
Hydrol. Earth Syst. Sci., 12, 625–634, 2008
www.hydrol-earth-syst-sci.net/12/625/2008/
© Author(s) 2008. This work is licensed
under a Creative Commons License.

Hydrology and
Earth System

Sciences

Fluvial organic carbon flux from an eroding peatland catchment,
southern Pennines, UK

R. R. Pawson, D. R. Lord, M. G. Evans, and T. E. H. Allott

Upland Environment Research Unit, Geography, School of Environment and Development, Arthur Lewis Building,
University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Received: 15 January 2007 – Published in Hydrol. Earth Syst. Sci. Discuss.: 4 April 2007
Revised: 19 November 2007 – Accepted: 20 February 2008 – Published: 20 March 2008

Abstract. This study investigates for the first time the rela-
tive importance of dissolved organic carbon (DOC) and par-
ticulate organic carbon (POC) in the fluvial carbon flux from
an actively eroding peatland catchment in the southern Pen-
nines, UK. Event scale variability in DOC and POC was ex-
amined and the annual flux of fluvial organic carbon was es-
timated for the catchment. At the event scale, both DOC and
POC were found to increase with discharge, with event based
POC export accounting for 95% of flux in only 8% of the
time. On an annual cycle, exports of 35.14 t organic carbon
(OC) are estimated from the catchment, which represents an
areal value of 92.47 g C m−2 a−1. POC was the most signif-
icant form of organic carbon export, accounting for 80% of
the estimated flux. This suggests that more research is re-
quired on both the fate of POC and the rates of POC export
in eroding peatland catchments.

1 Introduction

There is a wide range of literature investigating the fluvial
export of organic carbon from peatland environments (e.g.
Hope et al., 1997a; Dawson et al., 2002; Worrall et al., 2003).
Much of this research has been focussed on estimating total
fluvial losses of organic carbon in the form of DOC (dis-
solved organic carbon) and POC (particulate organic carbon),
especially in light of current and potential climatic changes
and the likely impacts of such changes on the soil carbon
store. Understanding POC and DOC losses and their impact
on upland carbon budgets is essential in light of potential fu-
ture climate changes and targets for carbon sequestration set
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by the Kyoto Protocol. In the UK the largest component of
soil carbon storage is present in upland peat soils (Worrall et
al., 2003; Wallage et al., 2006). Integrated studies of riverine
export have shown an important link between terrestrial and
oceanic carbon storage (Kempe, 1979; Hope et al., 1997b).
In most studies that have evaluated the total losses of DOC
and POC through upland fluvial systems, DOC is identified
as the most significant form of carbon export. For example,
Hope et al. (1997a) assessed two contrasting rivers in NE
Scotland. Of these, DOC export accounted for greater than
75% of the total fluvial loss. Similarly, Tipping et al. (1997)
investigated a range of catchments of the River Humber, and
found DOC to account for between 51 and 80% of export.
In contrasting catchments in Mid-Wales and NE Scotland,
Dawson et al. (2002) found DOC contributed 69 and 88%
of fluvial export, respectively. In a much broader assess-
ment of fluxes, Hope et al. (1997b) concluded that for British
rivers as a whole during 1993, 0.68 Mt C of the fluvial car-
bon load was in dissolved form, representing 77% of fluvial
loss. However, one of the main limitations of these data is
the use of fixed-interval sampling regimes, whereas in reality
the flux of POC is highly episodic, related to high flow hy-
drological events (Hope et al., 1997a). Hence the analysis of
fine temporal resolution of POC fluxes is important for im-
proving our understanding of POC flux and load estimates.

