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Abstract

International trade adds a thick layer of complexity to climate change mitigation efforts. Ques-
tions such as “Who is responsible for the emissions from China’s export sectors?” and “Will
strengthening domestic climate policy measures lead to relocation of industry and emissions to

countries with lax regulation?” are intensely discussed, both in policy and academic circles.

Robust evidence on these issues remains limited, however. Many studies have quantified the
volumes of embodied carbon in international trade using complex models, but the results appear
very sensitive to the model specification, and conflicting results are reported across different
studies. Similarly, the evidence on trade impacts from emissions reduction policies has so far

relied largely on model simulations.

This thesis combines two strands of work. The first part focuses on embodied carbon quanti-
fication. It critically reviews and compares the results and methods of existing work then goes
on to conduct a first quantification exercise of global embodied carbon in bilateral trade at the

product level.

The second part measures the response of bilateral trade to industrial energy prices. It estimates
the effect of energy price differences on bilateral trade flows, using a panel dataset covering over
80% of global merchandise trade over 16 years. These estimations are used to infer the effect of

carbon price differences on trade.

The first part reveals a complex mapping of global embodied carbon flows, contrary to the
simplified picture portrayed by previous studies using aggregated models. Embodied carbon is
found to be particularly concentrated in certain products and in regional trade. It suggests that
rather viewing it as an Annex I vs non Annex I issue, grouping countries according to patterns
of production and consumption may be more relevant in discussions surrounding climate policy

and trade.

The second part of the thesis finds evidence that trade tends to develop more between countries
with different energy prices. However, this effect is small in magnitude and focused on a few
sectors. The findings suggest that measures to 'prevent’ carbon leakage may have limited impact

on most sectors, and should be targeted to those most likely to face adverse trade impacts.
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Chapter 1

Introduction

1.1 Climate and trade - background

Substantial reductions of CO, emissions are necessary, in order to meet the objectives of the
United Nations Framework Convention on Climate Change (UNFCCC) treaty - to stabilise
greenhouse gas concentrations in the atmosphere at a level that reduces the risk of dangerous an-
thropogenic interference with the climate system. In dealing with the problem of climate change
—a global public good problem for which responsibility over mitigation is defined nationally —
nations have agreed that these reductions should be achieved in ways that recognise "common
but differentiated responsibilities and respective capabilities", with greater responsibility for
reducing greenhouse gas (GHG) emissions in the near term resting with industrialised econom-
ies (Annex I countries)! of the UNFCCC. In accordance with this principle, the Kyoto Protocol
adopted a two-tiered mitigation strategy, by establishing legally binding mitigation targets for
Annex I countries, whilst no such obligations are required from non-Annex I countries in the

interest of their economic development.

Mitigation targets for the Annex I countries are set in terms of a percentage reduction in their
GHG emissions by 2012, relative to the 1990 level.? Crucially, the emissions considered are
the “greenhouse gas emissions and removals taking place within national territory and offshore
areas over which the country has jurisdiction” as defined by the Intergovernmental Panel on
Climate Change (IPCC, 1996), or those measured using the production-based or territorial based
emissions accounting. Put another way, the Protocol caps the Annex I region’s direct emissions

but so far does not account for indirect emissions embodied in trade with non-Annex I countries.

1The Annex I Parties to the 1992 UNFCCC are: Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia,
the Czech Republic, Denmark, Estonia, European Economic Community, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Japan, Latvia, Lichtenstein, Lithuania, Luxembourg, Malta, Monaco, the Netherlands, New
Zealand, Norway, Poland, Portugal, Romania, Russian Federation, the Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Turkey, Ukraine, United Kingdom and United States.

2The Annex I countries are collectively required to reduce the combined emissions of six GHGs by 5.2% below the
1990 level during the years 2008-2012 under the Kyoto Protocol.

16



Figure 1.1: World merchandise trade, CO, emissions and macro-variables from 1991 to 2009
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Source: Merchandise trade data from World Trade Organisation (2012), Emissions and macro-economic variables
data from IEA (2011a). Notes: Indices 1991 = 100.

The decade following the adoption of the Kyoto Protocol in 1997, however, was characterised
by a surge in global trade and rapid economic development in some of the non-Annex I coun-
tries. Despite high freight prices, annual growth rates of international merchandise trade far
outstripped GDP, population and emissions (Figure 1.1). Industrial output grew rapidly to
supply markets home and abroad, notably in China and South Asia (Figure 1.2). The growth of
emerging economies fuelled structural changes in commodity markets at the international level
(Reinaud, 2008) and increased integration of supply chains internationally (Figure 1.3). While
Annex I output and emissions stabilised, non-Annex I emissions increased two fold between
1991 and 2009 (Figure 1.1). These developments present new challenges for the implementation
of global environmental policies. This thesis will focus on two particular dimensions: embodied

carbon and carbon leakage.

1.1.1 Embodied carbon: issues of policy efficacy and responsibility

Production-based accounting has obvious advantages, being straightforward to compute and
transparent to interpret. However, its adequacy has been questioned as a metric upon which to

build and implement fair and effective policy to reduce global emissions. Among the criticisms

17



Figure 1.2: Industrial output growth in world regions.
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Source: Baron et al. (2007, 7). Note: China accounts for about 80% of the growth in industrial production and of the

growth in industrial energy demand between 1981 and 2005.

of the Kyoto Protocol is that it did not lead to serious abatement of global emissions, by ignoring
the indirect emissions or embodied carbon. As will be demonstrated in this thesis, the scale
of embodied emissions imported by Annex I countries is sufficient to dwarf the emissions
reductions under the Kyoto Protocol. The possibility of extending the scope of emissions to
cover indirect emissions (for example by using consumption-based carbon accounting) has been
discussed as a way to improve the environmental integrity of unilateral climate policy in a

globalised world where economic activity and international trade are strongly interrelated.

Combining production-based with consumption-based metrics on one hand represents an approach
to improving policy efficacy. On the other hand, it raises quite separate issues of fairness and
responsibility. What fairness principles can be applied to determine the allocation of ‘carbon
responsibility” across agents or countries along global supply chains? Principles so far put
forward range from the view that responsibility lies solely with the consumer, hence countries
should be held responsible for the emissions attributable to their consumption (e.g. Kondo et al.
(1998) and Munksgaard & Pedersen (2001)). More common, however, are principles of ’shared
responsibility” between producers (who benefit in the form of revenues) and consumers (who
derive utility). Mathematically, shared responsibility has been defined as a function of the share
of value-added in the supply chain (Lenzen et al., 2007), as an even spread across all agents along

the chain (Rodrigues et al., 2011) or measured against a country’s ‘ecological deficit’ (the balance

18



Figure 1.3: Import contents of exports of goods and services by country
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Source: Input-output based data obtained from OECD (2012). Notes: The import content of export grew over the
period 1995 and 2005 for most countries. Data for the EU and Romania in the early period were not available. This

indicator captures the degree of transnational fragmentation and vertical specialisation.

between its national emissions and sequestration via sinks) (Ferng, 2003). 3 However, many
important aspects including the technical and legal feasibility of consumption-based metrics is

yet unknown.*

These issues of fairness between the producer and consumer form part of a much larger ethical
dilemma surrounding the climate change externality. Economic analysis suggests that reconciling
ethical arguments is key to forming stable multilateral regimes — they are more likely to succeed
when agents involved are able to define the gain to co-operation and share it equitably (e.g.
Lange et al. (2010); Tavoni et al. (2011)). However, the distinct features of climate change — the
global, intertemporal and highly inequitable nature of its causes and benefits, as well as the
extensive reach of impacts on many dimensions of human well-being — necessitates looking at a
broader range of ethical arguments and frameworks than in standard welfare economics (Stern,
2007). Whereas the objective of policy under welfare economics is simply to maximise the sum
of social utility across individuals within one jurisdiction by a single decision maker, in contrast,
climate change necessitate collective action and modelling how people in one country reacts
to the impacts of their actions on those in another part of the world. This not only requires
agreement on how the welfare of populations with very different standards of living should
be assessed and combined in forming judgements on policy; it also requires agreement on
principles of distributive fairness, upon which burden sharing agreements can be reached.’

Fairness principles for burden sharing currently put forward include those based on rights (e.g.

3See Section 2.5.1 for further detail.

4For example, issues of sovereignty in environmental regulation remain unsolved — what can the EU do about
emissions in China, however much they import from China?

5Moreover, welfare economics is limited to assessing only the consequences of actions, but not the process by
which the outcomes are reached. Frameworks based on other notions of ethics allow for considering process.
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egalitarian), freedom (e.g. sovereignty) and justice (e.g. Polluter pays) (Sen, 1999; Ringius et al.,
2002). Thus, whether obligations are defined in terms of production or consumption-based
emissions adds a further dimension to these debates. As trade volumes grow therefore, so does
the need to carefully examine the underlying ethical judgements underpinning policies that

control emissions or countries.

1.1.2 Carbon leakage

Increased global trade activity also raises concerns about the risk of carbon leakage — whether
or not trade acts as a channel by which emissions ‘escape’ from regulated to non-regulated
entities. This risk exists when a global first-best solution is infeasible and unilateral actions are

undertaken in an effort to protect a global public good.

There are a number of definitions of the term "carbon leakage’, but it is most commonly perceived
as the marginal emission changes in country B that is induced by climate policy in country A.
The key feature of this definition is the focus on leakage that is "policy-induced’. This definition
is used in this thesis, unless stated otherwise. Applying this definition to the Kyoto Protocol
context, the IPCC considers carbon leakage as “the part of emission reductions in Annex I
countries that may be offset by an increase of the emissions in the non-constrained countries
above their baseline levels” (IPCC, 2007), the “baseline level” being a counterfactual world
without Protocol commitments. Peters (2008a) proposes a distinction between this conventional
type of carbon leakage which is purely policy-induced (which he terms “strong carbon leakage”),
and a broader definition of the term — “soft carbon leakage” — which includes all embodied
emissions in trade (EET) regardless of whether they are induced by climate policy or other
underlying economic factors that influence trade patterns. He argues that by incorporating
a broader scope of emissions, the latter definition better facilitates policy discussions on the
growing volumes of embodied carbon in trade. Relatedly, Jacob & Marschinski (2012) discusses
the interpretation of “soft carbon leakage”and applies the Laspeyres index to decompose it into
four factors: trade balance; economy-wide energy intensity; economy-wide carbon intensity of

energy; and trade specialisation.

From a public economics perspective, carbon leakage relates to the effectiveness of unilateral
policy. The IPCC lists two policy evaluation criteria that refer to policy effectiveness - environ-
mental and cost effectiveness (IPCC, 2007). The latter criterion is relatively difficult to apply
in practice because there is no requirement to collect information on the costs of policy. In
terms of the former criterion, because climate change is caused by the global concentration of
greenhouse gases, the effectiveness of a mitigation policy depends on its impact on the sum of
emissions reductions in all countries world-wide, and not just on the abatement in the country
implementing the policy. The net impact on global emissions can be positive or negative, due to
international heterogeneity in carbon intensities of production sectors. If climate policy shifts

production to a relatively less energy efficient plant in a non-regulated country, this constitutes
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a ‘negative climate spillover’ effect as global emissions will increase. Rather confusingly, this
represents a "positive carbon leakage’ effect. On the other hand a "positive climate spillover’
results if production is shifted to more efficient plants (e.g. to hydro powered installations),
which then constitutes 'negative carbon leakage’ (see Branger & Quirion (2013)). The net effect
on global emissions is zero if climate policy causes trade to shift between production plants with

identical emission intensity.

The potential efficiency problem of carbon leakage makes it a key consideration when evaluating
variant unilateral climate policy options. Yet providing empirical support to leakage discussions
is a non-trivial task. There are many factors that influence carbon leakage from which the
impact of climate policy has to be disentangled and isolated. This is characteristic of ’spillover’,
’second-order’ or ’side’ effects of climate policy, other examples of which include impacts on
energy efficiency, product prices and international spillovers such as technology diffusion. These
result from the first-order impact of the CO, control policy which is typically to increase energy

costs because most CO, emissions arise from the burning of fossil fuels.

Carbon leakage can also occur through channels other than trade, for example, via the energy
channel. This occurs if domestic emission reductions from climate policy is offset through
impacts on international energy markets — induced energy efficiency improvements decreases
fossil fuel demand, lowers global fuel prices, increases fuel consumption abroad and global
emissions rise. Leakage may also occur via channels of technological change and diffusion, or
policy diffusion (Droge, 2009), or the abatement resource effect (Fullerton et al., 2011). Leakage
to unregulated entities is not strictly an extraterritorial phenomenon. If a policy covers only some
sectors of the economy, it may shift economic activity to non-regulated sectors of varying carbon
intensity. Carbon leakage channels can also be interrelated, for example trade in low-carbon

technology products such as wind turbines may impact technology diffusion.

1.1.3 Policy relevance

These issues at the nexus of climate and trade are not only interesting for the academic researcher,

but are also becoming prominent in political rhetoric and the media.

The Chinese delegation has been particularly vocal at UNFCCC negotiations, that the inclusion of
a consumption-based perspective is a ‘very important item to make a fair agreement’ (Isenhour,
2012). It is also often reported in the Western popular media, that consumers in the rich world
should take responsibility for the emissions they are ‘outsourcing’ to the developing countries
(e.g. Watts (2009); The Economist (2011)). As the importance of embodied emissions has become
increasingly clear, support for consumption-based measures from the policy sphere has surged.
For example, the UK’s Department for Environment, Food and Rural Affairs (Defra) produces
national consumption-based accounts every year which are reported along side annual territorial
emissions. The governments of Switzerland, Sweden and the Netherlands have embarked on

similar endeavours. A House of Commons committee recently produced a report (Energy
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and Climate Change Select Committee, 2012), recommending the government should increase
efforts to acknowledge the rise in emissions abroad, driven by the UK consumers’ purchasing
preferences, in order to achieve greater leverage over those emissions. The consultation period
for the recently adopted carbon tax in Australia also explored the possibilities of a carbon-
consumption tax (Access Economics, 2009), although in the end, a carbon-production tax was

the favoured option.

One of the main debates surrounding climate policy to date has been related to carbon leakage
risk, although discussions have centred around what leakage implies for the domestic economy,
rather than for global emissions. If positive leakage occurs, not only does it undermine the
policy’s contribution to global carbon reduction, but it also presents a cost to the national
economy if jobs, revenue or investment is shifted abroad (loss of competitiveness). With the
implementation of the Emissions Trading Scheme in Europe (EU ETS), one of the key political
debates concerned the impacts on European firms that compete internationally with companies
located in regions with relatively lax regulations. The Directive (2009/29/EC) on the revision
of the EU ETS in Phase I11° responds to these concerns, by identifying energy intensive and
trade exposed (EITE) sectors and exempting them from buying allowances through auctioning
with free allocation provisions (European Commission, 2010). Similarly in the California cap-
and-trade system that launched its first trading phase on 1 January 2012, potential leakage is
addressed by issuing free allowances for the first compliance period (2012 to 2015). Australia’s
Carbon Pricing Mechanism (CPM) includes an industry assistance package 7, under which the

EITE firms will receive the majority of emission allowances for free.

However, the experience with the EU ETS showed that allocating allowances for free has several
economic and political drawbacks (Grubb & Neuhoff, 2006). While justified on the grounds
of competitiveness and carbon leakage risks, the granting of free allowances to trade-exposed
sectors constitutes an implicit subsidy. This policy not only raised issues of State Aid (Johnston,
2006), but also opened the way for large-scale lobbying, generated major inefficiencies, and
resulted paradoxically in a source of windfall (on the scale of billions of Euros) for major emitters
(Sandbag, 2011) undermining the credibility of the scheme. Governments are seeking better
ways to address potential carbon leakage that avoids over-compensation and inefficiencies in the
system. There has been active discussions about combining trade-based anti-leakage measures
with reduced free allocation (greater share of allowances allocated through auctioning), particu-
larly in Europe.® In the US, the requirement for importers to purchase emission allowances has
been discussed as a key element of prospective climate change legislation. It was included in the
now defunct “American Clean Energy and Security Act of 2009” (Waxman-Markey-Bill Section
766). The Bingaman/Specter bill (S. 1766 “Low Carbon Economy Act”) included a weak form

62013 to 2020.

7This has been rebranded as the "Jobs and Competitiveness Program”

8The academic literature has examined legal aspects (e.g. Ismer & Neuhoff, 2007; Lockwood & Whalley, 2010;
Holzer, 2010; Tamiotti, 2011; Zhang, 2010; Pauwelyn, 2007) and trade impacts (e.g. Monjon & Quirion, 2011; Dong &
Whalley, 2010; Gros & Egenhofer, 2011; Fischer & Fox, 2009).
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of border adjustment by requiring importers to have emissions permits when the emissions in
the unregulated (or underregulated) producing country sector increase above a baseline level
(Fischer & Fox, 2009). However, such anti-leakage trade measures are highly sensitive politically.
In a globalising world where there is competition between countries to gain export shares, attract
foreign direct investment and retain manufacturing sector jobs, any trade provisions can be seen

to have a strategic role.

1.1.4 Existing research

There is strong agreement in the literature that carbon dioxide emissions from the production
of traded goods and services are non-trivial (around 30% of global carbon emissions in 2006)
and that they are growing in importance over time.? There is less agreement in the empirical

literature, about the relationship between climate change policy and trade patterns.

Embodied carbon in trade has been quantified on several scales thus far. Many studies focus
on an individual country (e.g. Druckman et al., 2008; Ferng, 2003; Bicknell et al., 1998; Cruz,
2002; Lenzen & Murray, 2001; Machado et al., 2001; Sanchez-Chdliz & Duarte, 2004; Nijdam
et al., 2005; Westin & Wadeskog, 2002),' and quantify embodied emissions in imports, exports,
and trade balance. Several quantifications in time-series have also appeared, for example for
China (Peters et al., 2007; Yan & Yang, 2009; Huimin & Ye, 2010) as a net exporter of embodied
carbon and the UK (e.g. Wiedmann et al., 2010; Baiocchi & Minx, 2010; Helm et al., 2007) as a
net importer. Several global analyses using multi-regional input-output (MRIO) modelling have
quantified macro-level flows of embodied carbon (e.g. Bruckner et al., 2010; Nakano et al., 2009;
Davis & Caldeira, 2010; Davis et al., 2011; Peters et al., 2011b; Wilting & Vringer, 2009). On
the other extreme, embodied carbon has also been assessed at the level of a firm or product (e.g.
Carbon Trust, 2011a,c; Hayami & Nakamura, 2007; Steinberger et al., 2009). Whilst some papers
test the sensitivity of results to the underlying assumptions, it can be said that the literature as a
whole has so far paid limited attention to the robustness of the measurement of embodied carbon.
Discussions around the multiple sources of uncertainty inherent in existing methodologies, and
the inconsistencies in the reported estimates across studies are only recently beginning to gain
pace (e.g. Wiedmann et al., 2011; Ellermann et al., 2009; Kenny & Gray, 2009).

