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A voice is worth a thousand words: the implications of the micro-coding of 
social signals in speech for trust research  

 

Benjamin Waber, MIT Media Laboratory 

Michele Williams, Cornell University 

John Carroll, Sloan School of Management 

Alex “Sandy” Pentland, MIT Media Laboratory 
 

Summary 

While self-report measures are often highly reliable for field research on trust (Mayer and Davis, 

1999), subjects often cannot complete surveys during real time interactions.  In contrast, the 

social signals that are embedded in the non-linguistic elements of conversations can be captured 

in real time and extracted with the assistance of computer coding. This chapter seeks to 

understand how computer-coded social signals are related to interpersonal trust. 

 

Introduction 

Self-report measures of trust reflect an important and often highly reliable tool for researchers 

interested in trust (Mayer and Davis, 1999).  However, self-report measures require subjects to 

stop and think about how much they trust others or are trusted by others. Researchers are not able 

to use these methods when subjects cannot stop to fill out surveys in real time. In our setting, 

medical conversations or handoffs, one member of the pair must quickly receive critical 

information about a patient’s current medical condition and then immediately begin caring for 

that patient.  The rushed and technical nature of these conversations also makes qualitative 
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research difficult because most of the social signals embedded in these conversations are non-

verbal.  During a transition in care, such as those we observed, medical personnel rarely stopped 

to relay social information verbally, making transcripts of their conversations useless for 

retrieving social content. Although video recording and coding of non-verbal behavior such as 

eye contact is an option, it is more invasive than audio recording. 

The social signals embedded in the non-linguistic elements of conversation reflect a 

source of relational information that has received little research attention from trust scholars 

(Curhan & Pentland, 2007;  Pentland, 2004). Thus in this chapter, we seek to understand how the 

social signals embedded in non-linguistic elements of conversations are related to interpersonal 

trust. Non-linguistic elements of conversations include voiced utterances, which are vowel 

sounds like /o/, and unvoiced utterances, which are everything else such as bursts from the lips 

like /p/ and fricatives like /s/.  They also include features of one’s voice such as emphasis. 

Emphasis, for example, is determined by both the loudness of your voice and its pitch, i.e., how 

high like a soprano or low like a baritone your voice sounds.  The non-linguistic elements of a 

conversation exclude “content;” that is, the information or meaning contained in the words or 

sentences you utter. 

Specifically, our research team studied the social side of technical communication in a 

major hospital setting. Although effective communication during transitions in care is known to 

be essential for the continuity of patient care in hospitals, we only have a partial understanding of 

the interpersonal communication behaviors that health care providers can use to enhance both the 

accurate transfer of clinical information and the maintenance of interpersonal trust.   
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Our research group faced the challenge of understanding and measuring the non-

linguistic elements of technical medical conversations. Because these conversations focused on 

patients’ medical conditions, our transcripts provided little insight into the relational elements of 

the conversation.  However, relational aspects of these conversations were present in the non-

linguistic elements of the participants’ speech, such as activity level and emphasis (a measure 

which combines pitch and loudness).  These elements reflect aspects of people’s engagement in 

the conversation and their relational responsiveness to one another.  We argue that non-linguistic 

elements of the participants’ speech not only influence the transfer of technical information, but 

also affect participants’ experience of trust during these interactions. In this chapter, we will 

describe the challenges and benefits of using computers to code the non-linguistic elements of 

conversations and present results from a pilot study. 

 

Description of the methods 

In this chapter, we investigate the use of computer coding of non-linguistic aspects of 

speaking patterns such as emphasis and activity level.  Humans and to a certain extent all 

mammals have evolved to pick up on “social signals.” That is, they interpret the non-verbal 

behavior of others, such as non-linguistic elements of speech (Pentland, Honest Signals, 2008).  