A clear understanding of the dynamics of DOC and par-
ticularly POC flux in eroding systems is essential for efforts
to model current upland carbon cycles, to predict changes
in peatland carbon sinks in the future, and to manage soil
carbon in peatland environments. One significant gap in cur-
rent knowledge is that almost all of the previous work on
POC/DOC proportions has been carried out in relatively in-
tact peatlands. This is despite the fact that significant areas
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Fig. 1. Location of study site Upper North Grain (UNG) in the
Southern Pennines.

of UK peatland systems are significantly eroded (Tallis et
al., 1997) and that these may provide contemporary exam-
ples of the future states of wider spread areas of peatlands
given predicted environmental change (Evans et al., 2006).
As yet, sediment flux has not been studied explicitly for the
comparison of POC and DOC flux in heavily eroded peat-
land systems. The most impacted catchment for which data
exists is at Moor House in the north Pennines (Worrall et
al., 2003), a system which is extensively eroded but shows
evidence of widespread re-vegetation (Evans and Warburton,
2005). Worrall et al. (2003) calculated an overall carbon bud-
get for this system and found POC to be the largest flux, ac-
counting for∼68% of fluvial carbon flux. Re-vegetation of
eroded north Pennine peatlands has led to much reduced ero-
sion rates compared to the severely degraded peatlands of the
southern Pennines (Evans et al., 2006), described as the most
eroded in Britain (Rothwell et al., 2005). These “badland”
landscapes (Tallis, 1997) represent the extreme end of a spec-
trum which runs to the relatively uneroded, DOC dominated
systems studied by Hope et al. (1997a). The onset of peat-
land gully erosion in the southern Pennines correlates closely
with climatic fluctuations in the Early Medieval Warm Pe-
riod (Tallis, 1995, 1997). Predicted future climate changes,
including warmer and drier summers, have the potential to
exacerbate existing peat erosion and initiate further instabil-
ity in these environments. Therefore, research into sediment
and in particular POC fluxes are essential in these fragile up-
land systems.

This study aims to quantify and compare the relative roles
of DOC and POC in the fluvial export of carbon from an
actively eroding, peat dominated catchment in the southern
Pennines, based on intensive monitoring data and modelling
annual cycles. Sediment removal in peatlands has been in-
vestigated in the past (e.g. Labadz et al., 1991), and the im-
portance of stormflow in sediment yields highlighted in up-
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Fig. 2. Arial photograph of UNG catchment displaying the blue,
green and near infrared bands. The dendritic gulley networks are
clearly visible.

land peatland catchments (Evans et al., 2005). Due to the low
density of peat sediments (Labadz et al., 1991), it is likely
that carbon contents will vary with discharge as a function
of stream power, and this has been shown in some cases in
the literature (e.g. Tipping et al., 1997). This is due to the
channel entraining varied portions of minerogenic sediments
under different discharge conditions. Such variability of sed-
iment in terms of quantity and quality should be considered
when modelling annual carbon fluxes. However, it is widely
accepted that the dominant control on suspended sediment in
peat systems is the supply and linkage of the erodable sedi-
ments to the channel – the concept of slope channel linkage
(Evans and Warburton, 2005). With this in mind, the first part
of this paper investigates the nature of carbon export through
an intensive field campaign during and between storm events.
Using empirical observations from this high temporal reso-
lution data, annual flux estimates of both POC and DOC are
modelled to outline the significance of each form of carbon
export in heavily eroding peatland systems.

2 Methodology

2.1 Study site

The field site used in this study is Upper North Grain (UNG),
a small headwater catchment of the River Ashop (see Figs. 1
and 2). This is part of the National Trust High Peak Estate,
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situated in the Peak District, southern Pennines, UK. Lo-
cated at altitudes between 490 and 541 m OD and receiv-
ing approximately 1200 mm rainfall each year, the catchment
is dominated by blanket bog. The catchment is relatively
small, draining an area of 0.38 km2, with rough grazing by
sheep as the dominant land-use (Rothwell et al., 2005). The
catchment is heavily eroded with Bower Type I peat gul-
lies (Bower, 1961), which in the upper reaches occur solely
in a peat stratigraphy which often reach several metres in
depth. The lower reaches of the gullies cut into the underly-
ing bedrock, which is dominated by sandstones of the Mill-
stone Grit Series (Wolverson-Cope, 1976). The sampling
site for this study is located in these lower reaches of the
catchment where the river channel flows on bedrock surfaces
rather than within the deep peat stratigraphy.