Analyses of carbon leakage and industrial competitiveness impacts of climate policy, have thus
far largely relied on ex-ante simulation approaches using general or partial equilibrium modelling
(e.g. Babiker, 2005; Gerlagh & Kuik, 2007; Burniaux & Martins, 2000). An extremely wide range
of leakage rates have been reported from these studies (from -14% to 130%), although the central
estimates fall into smaller ranges (5% to 30%) (Droge, 2011; Lanz et al., 2011). Recently, some

empirical analyses examining the historical relationship between energy price and trade, has

Figure 2.1 on page 29 collates estimates across studies.
100ver 40 of such studies have been found covering the USA, China, India, Japan, UK, Brazil, Italy, Taiwan, Portugal,
Denmark, Norway, Sweden, Australia, New Zealand, the group of Eastern European countries and the Netherlands to
name but a few.
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helped to address the profound empirical shortcoming in this area (Aldy & Pizer, 2011, 2012;
Mulatu et al., 2010; Gerlagh & Mathys, 2011). Exploiting the positive relationship between
energy and carbon costs for industry provides a way to conduct ex-post analysis on the impact
carbon policy on trade. More studies in this new line of analysis, as well as methodological and

data improvements, will help strengthen the empirical basis to these issues.

1.2 Aims and methods

This research aims to make contributions to the ongoing policy debates described above. Two
separate but related strands of research are conducted: the first on the quantification of embodied
carbon and the second strand on the trade impacts of asymmetric climate policy. Both strands

aim to offer new insights from detailed empirical analyses.

1.2.1 Embodied carbon in trade: A survey of the empirical literature

Measuring embodied emissions in trade has seen a resurgence in recent years. Chapter 2 provides
a critical and comparative review of this literature and evaluates the existing level of empirical
understanding of embodied carbon flows in trade. It subjects the quantitative results reported in
this literature to careful comparative evaluation, and discusses methodological and data issues
that contribute to the variability of results. In doing so, it assesses the extent to which this

literature overall provides a consistent empirical understanding of embodied carbon flows.

Several methodological reviews of the literature have already been conducted (e.g. Lutter et al.,
2008; Liu & Wang, 2009; Turner et al., 2007; Wiedmann et al., 2007), but this review focuses
on the quantitative results reported by the studies. In doing so, it exposes for the first time,
the magnitude of the discrepancies in the estimates of embodied carbon across the numerous
quantifications conducted to date. Based on the assessment of the range of available EET
estimates and the sources of uncertainty in estimation, it evaluates the strength of the conclusions

drawn for policy discussions surrounding the climate and trade nexus.

1.2.2 Product-level embodied carbon flows in bilateral trade

As increasingly complex modelling approaches are used to quantifying embodied carbon in
trade, the lack of transparency and disaggregation have been identified as some of the key
weaknesses. The research presented in Chapter 3 represents a first quantification exercise of
global embodied carbon in bilateral-trade at the product level. The objective is to gain insights

into the nature of the flows that were previously masked when using aggregated models.

The detailed quantification of embodied carbon flows is conducted by using the material balance

approach, whereby bilateral trade flows expressed in physical quantities are multiplied by
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product pollution intensities. This involved an extensive data search, collecting product carbon
intensity factors from multiple data sources (Life Cycle Assessment databases and scientific
studies). Although it has limitations of its own, this method overcomes a number of key sources
of uncertainty in existing studies, identified in Chapter 2. It also represents a transparent

approach to obtaining detailed product level embodied carbon flow estimates.

Covering bilateral trade between 195 countries and broken down at the level of 970 products,
this detailed mapping of EET flows represents a first of its kind. This database of embodied
carbon, as well as the database on product level carbon intensities built during the process will
be made public upon completion of this thesis. The data has already been proved useful for
research at the London School of Economics, for detailed firm and product level analysis of the

impact of climate policy on innovation and trade.

1.2.3 Asymmetric industrial energy prices and international trade

As countries implement carbon pricing policies of differing ambition and speed, there is con-
siderable interest around the potential impacts on international trade patterns. Whilst carbon
pricing is a nascent phenomenon, Chapter 4 uses an innovative strategy to understand the
potential impacts of asymmetric carbon prices. Namely, it statistically tests the hypothesis that
heterogeneous industrial energy price impacts trade flows, using observed data and econometric
methods. The results can be used to infer the effects of carbon pricing on future trade patterns,
owing to the close relationship between energy costs and carbon costs for industrial sectors. As
mentioned, few quantitative studies of carbon leakage exist to date outside of those using ex-ante

simulation approaches. The aim of this chapter is to help fill this empirical gap.

The analysis uses dynamic panel data methods within a gravity framework, and is applied
to a rich dataset comprising bilateral trade flows and industrial energy prices for 66 sectors
across 51 countries (covers countries with varying levels of economic development), for the
years 1996-2011. The model specifications take into account the dynamic processes which
are important yet often neglected in trade analysis, as well as the issue of zero values in the
dependent variable. Using the gravity model of trade framework allows explicit testing of the

effect of asymmetries in energy prices between trading partners on bilateral exports.

Analysis of carbon leakage using econometric methods is important because it is possible to
scrutinise the statistical relationship, by subjecting the results to multiple checks. This chapter
strives to assesses the robustness of the estimation results rigorously. It asks whether the
results are driven by the underlying theory, by comparing the results across different model
specifications. It also assesses the sensitivity of results to underlying assumptions and variable
definitions, and conducts tests to reduce the possibility that the results are driven by alternative
factors. By subjecting estimates to these tests, it aims to understand the degree to which they
are statistically robust. Sector variation of the trade impact is also explored, by estimating

coefficients separately for different sector groups.
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1.2.4 Net embodied carbon effects from carbon pricing policies

Any unilateral carbon pricing measure, invariably raises concerns about carbon leakage. Before
incorporating provisions to address leakage into the policy design, one must ask whether the
unilateral carbon price is likely to result in substantial leakage in the first place. Chapter
5 combines findings from Chapters 3 and 4 and applies these results, in order to assess the
magnitude of the potential leakage problem, and contributes to how carbon leakage is treated in
the policy discourse.

Three steps are involved: The magnitude of the effect of energy price on trade is assessed, using
the examples of UK imports from South Korea, French imports from and Indonesia and finally
by generalising these examples. Simulations are conducted to predict the near-term impact of
carbon prices on bilateral import and export levels, using the estimation results from Chapter 4,
for Australia’s CPM and a hypothetical unilateral carbon price in the US. The near-term effects

on trade are then converted to embodied carbon terms, for the case of Australia’s CPM.

1.3 Structure of this thesis

This thesis is presented as four research papers and structured as two parts: (I) Embodied carbon
in trade and (II) Carbon leakage impacts. An additional final chapter provides a synthesis of
the four papers, highlights the key findings and policy implications, and offers suggestions for

future research.

26



Part 1

Embodied carbon in trade
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Chapter 2

Embodied carbon in trade: A survey of

the empirical literature

An abridged version of this paper is published in the Journal of Economic Surveys (Sato, 2013).

2.1 Introduction

To what extent do trade and consumption contribute to rising global greenhouse gas (GHG)
emissions? Will strengthening domestic climate policy lead to real reductions in GHG emissions
or to the relocation of industry and emissions to countries with lax regulation? Who is responsible

for the emissions from China’s export sectors — the Chinese producers, or the consumers abroad?

In an effort to provide empirical support to such policy debates around the design of GHG
mitigation policies for industry emissions and the wider environmental impacts of consumption,
there has been a recent boom in the literature which quantitatively examines the embodied
carbon content of trade. Typically, these studies measure and contrast the volumes of embodied
emissions in a country’s imports versus their exports, thereby estimating a country’s balance of

embodied emissions in trade.

These studies form an extension to the discourse that began in the 1970s, around the geographical
displacement of pollution and resource use as a consequence of trade. Previous to carbon,
quantitative assessments of embodied pollution and resources have been carried out for water
(Wichelns, 2001; Hoekstra & Hung, 2005; Oki & Kanae, 2004), methane (Subak, 1995), energy
(Proops, 1977; Herendeen, 1978) and land use (Lenzen & Murray, 2001).

Studies on embodied carbon have thus far found large and growing volumes of embodied

emissions in trade (EET) (Figure 2.1), in line with the growth in global trade volumes' and

1 As shown in Figure 1.1 on page 17, the world has seen a rapid growth in global merchandise trade by 460% in
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Figure 2.1: Embodied emissions in global trade : estimates from the literature
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international integration of supply chains over the past decade. Studies have found some 4-6Gt
of CO, embodied in global trade in 2004 (equivalent to 15-25% of annual GHG emissions) and
7.8Gt for 2006 (equivalent to around 30% of global emissions).

The problem is not in the volumes of embodied emissions in trade per se, but in the lack of
mechanisms to account for the emissions that are produced in one country and consumed in
another. The lack of policy measures that regulate the carbon emissions embodied in trade is, in
turn, a natural consequence of the convention of conducting GHG accounting and inventory
based on the production based approach which measures emissions using the territorial system
boundary.? Whilst this approach has obvious advantages being relatively straightforward to
compute and to interpret, the body of literature quantifying embodied carbon in trade has
also exposed the limitations of the conventional production based perspective. For example,
by showing that Annex I countries tend to be net importers of EET, it highlights the efficacy
problem of policies that fail to incorporate indirect emissions as well as the need to resolve issues

around responsibility over manufacturing sector emissions in the presence of trade (as discussed

value terms between 1990 and 2008. During the same period, population and global GDP grew by 21% and 64%
respectively.

2 According to Lenzen et al. (2007, pp. 27), this accounting norm is in line with the “tendency of economic policy
in market driven economies not to interfere with consumer’s preferences that the producer centric representation is
the dominant form of viewing the environmental impacts of industrial production”.
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in Section 1.1.1).

This literature has prompted debates around alternative, consumption based approaches to
carbon accounting (e.g. Munksgaard & Pedersen, 2001; Bastianoni et al., 2004; Rodrigues et al.,
2006). Yet as more quantitative analyses emerge, issues around data quality, definitions, robust-
ness and uncertainty of EET measurement are gradually coming to light. A large variance across
the estimated volumes of EET is problematic because they can be used to support different inter-
pretations with potentially profound implications for environmental and trade policy making.
For example, Yan & Yang (2009) find relatively small volumes of embodied emissions in China’s
imports (0.45Gt CO, relative to 1.18Gt in exports in 2005) and advocates the consumption
based CO, accounting system on the basis of fairness. Weber (2008) on the other hand finds
substantial volumes embodied in China’s imports and concludes that “if China does not want
to take responsibility for its exported emissions, it must at least be held responsible for what it
imports” (p. 3576).

Previous reviews of this literature have focused on methodology (e.g. Lutter et al., 2008;
Wiedmann et al., 2009; Hertwich & Peters, 2010; Liu & Wang, 2009; Wiedmann et al., 2011;
Peters & Solli, 2010). Yet, syntheses of the quantitative results have been relatively few. The
contradicting pictures emerging from the growing body of research suggests that it is timely for
results to be subject to careful comparative evaluation. The central purpose of this Chapter is to
compare the quantitative results reported across studies and to discuss methodological and data
issues that contribute to the variability of results. In doing so, it assesses the extent to which
this literature provides a consistent empirical understanding of trade embodied carbon flows.
Based on these assessments, it evaluates the strengths of the conclusions and policy implications

drawn in this literature.

The Chapter is structured as follows. Section 2.2 provides a typology of papers that quantify
EET, including scale of analysis and estimation methodology. Section 2.3 then collates reported
results across studies for select countries, in terms of reported volumes of embodied emissions
in exports, imports, and the balance. To better understand what drives the differences in
estimations across studies, Section 2.4 examines the various sources of uncertainty involved in
EET estimation. In light of these, Section 2.5 examines the literature in terms of the strength of

the conclusions and interpretations of the results. Section 2.6 offers conclusions.

2.2 Typologies of quantitative embodied carbon research

This review covers over 100 papers quantifying embodied carbon in trade, from both the grey and
academic literature. This section provides some key typologies including scale of analysis and
methodology used. Another key distinguishing feature is between studies with a methodological

or a policy focus.
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2.2.1 Scales

Quantification of embodied carbon at the macro-scale involves estimating the embodied emissions
in imports and exports at the level of a country or a region. A key enquiry pursued at the macro-
scale is whether a particular country is a net importer or exporter of embodied carbon emissions,
and how the consumption based emissions change over time, with respect to production based

emissions.

Analysis at the meso-scale on the other hand, entails quantifying sector level embodied carbon
in trade. Analyses at this scale are often motivated by questions around mitigation in industry
sectors exposed to international trade. Micro-scale quantification considers the embodied carbon
of a product, household or a firm. Carbon footprinting of products are in this vein, typically
using methods that apply life cycle assessment (LCA) procedures in relation to carbon. These
include the World Resource Institute (WRI)/World Business Council on Sustainable Development
(WBCSD)’s GHG Protocol, the ISO 14064 and the British Standard Institution (BSI)’s Publicly
Available Specifications-2050 (PAS 2050).°

Tukker et al. (2009) notes that action at one level can have important ripple effects at another
(e.g. EU climate policy applied to specific sectors may impact China’s emissions as a country).
Indeed, the continuum of methods that allows a broad assessment and ripple effects between
the different scales, has received some attention in recent literature (e.g. Wiedmann et al., 2009;
Peters & Solli, 2010). Section 2.5 will discuss the importance of the policy context and the type

of analysis conducted. This review focuses primarily on macro-scale analysis.

2.2.2 Methods

Figure 2.2 relates methods to scales of analysis (vertical axis), as well as policy relevance and
information needs. At the meso- and macro-scale, three approaches based on environmentally
extended input-output (EEIO) analysis* are widely used to calculate embodied carbon in trade:
the Single Region Input-Output (SRIO); Bilateral Trade Input-Output (BTIO) which is also
known as Embodied Emissions in Bilateral Trade (EEBT); and Multi-Regional Input-Output
(MRIO) models. Critical distinctions between the three models can be made with regards to the
system boundary used (the way the imported intermediate goods are treated), assumption about

technology and model complexity.

3Reviewing these methods are beyond the scope of this paper. Matthews et al. (2008) discusses some of the
differences across carbon footprinting methodologies.

4The 10 analysis is a top-down technique to attribute pollution or resource use to a final demand in a consistent
framework (Miller & Blair, 1985; Leontief, 1970; Ayres & Kneese, 1969). Symmetric EEIO tables can be derived from
national supply-use tables (SUTs) extended with environmental data. It describes the annual transaction between
different sectors within an economy (the output of one sector is an input of another) and also how the sectors trade
externally. IO tables are compiled by national statistics offices to map the circular flows of money, labour, goods,
services, payments, wages, rents from households, firms, sectors, import, export, government and investment.
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Figure 2.2: Methods for calculating embodied emissions
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The SRIO model takes a single country and examines the emissions associated with its total
consumption (including household, government and capital investment), taking account of
the embodied carbon in trade with the rest of the world (ROW). By aggregating the ROW as
one region, it is generally assumed under this model that the same technology is applied to
production both at home and abroad (the import substitution assumption). Embodied CO, for

over 20 countries have been examined using SRIO models so far (as reviewed by Wiedmann
(2009)).

The BTIO model also considers emissions associated with the total consumption of one country,
but decomposes trade by trading partner and applies differentiated emission factors, hence
relaxing the import substitution assumption. Separately representing a handful of key trading
partner countries using a BTIO model has been a popular quantification strategy. The MRIO

model extends the input-output analysis to a multi-regional level .

A key point to note is that in both SRIO and BTIO models, all imports are allocated to total
consumption. In contrast, the MRIO model distinguishes between imports which are directed
towards final consumption versus those directed towards intermediate consumption. The latter can
be directed to the production of goods for both domestic consumption and exports. Under the
MRIO approach, the allocation of intermediate goods is endogenously determined to meet the
final demand in each region. Thus in theory at least, this model is capable of fully capturing the

re-export of goods (also termed through-trade or feed-back effects).
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Several method reviews have concluded that the MRIO model is the most appropriate approach
for EET quantification at the country level (Liu & Wang, 2009; Rodrigues et al., 2011; Peters &
Solli, 2010). Indeed the MRIO model is theoretically sound and now widely used, with dedicated
research groups and projects pioneering methodological developments and building databases
(see Section 2.2.4). Its practical application is far from simple, however, and MRIO modelling
has been described as a “minefield for practitioners desiring fairly accurate numbers” (Weber,
2008, p.22). Discussions around the multiple sources of uncertainty inherent in MRIO models
are beginning to gain pace. These include data and computational requirements and the lack of

methodological transparency, and will be discussed in greater detail in Section 2.4.

In light of the differences in system boundaries, scope and level of transparency between the
methods, some authors point out that in fact BTIO and MRIO serve different purposes(e.g. Peters,
2008b). While MRIO has the potential to detail consumption-based accounts of the products
consumed by a country, the more simple and transparent BTIO model is useful for trade adjusted
emission inventories as the total demand system boundary it uses is directly comparable to the

original statistical source.

Other approaches for quantifying embodied emissions shown in Figure 2.2 range from complex
Computable General Equilibrium (CGE) models to very simple back-of-the-envelope calculations,
as well as those using data expressed in physical quantities. On the complex end of the spectrum,
Kainuma et al. (2000), using a CGE model and accounting for indirect effects such as those
induced by changes in socioeconomic structures and production efficiencies, finds significantly
lower EET volumes than found under MRIO analyses. On the other extreme, Wang & Watson
(2008) uses a crude approach which involves multiplying China’s balance of trade by the average
CO; intensity GDP to estimate China’s embodied emissions in exports (trade balance approach,

or TBA) which is clearly inadequate.

The material balance approach improves upon the latter, by introducing sector disaggregation,
drawing sector level intensity factor estimates from bottom-up or LCA studies.> For example,
Shui & Harriss (2006) examine the carbon content of trade between US and China from 1997 to
2003 by multiplying the value of trade by sector, with sector carbon intensities derived from
the hybrid IO-LCA model (Green Design Institute, 2009).® The physical input-output and
the material flow accounting (MFA) methods use physical quantity data. The latter maps the
physical flows of materials, taking account of stock and hence has a dynamic element. The key
distinguishing characteristics of the different models are further discussed in Section 2.4 and

summarised in Table 2.5.

5Mathematically, the material balance approach is a special case of a generalized physical 10 formulation (Wied-
mann & Lenzen, 2007) although in practice, imperfect data availability and the resulting simplifications leads to
inconsistent results from the two methods. Additionally, the implication of using carbon intensity factors determined
exogenously is that the results are vulnerable to LCA issues such as lack of full coverage of indirect upstream flows
(system boundary issues), over and under counting and truncation errors (Lenzen, 2001).

6This model expands the technical coefficient matrix by selectively disaggregating industry sectors in the IO table
using information from process-based accounts.
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2.2.3 Policy vs methodological focus

A distinction can be drawn between studies with an emphasis on drawing policy implications
from EET quantification, and those with a stronger emphasis on pursuing methodological
contributions to the literature. A stark contrast is apparent, for example, comparing Helm
et al. (2007) and Wiedmann et al. (2008), both of which estimate the UK’s consumption based
emissions for similar time periods. The former paper simply multiplies the UK’s trade balance
and average CO, intensity of GDP (i.e. uses the extremely crude TBA approach), whereas the
latter uses a much more detailed BTIO model with three key trading regions and 30 economic
sectors. Both studies find significant growth in the UK’s consumption based emissions and a
widening gap between production and consumption based emissions between the early 1990s
and 2004.