Even watching a foreign film when you don’t understand the language, you can still pick up the 

gist of what’s occurring: which characters are interested in the conversation, who is positioning 

themselves in a dominant role, etc.  Similarly, you can infer what your dog or your baby is 

feeling, not from what they say, but the way that they vocalize or move. 
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Psychologists recently began to take an interest in these signals, particularly after the 

groundbreaking research by Ambady and colleagues (Ambady, LaPlante, Nguyen, Rosenthal, 

Chaumenton, & Levinson, 2002).  Subjects in this study were asked to listen to 20 seconds of a 

doctor patient conversation and then judge whether or not the patient would sue the doctor for 

malpractice.  They found that subjects that listened to the audio with the content (i.e., audible 

words) filtered out did as well as subjects who heard the content. 

Despite this research, coding the non-linguistic elements of conversations from audio and 

video recordings typically presents the challenge of agreement among multiple human raters.  In 

addition, certain features of speech such as speaking speed simply cannot be coded without 

computational aids. Thus, in this chapter, we investigate the use of computer coding of non-

linguistic aspects of speaking patterns such as emphasis. 

Sumit Basu and Alex Pentland at the MIT Media Lab began developing methods in 2001 

to automatically segment human speech and extract useful features (Basu, 2002; Pentland, 2004).  

Although coding the non-linguistic elements of conversations from audio and video recordings 

presents challenges, Pentland (2004) constructed measures for four types of vocal social 

signaling: activity level, engagement, emphasis, and mirroring. These four measures were 

extrapolated from a broad reading of the voice analysis and social science literature.  

Activity level refers to how long a person is speaking combined with how much emphasis 

is present in their speech.  It is computed by breaking up speech into speaking and non-speaking 

segments and computing the voiced segments to determine emphasis.  Engagement refers to how 

much each person is influencing the pace of the conversation, and it is determined by examining 

how the average pace of a conversation for an individual is changed in the current conversation. 
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Emphasis as described earlier combined information about the loudness and pitch of one 

voice and reflects the amount of deviation in these values from their mean.  Socially, emphasis 

indicates the importance that the speaker puts on an interaction (Curhan and Pentland, 2007). 

Finally, mirroring, which may signal empathy, is defined as the amount of short interjections 

uttered by both conversational participants (for example: “OK?  OK!”) (Curhan and Pentland, 

2007).  (See Appendix A for a technical description of these measures.) 

By modeling the way humans produce speech, Pentland and colleagues were able to 

achieve unprecedented accuracy in speech segmentation and created new, compelling models of 

conversational dominance. Pentland and colleagues are now working to establish the general 

validity and nomological networks of these measures.  

 Recently, Pentland’s group applied these techniques in experimental settings.  One study 

examined the voice features of two people involved in a salary negotiation.  By calculating four 

simple voice features, such as activity level, conversational engagement, prosodic emphasis, and 

vocal mirroring, the authors were able to predict 30% of the variance in the final salaries ((i.e., 

R2 = 0.30 in the regression equation, Curhan & Pentland, 2007). Although not measured in this 

study, it stands to reason that because vocal features reflect one’s interest in one’s conversational 

partner, they would not only influence the substantive outcome of a negotiation but also the 

relational outcome. For example, the trust and relationship quality established during a 

negotiation.   

 Madan, Caneel, and Pentland (2004) showed the generality of these features by 

performing a similar experiment in a speed dating scenario.  In this experiment, pairs of one man 

and one woman sat at separate tables and talked for 5 minutes with the purpose of determining 
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whether or not they should go out on a date.  After 5 minutes the males changed tables and talked 

to a different female.  At the end of the exercise, each person rated their interest in dating the 

people they talked to.  Collecting the same features as those mentioned above, the authors were 

able to predict 40% of the variance in responses (i.e., R2 = 0.44 in the regression equation). 

Although not measured, trust is likely to be an important component of people’s interest in 

dating one another and thus predicted by vocal features. 

 Our research seeks to establish the link between vocal features of a conversation and 

interpersonal trust.  This line of study has the potential to enable future research using vocal 

features as (1) a proxy for trust or relationship quality, (2) an antecedent of trust building and (3) 

a moderator of positive and negative vocal content (the meaning of a conversation) on trust. 