2.2 Field sampling: short-term temporal variability

To assess short-term temporal variability of organic carbon
fluxes, a period of intense field monitoring was undertaken.
Over a two week period, stream water samples were taken
from Upper North Grain on an hourly basis using a Sigma
900 automatic water sampler. This monitoring took place in
late March/early April 2005 during a period of storm events.
Following each 24 h period, stream water samples were re-
turned to the laboratory and processed using the methods out-
lined below. Laboratory work was undertaken within 72 h of
sampling. The data set therefore consisted of over 300 di-
rect measurements of DOC, pH, conductivity and suspended
sediment. During this period, stage was recorded using an
Intelysis pressure transducer and Sentry II data logger. A
stage-discharge relationship (see Daniels, 2006) was used to
determine discharge over the study period.

2.3 Field sampling: annual flux calculation

Water samples were taken using a range of methods through-
out 2005–2006. Sampling periods were distributed through-
out the period and occurred at a wide variety of discharges.
Samples included routine spot samples on a weekly to bi-
weekly basis, low flow sampling and storm discharge sam-
ples, each of which is summarised in Table 1. All samples
were returned to the laboratory, stored in a dark cold room
at 4◦C, processed and analysed within 72 h of sampling from
the catchment.

Along with water samples, monitoring of stream dis-
charge was undertaken at 15-min intervals, providing a
quasi-continuous field dataset. Monitoring encompassed the
entire period, facilitated again by Intelysis probes and data
loggers.

A range of sediment samples from the catchment were
characterised in terms of carbon content. This was under-
taken to allow identification of in-catchment sources of flu-
vial carbon, which could then be used to estimate organic
carbon flux from the peatland carbon store. This source char-

acterisation entailed analysis of a range of potential source
sediments taken from a wide area in the catchment. Potential
source sediments were generalised as sandstones and mud-
stones of the Millstone Grit Series, the periglacial head de-
posits of reworked sandstones and mudstones and the peat it-
self. Five exposures of the main sediment types were selected
with broad spatial coverage in the catchment, while peat sam-
ples were taken from eroding gulley walls and through peat
coring. The method for peat core collection is summarised
by Rothwell et al. (2005). All catchment sediment samples
were analysed using the methods described below.

2.4 Laboratory methods

Stream water samples were vacuum filtered through pre-
weighed Whatman GF/C glass microfibre filter paper cir-
cles to separate the suspended sediment fraction over 1.2µm.
Water volume of the filtrate was also measured. The sedi-
ment retained on the filter paper was dried for 24 h at 105◦C
to eliminate hygroscopic water and ensure accurate sediment
weight. The filter papers were then re-weighed to determine
suspended sediment concentration (SSC) as a function of wa-
ter volume. The separated water and sediments were then
analysed as described below.

2.4.1 Sediment analysis

Due to the operational limits of instrumentation, sediment
samples of over 50 mg were milled using a silicon carbide
grinder in a 240 V Glen Crest Ball mill. This homogenised
the sediment and filter paper which allowed repeated analysis
of larger samples to determine the reproducibility of analyt-
ical techniques. Filter papers with less than 50 mg of sedi-
ment were left intact as the expected carbon content of this
amount of sediment is within the range of measurement of
laboratory instruments (R. Pawson, unpublished data). All
samples were analysed for organic content using Loss on
Ignition (LOI) techniques (e.g. Armstrong, 2005). A cali-
bration was then derived for carbon contents of organics by
analysing total carbon and total inorganic carbon using an
SSM 5000A of the Shimadzu TOC-V Series Analyser. POC
content was determined by total carbon minus total inorganic
carbon. The use of such a calibration is typical of POC load
investigation (e.g. Worrall et al., 2003; Evans et al., 2006).
This allowed the calculation of POC concentration from or-
ganics analysis. This calibration would be specific to this
research although comparable with other examples.