The two studies complement one another: the former uses a simple method to highlight the
issue of embodied carbon in trade, draw policy implications and generate debate; the latter can
provide a form of verification by virtue of the fact that they use more sophisticated methods and
explore sensitivity of results. The literature as a whole has a heavier emphasis on methodological
discussions. Yet the above example begs the questions: to what end are embodied carbon flows
quantified? And what are the requirements from decision making in the climate-trade issues?
Section 2.5 will discuss in further detail the various policy issues surrounding embodied carbon
in trade. It will make a distinction between the policy questions where simple calculations

suffice, and those where resolution in the embodied carbon estimates matter.

2.2.4 Research groups and projects pioneering MRIO modelling

Table 2.1 lists some of the key centres of research and key projects,’” their models and their focus,

along with some recent research outputs.

The symmetric input-output tables and the extensions provided by the Global Trade Analysis
Project (GTAP) database are widely used as a data source for multi-regional modelling for EET
quantification. Researchers at the Norwegian University of Science and Technology (NTNU)
played a central role in developing methods to convert the original database into full trade
matrices necessary for MRIO modelling.® Importantly, empirical analyses using MRIO and other
techniques from the NTNU constituency are often framed to address specific policy questions
(e.g. Peters, 2008a; Peters et al., 2007) and have made significant contributions to raise the profile

of embodied carbon research in the climate debate.

The Stockholm Environment Institute (SEI) formally at the University of York (which has
now moved to Leeds University) and the Integrated Sustainability Analysis (ISA) group at the

7 As the table shows, some research centres and projects overlap in terms of researchers and models used.

8This involves developing methods to approximate the off-diagonal blocks (intermediate trade flow matrix) which
is necessary because the original data does not include the full trade matrices between all countries. Correction of
inconsistencies in the original database is also necessary to enable MRIO modelling with GTAP data.
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Table 2.1: Key research groups

ISA, Sydney

Institution Recent Outputs Focus and contribution
/Projects
CICIERO and Peters & Solli (2010); Peters et al. (2011b); GTAP-based MRIO
IndEcol@NTNU Hertwich & Peters (2009); Peters & Hertwich
and GTAP

(2008); Peters et al. (2011a)

Strong policy focus

and SEI, York

Lenzen et al. (2010b); Lenzen (2011); Kanemoto
et al. (2012); Wood & Lenzen (2009);
Wiedmann et al. (2008, 2010); Dawkins et al.
(2010); Lenzen et al. (2010a)

Detailed SUT-based
MRIO, REAP/EORA

GDI @Carnegie Weber & Matthews (2007); Weber & Peters US focus.
Mellon (2009); Weber & Matthews (2008) Detailed MRIO using
LCA data
SERI Giljum et al. (2010, 2008); Bruckner et al. Material extraction,
(2010) EU focus. GRAM
model
EXIOPOL Tukker et al. (2009); Wiedmann et al. (2009); EU focus.
Moll et al. (2008); Lutter et al. (2008) Public’ disaggregated
global SUTs database
OPEN EU Project (Hertwich & Peters, 2010) GTAP-based

water, carbon and

ecological footprinting

Source: Author
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University of Sydney have also pioneered MRIO modelling in the context of environmental
pressures. They have produced several analysis tools including the four region UK-MRIO model
and the Resource and Energy Analysis Programme (REAP) to conduct scenario modelling of the
emissions attributable to the UK’s consumption, and more recently the global EORA database.’
The latter aims to achieve the maximum possible disaggregation of MRIO modelling, in terms
of country, sectors, valuation margins and the number of years. They simultaneously aim to
have a high level of transparency, by using a system of data standardisation and automation
(Wiedmann et al., 2011).1°

The research based at the Carnegie Mellon University’s Green Design Institute has examined
embodied emissions in US trade, using a MRIO model of the US and seven key trading partners
and a time dimension. This model has a detailed breakdown of consumption groups and allows
micro-scale analysis such as the impact of individual households’ consumption on international

trade and the role of different socio-economic variables.

The Sustainable Europe Research Institute (SERI) group have an emphasis on the development of
indicators on material extraction versus consumption of countries and economic sectors therein,
using the Global Resource Accounting Model (GRAM). This model was originally developed as
part of the three year European project petrE.!!

The One Planet Economy Network (OPEN) EU research project has multiple partners (including
the groups mentioned here) and aims to produce academically robust national carbon, ecological
and water footprint indicators, covering 113 countries using GTAP data and an integrated
MRIO-footprint model. The input-output data from Asian International Input-Output Table by
IDE/JETRO and the World Input-Output database by University of Groningen are important

resource in this literature.

EXIOPOL - a project under the EU Framework 7 programme — aims to fill gaps in the data
availability for analysis on embodied carbon in trade and created supply-use tables (SUTs) with
high-level geographical and sector disaggregation (130 sectors and 43 countries) and many en-
vironmental extensions (material flows, land-use, water, energy and externalities are considered,
in addition to emissions), using process and LCA data to disaggregate environmentally relevant

sectors.

9See Lenzen et al. (2010a); Kanemoto et al. (2012)
10T do this, standardised matrix balancing approaches for the use of supply-use tables (SUT) in a MRIO framework
have been explored to avoid the use of aggregated symmetric input-output tables.
1 The model extends the monetary core model (a global, multi-regional, environmental input-output model based
on OECD IO tables) with a global dataset on material inputs in physical units. http://www.petre.org.uk/
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2.3 Empirical findings in the literature

2.3.1 EET estimates at the global level

Figure 2.1 graphs the estimated volumes of embodied carbon in annual global trade between
2001 and 2006. Most of these estimates are generated from MRIO modelling exercises, with
the exception of IEA (2008) which very crudely approximate the share of carbon emissions

embodied in exports using the share of exports in GDP.

Collectively, these estimates show that volumes of embodied carbon in global trade are significant
and on a growing trend. Estimates from 2004 range between 4Gt and 6Gt CO, (roughly 20-30%
of global emissions) whereas those for 2006 lie between 7Gt and 8Gt CO, (around 25-35%).
Aichele & Felbermayr (2010) reports a growth rate of EET of around 50% in one decade (1995-
2005). Reported estimates for more recent base years confirm this trend — Peters et al. (2011Db)
estimate 7.8Gt in 2008.

The chart begins to illustrate the non-trivial variation in reported results. In 2004, the lower
bound is set at 4.4Gt CO; by Aichele & Felbermayr (2010)’s 'simple’ model, and the upper bound
by Davis & Caldeira (2010) at 6.2Gt. The gap of 2.2Gt CO, between the upper and lower bounds
is substantial — equivalent to the EU ETS’s annual cap, or around 40% of Europe’s CO, emissions
in 2005.

2.3.2 EET estimates at country level

Tables 2.2,2.3 and 2.4 compare the reported levels of emissions for China, the USA and Japan
respectively, by year and model type, in terms of: production-based emissions; consumption-
based emissions; embodied emissions in exports (EEE); the share of EEE relative to production-
based emissions; embodied emissions in imports (EEI); the share of EEI relative to production-
based emissions; and finally the country’s balance of embodied emissions in trade (BEET). A
sample of 13 studies which quantify China’s embodied emissions in trade for the years 2004
and 2005 are summarised in Table 2.9 of the Appendix. It shows that several methodologies
have been applied using different assumptions, with data drawn from varying sources: Chinese
National Bureau of Statistics (NBS), OECD, GTAP, IEA and UN sources. Sector aggregation
ranges from zero to 57, and regional aggregation from two (China VS ROW, or rest of the world)
to 113. In addition, Tables 2.6 , 2.7 and 2.8 in the Appendix compare similarly for the UK,

Denmark and Brazil and India respectively.

Comparing the reported results across studies, stark discrepancies are observed, even for the
“reference” territorial (production-based) emissions, reflecting the different scope of emissions
taken into account in the models as well as different sources of data. As shown in Table 2.2,
for China’s production based emissions in 2005, the difference between the highest and lowest

estimates across six studies exceeds 1Gt (4.4Gt and 5.7Gt CO,). China is no exception, for
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Table 2.2: EET estimates from the literature for China

Cc0o2 Cco2
production consumption EEE (Mt EEI (Mt

Author/Year Data year model (Mt CO2) (Mt CO2) C02) EEE (%) C02) EEI (%) BEET (%)
Weber et al (2008) 1995 SRIO 3010 3150 570 19 710 24 -5
Nakano et al (2009)*" 1995 MRIO 2869 2615 318 11 64 2 9
Brukner et al (2010) 1995 MRIO 2759 2152 727 26 120 4 22
Weber et al (2008) 1997 SRIO 3210 3330 580 18 700 22 -4
Yan & Yang (2010)* 1997 SRIO 3133 2957 314 10 138 4 6
Huimin & Qi (2010)* 1997 BTIO 3219 2871 513 16 165 5 11
Ahmad and Wyckoff (2003) 1997 MRIO 3068 2708 463 15 102 3 12
Huimin & Qi (2010)* 2000 SRIO 2974 2717 623 21 367 12 9
Yan & Yang (2010)* 2000 SRIO 2967 2767 350 12 150 5 7
Nakano et al (2009)*" 2000 MRIO 2904 2645 387 13 128 4 9
Shimoda et al. (2008) 2000 MRIO 3221 2537 754 23 71 2 21
Yan & Yang (2010)* 2001 SRIO 3108 2908 380 12 180 6 6
Huimin & Qi (2010)* 2001 BTIO 2454 2271 623 25 440 18 7
Peters & Hertwich (2008) 2001 MRIO 3289 2704 803 24 217 7 18
Weber et al (2008) 2002 SRIO 3620 4030 760 21 1170 32 -1
Yan & Yang (2010)* 2002 SRIO 3441 3241 400 12 200 6 6
Pan et al (2008) 2002 SRIO 3279 2656 880 27 257 29 19
Huimin & Qi (2010)* 2002 BTIO 2564 2381 733 29 550 21 7
Qi (2008) Upper* 2003 SRIO 800

Qi (2008) Lower* 2003 SRIO 700

Yan (2010) 2003 SRIO 4062 3662 700 17 300 7 10
Huimin & Qi (2010)* 2003 BTIO 3667 3373 1027 28 733 20 8
Wang and Watson (2007) 2004 TBA 4732 3623 1490 31 381 8 23
Qi (2008) Upper* 2004 SRIO 1200

Qi (2008) Lower* 2004 SRIO 900

Yan & Yang (2010)* 2004 SRIO 4847 4297 950 20 400 8 11
Huimin & Qi (2010)* 2004 BTIO 5044 4567 1393 28 917 18 9
Carbon Trust (2011) 2004 MRIO 4834 3740 1374 28 280 20 23
Davis and Caldiera (2010) 2004 MRIO 5100 3950 1430 28 279 5 23
Atkinson et al. (2011) 2004 MRIO 4226 3122 1393 33 290 7 26
Weber et al (2008) 2005 SRIO 5030 5560 1670 33 2200 44 -1
Yan & Yang (2010)* 2005 SRIO 5429 4699 1180 22 450 8 13
Lin & Sun (2010) 2005 SRIO 5458 4434 2441 45 2333 43 19
Lin & Sun (2010) 2005 BTIO 5458 3370 2441 45 583 1 38
Huimin & Qi (2010)* 2005 BTIO 5699 5039 1760 31 1100 19 12
Nakano et al (2009)*" 2005 MRIO 4508 3921 794 18 207 5 13
Brukner et al (2010) 2005 MRIO 4449 3459 1357 31 366 8 22
IEA WEO 2007 2006 Y%export** 1600

Qi (2008) Upper* 2006 SRIO 1650

Qi (2008) Lower* 2006 SRIO 1250

Pan et al (2008) 2006 SRIO 5500 3840 31
Yan & Yang (2010)* 2006 SRIO 6018 5018 1500 25 500 8 17
Huimin & Qi (2010)* 2006 BTIO 6423 5580 2163 34 1320 21 13
Yan & Yang (2010)* 2007 SRIO 6499 5362 1725 27 588 9 17
Huimin & Qi (2010)* 2007 BTIO 6672 5829 2493 37 1650 25 13

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total
domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *Reported
in Ellermann et al. (2009). **This method uses the share of exports in GDP to approximate a share of emissions that are
attributable to the production of export goods and services. *” Updated results obtained from authors. AResults have been
extracted from graphs presented in papers, hence are approximate. In Huimin & Ye (2010), values have been converted from

carbon to carbon dioxide.
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example, studies on the UK (Table 2.6) report varying levels of production-based emissions -
in 1995 this ranged from Bruckner et al. (2010)’s estimate of 411Mt CO,, to Wiedmann et al.
(2008)’s estimate of 593Mt CO,.!?

Wider variations are found for the estimated volumes of consumption based emissions, EEE and
EEI This reflects the more data intensive nature of calculations, which entails more assumptions.
China’s consumption based emissions range between 3.1Gt and 4.6Gt CO, for 2004, and between
3.4Gt and 5.6Gt CO, in 2005.

Turning to the volume of embodied emissions in China’s exports, this quantity is of particular
interest in the context of calculating national emission targets, as pressure mounts for the world’s
largest emitter to undertake legally binding mitigation targets. Contrasting two studies that
use MRIO models and data for 2005, Nakano et al. (2009) estimates 794Mt CO2 embodied in
China’s exports (18% of China’s production-based emissions) whereas Bruckner et al. (2010)
estimates around twice as much at 1.4Gt (31%). As shown in Table 2.9, both studies use the
same data - OECD input-output tables and IEA energy and emissions data - but the aggregation
levels vary. The former has 48 production sectors and 87 regions, whereas the latter has only 17

and 41 respectively.

Studies using SRIO models find higher volumes of embodied emissions in China’s exports. Yan
& Yang (2009) report a lower-end estimate at 1.2Gt (22%) using a SRIO approach assuming US
carbon intensity factors for the ROW and using PPP exchange rate adjustments, whereas Lin
& Sun (2010) find 2.4Gt (45%). Such two fold differences in the estimates are not uncommon
with these estimations, as the tables show. Recall that in contrast to the system boundary under
the MRIO model which distinguishes between imported and domestic input materials, the EEE
estimates under the SRIO and BTIO models include the emissions attributable to the production

of export goods, whether the input materials are sourced domestically or from abroad.

Attention has also been drawn to the embodied emissions in China’s imports, particularly as
Chinese demand for intermediate goods and raw materials imports rise with consumption and
industrial growth. As shown in Table 2.2, estimates of EEI vary considerably both within and
across different model types. For 2005 in China, two studies by Weber et al. (2008) and Lin
& Sun (2010) using the SRIO model and assuming import substitution (imports are produced
with domestic technology) report significant volumes of EEI, exceeding 2Gt CO, (over 40% of
production based emissions). Huimin & Ye (2010) using a BTIO model with 36 regions and
differentiated technology estimates China’s EEI at 1.1Gt CO, (equivalent to 19%). Studies using
MRIO models (and accounting for through trade) report much less: 0.2 to 0.4Gt (5-8%).

To illustrate the variation across studies, Figure 2.3 graphically compares a set of seven results for
China’s embodied emissions in 2005. Focusing on the first two columns from the left, they plot
for each study and model type, the deviation of the results from the average value of the seven

studies, in terms of China’s production-based and consumption-based emissions (averaging

12The emissions level given by World Resource Institute’s CAIT is 529Mt CO».
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Figure 2.3:
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Table 2.3: EET estimates from the literature for the USA

COo2 COo2
production consumption EEE (Mt EEI (Mt

Author/Year Data year _model (Mt CO2) (Mt CO2) C0o2) EEE (%) C02) EEI (%) BEET (%)
Nakano et al (2009)*" 1995 MRIO 4673 4672 283 6 282 6 0
Brukner et al (2010) 1995 MRIO 4170 4510 460 1" 801 19 -8
Webber & Matthews (2007) MER? 1997 BTIO 450 600
Webber & Matthews (2007) PPP~ 1997 BTIO 500
Webber & Matthews (2007) MER? 1997 MRIO 500 850
Webber & Matthews (2007) PPP~ 1997 MRIO 620
Ahmad and Wyckoff (2003) 1997 MRIO 5421 5684 289 5 552 10 -5
Nakano et al (2009)*" 2000 MRIO 5278 5400 277 5 399 8 -2
Shimoda et al (2008) 2000 MRIO 6058 5797 609 10 349 6 4
Peters & Hertwich (2008) 2001 MRIO 6007 6446 499 8 937 16 -7
Webber & Matthews (2007) MER? 2002 BTIO 450 1100
Webber & Matthews (2007) PPP* 2002 BTIO 600
Webber & Matthews (2007) MER? 2002 MRIO 520 1400
Webber & Matthews (2007) PPP* 2002 MRIO 800
Weber and Matthews (2008) 2004 CES*™* 4693
Webber & Matthews (2007) MER? 2004 BTIO 480 1300
Webber & Matthews (2007) PPP* 2004 BTIO 750
Webber & Matthews (2007) MER? 2004 MRIO 550 1800
Webber & Matthews (2007) PPP* 2004 MRIO 1000
Weber and Matthews (2008) 2004 MRIO 6694
Davis and Caldeira (2010) 2004 MRIO 5800 6500 520 9 1220 21 -12
Atkinson et al. (2011) 2004 MRIO 4999 5561 627 13 1188 24 -1
Brukner et al (2010) 2005 MRIO 4719 5973 423 9 1678 36 -27
Nakano et al (2009) 2005 MRIO 5418 5762 228 4 571 11 -6

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total

domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *** An

*2

approach based on the data from the US Consumer Expenditure Survey. *” Updated results obtained from authors. AResults have

been extracted from graphs presented in papers, hence are approximate.

5.1Gt and 4.4Gt respectively, as indicated on the x-axis). As expected, there is wider variation
in the estimates for consumption-based emissions. The next two columns show the deviation
from the average for EEE and EEI estimates (whilst recalling that we are not comparing like
for like due to difference in system boundaries). The last column plots not the deviation from
the average, but the estimates of the BEET for each study. The first study by Weber et al. (2008)
finds that China is a net importer of EET, whereas the others find that China is a next exporter
(but to varying degrees). This figure highlights the discrepancies across reported results in the
literature are not small in magnitude. In this example there is not one study that stands out as

performing close to the average across the five variables.