 In this chapter, we focus on the non-linguistic feature of emphasis (pitch and volume), 

which had a consistent relationship with both trust and information transfer. 

 

Personal experience of micro-coding of speech 

Trust facilitates information sharing and knowledge transfer (Currall and Judge, 1995; 

Levin and Cross, 2004). Trust enhances self-disclosure and allows individuals to ask questions 

without the fear of being taken advantage of (Levin and Cross, 2004).  However, little is known 

about the relationship between trust and non-linguistic speech behavior. We argue that the non-

linguistic components of speech carry the relational content of technical conversations and also 

influence the effectiveness of speech. For instance, emphasis (a combined measure of pitch and 

volume) indicates the importance that the speaker puts on an interaction (Curhan and Pentland, 

2007) and also focuses listener attention on specific content or information that the speaker 
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believes is most important. We argue that trust increases the use of relational speech features and 

that relational speech features, in turn, should enhance both the transfer of technical information 

and subsequent trust. 

In our study of medical transitions in care, we studied nurses from a large urban hospital. 

These nurses were engaged in transferring the information required for the ongoing care of actual 

patients. We recorded the specific constrained interaction situations in which one outgoing nurse 

transferred the medical information associated with a patient to an incoming nurse who would 

then care for the patient during the upcoming shift. Our data was dyadic by handoff. Using a 

sample of 29 nurses in 45 unique dyads and a fixed effects model, we used computer coding of 

speaker dyads to investigate the impact of non-linguistic features of communication on the 

transfer of technical information and interpersonal trust.  The raw audio files from the 

interactions were fed into a computer program, which then performed voicing analysis and 

speaker identification.  Next higher-level features such as loudness and pitch were computed and 

used to create the activity, engagement, emphasis, and mirroring features.  

We found that emphasis (i.e., variations in pitch and volume) that partners used in their 

speech mattered.  Emphasis, which reflects emotional engagement in a conversation, was 

significantly associated with the technical adequacy of the information transfer as coded by an 

independent nursing expert, but it was not related to the trust experienced during the transfer as 

reported by the dyad partners. In an additional, individual level analysis, however, a nurse’s trust 

in his or her colleagues measured several weeks prior to the observed transition in care 1 was 

significantly related to the variation in emphasis used by that same outgoing nurse during the 

                                                           
1 Trust had been measured earlier as the psychological safety of the outgoing nurse (i.e., 
willingness to trust or make oneself vulnerable to the other nurses on the unit, Edmondson, 1999). 
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observed transition. Thus, our preliminary findings suggest that trust may form a context that 

influences the use of non-linguistic elements of conversation, elements which in turn are related 

to the accuracy of information transfer. 

 

Research validity and caveats: challenges for recording and coding trustful 
conversations 
 
Recent methods for voice analysis have been developed through computationally modeling the 

speech production process (i.e. how air is compressed in the vocal cords and modified by the 

tongue), as well as extensive training of the data processing software on large data sets to 

determine appropriate settings for determining speaking/non-speaking and voiced/unvoiced 

thresholds.  These methods are also robust to noise and microphone distance.  In particular, 

under outdoor settings researchers have correctly labeled 98.3% of the voicing information as 

well as 99.3% of the speaking information (Basu, 2002).   Here voicing information can be 

thought of loosely as vowel sounds or voiced utterances and unvoiced utterances, which are 

everything else such as bursts from the lips like /p/ and fricatives like /s/. 

However, recording voice data is challenging in a dynamic setting such as medical 

transitions in care, where dyads are talking in a crowded room.  For instance, our data collection 

consisted of direct observation and audio taping that took place in the nurses’ lounge of a 30-bed 

medical surgical unit of a large urban teaching hospital. The room was approximately twelve by 

twelve feet square with a large round table in the middle.  The room also had a refrigerator, 

microwave, toaster oven, and various cabinets.  Depending on how many nurses were going off 

and on shift, the room would have from four to ten nurses who would all be speaking in dyads at 

the same time.   
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A difficult problem with such unconstrained contexts is detecting who is interacting with 

whom.  Recently, conversations have been detected and isolated with reasonable success 

(Choudhury, 2004). Even when conversation detection is accurate, however, the corresponding 

audio features lose some of their predictive power in unconstrained settings (Wu, Waber, Aral, 

Brynjolfsson, & Pentland, 2008).    This is most likely due to the fact that the topics of 

conversations can vary widely in these situations, making it more difficult to isolate speech 

patterns related to work versus purely social conversations.   

