C

1 Ŷ
1

2 . . . Ŷ
C

2 . . . Ŷ
1

R . . . Ŷ
C

R

)
x consists of a (C ∗R)× 1 vector of potential teacher assignments:

x =



x11
...
xC1
x12
...
xC2
...
x1R
...
xCR


where xcr = 1(f(c) = r) is an indicator for whether teacher r is assigned to classroom
c.

Mc consists of a 1 × C ∗ R row vector capturing the number of teachers assigned to
classroom c (restricted to be 1 ∀ c):

Mc =

 c−1︷ ︸︸ ︷
0 . . . 0 1

C−c︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

repeated R times

. . .

c−1︷ ︸︸ ︷
0 . . . 0 1

C−c︷ ︸︸ ︷
0 . . . 0


Nr consists of a 1 × C ∗ R row vector capturing the number of classrooms taught by
teacher r (restricted to be equal to Cr, the number taught in the sample):

Nr =

(r−1)∗C︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

C

(R−r)∗C︷ ︸︸ ︷
0 . . . 0

 .

We solve this binary integer programming problem for each school-field combination
in the first year of the sample. We then update each teacher’s context-specific expe-
rience profile for the second year given the experience they gained under the optimal
assignment in the first year.44 We repeat this process until the end of the sample so
as to reap the long-run rewards associated with accumulating high levels of relevant
context-specific experience. The “static” version of the simulation does not update each
teacher’s context-specific experience profile for the next year after allocating teachers
in a given year, but instead treats every year in the sample as if it were the first year.

44Since non-tested subjects are not reallocated, any general or level-specific experience teachers accumu-
lated in those subjects under the true allocation is also included in the update.
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Appendix E. Appendix Table

Table E.15: Identification Example: Experience Stocks for Hypothetical Teachers in
Each Year

Panel A: Identifying Variation for Experience Profiles, Example 1

Teacher 1: New Subj/Lvl Teacher 2: New Subj Only
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BP 0 0 0 0 HP 0 0 0 0
2 HC 1 0 0 0 HC 1 0 1 0
3 HC 2 1 1 1 HC 2 1 2 1
4 HC 3 2 2 2 HC 3 2 3 2
5 HC 4 3 3 3 HC 4 3 4 3

Teacher 3: New Lvl Only Teacher 4: Same Subj/Lvl
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BC 0 0 0 0 HC 0 0 0 0
2 HC 1 1 0 0 HC 1 1 1 1
3 HC 2 2 1 1 HC 2 2 2 2
4 HC 3 3 2 2 HC 3 3 3 3
5 HC 4 4 3 3 HC 4 4 4 4

Panel B: Identifying Variation for Experience Profiles, Example 2

Teacher 1 Teacher 2
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BC 0 0 0 0 BP 0 0 0 0
2 HC 1 1 0 0 HC 1 0 0 0
3 BP 2 0 1 0 BC 2 1 1 0
4 HC 3 2 1 1 HC 3 2 1 1

Notes: This table provides the path of experience stocks for each teacher in each of the two examples
illustrating experience profile identification that occur in Appendix B. Each entry provides the level of
general or task-specific experience in the dimension indicated by the column heading at the beginning
of the year associated with the row. “B”-Basic, “H”-Honors, “P”-Physics, “C”-Chemistry.
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