Perhaps a corollary of China’s large embodied emissions in exports is the large volumes of
embodied carbon in the USA’s imports (Table 2.4). Weber & Matthews (2007) use an MRIO
model with both market exchange rate (MER) and purchasing power parity (PPP) assumptions
and find “best estimates for CO, embodied in U.S. imports doubled from 0.6 to 1.3Gt between
1997 and 2007, which represents 3% to 5% of world CO, emissions in each respective year”
(p- 4877). Davis & Caldeira (2010), also using a MRIO model based on GTAP data, find large
volumes of EEI in 2004 exceeding 1.2Gt. They report “emissions imported to the U.S. exceeds

those of any other country or region, primarily embodied in machinery (91Mt), electronics
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Table 2.4: EET estimates from the literature for Japan

CcO2 CcO2

production consumption EEE (Mt EEI (Mt
Author/Year Data year model (Mt CO2) (Mt CO2) C0O2) EEE (%) C0O2) EEl (%) BEET (%)
Kanemoto&Tonooka(2009)MER 1995 BTIO 1258 1387 147 12 276 22 -10
Kanemoto&Tonooka(2009)PPP 1995 BTIO 1258 1221 147 12 110 9 3
Ahmad and Wyckoff (2003) 1995 MRIO 1100 1287 102 9 289 26 -17
Nakano et al (2009)*" 1995 MRIO 1051 1220 59 6 229 22 -16
Brukner et al (2010) 1995 MRIO 978 1409 107 11 537 55 -44
Kanemoto&Tonooka(2009)MER 2000 BTIO 1308 1423 188 14 303 23 -9
Kanemoto&Tonooka(2009)PPP 2000 BTIO 1308 1251 188 14 131 10 4
Nakano et al (2009)*" 2000 MRIO 1076 1214 69 6 207 19 -13
Shimoda et al (2008) 2000 MRIO 1051 1134 132 13 214 41 -8
Nansai et al (2008) 2000 MRIO 939 291
Peters & Hertwich (2008) 2001 MRIO 1291 1489 187 15 385 30 -15
Davis and Caldiera (2010) 2004 MRIO 1310 1600 185 14 420 32 -18
Atkinson et al. (2011) 2004 MRIO 940 1200 185 20 468 50 -30
Kanemoto&Tonooka(2009)MER 2005 BTIO 1335 1450 288 22 403 30 -9
Kanemoto&Tonooka(2009)PPP 2005 BTIO 1335 1249 288 22 202 15 6
Nakano et al (2009)*" 2005 MRIO 1114 1232 114 10 232 21 -1
Brukner et al (2010) 2005 MRIO 1070 1450 211 20 592 55 -36

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total
domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *” Updated

results obtained from authors.

(77Mt)...” (p.5688). Yet again, the table shows that differences in reported results across studies

are non-trivial.

Turning now to Japan, like the US, it is also found to be a net importer of embodied emissions
in general (Table 2.4 and Figure 2.4). However, Kanemoto & Tonooka (2009) demonstrate how
measuring the embodied carbon content in Japan’s imports is extremely sensitive to assumptions
about exchange rate. Specifically, when PPP is used to translate countries’ input-output tables
into Japanese yen, the volume of EEI imported into Japan (particularly the emissions embodied
in imports from China which constitutes the largest sources of imports) approximately halves.
This shifts the balance of EET such that Japan becomes a net exporter of EET as a result. Figures
2.3 and 2.4 collectively show that BTIO tends to over-estimate EEE and MRIO underestimates
EEE, an expected effect of the system boundary difference. However, in contrast to Figure 2.3,
Figure 2.4 shows that different studies using MRIO models can report wide ranging results.
Atkinson et al. (2011) and Davis & Caldeira (2010), for example, both use GTAP 7 data but the
former study leads to markedly conservative estimates. The authors attribute this divergence to
several factors including the omission of government and household demand in their modelling,
the lower share of global emissions that their model reattributes as embodied carbon in trade,

and the difference in country carbon accounts data used.

Overall, the broad picture emerging from the comparison of the results reported in the set
of papers studied shows large and growing volumes of embodied carbon emissions in global
trade. This picture underlines the deepening of the global economic integration process since
the Kyoto Protocol was adopted in the 1990s. In line with the empirical trade literature (e.g.

Backer & Yamano, 2008), it portrays a pattern of increasing intermediate goods trade and spatial
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Figure 2.4: Comparison of EET estimates from the literature for Japan in 2004-2005
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fragmentation in production and consumption. It shows notable and growing volumes of em-
bodied carbon traded to and from both new and old centres of production and consumption. As
summarised by Hertwich & Peters (2010): “high density OECD countries had higher emissions
embodied in imports than exports, while for materials exporters like Russia, Canada, Australia,
Finland, Norway and South Africa, the situation was the reverse. Emerging economies special-
ising in manufacturing, like China and India also had higher emissions in embodied exports and

in imports.” (p.16).

Yet the quantities of the embodied carbon flows at country level remain highly uncertain for
most countries and years. Significant inconsistencies are found when comparing reported results
across the studies surveyed as shown in this section. Why such a large range of estimates are being
produced is evident from a description of the quantification approaches used; in practice many
simplifications are necessary to overcome data, methodological and computational constraints

in estimating embodied carbon flows. The next section describes these issues that undermine
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the robustness of existing quantification of embodied emissions.

2.4 Issues contributing to uncertainty in EET estimation

Sources of uncertainty in EET estimation derive from data, method or model structure. This
section discusses sources of uncertainty in terms of those that are applicable across model

structures, and those that are specific to certain models.

2.4.1 Generic sources of uncertainty
2.4.1.1 Reliability of primary data

Although the data intensive nature of EET quantification is frequently noted, the reliability of
the underlying statistics is often overlooked.

Economic input-output data: The quality of the input-output data depends on both the underly-
ing supply-use tables (SUT),!® and the procedure used for compiling the symmetric input-output
table. Despite large potential uncertainties, there is not a strong tradition of performing un-
certainty analysis in IOA due to the relative lack of information on uncertainty distributions
(Lenzen & Murray, 2001), particularly comparisons between different studies. Druckman et al.
(2008) conducts a simple test on the impact of the IO table compilation procedure on the UK
embodied carbon results for 1995, and finds that there is a “carbon inconsistency” of around

13% between the two methods.!*

The two main sources of harmonised IO tables used for environmental MRIO modelling are
OECD'5 and the Global Trade Analysis Project.!® Additional uncertainties are introduced during
the process of interlinking and harmonizing IO tables for MRIO modelling, which requires
multiple assumptions and aggregation of sectors (Weber et al., 2008). One paper cautions:
“...the GTAP database has considerable uncertainty, but it is unknown how big this uncertainty
is.”(Reinvang & Peters, 2008, p.31). Directly using SUTs for MRIO modelling has been the
favoured approach by some researchers to increase transparency and disaggregation (e.g. Tukker

et al. (2009). see Section 2.2.4), but this involves additional assumptions and uncertainty.

130n the quality of SUTs, Thage (2005, p.14) notes “the size of sampling and non-sampling errors associated with
the primary data on which the SUT is based, and the fact that a considerable part of the data contents of the SUT
is usually obtained by grossing-up methods, extrapolations, estimates of a more or less subjective nature and even
model calculations, should be taken into account when choosing the compilation method for the SIOT (symmetric
input output tables)”.

14The consistency check here for the estimated IO table from SUT gives the percentage difference between the left
and right-hand sides of the relationship x = (I — A)~'y where x is output and p is final demand.

15Used byAhmad & Wyckoff (2003), Nakano et al. (2009),Bruckner et al. (2010), Aichele & Felbermayr (2010) and
Giljum et al. (2008).

loysed by Kainuma et al. (2000), Rodrigues et al. (2011), Atkinson et al. (2011), Peters & Hertwich (2008) and
Wilting & Vringer (2009)
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Trade data: International trade statistics suffer from quality issues, in part due to the voluntary
nature of reporting trade data. Mirror statistics between two countries often do not match in
bilateral trade data, due in part to differences between cif (cost insurance and freight) valuation
typically used to record imports, and fob (free on board) valuation for exports (Lenzen et al.,
2004).17 Several procedures have been developed to reconcile non-matching mirror statistics,
such as GTAP’s reliability index approach (Narayanan & Walmsley, 2008).!8 The degree of
uncertainty associated with such methods are unknown and unverified. Moreover, additional
uncertainty is introduced when allocating bilateral trade into importing/ exporting sectors under
the MRIO, as will be discussed in Section 2.4.2.3.

Environmental and emissions data: For the estimation of embodied emissions, reliable emis-
sion intensity coefficients are difficult to obtain particularly at a detailed sector level and for
developing countries (Liu & Wang, 2009). Peters et al. (2007) questions the accuracy of Chinese
emission intensity data, in particular highlighting the uncertainty around the decline in energy
intensity between 1996 and 2000 and whether this was real or due to under-reporting of coal
consumption (see Akimoto et al. (2006)). Problems with the GTAP CO, emissions data have
also been noted — the quality is poor and may vary 10% to 20% from UNFCCC data at the
national level and may be greater at the sector level (Reinvang & Peters, 2008). Moving towards
EIO-LCA hybrid models, in theory, allows for more disaggregation of sectors and the capturing
of international technology differences. However in practice, the availability of LCA-based

carbon intensity data poses serious restrictions (Liu & Wang, 2009).

2.4.1.2 Data coverage and aggregation

Geographical coverage and aggregation: Spatial disaggregation has several advantages, includ-
ing improved representation of trade patterns and technology differences between countries and
regions. For example, Su & Ang (2010) estimate China’s embodied carbon in exports using three
levels of spatial aggregation. The authors find that when aggregated at the country level using
national average carbon intensities, emissions from the central coast and east coast regions (with
lower carbon intensity) are overestimated whilst those from the northeast and northwest (with
higher carbon intensity) are underestimated. The net effect is a drop in total CO, embodied in

China’s exports as the number of regions increase.

Whilst a multi-regional model may serve better from the perspective of representing technology
differences, there are trade-offs to be made with other sources of uncertainty. Andrew et al. (2009)
examines the trade-off between complexity and accuracy in MRIO and finds that including only

the most important trade partners in terms of emissions embodied in imports and aggregating the

170ther differences in reporting practises such as as definition of sectors and products, minimum levels and time
periods, as well as the treatment of unallocated or confidential trade also lead to discrepancies (Guo et al., 2009).

I8GTAP trade data is based on UN COMTRADE and complemented with Global Trade Information Services (GTIS)
data.
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rest of the world can substantially reduce the data requirement and achieve a good approximation

to more complex models.

Greenhouse gas and sector coverage leads to systematic differences in EET estimates, hence
studies should make these explicit to aid the interpretation of the results (Lenzen & Murray,
2001). The majority of studies considers only CO, emissions from fossil fuel combustion and the
most important differences are due to the inclusion/ exclusion of process emissions (e.g. from
the cement and chemicals sectors) and the service sectors. . Some studies consider a much wider
scope of emissions — Lenzen (1998) includes CH4 and N,O due to fossil fuel consumption in
addition to CO,, as well as CHy and C,F4 due to industrial processes, solvent use, agriculture,
land use change, forestry and waste and fugitive emissions from fossil fuel extraction.The latter
study finds that differences in GHG coverage are the main explanatory factor for the difference
between their own conclusion that Australia is a net exporter of embodied emissions, and that of
Common & Salma (1992)’s which find Australia to have a balanced trade.

Sector Aggregation: Whilst MRIO models overcome issues with geographical aggregation, there
is a trade-off with sector aggregation. The sector resolution of the model tends to become more
coarse under MRIO models because of the process of matching datasets. This usually requires
taking a lower common denominator of the various levels of disaggregation available - USA and
Japan produce tables of about 500 sectors, but Brazil has only 19. Harmonised tables tend to

have around 50 sectors.!?

Aggregation is also carried out to make the running of models computationally more manageable
but can lead to errors in estimates (this is referred to as aggregation bias in the input-output
literature) because input-output tables implicitly assume one industry technology and homo-
geneity of firms producing for the domestic and export markets (Weisz & Duchin, 2006; Liu
& Wang, 2009). This issue is particularly important for sectors with differentiated products
such as the “non-metallic minerals sector” which includes clinker, cement, as well as basic
and specialised glass products. Aggregation error is also important where the sector’s trade
composition does not reflect the production composition, or where technology is differentiated

between export-demand and domestic-demand oriented production. 2°

For macro or country level analysis, Tukker et al. (2009) argue that at least 100-150 sectors
are necessary in order to avoid lumping together important sectors with different emission
intensities, whilst Su et al. (2010) find that around 40 sectors are sufficient to capture the overall

share of embodied emissions in a country’s total exports. The extent of disaggregation necessary,

19GTAP has 57 sectors, OECD harmonised tables have 48 sectors, and the Asian database from IDE-JETRO has
76 sectors (maximum). The EU mandates submission every five years, of harmonised tables (60 products and 60
industries), however, there are some key gaps in the data availability.

20Lenzen et al. (2004) examines Denmark’s EET using a 128 sector model or an aggregated 10 sector model.
For the uni-directional trade scenario, the authors find that total emissions produced remains the same in the
closed framework but aggregation results in a different distribution of EET across sectors. For the multi-regional
trade scenario, the CO; embodied in domestic final demand increases, mainly because the CO; intensity of the
aggregated ‘electricity, gas and water’ sector increases. This is, however, offset by the decreases of the CO; intensity
of manufactured goods.
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is in fact contingent on the policy question at hand. For sector level analysis, the policy question
at hand should also guide the level of disaggregation necessary, as the problem of heterogeneity
can continue down to the product level - Maurer & Degain (2012) notes that “even in the
most finely disaggregated import and export data, there are large differences in unit values of
exports and imports across countries reflecting quality differences that cannot be eliminated by
disaggregation” (p.17).

2.4.1.3 Using monetary data

The majority of top-down EET quantification rely on monetary data, to approximate physical
flows of goods. This assumes proportionality between monetary and physical flows. This ne-
cessitates multiple assumptions which induce additional layers of uncertainty in estimating
EET, particularly in sectors where product heterogeneity is important (Maurer & Degain, 2012;
Reinvang & Peters, 2008).2! Using basic prices avoids some of the issues, but only to a limited
extent (Muradian et al., 2002; Ahmad & Wyckoff, 2003; Weber & Matthews, 2007).22 Quantitat-
ively, the error associated with assuming proportionality between monetary and physical trade
flows has been found to be significant — up to 40% for Australian energy and greenhouse gas

multipliers (Lenzen, 1998).

In addition, the use of monetary data requires assumptions about exchange rates — using market
exchange rate (MER) or purchasing power parity (PPP). Studies have repeatedly shown that
the results of EET estimation are very sensitive to this assumption. As shown in Table 2.4,
Kanemoto & Tonooka (2009) report that using PPP reduces the estimate of Japan’s EEI by a
third, compared with the same scenario using MER, largely due to the impact of the assumption
on EEI from China. Weber & Matthews (2007) finds that “For most developed countries, the
difference between MER and PPP is relatively small, reflecting similar price levels. However, the
difference between MER and PPP can be much higher for developing countries — a factor of about
2 for Mexico and 4 for China in 1997... [it is] likely that the true value of EEI falls somewhere
between the values calculated using MER and PPP and that the mix varies by commodity, as
each commodity’s output in each country includes a mix of exports and domestically consumed
goods, and the exports are usually valued higher per unit than domestically consumed goods.
However, in the absence of physical unit data for thousands of commodities, this uncertainty is
difficult to reduce.” (p. 4879).23

21Even in the case where products are identical in a physical sense, they are often different in an economic sense in
that they may be sold at different prices to different purchasers due to the existence of market power or long term
price contracts, as well as differences in the way transportation costs are invoiced, or in the way taxes or subsidies on
production are accounted for.

22Basic prices tend to be more stable over time. Trade data is recorded in either f.0.b. (free-on-board) or c.i.f.
(cost-insurance-freight), the latter of which includes tax. In Lenzen et al. (2004), economy-wide basic price-/f.0.b./c.i.f.
ratios are used to convert imports into basic prices. Using physical quantities would avoid uncertainties induced by
this conversion.

23 Additionally, Hayami & Nakamura (2007) note that using monetary units and the industry-technology assumption
means that the aggregation error is never really eliminated, even if you have a high-resolution disaggregation of
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To overcome problems with monetary data, several studies integrate physical units into the
monetary core model (e.g. Machado et al., 2001; De Haan, 2001; Giljum, 2005; Weisz & Duchin,
2006; Giljum et al., 2010). Overall, the large sensitivity of EET estimates to assumptions used
on price data suggests that studies that rely on monetary data should at minimum, test the

sensitivity of results to the exchange rate assumption made.

2.4.2 Model structure specific sources of uncertainty
2.4.2.1 Import substitution assumption

Quantification of EET using MRIO models has shown the importance of accounting for in-
ternational differences in carbon emission factors (e.g. Peters & Hertwich, 2006; Gaston &
Dong, 2008; Nakano et al., 2009; Westin & Wadeskog, 2002; Ahmad & Wyckoff, 2003; Wilting &
Vringer, 2009). Applying domestic emission intensity factors (known as the import substitution
assumption or domestic technology assumption) can produce outliers. This puts forward a case
for using a BTIO framework rather than SRIO, with key trade partners represented within the

model.

Recent analysis has shown, however, that technology can vary significantly within countries, as
well as across. This is particularly true for large countries like China (Su & Ang, 2010). Others
have shown that for the estimation of EET for many countries, the use of world average emission
intensities can perform well and reduce data requirements (Andrew et al., 2009). This suggests
that explicitly representing differentiated technology is important not for all, but for key trade

partners and trade sectors.

2.4.2.2 Multidirectional feed-back in trade

The growing evidence that cross-border supply chains have become more prevalent in the
global economy (Backer & Yamano, 2008) highlights the importance of taking account of feed-
back effects for estimating embodied carbon flows, particularly for countries like China with
significant processing trade activity.?* The MRIO framework addresses this issue to some extent
by separating imports into final and intermediate demand. However, this process also introduces
new sources of uncertainty, such as the allocation of intermediate demand based on non-survey

data, discussed next.

sectors. This is because almost always, firms produce multiple products, but the common overhead costs get spread
across the different output products.

24This is officially defined as "business activities in which the operating enterprise imports all or part of the raw
or ancillary materials, spare parts, components, and packaging materials, and re-exports finished products after
processing or assembling these materials/parts". In 2007, processing trade accounted for 45% of China’s total
international trade (Lin & Sun, 2010).
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Quantitatively, both Peters & Hertwich (2006) and Weber & Matthews (2007) find that models
with and without multi-directional feedback can lead to a difference in excess of 20% in terms of

countries’ net embodied carbon in trade.

2.4.2.3 Allocation of imports to intermediate and final demand

To trace embodied carbon flows in trade, information is required about the spatial origin of
intermediate and final imports. Further, this information must be disaggregated by consuming
sector (e.g. government, investment or industry sector). Survey data for this level of information
is often not available, however. This is due to the considerable cost, time and resources that
are associated with conducting international industry surveys (Lenzen & Murray, 2001). To
construct multi-regional models, therefore, the inter-regional intermediate trade component?>

must be estimated, based on known variables and analytical assumptions.