2.4.2 Water analysis

After stream water samples had been filtered through the
1.2µm filter paper, each water sample was then filtered again
using 0.45µm Whatman cellulose nitrate membrane. Sub-
samples of the filtrate were analysed for TOC (Total Organic
Carbon) using the Shimadzu TOC-V Series Analyser. The
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Table 1. A record of the samples used for the POC-discharge calibration for annual load estimates in this study.

Sample type Dates Number of samples Description

Routine spot samples of main UNG mon-
itoring point

November 2005–December 2006 35 samples Weekly to bi-weekly rou-
tine sampling

High discharge sampling of main UNG
monitoring point

November 2005–December 2006 20 samples Grab samples collected at
points of storm discharge

Storm Sampling (AWS) February 2004–February 2006 24 samples for 6
events, 48 for 1 event

High discharge, flow trig-
gered sampling using AWS

Total Samples 247

0.45µm filtration size was used as this pore size is the com-
mon definition for DOC including colloidal carbon (Koel-
mans and Prevo, 2003) and has been routinely used in numer-
ous studies for DOC determination (e.g. Scott et al., 1998;
Fujii et al., 1998; Chow et al., 2005).

3 Results: temporal variability of organic carbon flux

Figure 3 shows the results from the two week intensive study
period. The discharge record shows relatively consistent, low
values during the first nine days except for two main events
where discharge rapidly increases over 0.01 m3 s−1 and then
returns to low flow. This nine day spell is then followed by
more variable discharges with greater ranges of flow. As in
the first nine days of monitoring, flows in the later part of
monitoring are flashy and after a rapid peak in discharge,
baseflow conditions are soon resumed.

DOC concentrations in the sample period vary by
∼20 mg l−1. Higher peaks in concentration of up to
∼25 mg l−1 coincide with discharge peaks, although the de-
gree of increasing DOC does not relate to the level of dis-
charge increase. Closer analysis of the relationship of DOC
with discharge reveals the presence of short term hysteresis,
where DOC is offset both prior to and following discharge
peaks. Following these peaks, DOC concentrations gradually
decline to∼5 mg l−1. This trend of rapid peaks and slow de-
creases of concentration is most pronounced in the first nine
day period of relatively lower discharges. In the later period
of more variable and increased discharge, DOC concentra-
tions remain relatively higher, with lowest concentrations of
∼10 mg l−1.

POC concentrations over the monitoring period are much
more variable, with the greater values concentrated in the pe-
riod after nine days. The preceding period shows very little
change in POC concentration, with low values of 1–2 mg l−1.
In the later period, concentration peaks of up to∼250 mg l−1

are recorded. These POC peaks are more short-lived than
those of discharge. For example, the samples one hour be-
fore and one hour after the maximum peak of 250 mg l−1

have values of 4 and 50 mg l−1 respectively, while concen-
trations of 4 mg l−1 are returned within 5 h of this peak.

DOC flux over the monitoring period was 128 kg; POC
flux was 145 kg. Both fluxes were calculated using Eq. (1):

Total Load= K
∑n

i=1
(CiQm) (1)

where;K is a conversion factor to take into account the pe-
riod of study,Ci is the concentration for each sample point,
Qmis the volumetric discharge for the time unit of each sam-
ple concentration andn is the number of samples. This equa-
tion is similar to that used by Walling and Webb (1981) ex-
cept that volumetric discharge is used rather than mean dis-
charge.

These figures give a total carbon flux for the two week
monitoring period of 276 kg. Of this value, POC represents
∼54% of carbon flux. Cumulative flux data show that for
DOC, 95% of total flux (or 121 kg) was exported over∼62%
of time. For POC the 95% flux value of 141 kg was exported
in ∼8% of time during the study period – or in just over 1 day.

3.1 Modelling annual carbon flux: DOC

3.1.1 Model inputs

Annual DOC flux was calculated from the routine samples
collected from 2005–2006 during an annual field campaign.
The annual load of DOC export was then estimated using an
interpolation method (“Method 5”) from Walling and Webb,
(1985):

Toal Load= K

∑n
i=1 (CiQi)∑n

i=1 Qi
Qr (2)

whereK is a conversion factor to take into account the pe-
riod of study,Ci is the concentration for each sample point,
Qi is the discharge at each sample point,Qr is the average
discharge over the study period andn is the number of sam-
ples. This is the preferred method for flux estimates given
the available data (Littlewood, 1992) and is common in the
literature for estimates of OC loads (e.g. Hope et al., 1997;
Dawson et al., 2002; Worrall et al., 2003a, b; Worrall and
Burt, 2005). This aids the comparisons between these results
and pre-existing data.