In our setting, not only did each participant in the conversation need to wear a recording 

device, but in addition, the placement of each device had to ensure that both voices in the 

conversation were not equidistant from any one recording device. In our pilot study, we found 

that only 45/70 of the recordings (unique and repeating dyads) had sufficient quality for the 

computer to easily extract vocal features. The remaining recordings required human intervention 

to process them accurately.  Significant human intervention was also necessary for preprocessing 

the recordings in order to extract features from the audio data. 

 

Discussion: implications for organizational research 

Our pilot data suggests a link between trust and non-linguistic features of speech that, in turn, 

enhance the transfer of technical information.  In our medical setting, this enhanced information 

transfer has implications for patient safety. For example, communication breakdowns were 

considered to be the primary root cause of over 60% of the sentinel events in a national sample 
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of preventable errors in hospitals.2  At our research site, communication breakdowns were 

identified as a contributing factor in 31% of the asserted malpractice claims.  Thus, because 

effective communication has implications for safety, the relationship among trust, non-linguistic 

features of speech, and effective communication may be important for a variety of high 

reliability organizations. 

We were surprised that the non-linguistic features of speech were not significantly related 

to our measures of trust during the observed transition in care, but only to trust measured several 

weeks prior to the observed transition. However, we believe that the survey that nurses filled out 

after their interaction may have been compromised by the fact the outgoing nurses were rushing 

to go home and incoming nurses were rushing to see their patients.  Another “real-time” measure 

of relationship quality such as the physical proximity between dyad partners during the 

interaction may help reveal the more relational implications of the non-linguistic coding.  

Alternatively, it may also be the case that trust in this situation is related to competence (i.e., the 

quality of the information provided by the outgoing nurse as assessed by the incoming nurse over 

the course of the next shift).  In this case, a time delayed measure of trust may reveal the 

hypothesized link between non-linguistic elements of speech and trust.  

Our study contributes to trust research by suggesting that trust influences effective 

communication through a non-linguistic path.  Although substantial research on trust suggests 

that trust facilitates communication and information sharing (Currall and Judge, 1995), there is 

little if any work suggesting that trust improves communication by facilitating non-linguistic 

elements of speech that, in turn, enhance information transfer.  
                                                           
2 Joint Commission on Accreditation of Healthcare Organizations. Root causes of sentinel events.  2004. 
http://www.jcaho.org/accredited+organizations/ 
ambulatory+care/sentinel+events/root+causes+of+sentinel+event.htm 
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 We did not find a significant correlation between vocal features and trust during the 

observed transition in care, although we did find a significant correlation between vocal features 

and trust measured several weeks earlier. We therefore believe that the significance of vocal 

features for trust is still untapped. For instance, vocal features may only be important for trust in 

new relationships or after a trust violation. In these contexts, such features may signal genuine 

interest and engagement in the relationship. Because of their potential signaling value, vocal 

features may play an important role in trust repair. For instance, they may moderate the impact of 

trust repair strategies such as apologies and accounts on subsequent levels of trust. 

 The benefits of the social signaling methodology for predicting persuasion, interest, and 

handoff success are compelling.  Wider application of this computer technique to trust research 

is demanded not only due to this success but also because of the relative ease with which these 

features can be extracted, especially when compared to manual coding.  In the future we hope 

that additional sensors, such as accelerometers, infra-red transceivers and the like will be used by 

researchers to develop even richer datasets.  Armed with these new analytical tools, we are sure 

that future research will yield many unprecedented and useful results.  
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Appendix A 
 

Measures of Non-linguistic Vocal Signaling 
Activity Level Calculation of the activity measure begins by using a two-level Hidden 

Markov Model (HMM)3 to segment the speech stream of each person into 
voiced and non-voiced segments, and then group the voiced segments into 
speaking vs. non-speaking (Basu, 2002).  Conversational activity level is 
measured by the z-scored percentage of speaking time plus the frequency of 
voiced segments. 