The standard non-survey approach used to estimate this is the trade share method, which uses a
region’s share in total global exports, and applies this to all entries along the row of the imports
matrix, for all using domestic industries and imported final demand vectors (Lenzen et al.,
2004; Peters & Hertwich, 2006; Rodrigues et al., 2011). Using the notation from Rodrigues et al.
(2011), this is specified as t“b zmpf;’ 221;** where th]_b describes the flow from sector i in region
a to sector j in region b, * denotes the sum of all values and imp and exp denote imports and
exports respectively. Several additional estimation methods are proposed by Rodrigues et al.
(2011, p.52), for example using bilateral data to disaggregate imports; using import data to

disaggregate bilateral trade, or using aggregated trade shares. Using the same notation, these are
mathematically and respectlvely t 1mpf]b p’* p” . The project EXIOPOL
which uses an alternative non- survey approach which is based on Oosterhaven et al. (2008), as
described in Tukker et al. (2009). The extent of adjustment in the bilateral trade data to match

the estimated intermediate trade component is unknown, however.

and t”b = expl* ,

2.4.3 Summary

The data intensive exercise of estimating embodied carbon in trade involves multiple method-
ological and data issues. Researchers in this field are faced with many trade-offs, for example
between regional and sectoral detail, or between policy relevance, cost, complexity and ease of
estimation as well as robustness of the results (Table 2.5 summarises these trade-offs). Whilst
some papers test the sensitivity of EET estimates to assumptions made in their analysis, it can be
said that the literature as a whole has so far paid little attention to ensuring the measurement is

sufficiently robust.

25This is usually represented by —A’* , or the inverse of matrix A of intermediate consumption of imported products
from region s to region r.
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Table 2.5: The characteristics of existing EET quantification approaches

System Boundary| Total demand Final Demand
Trade * intensity | Trade * intensity Hybrid MRIO-
Model type (Physical) (Monetary) SRIO BTIO/EEBT MRIO LCA
Transparency Medium Medium High High Low Low
Ability to capture time
dimension High High Medium Medium Low Low
Level of sector
disaggregation High Medium Medium Medium Low High
,5 c |Capturesbilateral trade y (non-survey|y (non-survey
§ _ g partner info. n n n \ data) data)
5 2 B |Captures differences in
S 2 'Slcarbon intensities by
© @ 5|country n n n y y y
3 _
o ©
= S |domestic n n y y y Y
B
(9]
Lo
U O
= ©
S 5|international n n n n y y
error due to SUT
conversion to I0 n/a n/a Medium Medium High High
(%]
% I0 Harmonisation (e.g.
2 |different yearbase) n/a n/a n n High High
% generic trade data
Q |issues Medium Medium Medium Medium High High

Non-survey estimation
of origin of sector's

imports n/a n/a n/a n/a % y
aggregation error
(sectors) n/a n/a Low Low High Medium

error due to lack of

Vulnerability to source of uncertainty

'© [representation of

2 |technology differences High High High Low Low Medium
§ error due to lack of

% |feed-back loops High High High High Low Low

Source: Author
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Moreover, clear statements of system boundaries, underlying assumptions and methodology are
noticeably absent in the literature (Wiedmann & Minx, 2008; Peters, 2010). Large variations
in the estimates of country level embodied carbon in trade remain prevalent. As an increasing
number of governments endorse the potential role of flow based indicators for environmental
policy evaluation and decision making, it is hoped that more structured analysis of the trade-offs,
as well as the suitability of different methods and system boundaries for the evaluation of
different policy issues will emerge.

Assessing the accuracy of the reported volumes of EET is difficult because the results are not
always directly comparable to available survey data (the BTIO model is more comparable to
national trade balances whereas MRIO models are not (Peters, 2008b)). Nonetheless, the evalu-
ation of the different sources of uncertainty in this section suggest some minimum requirements
for EET quantification analysis. For example, to address the fact that EET estimations are very
sensitive to the assumption about technology, at minimum, the key trading partners’ technologies
should be accounted for. The import substitution assumption can lead to extreme results, hence
there is a strong case for using BTIO over SRIO. Similarly, for country level estimations, it
appears important to capture an appropriate amount of sector detail, such that the important
trading sectors are represented. It is not clear what the optimum aggregation level is, but the
literature suggests that good representation of the key trading partners and sectors is more
important than disaggregation and detail per se. The appropriate level of sector disaggregation

will also depend on the motivating policy question.

In terms of system boundary, for countries with a high share of processing trade, the distinction
between using total and final demand is important. For such countries, it is important that effort
is made to address the existence of high levels of re-exports, even in those cases where the model
structure does not allow the explicit representation of multi-directional feed-backs in trade (i.e.
the MRIO framework is not used). Huimin & Ye (2010), for example, employ a simple method in
their study of China’s embodied carbon using the share of processing trade, and applying this to

embodied emissions.

Although some of the issues associated with using monetary data are difficult to overcome, one
that can and should be addressed is the assumption made when applying currency exchange
rates — using MER or PPP. This assumption in particular has been proven repeatedly to strongly
affect EET estimation levels. Sensitivity analysis should be conducted at minimum, to make a

case for robustness of the results.

2.5 What does this mean for policy?

Embodied carbon in trade has been a subject of substantial interest in the academic and political
spheres. Estimates of EET flows can inform many policy questions, which can be grouped into

two broad levels. At a higher level, empirical understanding of embodied carbon in trade can help

51



shape thinking around issues of fairness in the allocation of responsibility between producers
and consumers. At a lower level, more specific policy elements can be evaluated using EET
estimates, for example, discussions around the carbon leakage concerns as well as measures to
address such concerns. This section summarises the policy contexts in which embodied carbon
have been measured, focusing on the higher level. It also evaluates the extent to which the
existing literature can assist these debates, in light of the degree of uncertainty involved in the

quantification as highlighted in this Chapter thus far.

2.5.1 Insights for higher level policy elements

Embodied carbon in trade has informed discussions around the fair allocation of responsibility
between the producers and the consumers of emissions that are emitted throughout the multi-
country processes linked by trade. There are a variety of views about the notion of fairness from
a theoretical perspective. On the one extreme, some authors advocate the full attribution of
responsibility to the consumer. Other authors are in favour of shared responsibility principles,
recognising that there are benefits accrued to both producers (e.g. value-added, jobs) and
consumers (e.g. utility) along the chain (e.g. Kondo et al., 1998; Bastianoni et al., 2004; Ferng,
2003; Huimin & Ye, 2010). Lenzen et al. (2007) for example proposes an allocation to each
segment of the supply chain, depending on the share of value-added. Rodrigues et al. (2011)
also proposes a method to distribute responsibility along the chain, suggesting an even spread.
The authors define for each country or stage k, the total downstream embodied emissions E,?
and a symmetrical E,EJ which is the total upstream embodied emissions. They define total carbon
responsibility of a country k as Ex= aE,EJ +(1- a)E,?, suggesting a value of a half for a, which
they argue represents an even distribution of responsibility between the up and down streams.
However, this is arbitrary and the political and practical feasibility of these allocation methods

are yet to be examined, including their legality and data issues.

Relatedly, the empirical literature on EET has evaluated the validity, efficacy and fairness of
using the production based approach to emissions accounting particularly as a basis for in-
ternational burden sharing agreements such as those under the Kyoto Protocol. For example,
Druckman et al. (2008) quantify the volume of embodied emissions in UK’s imports and exports
and concludes “any progress towards the UK’s carbon reduction targets (visible under a produc-
tion perspective) disappears completely when viewed from a consumption perspective” (p. 594).
Peters & Hertwich (2008) highlights the importance of non-Annex I’s domestic emissions and
export embodied emissions by using a global MRIO model find that “from 1996 to 2006 global
CO, emissions have increased by 35% even though Annex I countries are still on target for a
5% reduction in 1990 GHG emissions by 2008-2012.” (p.1406). The latter paper also evaluates
how the embodied carbon balances of countries may affect their incentives to participate in
international agreements on climate change. They argue that barriers to participation (as well as

problems of carbon leakage) may be overcome by encouraging international coalition formation
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in defining emissions mitigation objectives. However, it is unclear what incentives are necessary

to induce countries into such coalition building.

The assessment of sustainable development is another central motivation behind quantifying
embodied emissions in trade at a higher level (e.g. Lenzen & Murray, 2001; Hong et al., 2007).
Resource flow based indicators for the global impacts of production and consumption activities
are officially endorsed by the European Union and OECD to support environmental-economic
decision making and to improve material flow and resource productivity, for example under
EU’s Sustainable Development Strategy (European Commission, 2004) and the EU Action Plan
on Sustainable Consumption and Production (European Commission, 2008).2¢ Studies quan-
tifying EET have also helped shape thinking around the impact of trade on natural resource
dependency and supply chain security. For example, Giljum et al. (2008) quantifies the em-
bodied resource content of trade from a North-South perspective and finds “trade pattern of net
imports to the North is particularly visible for the EU25, which faces the strongest dependence
on resource imports of all investigated world regions, in particular regarding fossil fuels and
metal ores.”(p.18). Machado et al. (2001) use estimates of Brazil’s embodied carbon and energy
to highlight the adverse impact of trade promotion policies on export dependency and energy

security.

To help address these higher level issues, suggestions have been made for presenting the consump-
tion based indicator alongside the usual territorial accounts to the UNFCCC (e.g. Wiedmann
etal, 2011). Interestingly, the international agreement on HFC gases — Montreal Protocol — expli-
citly incorporates a consumption based perspective in the allocation of mitigation responsibility
(Ahmad & Wyckoff, 2003). In the case of carbon, however, the methodological and data consider-
ations discussed in Section 2.4 limit the practical application of consumption based accounting
in climate policy in a serious way. Indeed attempts in public policy to deviate away from the
conventional production based carbon accounting approach to account for EET have been met
with hard opposition. For example, the Canadian “clean energy exports credit” proposal to
the Kyoto Protocol was rejected (Zhang, 2004), as was Denmark’s plea to the European Union
to deduct from their national accounts, the emissions for electricity which was consumed by
Norwegian consumers (Lenzen et al., 2004). Nonetheless, these studies suggest that particularly
for some countries with large net manufacturing imports, using consumption based principles
as a shadow indicator may be insightful for evaluating the drivers of global emissions or assess

the environmental impacts connected to national consumption (e.g. Peters & Solli, 2010).

26Carbon footprint indicators extend from previous literature on ecological footprinting including carrying capacity,
bioproductivity and land disturbance. The ecological footprint was developed as an intuitively simple method for
comparing the amount of productive land required to support the consumption of a given population indefinitely
(Wackernagel et al., 1993). To measure the sustainability of a given population, this land area is compared with the
actual available land area.
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2.5.2 Insights for lower level, detailed policy elements

At a lower level, the literature quantifying EET makes contributions towards more specific policy
issues, in particular, the discourse on carbon leakage. Peters (2008a) suggests the distinction
between “strong” and “weak” carbon leakage. The former, narrower definition considers only
the geographical shift in production (and its associated emissions) in direct response to climate
policy, whilst ‘'weak’ carbon leakage extends the term to cover all trade embodied emissions,
whether the changes in trade level are driven by policy or by underlying economic factors
e.g. international differences in labour price, industrial capacity, technology, environmental
standards and demand. It is argued the latter definition is more conducive to discussing possible
fruitful synergies between climate change and trade policies (Peters & Hertwich, 2008; Peters,
2008a).

As an extension to the carbon leakage debate, quantifying EET has also enabled the evaluation
of policies to regulate cross-border embodied emissions, such as border carbon measures.?”
For example, by quantifying existing EET volumes and modelling different mitigation and
carbon price scenarios, Mattoo et al. (2009) assess the carbon leakage and welfare effect of a
border tax adjustment and find potential for large international transfers due to such trade
measures — in the direction from exporting to consuming countries. This suggests that countries
with export industries may benefit from collecting a carbon tax domestically and redistributing
the revenue internally. By highlighting the difficulty of measuring embodied carbon (as shown in
Section 2.3), the literature (e.g. Wiedmann et al., 2011) also suggests that border measures may
in practice have to be based on averaged, rather than the actual carbon content of traded goods,
which in turn is likely to impact incentives for importers and exporters (Monjon & Quirion,
2011).

EET quantification has also led authors to advocate a sectoral perspective to approaching
emissions mitigation. Weber et al. (2008, p.3577) and Carbon Trust (2011b) identify the
inefficient and coal dominated electricity production in China as the main source of embodied
carbon in consumption around the world. These authors suggest that policies promoting
technology transfer in these carbon intensive industries may be more direct and effective than
efforts to reduce trade (e.g. with a border carbon tax), partly because of the large indirect role
of the same industries in supplying each other, and also because of the potential magnitude of

problems involved in agreeing a trade treaty.

Embodied carbon quantification has been shown to be a useful tool from the perspective of
identifying carbon hotspots in a global supply chain (e.g. Carbon Trust, 2011a,b,c,e; Steinberger
et al., 2009). Hayami & Nakamura (2007) using a case study on PV cell production in Japan
and Canada finds that while it is desirable for countries to clean up production, it may be more
desirable for them to ensure that the intermediate input goods they import from abroad are

made with clean technology, in order to reduce the total carbon footprint of consumption.

27Some of the recent debates can be found in Lockwood & Whalley (2008, 2010)
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Several studies examine the role of the consumer in GHG mitigation and potential role for
policy to promote more sustainable consumption as an approach for countries to reduce
their carbon footprints and support wider global emissions reductions. Studies on the carbon
footprints of households in the US and UK find considerable diversity in consumption habits
particularly at high income levels, hence suggest large potentials for mitigation (e.g. Weber
& Matthews, 2008; Druckman & Jackson, 2010). They put forward a case for incorporating
consumption based perspectives for emissions mitigation policies, particularly for countries

with high level of net imports of embodied carbon.

2.6 Conclusions

As the saying goes, “That which can be measured can be improved”. Quantification of embodied
emissions in trade has seen a resurgence in recent years, and has provided insights into a variety
of policy issues surrounding the climate and trade nexus. Using several distinct approaches
(notably those arising from the input-output analysis as well as LCA literatures), studies have
measured the embodied carbon at the level of the country, sector and city as well as firm and

products.

Thanks to the increasing number of databases and studies that report EET at country level,
the estimates can be compared against the methodologies and data sources used. This chapter
sought to provide a critical and comparative review of this literature focusing on the quantitative
reported results, in order to evaluate the existing level of empirical understanding of embodied
carbon flows in trade. Overall, the literature finds large and growing volumes of carbon dioxide
emissions embodied in global trade. However, quantities of EET at the country level remain
highly uncertain for most countries and years. Significant inconsistencies are apparent when
comparing reported results across the studies surveyed. For example, estimates for emissions
embodied in China’s exports in 2005 range between 18% to 45% of their production emissions,

whereas that embodied in China’s imports in the same year range between 5% to 44%.

Sources of uncertainty in EET estimations include both data limitations and some methodological
issues. The assumptions involved when using international trade in monetary terms, as well as
the attribution of intermediate trade to intermediate and final consumption, are among the key
problems. This thesis suggests that sensitivity to exchange rate assumptions should be tested at

the very minimum.

Although the level of uncertainty around quantitative results from any one study remains large,
collectively, they appear reasonable and useful. The application of increasingly sophisticated
modelling techniques (particularly in MRIO modelling), discussions around the creation of a

meta-database for MRIO data®® as well as ongoing efforts to fill the data gaps reflect a significant

28¢.g. the OPEN EU project (http://www.oneplaneteconomynetwork.org) and the Reunion Project (Wiedmann
etal., 2011).
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level of interest invested in the potential for embodied carbon measurement for political and

corporate decision making.

In fact, embodied carbon in trade arises in a variety of policy discourse surrounding climate
and trade, which can be grouped broadly into two levels. At a higher-level of policy discussions,
EET quantified at the country level has been used as a tool to deliberate issues around the fair
allocation of mitigation responsibility in the presence of trade, as well as the validity, efficacy
and fairness of climate change policies founded on the conventional production based emissions
accounting and inventory. Explicitly incorporating consumption based principles can, in theory,
improve fairness of outcomes in terms of the distribution of responsibility across producers and
consumers. These principles have been previously applied in the context of global environmental
agreements on HFC gases. Yet, this chapter argued that in the case of carbon, the methodological
and data considerations limit the practical application of consumption based accounting in
climate policy in a serious way. However, there may be a case for incorporating consumption
based principles, for example as a shadow indicator, into strategies for CO, mitigation for certain

countries with large net imports of embodied carbon.

At a lower-level, EET flows quantified at the sector level have facilitated in discussions around
the carbon leakage concerns that surrounds the implementation of unilateral climate change
policies. Although a review of the sector, firm or product level quantification of EET was beyond
the scope of this chapter, their potential policy implications were discussed. It was found
that the empirical understanding of embodied carbon at the sector or supply chain level can
provide useful insights for the potential design, functioning and distributional consequences
of measures to address these concerns. It also opens new questions with regards to the role of
trade in decarbonising these global supply chains, and the design of climate-trade integrated
policies to support this. EET quantification at the product level suggests that policies promoting
sustainable consumption can complement existing approaches to drive down emissions in a

production (through to consumption) chain.

Scope remains for further research at many levels — methodological, and empirical — in the
quantification of embodied carbon. Sector level analysis seems especially timely for future

investigation.

2.7 Appendix
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Table 2.6: EET estimates from the literature for the UK

CO2 CO2

production consumption EEE (Mt EEI (Mt
Author/Year Data year model (Mt CO2) (Mt CO2) C02) EEE (%) C02) EEl (%) BEET (%)
Druckman et al. (2008) 1990 SRIO 643 650 1
Druckman & Jackson (2009) 1990 SRIO 810 854 -6
Ahmad and Wyckoff (2003) 1995 MRIO 536 549 110 21 123 23 -2
Nakano et al (2009)*" 1995 MRIO 488 516 58 12 86 18 -6
Brukner et al (2010) 1995 MRIO 411 633 102 25 325 79 -54
Wiedmann et al (2008) 1995 MRIO 593 652 222 37 281 47 -10
Nakano et al (2009)*" 2000 MRIO 479 535 62 13 117 25 -12
Wiedmann et al (2008) 2000 MRIO 609 681 218 36 290 48 -12
Peters & Hertwich (2008) 2001 MRIO 619 721 132 21 234 38 -17
Wiedmann et al (2008) 2001 MRIO 625 732 229 37 336 54 -17
UK Carbon Trust (2006) 2002 SRIO 606 647
Wiedmann et al (2008) 2002 MRIO 610 730 222 36 343 56 -20
Helm (2007) 2003 TBA 720 1060 200 28 540 75 -47
Wiedmann et al (2008) 2003 MRIO 625 764 242 39 380 61 -22
Druckman et al. (2008) 2004 SRIO 693 748 -8
Druckman & Jackson (2009) 2004 SRIO 730 914 -24
Davis and Caldiera (2010) 2004 MRIO 555 808 95 17 348 63 -46
Wiedmann et al (2008) 2004 MRIO 631 762 242 38 374 59 -21
Carbon Trust (2011) 2004 MRIO 632 845 125 20 338 53 -34
Minx et al (2009) 2004 MRIO 560 934 -27
Nakano et al (2009)*" 2005 MRIO 488 549 59 12 121 25 -13
Brukner et al (2010) 2005 MRIO 486 718 157 32 389 80 -48

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total
domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *” Updated

results obtained from authors.