For annual flux, it is necessary to correct the final figure of
DOC export for the input of C to the catchment via rainfall.
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Fig. 3. Discharge, DOC and POC concentration data for the two
week intensive study period. Note the changing y-scale.

Analysis of rainfall has not been undertaken for this study, so
values reported by Worrall et al. (2003) are used to estimate
the peat sourced DOC flux.

3.1.2 Model outputs

Interpolated DOC gives an annual DOC flux of 18.49 g C
m−2 a−1. This estimate of DOC flux is a total flux (i.e. peat
sourced and atmospherically sourced DOC). Using data pre-
sented by Worrall et al. (2003), peat sourced DOC flux at
UNG is 15.39 g C m−2 a−1 or an absolute flux of 5.85 t C
using Eq. (2).
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Fig. 4. POC-discharge rating curve (r2=0.72; p=<0.01) for esti-
mating annual POC loads from Upper North Grain.

3.2 Modelling annual carbon flux: POC

3.2.1 Model inputs

POC flux was modelled for the annual period using a sed-
iment rating curve approach and the analysis of POC con-
centrations in the suite of sediment samples collected from
the catchment. A rating curve was derived from 247 wa-
ter samples from UNG, collected between November 2005
and December 2006 (see Table 1). Previous work in peat-
land streams has demonstrated that there is usually positive
hysteresis in the suspended sediment-discharge rating rela-
tion (e.g. Evans et al., 2006; Rothwell, 2006). Therefore, a
45 min lag was used in the construction of the rating curves,
i.e. POC was related toQt+30. Back transformation errors
for the sediment yield was corrected using the smearing esti-
mator, since this technique is the most appropriate correction
for sediment rating curves in peatland streams where data
has been transformed such as in this case (Armstrong et al.,
2006).

For the two week intensive study, OC concentrations were
obtained for every hourly sample. This data could then be
calibrated to POC using the OC/POC relationship obtained
for the annual flux. These concentrations were then con-
verted to total export of POC using Eq. (1), yielding POC
export for the two week intensive monitoring period.

3.2.2 Model outputs

The mean POC proportion for organic sediment loads was
calculated as 48.12±4.10% (n=47, 95% confidence). This is
similar to POC proportions reported by Worrall et al. (2003)
after Francis (1987), where the majority of upland suspended
sediment is organic-rich, and that carbon makes up∼50% of
this load. This∼50% load is confirmed by measurement of
OC contents of a range of peat samples at UNG, in which car-
bon contents where 50.1±1.70% (95% confidence). Char-
acterisation of other sediment sources measured very low
total carbon (TC) concentrations similar to the conclusions
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Table 2. Ranges of reported OC fluxes in the literature, along with notes on the catchments studied and the source of data. * denotes that the
loads have been inferred from reported organic sediment concentrations and applying 50% C rule (e.g. Francis, 1987; Worrall et al., 2003).

Catchment location & observed characteristics DOC flux g C m−2 a−1 POC flux g C m−2 a−1 Source

North Pennines, UK –
blanket peat and organic soils

7.0–15.0 NA Scott et al. (1998)

North east Scotland –
blanket bog with heather moorland

16.9 1.85 Dawson et al. (2002)

Upper Hafren, Mid-Wales –
acid, grass dominated moorland

8.35 2.74 Dawson et al. (2002)

North Pennines, UK –
blanket bog

9.4–15.0 19.9 Worrall et al. (2003)

Humber River, UK –
range of catchment types

2.3–5.4 0.7–3.2 Tipping et al. (1997)

Britain –
nationwide survey of 85 regions

0.77–10.35 5.7 Hope et al. (1997b)