  
Engagement Engagement is measured by the z-scored influence each person has on the 

other's turn taking.  Intuitively, when someone is trying to drive the 
conversation, they are more engaged than their conversational partner.  When 
two people are interacting, their individual turn-taking dynamics influence 
each other and can be modeled as a Markov process (Jaffee, Beebe, Feldstein, 
Crown, & Jasnow, 2001).  By watching people interact over long periods of 
time, we can determine what their normal interaction patterns are and see how 
they are influenced by the person they are currently interacting with.  To 
measure these influences we model their individual turn-taking by an HMM 
and measure the coupling of these two dynamic systems to estimate the 
influence each has on the others' turn-taking dynamics (Choudhury, 2004). Our 
method is similar to the classic method of Jaffe et al. (Jaffee, Beebe, Feldstein, 
Crown, & Jasnow, 2001), but with a simpler parameterization that permits the 
direction of influence to be calculated and permits analysis of conversations 
involving many participants. 

  
Emphasis Emphasis is measured by the variation in prosodic emphasis. For each voiced 

segment we extract the mean energy, frequency of the fundamental format, and 
the spectral entropy. Averaging over longer time periods provides estimates of 
the mean-scaled standard deviation of the energy, formant frequency and 
spectral entropy.  The z-scored sum of these standard deviations is taken as a 
measure of speaker stress; such stress can be either purposeful (e.g., prosodic 
emphasis) or unintentional (e.g., physiological stress caused by discomfort). 

                                                           
3 An HMM is a statistical model that consists of a series of states, each of which is only dependent upon the previous 
state.  Each state has a certain probability of outputting different symbols.  After the model parameters have been 
chosen (number of states, possible state transitions, possible outputs), the Baum-Welch algorithm is used on a 
training set of data to find the optimal values of state transition and output probabilities based on the initial starting 
conditions of the model, which consists of initial state transition and output probabilities.  A more detailed 
description of HMMs can be found in (Rabiner, 1989). 
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Appendix A (cont.) 
 

Measures of Non-linguistic Vocal Signaling 
Mirroring Mirroring behavior, in which the prosody of one participant is “mirrored” by 

the other, is considered to signal empathy, and has been shown to positively 
influence the outcome of a negotiation (Chartrand & Bargh, 1999). It has even 
been manipulated in the past in virtual reality experiments to influence the 
trustworthiness of avatars (Bailenseon & Yee, 2005).  While we cannot 
measure mirroring directly using automated methods, we can look for 
mirroring like behavior by detecting short interjections (“uh-huh”) and a quick 
exchange of words (“OK?”, “OK!”). The z-scored frequency of these short 
utterance exchanges is taken as a measure of mirroring. In our data these short 
utterance exchanges were also periods of tension release.4 

 

                                                           
4 When extracting time-dependent features such as mirroring and interruptions, time synchronization of the recorded 
data is essential.  While under certain circumstances this may be done automatically, the most accurate method still 
relies on human intervention, introducing somewhat of a time burden on the researchers, although this requires 
much less time than manual coding.   
Using combined sensor packages helps alleviate some of these issues.  The recent development of Sociometric 
Badges pairs a microphone with a radio, clock, and other sensors to allow for the automatic synchronization of data 
by using the actual time transmitted by base stations when logging data (Olguin Olguin, Waber, Kim, Mohan, Ara, 
& Pentland, 2009).   
Another method is to use easily recognizable, unique sounds on the audio track to aid automatic synchronization.  
Loud hand claps are particularly useful, since they are easy to generate and leave a distinct frequency signature in 
the audio data.  
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