Table 2.7: EET estimates from the literature for Denmark

C0o2 CcOo2

production consumption EEE (Mt EEI (Mt
Author/Year Data year _model (MtCO2)  (MtCO2) C02) EEE (%) C0o2) EEI (%) BEET (%)
Munksgaard & Pedersen (2001) 1994 SRIO 63 56 12 18 7 11 7
Nakano et al (2009)*" 1995 MRIO 56 65 6 11 16 29 -17
Lenzen etal (2004) 1 1997 SRIO 58 47 30 52 19 32 19
Lenzen etal (2004) 2 1997 BTIO 58 58 38 64 37 63
Lenzen etal (2004) 3 1997 MRIO 58 59 38 65 38 66 -1
Ahmad and Wyckoff (2003) 1997 MRIO 58 57 22 38 21 36 2
Peters et al (2010) 1997 MRIO 76 71 37 49 32 42 7
Nakano et al (2009)*" 2000 MRIO 48 60 7 14 20 41 -27
Peters & Hertwich (2008) 2001 MRIO 75 85 26 34 36 48 -14
Peters et al (2010) 2001 MRIO 83 84 47 56 47 56 -1
Peters et al (2010) 2004 MRIO 94 100 49 52 55 58 -6
Nakano et al (2009)*" 2005 MRIO 45 61 7 16 23 51 -35

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total
domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *” Updated

results obtained from authors.
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Table 2.8: EET estimates from the literature for Brazil and India

COo2 Cc0o2

production consumption EEE (Mt EEI (Mt
Author/Year Data year _model (MtCO2)  (MtCO2) C0o2) EEE (%) C02) EEI (%) BEET (%)
Machado et al (2001) 1995 SRIO 364 351 50 10 36 13 4
Nakano et al (2009)*" 1995 MRIO 221 228 21 9 28 13 -3
Ahmad and Wyckoff (2003) 1996 MRIO 258 266 24 9 32 12 -3
Nakano et al (2009)*" 2000 MRIO 278 283 25 9 31 1 -2
Peters & Hertwich (2008) 2001 MRIO 321 319 63 20 61 19 1
Atkinson et al (2011) 2004 MRIO 232 230 73 31 70 30 1
Davis and Caldiera (2010) 2004 MRIO 341 313 88 26 60 18
Nakano et al (2009)*" 2005 MRIO 300 303 38 13 41 14 -1
Mukhopadhyay (2004) 1993/1994  SRIO 37 49 negative
Ahmad and Wyckoff (2003) 1993 MRIO 672 623 74 1 24 4 7
Dietzendbacher et al (2007) 1996/1997  SRIO 920 1047 93 10 221 24 -14
Nakano et al (2009)*" 1995 MRIO 723 684 51 7 12 2 5
Brukner et al (2010) 1995 MRIO 718 630 131 18 42 6 12
Nakano et al (2009)*" 2000 MRIO 907 877 58 6 28 3 3
Peters & Hertwich (2008) 2001 MRIO 1025 954 134 13 64 6 7
Atkinson et al. (2011) 2004 MRIO 918 876 161 18 119 13 5
Davis and Caldiera (2010) 2004 MRIO 1360 1260 206 15 107 8 7
Nakano et al (2009)*" 2005 MRIO 1063 965 121 1 23 2 9
Brukner et al (2010) 2005 MRIO 1163 1028 277 24 142 12 12

Notes: EEE% and EEI% refer to the volume of embodied emissions in exports and imports respectively, as a share of total
domestic emissions. BEET% is equal to net export (EEE-EEI) relative to domestic production based annual emissions. *” Updated

results obtained from authors.
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Chapter 3

Product level embodied carbon flows in
bilateral trade

3.1 Introduction

The industry sectors currently account for around a third of global energy demand and CO,
emissions (IEA, 2007a). Decarbonising industrial production and consumption is therefore
critical in achieving long term GHG stabilisation goals. However, in contrast to sectors such as
transport, power generation and buildings, the geographic mobility of production facilities adds

an additional layer of complexity to the issue of controlling industry sector emissions.

On one hand, the possibility to decouple production and consumption via international trade
can facilitate carbon mitigation within production chains. The global aluminium sector, for
example, could benefit from concentrating the electricity intensive primary aluminium smelting
segment of the production chain in those locations with ample zero-carbon power generation
capacity from hydro. On the other hand, trade also provides industries the opportunity to
strategically choose production locations to avoid stringent environmental regulations. As
countries introduce climate policy measures of varying stringency and global merchandise trade
continues to grow!, there are increasing concerns about the impact on production, investment

and carbon leakage.

A large number of studies have quantified embodied emissions in trade (EET), using several
different methodologies, as reviewed by a number of papers (e.g. Kitzes et al., 2009; Liu &
Wang, 2009; Peters, 2008b; Wiedmann, 2009) and Chapter 2 of this thesis. Most studies use an
input-output framework to capture indirect effects, either within a single region context (e.g.
Druckman et al., 2008; Ferng, 2003), or within a multi-regional setting (e.g. Peters & Hertwich,
2008; Davis & Caldeira, 2010; Atkinson et al., 2011). Alternative approaches include simplified

I'Merchandise trade grew 460% in value between 1991 and 2008, outstripping population and global GDP growth
of 21% and 64% respectively (see Figure 1.1 on page 17).
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methods using average carbon intensity of GDP multiplied by trade balance (e.g. Helm et al.,
2007; Wang & Watson, 2008), material balance methods using physical rather than monetary
data (e.g. Muradian et al., 2002) as well as computable general equilibrium models (e.g. Kainuma
et al., 2000). These approaches are grouped into the category of top-down methods, in contrast
to the bottom-up methods used for the calculation of embodied emissions in products (e.g. Life
cycle analysis (LCA)).

The literature overall has provided some broad conclusions. In general, large volumes of
embodied emissions are found in global trade, with around 4-6Gt CO, for years 2004-2006 (see
Figure 2.1 on page 29), equivalent to around a third of global annual CO, emissions. Global
trade embodied emissions are also growing rapidly over time (Peters et al., 2011b; Wiedmann

et al., 2010), and most industrialised countries?

are net importers of EET, while the trend is
reversed for many of the emerging economies and resource rich countries like China, Russia and

South Africa.

However, thus far studies quantifying embodied carbon in trade have had limited impact on
policy making. Reasons for this include the high uncertainty surrounding measurement —
as recent reviews highlight, all underlying data, methodology and choice of methods suffer
issues with accuracy but to different degrees such that comparing across studies reveals a large
variation in the estimations of EET (e.g. Wiedmann (2009); Lutter et al. (2008); Liu & Wang
(2009) and in Section 2.4 of this thesis). The issue of uncertainty has been compounded by
the lack of methodological transparency, reliability and reproducibility of the information,
particularly from studies using multi-regional input-output (MRIO) analysis (Wiedmann et al.,
2011). Moreover, while carbon leakage is widely understood as a sectoral issue, relatively few
global studies have examined embodied carbon at the sector level. Weber & Matthews (2007)
examines sectoral EET but only for the US, as does Weber et al. (2008) for China. Peters et al.
(2011b) provides a detailed analysis using a disaggregated model with 113 regions and 57
countries, but his sectoral results are aggregated for global trade, or the trade between Annex I
and non-Annex I, whereby bilateral trade by country information is lost.

This chapter quantifies global embodied carbon in bilateral trade between 195 countries, disag-
gregated at the level of 970 products for the year 2006, and describes the results. To the author’s
knowledge, this detailed mapping of EET flows represents a first of its kind. It does so by
constructing and combining two large data sets: product level global bilateral trade in physical
quantities and carbon intensities of products. The methodological principal of the material
balance approach is then applied to this data to estimate EET. This method was previously
applied in analyses on a smaller geographical scale in ecological foot-printing research. It has
the advantage of offering a transparent way of quantifying EET. It also overcomes a number
of key sources of uncertainty implicit in the more commonly applied input output methods

discussed in Section 2.4.

%Industrialised countries are defined here as the countries included in Annex I of the Kyoto Protocol.
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However, for data reasons, this analysis relies on the use of world average emission factors
(WAEEF), defined in physical terms (kg CO,/kg product). At this disaggregated level of product
definition, availability of carbon intensity is limited to few countries where LCA is more com-
monly conducted, and to few time periods hence few country specific emission factors (CSEF)
are available. Currently, the extent to which using WAEF affects the accuracy of results is poorly
understood. This chapter will explore the sensitivity of the results to the WAEF assumption
using a case study of cement in Section 3.5. It is also important to note the limitations of
the interpretation of the EET quantification in this analysis, due to the WAEF assumption. In
particular, the results are not able to say whether or not trade has increased overall global
emissions. Additional analysis such as case studies for sectors where country-specific carbon
emission factors can be obtained, will be necessary to assess, for example, the impact of policies

such as a border tax on carbon leakage.

The objective of the study is to provide insights into the nature of carbon flows that were
previously masked under quantification exercises conducted using aggregated models. It builds
on recent studies, by further disaggregating estimations using high resolution bilateral trade
information at the product level (Weber & Matthews, 2007; Peters et al., 2011b). This more
detailed quantification enables the identification of sectors, and products within sectors, where
global EET flows are concentrated. It also highlights the bilateral trade routes where significant
levels of embodied carbon are exchanged. The complex picture emerging from the detailed
analysis challenges the existing literature, which provides a more simplistic perspective which
focuses on the exchange of embodied carbon between two large groups — Annex I vs non-Annex
L.

This paper is structured as follows. Section 3.2 describes the methodology and the key assump-
tions. Section 3.3 gives details of the data collected and used to develop worldwide product
level estimates of embodied emissions in trade. Section 3.4 presents results in terms of four key
findings, with regards to the geographical and sectoral distribution of EET, the heterogeneity
across countries (China, EU and US), as well as how countries can be characterised, in terms
of their trade embodied carbon from a global supply chain perspective. Section 3.5 asks to
what extent the results are sensitive to key assumptions, and illustrates using the examples of
aluminium and steel sectors. Section 3.6 summaries the insights from the detailed quantification

exercise.

3.2 Quantification strategy

3.2.1 Material balance methodology

The material balance methodology was developed within the ecological footprinting literature

as an alternative input-output framework for calculating footprint trade (Kitzes et al., 2009).
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"Footprint’ or “intensity’ multipliers usually derived from life cycle analysis (LCA)® are combined
with isolated values of imports and exports by sectors (weight or value), in order to estimate
ecological footprints embodied in traded goods (e.g. Bicknell et al., 1998; Muradian et al., 2002;
Bagliani et al., 2005; Turner et al., 2007). Bilateral trade flows expressed in total weight terms

are combined with carbon intensity multipliers:

EEE]* = ZX]?'S*EFJW (3.1)

r+s

Here, CO, embodied in exports from country r to country s (s =1,2,3,.....,S) via product j is
calculated by multiplying country r’s export matrix X of good j (where goods j = 1,2,3,..., ])
expressed in physical quantities, by a vector of world average emission factors E F]'-” expressed also
in physical terms (kg CO,/kg product). The CO, intensity factors are derived from engineering
based techniques using large amounts of primary data. Specifically, intensity factors calculated
using the cradle-to-gate system boundary are used, thus covering emissions from a partial
product life cycle, from manufacture (cradle) to the factory gate i.e., before it is transported to
the consumer. EEE;’S thus reflects the embodied carbon emissions attributable to the production
of the good throughout the production chain including the production of inputs. This is in
contrast to carbon emissions factors using alternative system boundaries such as gate-to-gate,
cradle-to-grave (including the use phase and disposal phase of the product) and cradle-to-cradle

(including recycling).

Mathematically, the material balance method represents a special case of a generalised physical
input-output formulation. Yet in practice, data availability and necessary simplifying assump-
tions under both methods restricts their equivalence (Wiedmann & Lenzen, 2007). Importantly
the cradle-to-gate carbon intensity coefficients under the material balance approach, assume
that all production inputs are sourced domestically.* This issue is problematic from a general
equilibrium point of view, as it gives rise to the double-counting of emissions. It is less important
from the country-level EET quantification perspective, in the case of large economies such as the
US, the EU, Australia, Brazil and Japan. For these countries, the import content of exports in the
period mid-2000 was relatively low at around 10% to 15%. Hence double-counting is contained
to small levels (see Figure 1.3 in Appendix 3.7). Yet careful interpretation of the results is

necessary for countries with skewed trade structures such as Taiwan, Korea and Portugal.

In addition, even when restricted to the cradle-to-gate system boundary, the material balance

approach can still suffer from truncation errors, or a lack of full coverage of indirect upstream

3LCA is designed to evaluate the environmental impacts of a given product or service and is similar in philosophy
to input-output analysis as a method to calculate embodied emissions in products, but differs in several important
respects. It is a process-based bottom-up technique used to examine the production process of a specific product in
detail, unlike the top-down input-output approach which obstructs from analysis of specific materials or products.
The latter captures all indirect effects (e.g. within the economy) whereas LCA imposes boundaries. LCA guidelines
are given by the ISO standards.

4This assumption is also made in input-output analysis using the BTIO or EEBT framework, but not under MRIO.
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flows (Lenzen, 2001). Over and under counting is possible, due to a lack of standardised
boundary setting principles among process-flow LCA studies. Methods to address outlier

observations are therefore deployed, as is described in Section 3.3.2.

Key advantages over methods using the input—output framework are as follows. First, it enables
a more detailed examination of sectors, hence avoiding issues with coarse sector aggregation
discussed in the literature (e.g. Lenzen et al., 2004; Tukker et al., 2009). Second, by using
physical trade data, it avoids inherent problems with using monetary data to approximate
physical flows of goods. These problems are related to assumptions about valuation, prices and
exchange rates, for example (see for example Maurer & Degain, 2012; Reinvang & Peters, 2008).
Third, the method is more transparent and closer to source data in contrast to the popular MRIO
modelling analysis involves considerable adjustments to the source data, aggregation of sectors
and regions, and inherently suffers from the lack of methodological transparency (Weber et al.,
2008).

3.3 Data

3.3.1 Bilateral trade

The level of sectoral and geographical disaggregation used in this investigation go beyond that
of previous work. Trade data is taken from UN Commodity Trade (COMTRADE) statistics which
contains detailed bilateral import and export statistics. Despite all of the criticism it attracts,
COMTRADE remains one of the most comprehensive trade databases available, recording trade
of commodities classified under several systems.> It has been used for a variety of research
themes and is the data underlying most trade models including the Global Trade Analysis
Project,® as well as many studies that quantify EET (e.g. Peters & Hertwich, 2008; Weber &
Matthews, 2007; Atkinson et al., 2011).

The sample data covers 970 sectors (SITC revision 3 classification, 4 digit resolution) and 195
countries for the year 2006. This includes all traded commodities, including food and fuel. It

excludes electricity, passenger transport equipment (cars) and live animals.”

In two cases, 4-digit sectors were further disaggregated at 5-digit level — the 4-digit sector 8841
that combines contact lenses, optical glasses, sunglasses and optical fibre was disaggregated
to the 5-digit level, as well as sector 6610, to distinguish between Portland cement, lime and

5SITC (Rev.1 from 1962, Rev.2 from 1976 and Rev.3 from 1988), the Harmonized System (HS) (from 1988 with
revisions in 1996 and 2002) and Broad Economic Categories (BEC).

6However, GTAP undertakes significant aggregations and modifications to the COMTRADE data and the degree
of these changes are not always explained (Tukker et al., 2009).

7Electricity is excluded because there is missing data for the majority of countries. Animals are excluded also
because of missing data, and there are also limited estimates of their carbon intensity. The issue of car trade data is
discussed below.
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cement clinker. This was done to address the variation in the carbon intensity data for these

products.

The raw trade data from COMTRADE, requires considerable cleaning before use in analysis as
explained in detail by Moran et al. (2009). This is largely due to the reliance on self-reporting
and the lack of standardised procedures in trade data collection (Narayanan & Walmsley, 2008).
These issues can be observed in discrepancies between mirror statistics — that is to say the two
records for the same trade transaction recorded by the importing country and the exporting
country do not match (in theory Trade;” = Trade;"). A number of underlying issues have been
used to explain these discrepancies — misreporting, difference in practices with respect to the
inclusion/exclusion of transport costs,® as well as variations in reporting dates. However, few
systematic biases have thus far been found. Accuracy of trade data can vary by product, for the
same reporting country. In aggregate the asymmetry is 4% (for cases where both are available i.e.

no missing data) but in individual case, it can exceed 30%.°

The issue of non-matching mirror statistics with COMTRADE data is dealt with in this study
using a standard rule. It prioritises observations with the larger value i.e. by taking the maximum.
For the sample year 2006, COMTRADE reports quantity values for over 92% of records. If
neither observation in a pair records quantity information, the observation with the maximum
monetary value is taken. Then the corresponding quantity is estimated for that observation,

based on an average price per unit of quantity, in that product category over all countries.

As a robustness check, the results using this method are compared with two alternative methods:
taking only exports and only imports or taking an average. Using only the exports or imports
lead to a substantial increase in the number of missing trade for the observations (around 37%
and 29% more respectively) making it necessary to estimate traded volumes using monetary
value data. Taking the maximum is favourable to taking the average, also because of the presence
of missing values in the data set, and the inability to distinguish between missing data and

no-trade which are both represented by a number zero.

The notable gap in the trade data in physical quantities is that of passenger transport equipment.
Where the data on automobile trade in value terms exists, it is problematic to convert them into
quantities of cars because of the wide variance in car prices. Significant embodied emissions have
been found, particularly due to car exports from Japan, China and Europe to the US in a study by
the Carbon Trust (2011b).!? Additionally, the data has been examined carefully to detect notable

8There are known differences in cif (cost insurance and freight) valuation typically used to record imports and fob
(free on board) valuation used.

In the GTAP, a rating system is developed whereby for a certain product, a country is rated highly, if their import
and export records match well with their counter part country. Data reported by that country is prioritised for that
product, whether they are reporting imports or exports. This method is based on the observation that countries
tend to report trade accurately for certain products which are a high priority, for example, records of textile exports
are recorded with high accuracy in China, reflecting its importance relative to other export goods (Narayanan &
Walmsley, 2008).

10The study found that in 2004, automobile production (700 million vehicles) accounted for 5% to 6% of global
GHG emissions and around 40% of these emissions moved across international borders.
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misreporting. The Solomon Islands, for instance despite having no steel industry appears in the
data as a large exporter of steel, and this misreporting is confirmed by contrasting export with
production data. For significant products and sectors in the reported results (e.g. Australia’s
ore exports), the magnitude of embodied emissions in exports (EEE) have been compared with

domestic production levels.

3.3.2 Carbon intensity factors

The most important priority in using the material balance approach is to locate robust product
carbon intensity information (EF]'-”), ideally country-specific (Kitzes et al., 2009). Carbon intens-
ities of products have been estimated for industrial and manufactured goods using bottom-up
approaches such as LCA, which have been applied more than a million times to estimate life-
cycle environmental impacts (Matthews et al., 2008). An extensive data search was conducted
and product carbon intensity factors were collected from multiple data sources (see Table 3.1).
The database on product level carbon intensities built during the process will be made public
upon completion of this thesis. These include the Global Footprint Network (GFN) which
provides a comprehensive set of estimates of carbon intensity factors by 4-digit trade category
(under SITC Revision 1).!! The European Union’s ELCD is a core database comprising of Life
Cycle Inventory (LCI) data from various EU business associations and other sources, mainly for
key materials and energy carriers. Similarly, the Carbon Footprint of Products database is an
initiative by the Japanese Ministry of Economy, Trade and Industry to improve data availability
and transparency for LCA, and covering a range of heavy industrial sectors. Altogether, some

700 carbon intensities were found for around 400 products.