North east Scotland –
range of catchments

1.34–11.5 0.1–8.53 Hope et al. (1997a)

Derbyshire, UK
peatland reservoir sediment cores

NA 15.65* Hutchinson (1995)

Yorkshire, UK
gullied blanket peatland

NA 19.41* Labadz et al. (1991)

Central Wales –
eroding blanket bog

NA 17.2* Francis (1990)

made by Spears and Amin (1981). Total carbon contents
of 2.30±1.50% for shale, 0.17±0.07% for sandstone and
1.09±0.73% for head deposits were recorded in this study.
Of the source sediments, organic carbon measurement was
below the range of measurement of the analytical methods
employed, suggesting that there was no need to correct car-
bon contents of fluvial suspended sediment samples for non-
peat organic carbon, as any potential sources are negligible.

The POC-discharge rating curve (Fig. 4) was applied to
the annual discharge record at UNG for 2006. This model
produced a total POC flux of 28.11 t C, equivalent to 73.97 g
C m−2 a−1. As described above, this requires no correction
for significant non-peat OC sources.

Based on the modelled DOC and POC flux data the total
annual flux for peat sourced carbon (the fluvial loads minus
the inputs of rainfall DOC) from UNG is 92.47 g C m−2 a−1.
This amounts to an absolute flux of 35.14 t C, of which POC
accounts for 80.0%.

4 Discussion

4.1 Fluxes of organic carbon

The flux of both DOC and POC can be considered on both
the short and annual scale. Estimation of carbon flux over the
two week intensive monitoring period resulted in a total loss
of ∼276 kg. Of this, POC accounted for∼148 kg, equivalent
to ∼54%. This highlights the relative importance of POC in

fluvial export, especially when considering the very low POC
loads in the first nine days of the monitoring campaign.

The annual data provides a more striking insight of the rel-
ative roles of fluvial carbon export in eroding peatland catch-
ments. The peat sourced carbon flux is 35.14 t C a−1. This
value has been derived using the interpolated DOC load and
the POC-discharge calibration. Therefore, for the total car-
bon export value, POC accounts for 80.0% of fluvial export
in the catchment. This clearly highlights the significance of
POC in upland eroding peatland systems such as UNG, es-
pecially when this value is compared to those previously re-
ported in the literature. Normalising the flux to unit area al-
lows comparison with previous work (Table 2). With these
in mind, the estimate of POC flux from UNG of 73.97 g C
m−2 a−1 is significantly greater than many other examples.
The implication is that in severely eroding catchments rates
of POC export may be much higher than has previously been
recognised.

Total DOC flux from the UNG catchment is higher than
many values previously cited in the literature. The total
flux of DOC from the catchment was estimated as 18.49 g
C m−2 a−1, which was corrected to remove rainfall DOC as
15.39 g C m−2 a−1. Reported values from other headwater
peatlands are generally lower than these values As such, the
flux of DOC from UNG is at the upper end of literature ex-
amples, particularly if we consider that most of these figures
do not remove a volume of rainfall DOC as in this exam-
ple. A possible explanation for this high value is the eroded
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nature of the catchment. Extensive gully networks are likely
to cause a depressed water table over a wider area of the
catchment by increasing drainage (Tallis, 1973; Wallage et
al., 2006). This expands the aerobic zone and thus raises
DOC production (Worrall and Burt, 2005) and consequently
leads to a higher annual flux of DOC per unit area. This sug-
gests that the importance of enhanced carbon flux from erod-
ing catchments in upland carbon cycles may extend beyond
particulate export as DOC fluxes may also be significantly
higher under such conditions. The exception to this hypoth-
esis is data presented for a catchment in NE Scotland where
DOC load estimates reaches maxima of 21.5 g C m−2 a−1

(Dawson et al., 2004). There is no suggestion in this example
that the catchment is excessively degraded by natural erosion
or land uses that might alter hydrology (such as gripping).
As such, the hypothesis requires further testing in catchments
with a wider range of gully erosion or gripping practices.