However, carbon intensity estimates are available only for select years, countries and products,
due to the costly nature of bottom-up analysis. Moreover, differences in system boundaries
remain a main source of variation in the measurement of carbon intensities in bottom-up
methods, despite the many efforts to harmonise methods, for example by the International
Organization of Standardization (ISO), the World Resource Institute (WRI) and the World
Business Council for Sustainable Development (WBCSD). Studies combining LCA with top-
down input-output models have shown how results from LCA product analysis are sensitive to
the inclusion or exclusion of certain flows (e.g. lack of upstream representation, transport and
use phase emissions) (Suh et al., 2004; Lenzen, 2001; Kitzes et al., 2009).

In order to determine a best-available estimate of world average emission factors EF]’." in light

of these issues, the strategy adopted here is to collect as many available product level carbon

! Correspondence tables from COMTRADE were used to match carbon intensity estimates for SITC Revision 1
to Revision 3. They are global average figures, based on embodied energy estimates (from GFN internal data) and
multiplied by “World Electricity and Heat Carbon Intensity” from International Energy Agency’s CO, Emissions
from Fuel Combustion Database 2007 (Global Footprint Network, 2006, p.69). The GFN data has been used for
analyses on embodied emissions and ecological footprint in trade (e.g. Moran et al., 2009) and discussed in detail in
(Kitzes et al., 2009).
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intensities as possible strictly restricting to those using the cradle-to-gate system boundary, then
taking an average excluding outliers.!? Section 3.5 will put to test the extent to which this

assumption drives the results.

As verification in cases where an estimate is available from only one source (GFN), a test is
conducted at the broader 3-digit resolution of SITC classification to determine its reliability.! If
for another 4-digit product in the same 3-digit category the GFN estimates falls within +25% of
the available range, then the GFN estimate is deemed reliable for all 4-digit products in that
category. Otherwise, the same test is conducted at 2-digit level. If the test is rejected at 2-digit
level, or if no other estimates are available at 2-digit level product classification, then an average
carbon intensity factor for all categories is used (2.58 CO, per kg product) as the best-guess
estimate (the GFN estimates were found to lie at the upper-end of estimates). The latter average
factor was applied to the majority of down-stream products such as electrical equipment and
machinery, due to the lack of LCA estimates for these products. Summary statistics of the

resulting vector of carbon intensities are provided in Table 3.2 in Appendix 3.7.

3.4 Quantification results

On a global level, this study explains 7.3Gt of CO, embodied in trade (including fuel and food),
representing roughly a quarter of annual global CO; emissions in 2006. This is in line with the
estimates of EET found in the literature: Davis & Caldeira (2010) finds approximately 6.2Gt of
CO,; (23%) for the year 2004, and Peters et al. (2011b) finds around 7.8Gt CO, (26%) in 2008.
This section presents four key findings (marked by each sub-heading) that emerge from the

quantification of product level embodied carbon in bilateral trade.

A large share of papers quantifying carbon embodied in trade describe the state of the world in
2004, due to the lack of availability of multi-regional input output database beyond that time.
This study describes results for the year 2006, in an attempt to both update existing findings
and to avoid the shock in trade data, around the period 2007 to 2009 in which the world saw a
sharp decline in gross domestic product (GDP) brought about by the global financial crisis.

3.4.1 The geographical distribution of embodied emissions in trade reflects re-
gional dependencies.

So far, China’s large net exports of embodied emissions to the US has received considerable
attention. However, this study’s estimates show the South to North flow of EET is only part of

the story. In fact trade within non-Annex I regions (South to South) accounts for 32% of total

12Where several estimates were available for one 4-digit product category, outliers are defined statistically using
inter-quartile range.

I3This approach is inspired by methods used in advanced computational aspects of LCA calculations, to validate
estimates of missing flows that are truncated (Suh, 2001).
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Table 3.1: Carbon Intensity Databases

Authors Database Sector coverage
1. || Global Carbon Carbon Footprint database All SITC sectors
Foot Print at 4-digit level
Network
2. EU European Life Cycle Database Comprehensive
Commission,
Joint Research
Centre
3. || CPM Chalmers CPM LCA database Comprehensive
4. Aarhus carbon footprint database Food
University,
Faculty of
Agricultural
Science
5. Hammond & Inventory of Carbon & Energy Building
Jones (2008) materials
6 || Bergmann et al. Imposing a unilateral carbon
(2007) constraint on European energy
intensive industries and its impact
on their international
competitiveness - data & analysis
7. Moll et al. Iron and steel - a materials system iron & steel
(2005) analysis
8. GEMIS Global Emission Model for comprehensive
Integrated Systems Version 4.6
9. British World Minerals Statistics Industrial
Geological minerals, mine
Survey products
10. || U.S. Life Cycle National Renewable Energy comprehensive
Inventory Laboratory
Database
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Figure 3.1: Global embodied carbon in trade by Annex-I and non-Annex I, 2006
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EET flows, exceeding by a small margin the trade within the Annex I region (North to North) at
31%, as is shown in Figure 3.1. The other third is split between the flow of EET from non-Annex

Ito Annex I (22% in red) and vice versa (15% in green).

Breaking down the flows by country, Figure 3.2 shows the level of embodied emissions in imports
and exports for 20 countries with the largest total volumes in 2006. Notable is the substantial
volume of EET attributable to the EU internal trade (around 1.3Gt CO,), although this has
previously received limited attention in the literature. This evidence supports the general
case for having a uniform carbon price in large free-trade blocks. Emissions embodied in the
EU25’s external trade are large in volume also, with import volumes exceeding exports (800Mt
and 550Mt CO, respectively). Volumes for the US trade are larger but comparable to EU 25
external trade, also with imports exceeding exports, respectively at around 900Mt and 600Mt
CO,. These estimates are comparable to others in the literature - between 571Mt and 1800Mt
CO, for embodied emissions in imports (EEI) (Bruckner et al., 2010; Nakano et al., 2009; Weber
& Matthews, 2007; Atkinson et al., 2011) and between 227Mt and 630Mt CO, for EEE.!4

China stands out as the largest single exporter of embodied carbon with around 870Mt CO,. On

the other hand, China also imports large volumes of embodied emissions, which is estimated

14As described in Section 2.4.1.3, large volumes of EEE estimated for China in the literature (but not this study)
can be due to the use of monetary data and more specifically, the use of Market Exchange Rate, without adjusting for
PPP. By using data in physical quantities, this study avoids this issue.
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Figure 3.2: Embodied Emissions in Imports (EEI) and Exports (EEE) by country in 2006
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to be around 550Mt in this study.!® Other countries with relatively large EET volumes include
other industrialised export oriented economies and emerging economies in East Asia, such as
Japan, Taiwan, Korea and Malaysia, as well as natural resource rich countries such as Canada,

Russia, Australia, Indonesia and Brazil.

EET flows can be further broken down by bilateral trade routes. Figure 3.3 shows 12 bilateral
trade routes with the largest volumes of net EET flow (red bar), and the corresponding absolute
volumes behind the net figures. For example, the US imports around 160Mt of embodied CO,
in trade from China, and in return exports around 40Mt resulting in a net flow of 120Mt CO,.
Malaysian imports from Japan are notable - a large share of this is in the form of iron & steel and
steel products for Japanese car manufacturing in Malaysia (Asuka et al., 2010). The extent to
which embodied emissions flow from Malaysia to other countries via cars cannot be observed in

this analysis due to the lack of trade data for passenger vehicles.

Focusing on the red bars (net trade) in Figure 3.3, the highest red bar indicates large net EET
imports by US from China. The EU25 also has a large net import from China. Yet looking at the
absolute volumes of embodied carbon in trade instead (the blue bars) reveals that US’s trade with
its neighbouring countries like Canada and Mexico is just as important. This result that trade
in embodied emissions tends to be greater between neighbouring regions was confirmed when

examining bilateral EET flows between 11 regions.!® For example, Australia-Asian countries

15This is on the lower end of the estimates found in the literature as discussed below in Section 3.4.3.1.
16Results at the 11 region level are not presented in this thesis in the interest of space.
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Figure 3.3: Net vs aggregate embodied carbon in bilateral trade — some key country pairs. 2006
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Source: Author’s own calculations. Notes: For each pair, the first indicates importer and the latter, the exporter. For
the pair USA-CHN, EEI is the US imports from China, and EEE is US exports to China. Similarly EU internal trade is
1.3Gt CO5.

import and export more embodied carbon with Pacific regions such as South-East Asia and China,
compared to places farther away. Again, these results suggest that harmonising CO, mitigation
policy across neighbouring countries with strong trade links will go a long way to address
potential adverse impacts on trade. Indeed, in Europe, differences in the rules of emissions
allowance allocation during the first two phases of the EU ETS attracted strong criticism from
industry, and the European Commission has sought to increase the degree of harmonisation

through guidance notes (del Rio Gonzalez, 2006).

3.4.2 Around 15% of products account for 70% of embodied carbon in trade.

Sector heterogeneity was highlighted in the debates around the trade impacts of the EU ETS.
Partial equilibrium modelling studies showed how trade impacts are likely to be sector-specific,
depending on their varying levels of carbon intensity of production, ability to pass through
abatement costs to consumers, as well as different levels of sensitivity to multiple barriers of
trade e.g. product differentiation, service differentiation, transport costs, capacity constraints
and import restrictions (Hourcade et al., 2007; Demailly & Quirion, 2008). Arguments have been
made in favour of policy measures tailored specifically to each sector, rather than generalised

solutions (Droge & Cooper, 2010).

The product level evaluation of embodied carbon in this analysis finds that, of the 970 products
examined, around 15% of the products account for around 70% of global EET (Figure 3.4). This
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Figure 3.4: Distribution of EET by product category
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suggests that focusing mitigation efforts and trade-measures on the products in this group of

15% would be an effective approach to address potential carbon leakage.

Of the 970 products studied, among the highest ranking in terms of their contribution to global
EET were upstream or basic products from a focused group of industrial production sectors
such as non-ferrous metal, fuels, cement, iron & steel, organic chemicals, primary plastics,
inorganic chemicals, and fertiliser sectors. Aggregating the 970 product categories (SITC Rev 3,
4-digit level) into 60 sectors (3-digit level), Figure 3.5 shows the level of embodied carbon by
sector. The highest shares are attributable to sectors known as the ’basic’ or "heavy’ industry
sectors. The iron & steel sector accounted for around 11% of all EET in 2006. This is followed
by the non-ferrous metal sector, the metal manufactures sector and the primary plastic sector
all at around 6%, then the organic chemicals sector at 5%. Trade intensities tend to be higher
for these heavy industry sectors relative to other sectors in this category such as cement, lime
and non-metallics (which has a 4% share), which may partly explain the difference in their
contributions to global EET. In addition to the heavy industry sectors, there are some light
manufacturing sectors present in the higher ranks such as textile articles and machinery and

industrial equipment. This is due to the trade-intensive nature of these goods.!”

17Hourcade et al. (2007) finds for the UK’s trade intensity from Non-EU countries, that textiles and electrical
equipment sectors have the highest trade intensity (over 45%) followed by aluminium. In contrast, trade is less
intensive for iron & steel and chemicals (between 20-30%), and even less so for cement and paper (5-10%).
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Figure 3.5: Embodied emissions in trade by sector in 2006
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of the bars indicate the percentage share of total EET attributable to the sector.

3.4.3 There are striking differences in the origin and destination of countries’ em-
bodied emissions in imports and exports, as well as the product composi-
tions.

Using EET estimates in China, the US and the EU as examples, this section illustrates how
this data reveals striking differences between the EEI and EEE in terms of both the product
composition and trade partners.

3.4.3.1 China

China is the world’s largest producer of commodities such as ammonia, cement and iron and steel
(IEA, 2008). These sectors contribute substantially to both global trade and annual emissions,
and are at the centre of the debate on carbon leakage and embodied emissions in trade (e.g.
Pan et al., 2008; Liu & Wang, 2009; Peters & Hertwich, 2008; Qi et al., 2008). A number of
examinations of China’s embodied carbon in trade point out the differences between the sector
composition that make up their EEE and EEI (Wang & Watson, 2008; Weber et al., 2008). Here
we take a close examination, focusing on the 20 products that account for the largest shares
of China’s EEE and EEI. The multi-coloured bars in Figures 3.6 and 3.7 plot the volume of

embodied emissions attributable to these 20 products, by destination country (the horizontal
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Figure 3.6: China’s product level EEE for key products and trading partners, 2006
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axis indicates the trading partners). The small layers that compose the bar illustrate the complex

product composition of the embodied carbon trade.

Drawing attention to the legend and the horizontal axis, the products via which China imports
and exports embodied carbon, and the trading partners are strikingly different. Carbon imports
are embodied in primary products such as iron and aluminium ores (from Australia, Indonesia,
Brazil), raw cotton (primarily from US) and basic chemicals and plastics (from Korea and Taiwan).
Other key sources of EEI include Hong Kong (largely as re-exports), India, Thailand, Saudi
Arabia and Malaysia (Figure 3.7). In contrast, China’s carbon exports are embodied primarily
in down-stream consumer goods such as games and toys, furniture and apparel products to
countries such as the US, EU, Japan and Korea, Hong Kong and Thailand. Also important are

upstream industrial products such as basic steel products, chemicals, cement and cement clinker.

Aggregated at the 60 sector level, Figure 3.8 shows the sector composition of China’s EET, this
time in terms of volumes of net trade. Large EET surpluses are found for metal manufacture,
other manufactured foods, apparel, iron & steel, cement & lime, industrial equipment and textile
articles sectors. On the other hand, China has a negative net balance of trade in sectors such as

metal ore, primary plastic, organic chemicals and textile.

The key sectors identified in China’s embodied carbon in exports (e.g. electronics, metal products,

apparel) are coherent with previous studies (Weber et al., 2008; Wang & Watson, 2008).'3

18 Weber et al. (2008, p. 3574) analyses the change in China’s sectoral composition of EEE over time, and reports:
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Figure 3.7: China’s product level EEI for key products and trading partners, 2006
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Figure 3.8: China’s imbalanced sectors in terms of embodied carbon trade, 2006
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However, this analysis offers new insights into the sectoral composition of China’s EEI, as well as
the geographical distributions of their EEE and EEI. While the destination of Chinese export
embodied emissions are focused in the industrialised rich countries (US, Europe, Japan), the
origins of China’s EEI are more varied. They include mainly neighbouring Pacific countries both

rich and poor, but mostly resource rich.

For purpose of verification, on the country level, this study finds China’s EEE in 2006 to total
around 0.83Gt CO,, around 15% of China’s total emissions and EEI to be around 0.6Gt, or 10%
of China’s domestic emissions. Compared with other studies (see Figure 3.20 in the Appendix),
the EEE lies in the lower end of the range from the literature, which is attributed to the use of
world average carbon intensity factors. Nonetheless, the insights into the relative importance of
products for China’s EEE and EEI and the key trade routes still hold.

3.4.3.2 EU

The key products in Europe’s export of embodied carbon (external EU trade) include a range
of upstream and semi-finished industrial products such as basic iron and steel products (hot
rolled steel, hot rolled alloy steel and angled iron and steel), semi-finished steel products (e.g.
seamless tubes, seamed pipes), aluminium products, upstream chemical products (carbonates
and peroxide carbonates, nitrogen fertilisers), primary plastic products (propylene polymer)
glass products, paper products, as well as some downstream manufacturing products such as
general machinery and motor engines (Figure 3.9). The key recipients of the EEE from Europe

for the select products are the US, Turkey, Russia, Switzerland, China, Brazil and Norway.

The key products for Europe’s imports of embodied carbon, on the other hand, include mined
industrial inputs such as iron ore, copper ore, coke, aluminium ore, petroleum oil and other
coal products (Figure 3.10). It highlights that Europe’s dependence on imports for resource
inputs not only has implications for supply chain security but also for the embodied carbon

trade balance.!?

These findings are in line with Giljum et al. (2008) which quantifies the embodied resource
content of trade from a North-South perspective: “trade pattern of net-imports to the North is
particularly visible for the EU25, which faces the strongest dependence on resource imports of

all investigated world regions, in particular regarding fossil fuels and metal ores.”(p.18). Other

“Emissions embodied in primary product exports (including here: all mining, raw timber, raw chemicals, and basic
metals) have decreased from between 20% to 24% in the early years of the analysis (1987-1992) to only 13% in
2002-2005 as the Chinese economy has developed into producing higher value-added items.”

19Supply chain security has gained significant importance in European Union policies in the past decade. This
is emphasised, for example, in the revised EU Sustainable Development Strategy, the Thematic Strategy on the
Sustainable Use of Natural Resources and in the upcoming EU Action Plan on Sustainable Consumption and
Production: “More than ever, Europe needs to import to export. Tackling restrictions on access to resources such as
energy, metals and scrap, primary raw materials including certain agricultural materials, hides and skins must be a
high priority. Measures taken by some of our biggest trading partners to restrict access to their supplies of these
inputs are causing some EU industries major problems” (European Commission, 2006).
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Figure 3.9: EU25’s product level EEE for key products and trading partners
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key products for Europe’s EEI include upstream industrial products such as chemical wood pulp,
metals and non-ferrous metals (ferro manganese, iron and steel articles and aluminium alloys)

and chemical products (nitrogen fertiliser, ether peroxides).

From the horizontal axis of Figure 3.10, it is shown that at least for the selected 20 products,
embodied emissions into Europe originate from many resource-rich countries such as Russia,
Norway, Brazil, South Africa, China, Ukraine and the US. Comparing the bars in Figures 3.9
and 3.10, Europe’s EEE tends to be fairly evenly distributed (perhaps indicating the diversity of

Europe’s industrial production), whereas imports can be concentrated from particular countries.

In terms of net EET by sector (when aggregated into 60 sectors) Europe’s EET imbalances are
smaller relative to that of China (comparing Figure 3.11 and 3.8), nonetheless, large surpluses
are observed for sectors including metal manufacturing, primary plastic, industrial machinery,
general industrial equipments and pharmaceuticals. Large net deficits are found for non-ferrous

metals, metal ores, petroleum and apparel.

3.4.3.3 US

Figure 3.12 shows the key products for the embodied carbon in US export include cotton
(particularly to China), other chemical elements (particularly to Japan) carbonates (particularly to

Mexico and Brazil), motor vehicle engines (particularly to Canada) aluminium alloys (particularly
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Figure 3.10: The EU 25’s product level EEI for key products and trading partners
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Figure 3.11: EU25’s imbalanced sectors in terms of embodied carbon trade, 2006
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Figure 3.12: US product level EEE for key products and trading partners
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to Canada) and ether peroxides (particularly to Venezuela). This list is in sharp contrast to
the key products via which China exports embodied carbon, which tend to be down-stream

consumer products.