Although the significance of POC in the carbon flux from
eroding peat catchments is clear, the question of how this
source interacts with atmospheric carbon cycles is less well
understood. Evans et al. (2006) estimate oxidation from peat
surfaces as residual wastage and predict that 30–40% of bare
peat loss can be attributed to oxidation. Similarly Jacinteh et
al. (2002) show that 29–46% of soil organic carbon eroded
from fields in Ohio is mineralised within 100 days. Current
research has shown that in controlled experimental condi-
tions up to 25% of mass can be lost from peat samples on an
annual cycle and that this figure can reach 40% on a monthly
scale (Pawson et al., 2006). If these figures are accurate and
we consider the levels of POC flux presented in this paper, it
appears that there is indeed a significant degree of atmospher-
ically active carbon flux from eroding catchments. Work as-
sessing such fates of POC is ongoing.

4.2 Temporal variability of carbon flux: implications for
sampling

The results from the intensive two week period clearly
demonstrate the episodic nature of POC export. For the ma-
jority of the period, POC concentrations are considerably
lower than during the main period of export (Fig. 3). Such
rapid, episodic, discharge related flux of POC is expected.
Previous work investigating sediment dynamics in peatland
systems (e.g. Labadz et al., 1991; Holden and Burt, 2002) has
revealed positive hysteresis in discharge-sediment relations,
attributed to sediment supply from peat surfaces (Evans et al.,
2005). It therefore follows that POC concentrations, strongly
affected by erosional inputs in these degrading systems, will
exhibit similar characteristics. POC as a proportion of to-
tal sediment flux also varied with discharge (Fig. 4). This
variability shows a trend of decreasing % POC as discharges
and SSC increases. Similar sediment quality-discharge re-
lationships have been attributed to increased mineral entrain-
ment (Bradley and Lewin, 1982; Dawson and Macklin, 1998;
Rothwell et al., 2007). At lower discharges low density peat

sediments make up a higher proportion of sediment loads
and thus higher percentage POC is recorded. Even though
% POC is higher in these lower discharge periods, actual
POC concentrations are still significantly lower than during
higher discharge events, (e.g.∼250 mg l−l peak, compared
to 1–2 mg l−l at low flow). The idea of variable organic com-
ponent is supported by loss on ignition measurements of sus-
pended sediment at a range of discharges (R. Pawson, un-
published data). These results suggest that POC flux analy-
sis requires carefully constructed sampling regimes at a va-
riety of discharge conditions. As sediment supply is usually
the controlling factor for sediment flux (Evans et al., 2005),
then it is also essential that POC flux work investigates a
wide spectra of antecedent, prevailing conditions. For exam-
ple, high discharge conditions may not necessarily result in
greater POC flux if antecedent conditions are not suitable for
sediment preparation. The need for careful field sampling
is reinforced in the present study. Firstly, POC concentra-
tions decrease rapidly following peaks, returning to a “pre-
peak” value within a few hours. The majority of POC flux
(95%) therefore occurs in a small amount of time. As such,
infrequent periodic sampling will miss peaks of POC export.
Conversely, if sampling only occurs during a peak then POC
export could be significantly over estimated as peak concen-
trations are extrapolated beyond their true timescale. Fur-
thermore, the POC-discharge relationship shows consider-
able hysteresis. The largest peak of POC over the period
(Fig. 3) follows the first significant discharge peak (Q=0.09)
after nine days of low flow. Following this, discharge is
much more variable. A similar peak (Q=0.07) occurs 27 h
after the first peak. However, this second event results in a
much lower peak POC concentration. The reduction most
likely represents a sediment exhaustion effect due to the lim-
ited pre-storm period for sediment preparation by weather-
ing. In general the storm POC concentrations are signifi-
cantly higher than those reported elsewhere (e.g. Dawson et
al., 2002). Observation of sediment supply related hystere-
sis in the POC-discharge relation suggests that suitable an-
tecedent conditions are likely to be required to create high
peaks in POC export, and that monitoring regimes need to
consider these ideas carefully.

DOC concentrations also showed variability over the study
period, but with a much lower range of values. Whereas
POC ranged from 0–250 mg l−l , DOC has a range of 6.20–
22.4 mg l−l . These concentrations appear lower than re-
ported values mentioned above, but it is likely that this char-
acteristic is seasonal, as it has been shown that DOC con-
centrations are at their lowest in winter and spring months
in peatland environments (Scott et al., 1998). DOC and dis-
charge also appear to peak concurrently, but the level of dis-
charge increase appears to have less effect on the concen-
tration than with POC. For example, at day three a small
peak in discharge (Q=0.01) causes a rapid rise in DOC from
∼10–22 mg l−l , while similar peak concentrations are asso-
ciated with the largest discharge peak (Q=0.09). As such,
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it appears that the level of discharge increases do not control
the increase in DOC concentration (i.e. similar peaks in DOC
are forced by very different storm events). This is evidenced
by the poor relationship between DOC and discharge. The
Q-DOC relationship exhibits a lowr2 value (0.15), caused
by the scatter of the DOC concentrations with variable dis-
charges. In comparison, POC correlates much more strongly
(r2=0.45) with these higher discharges in spite of the likely
presence of hysteresis loops.

Following DOC peaks, concentrations decline slowly un-
less discharge remains high and variable. In these conditions,
DOC varies less and remains at higher concentrations. Simi-
lar observations of falling DOC concentrations following dis-
charge peaks have also been noted by Worrall et al. (2002)
who describe DOC flux as a function of a three end-member
system, with inter-event water dominated by low DOC while
storm flow is dominated by a mixture of DOC rich and poor
waters, sourced from old water within the peat profile and
rainwater respectively. The author’s refer to the rapid rises
in DOC as event water (rainfall, runoff and through flow)
exports an existing supply of DOC rich water. The authors
hypothesise that the time between events and the antecedent
conditions will control this supply of dissolved carbon. In
contrast to our study, Worrall et al. (2002) sample a period
in autumn which is referred to as the re-wetting period of the
peatland after the summer. As such, they propose that this
flushing of DOC during storm events may be restricted to
that time of year as the water table rises through the acrotelm
where the DOC is sourced. However, it appears that this
study supports the idea of a flushing of an existing carbon
supply also during a spring period and that level of increased
discharge is not a direct control of the DOC concentration of
this flush water.

Due to the rapid increase in DOC concentration, the tem-
poral variability of DOC does appear to vary with discharge
on an event scale basis. The slow decline of DOC after such
an event and the much smaller overall range of concentra-
tions does mean, however, that the sampling implications
of temporal variability in DOC flux are less significant than
those identified for POC data. This is highlighted by the re-
sults of the flux analysis. As highlighted above, 95% of POC
export occurs in just 8% or 27 h of the study period. In com-
parison, 95% of DOC export occurs over much longer peri-
ods of∼62% – or over 208 h (>8 days).

5 Conclusion

– In contrast to most previous work on carbon export from
peatland catchments, this study has revealed that POC is
the dominant component of fluvial organic carbon flux
from the Upper North Grain catchment. UNG lies at
one end of a spectrum from eroding peatlands through
eroded and re-vegetated systems to the intact peatlands
where most previous work on the balance of POC and

DOC in runoff has been conducted. The results of this
study emphasise the importance of adequately consid-
ering the POC flux as a component of the carbon budget
in systems where erosion is significant.

– The temporal variability of POC flux demonstrated here
means that it is not only important to consider POC
flux as a significant part of the carbon budget but that
in catchments where it is important, higher resolution
sampling than the standard weekly measurement are re-
quired to adequately characterise the flux.

– Potential increases in DOC flux associated with climate
warming are well documented but the historic associa-
tion of erosion with periods of climate change combined
with the elevated estimates in these data also suggests a
risk of increasing POC flux with future environmental
change.

– Given the significance of POC flux from eroding sys-
tems further research is urgently required to consider
the fate of particulate carbon in the fluvial system and
the proportion which might be expected to become cli-
matically active.
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