The products where the EEI are focused for the US include several steel and non-ferrous metal
products (aluminium alloys, semi-finished steel, seamed tube pipes, other ferro alloys, iron and
steel articles) as well as chemical products (cyclic hydrocarbons, acyclic mono-hydro alcohols
and nitrogen fertilisers) as well as petroleum and paper products (uncoated paper). Relative
to the top 20 products for China and the EU’s EEI, the presence of down-stream consumer
goods is notable, including games equipment, children’s toys and apparel products (jerseys and
pull-overs) (Figure 3.13). The US imports EET via these products from countries such as Canada,

China, Mexico, Europe, Russia, Venezuela, Saudi Arabia and Brazil.

In terms of net EET at the 60 sectors level, given the large trade deficit in oil, it is not surprising
that the US has a net deficit in embodied carbon trade in petroleum (crude) production (Figure
3.14). However, given the sizeable production output of the US iron and steel industryj, it is
rather more surprising that net EEI is large in this sector. On the other hand, large net surpluses
are found for cereals and inorganic chemicals. The fact that the products in the cereals sector do
not appear in Figure 3.12 is likely due to the heavy differentiation of products in this sector at

the product level (detailed definition of types of maize, cereal, corn).

In sum, looking at the origins of EEI for China, Europe and US reveals the important role played
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Figure 3.13: US product level EEI for key products and trading partners
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by resource rich countries such as Russia, Australia, Brazil, and Canada, in contributions to the

carbon flows through global supply chains.

3.4.4 Three country types can be identified, in terms of global supply chain posi-
tioning.

Further examining cross-country differences in the sector composition of embodied carbon, the
EET estimates are evaluated in terms of “supply-chain stages”. Here, the product level flows
are grouped into seven aggregated stages: food and beverages; fuel and mined products; raw
materials; upstream industrial products; industrial processing (mid-stream industrial products);
industrial and transport equipment/ machinery; and final consumer goods. 2° Figure 3.15 plots
the EEE (blue bars) and EEI (red bars) by supply-chain stage, for four Annex I countries, and

Figure 3.16 for four non-Annex I countries to illustrate.

Very different outcomes can be observed. Among the former group, the US stands out because in
almost every supply chain stage, their EEE exceeds EEI. This imbalance is particularly true for
fuel and mined products, and final consumer goods. Japan is distinct, in that EEE are almost

exclusively focused in industrial products from all four stages (upstream, mid stream, machinery

20Gee Table 3.3 in Appendix for sector groupings.
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Figure 3.14: US imbalanced sectors in terms of embodied carbon trade, 2006
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and final consumer goods). Their EEI on the other hand are mostly focused in the primary stages
(food and beverages, fuel and mined products and final consumer goods). Canada has a large
net surplus in the fuel and mining stage, and the other stages have roughly even amounts of EEE
and EEI The EU appears to be a relatively evenly balanced on the two sides of the Y-axis for
almost every stage, except for fuels and mined products. Therefore the net balance of EET is

small, although the absolute volumes are large.

Now looking at Figure 3.16. Brazil appears as an archetypal resource-based economy, exporting
significant levels of embodied emissions via agricultural products, mined products, raw materials
and upstream industrial products. China also exports significant embodied emissions, but in
sharp contrast to Brazil, upstream industrial products and final consumer goods account for a
large share of EEE. Korea closely resembles Japan and to some extent the EU’s position. Russia,
rather similar to Canada, has large net surpluses at the fuel and mining stage, as well as the

upstream and mid-stream industrial production stages.

This perspective highlights how the conventional grouping of countries into industrialised
countries versus developing countries (Annex I vs non-Annex I) is rather too simplistic of limited
relevance now, in the context of climate change policy and trade. This analysis instead suggests
that a more relevant grouping of countries may be according to patterns of production and

consumption:
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* Production centres — Resource-rich, countries which export large volumes of EEE via
‘upstream’, industrial feed-stock products, including mined, energy and basic industrial

products as inputs to industrial production globally.

* Consumption centres — Heavily service industry oriented countries with significant mer-

chandise or ‘"downstream’ trade imports.

* Production & consumption centres — Importers of upstream or ‘'mid-stream’ industrial

products and specialise in assembly or other down-stream industrial processes.

In an attempt to formally characterise the suggested grouping, two simple indicators are de-
veloped and applied (Figure 3.17). On the horizontal axis is an index of a country’s total BEET
for all sectors combined. It is measured by the BEET (total EEE- total EEI), normalised (divided)
by the country’s production-based emissions to allows for comparison. It is expressed in natural
logs, or in the case of net imports (negative) the natural log of the absolute value. On the extreme
or ‘'unbalanced’ ends, Singapore and Brazil have an the most negative and positive values of this

indicator with the highest relative shares of net imports and net exports of EET respectively.

On the vertical axis is an index of a country’s balance of EET in terms of their position on a
supply chain (vertical axis). It tries to compare the relative importance of each supply chain
stage for any one country, in terms of the stages illustrated in Figures 3.15 and 3.16. It gives
indication about whether the imbalance in EET is greater in upstream segments (represented
by the bottom of the y-axis) such as fuel and ore production, or slightly along the supply chain
in ‘mid-stream’ products such as basic industrial materials (e.g. cement, pulp, basic metals
and basic chemicals), or final consumer goods such as apparel and toys (top of axis). This is
measured by a simple summation. I first take the absolute value of the BEET for the ‘'middle’
sectors of the supply chain (such as paper, metal products and plastic manufacturing), subtract
that of the "upstream’ sectors (fuel, food and raw materials), then add that of the ‘"downstream’
sectors (consumer foods and transport equipment). Those close to the horizontal line therefore

have greater net EET volumes in the ‘mid-stream’ sectors.

Figure 3.17 combines these two indices. In terms of the three groups named above, the countries
closer to the top left corner of the chart can be characterised as “consumption centres” (e.g. UK
and Singapore), as net importers of EET with emphasis of EET on the upstream sectors. On
the opposite side, countries closer to the bottom right corner represent “production centres”
characterised by resource rich economies. Countries that lie closer to the origin can be grouped
as “production & consumption centres”. This picture suggests that a further distinctions can be
made between “production & consumption centres”. Very close to the origin are four countries
(Thailand, Taiwan, Japan and Korea) which appear to exhibit very similar EET characteristics
— small negative balance of overall EET and greatest EET activity in ‘'mid-stream production
stages’. These represent countries with high levels of processing trade (manufacturing of export

goods using imported inputs). The USA and France are similar to this group, except that the

84



Figure 3.17: Positioning of countries according to their balance of their trade embodied emissions
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Source: Author’s own calculations. On the x-axis, the negative values indicate the size of net import and positive
values indicate the size of net exports. On the y-axis, negative values indicate ‘upstream’ and positive values indicate

’downstream’.

negative balance of total EET is likely to be due to the importing of ‘"down-stream’ goods (for the
USA, this is consistent with Figure 3.15). Mirroring this, Germany, China, Russia and Italy form

a cluster of net exporters of total EET, which is likely due to the export of ‘"down-stream’ goods.

Some observations can be drawn from this perspective from embodied carbon trade balance at the
country level. First, it emphasises how the convention of grouping countries into Annex I vs non-
Annex I in climate policy debates is unhelpful. Instead, this alternative grouping of countries
suggested in this subsection may provide a useful perspective on countries characteristics, and
aid discussions around the climate and trade nexus. Second, according to the calculations in
this chapter, the majority of large emitters fall into the category of “production & consumption
centres”. That is to say, on a country level, emission levels are comparable when using the
production-based vis-a-vis the consumption-based accounting methods, because they tend to
import as much as they export or vice versa. Of course the same cannot be said for the balance of
EET at the sector or product level. This suggests that the role of consumption-based accounting
methods may be limited at the country level, for example in the context of multilateral burden
sharing agreements. Given the large uncertainties surrounding EET measurement as highlighted
in Chapter 2, it is likely that the costs of reaching international agreement on a reasonable range
of estimates may far outweigh the gains from incorporating consumption-based metrics into
such already politically sensitive decisions. On the other hand, the role of consumption-based
accounting methods may be important at the sector level, particularly for key energy-intensive
and trade-intensive sectors. Efforts to improve the estimations of EET flows for such sectors
is likely to add more value than repeating country-level estimations (as has been the trend in

the literature to date), more for the discussions about carbon leakage than about fairness and
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responsibility. For data reasons, this analysis is not able to explicitly quantify ’strong’ carbon
leakage effects as explained in Section 3.1. However, it is hoped that by identifying the key
products and trade routes of EET, this analysis has helped in the process of narrowing down the

geographical and sectoral scope, for future work to target.

3.5 Sensitivity analysis - A comparison of the WAEF and CSEF as-

sumptions in the case of cement clinker trade

In this subsection, sensitivity of the results to the use of world average emission factors is
explored using a case study of the cement clinker trade. Currently, the extent to which using
WAEF affects the accuracy of results is poorly understood. MRIO analysis has shown that
the assumptions about carbon intensity matter, usually by comparing EET estimates when
using country-specific emission factors vis-a-vi the domestic technology assumption (DTA) i.e.
assuming imports are produced using the same technology as domestic production. In the case
of Norway, applying the DTA can underestimate emissions by up to a factor of 2.5 (Peters &
Hertwich, 2006). Andrew et al. (2009) compares the WAEF assumption relative to DTA when
estimating EET within a SRIO framework and rather unsurprisingly, finds the WAEF perform
better particularly for smaller or energy-intensity ‘outlier’ countries. To the author’s knowledge,
the relevant comparison between using WAEF and country-specific emission factors has yet to
be made. Previous comparisons have also been based on estimation using data expressed in

monetary terms (kg CO,/USD) rather than in physical quantity terms.

Cement manufacturing accounts for around 5-7% of global emission (Benhelal et al., 2013),
and clinker production is the most energy-intensive step , accounting for around 80% of the
energy used. International differences in carbon intensity of clinker production is driven mainly
by the thermal efficiency of plants (which strongly relates to kiln technology type and age
of installations) and the carbon intensity of the fuel mix (fossil fuels, waste and biomass).
Relative to the most efficient plant type (preheater kilns with precalciner or PH-PC), long dry
kilns consume around 33% more thermal energy and the old wet kilns consume up to 85%
more (Cement Sustainability Initiative, 2009). In addition, capacity utilisation rate and asset
rationalisation (turnover and asset renewal times) can strongly influence the regional average
thermal consumption. Operating an installation at just a small fraction of its design capacity

increases the energy consumption per ton clinker produced.

Using 2006 bilateral trade dat in cement clinker (sector 66121 using SITC Revision 3 classifica-
tion) between the 17 countries in the sample, I estimate EET volumes for each country pair and
both directions of trade. This gives a sample of 176 flows for which the EET estimates can be
compared. Using the WAEF, the embodied emissions in bilateral trade between these countries
totalled 11.9Mt CO,, whereas using CSEEF, it totalled 12.3 Mt CO,. The latter is higher because in
this sample there are more countries with CSEF greater than WAEF as shown in Figure 3.18. For
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Figure 3.18: Weighted average CO, (excluding CO, from electric power) emission per tonne clinker by
country in 2006
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Source and Notes: The red line shows the WAEF used in this analysis and the blue line shows the CSEF obtained
from Cement Sustainability Initiative (2013).

each EET flow, I took the difference between the two estimated EET volumes, and divided it by
the estimate using CSEF, in order to calculate the impact of the WAEF assumption in percentage
terms. The results are described in Figure 3.19 in which the histogram shows the distribution of
the inconsistency across the 176 flows, and the box-plot above shows the quartile ranges. I find
that the WAEF on average underestimates embodied emissions in clinker by 2%. On the more
affected end, EEE from the US, UK and Canada are systematically underestimated by 6-10%.
This is a relatively small sensitivity in the context of EET measurement, where assumptions can

swing estimate results by orders of magnitude discussed in Section 2.4.

Figure 3.18 shows how the country-averages diverged from the world average emission factor in
2006 — WAEF was 840kg CO, /tonne of clinker as shown by the red line and the CSEFs ranged
between 814-939kg CO,/t clinker across 17 countries. The data is obtained from the “Getting
the Numbers Right” (GNR) database, which is high quality environmental and production
data collected by the WBCSD’s Cement Sustainability Initiative. The coverage of plants in this
database is more comprehensive (>70%) for Europe, North America, Central America and Brazil
but varies for the rest of the world (Cement Sustainability Initiative, 2013). The high average
carbon intensity in the USA shown in the Figure is due to the relatively large number of wet,
semi-wet and long dry kilns. This is in turn due to the slow asset renewal driven by low energy
prices and lengthy procedures for new kiln permits. Preheater kilns with or without precalciner
are more dominant in China, India and rest of Asia and Australia reflecting the growing cement
market and relatively young assets. The average thermal efficiency is about 10% better in the
non-Annex 1 region than in the Annex 1 region, reflecting the generally newer, more efficient

equipment in non-Annex 1 countries.
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Figure 3.19: Sensitivity analysis - inconsistency in EET estimates using WAEF and CSEF for the case of
bilateral trade in clinker, 2006
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Source and Notes: The red line shows the WAEF used in this analysis and the blue line shows the CSEF obtained
from Cement Sustainability Initiative (2013).

Of course, the sensitivity of the EET estimates to the WAEF assumption varies across products.
Greater sensitivity may be found for products such as aluminium and steel which exhibit large
heterogeneity in carbon intensities across production plants. In the case of aluminium, this is
a function of the source of electricity (from zero carbon hydro or nuclear to high-carbon coal
plants), as well as the share of recycled aluminium. For steel, the electric arc furnace (EAF)
plants typically use 30-40% of the energy required for the blast oxygen furnace (BOF) plants
(Hourcade et al., 2007). The available data was insufficient to conduct sensitivity analysis for

these sectors.?!

This case studies also provides some insights into the use and adjustments of carbon intensities in
general. One way to address the lack of country specific carbon intensity data is to systematically
adjust world average coefficients, according to weights that reflect an average technology level
of a country, typically measured by the average carbon intensity of GDP. This approach has
been applied by the GTAP to fill data gaps, but it requires the assumption that the technology
level does not vary across sectors within a country. Having ‘country specific’ carbon intensities
has obvious advantages for the analysis of carbon leakage. Yet the cement sector shows that
this may be a rather arbitrary way to adjust emission factors. At 1041 tCO,/ Million $GDP,

21 For the case of aluminium, data on the production share of primary and secondary aluminium was available for
many countries, but not the carbon intensities of primary and secondary production by country. For steel, the carbon
intensities for BOF and EAF were available at the regional level, but not the share of production.
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China has a much higher carbon intensity of GDP relative to others such as Australia (760
tCO,/ Million $GDP), Egypt (504 tCO,/ Million $GDP), USA (451 tCO,/ Million $GDP), UK(
271 tCO,/ Million $GDP) and France (204 tCO,/ Million $GDP). Yet as shown in Figure 3.18,
China’s carbon intensity in the cement clinker sector is lower than the UK or the US. This
analysis shows that such simple adjustment does not leads to improvements in emission factors.
Indeed, it has been shown that this assumption contributes to inconsistent country level annual
emission volumes when comparing to the UNFCCC and IPCC data (Reinvang & Peters, 2008).
The majority of multi-regional analysis of embodied carbon, carbon leakage and related studies
on impacts from border adjustments (e.g. Mattoo et al. (2009)) rely to varying degrees on such
artificially adjusted emission factors, and this should be an important caveat to their results. This
chapter suggests that obtaining reliable country specific emission factors for the key products

identified in Section 3.4.2 will go a long way to improve the reliability of such analyses.

3.6 Discussion and conclusion

High resolution product level bilateral trade data from the COMTRADE was combined with
carbon intensity coefficients, to obtain a detailed mapping of global embodied carbon trade.
Like previous studies, this analysis finds that significant volumes of carbon emissions are traded
between countries. However, thanks to the level of disaggregation that was not available in
previous studies, this paper has revealed new insights into the nature of these flows.

For example, considerable emphasis has been put on China’s large surplus and the US’s large
deficit in the embodied carbon literature. This study shows that for the US, the embodied
carbon trade flows with neighbouring countries such as Canada and Mexico are also important.
The emissions attributable to EU internal trade is also substantial. It suggests that regional
harmonisation of climate mitigation policy should be a priority, perhaps more so than efforts
farther afield. Focusing too much on the Annex I and non-Annex I imbalance of embodied
carbon in trade invites simplistic and problematic interpretations of EET estimates. It is often
combined, for example, with a literal interpretation of classical trade theory based on the notion
of comparative advantage, giving rise to interpretations such as “rich countries are outsourcing

carbon-dioxide emissions” (The Economist, 2011).

In terms of the distribution of global EET across products, of the 970 products examined, around
15% of the products account for around 70% of global EET. This suggests that focusing mitigation
efforts and trade-measures on the products in this group would be an effective approach to
address potential trade related distortions, and will also help decarbonising international supply
chains. Such product-specific measures could be better justified on environmental grounds,
and less vulnerable to criticism of applying trade protectionist measures. As a first step in this
direction, it narrows down the products for which rectifying data constraints about their carbon

footprints should be a priority.
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Examining product level bilateral trade in EET revealed striking differences in terms of the
product composition of a country’s EEE and EEI. China’s carbon imports are typically embodied
in primary inputs to industrial production: mined products such as iron and aluminium ores,
raw cotton, and basic chemicals and plastics. In contrast, significant volumes of embodied
carbon are exported via manufactured products such as games and toys, furniture and apparel
products, and also upstream industrial products such as basic steel products, chemicals, cement
and cement clinker. The origin and destination of countries’ EEI and EEE are also very different.
This shows that product and country coverage is therefore key to the impact and effectiveness of

measures designed to address carbon leakage.

Looking at the origins of EEI for China, Europe and US in this paper revealed the important role
played by resource rich countries such as Russia, Australia, Brazil, and Canada, in contributions
to carbon flows through global supply chains. Indeed, from a global supply chain perspective,
the results found that at the top of the chain, a non-trivial volume of EET flows can be attributed
to energy products and metal ores, particularly as imports by large industrial centres such
as China, Japan, and Korea. Indeed, concerns about the consistency between long-term GHG
concentration stabilisation goals and the signing of long-term contracts and trade deals between
Australian mining companies and Chinese companies have been raised (The New York Times,
2010). Further down-stream in the supply chain, embodied carbon is traded in various upstream

industrial products, such as in the iron and steel sector, primary plastics and non ferrous metals.

Examining cross-country differences EET composition in terms of three supply-chain stages
showed that the majority of large emitters import and export similar amounts of embodied
carbon via ‘'midstream’ industrial goods such as iron & steel, chemicals, paper & pulp and
glass. Some countries have a notable EET surplus through large export volumes of ‘upstream’
production such as ores and fuel (e.g. Brazil and Australia), whereas others have a notable
EET deficit through imports of ‘downstream’, or consumer goods (e.g. UK and Singapore). It is
argued that grouping countries according to patterns of production and consumption may be
more relevant in discussions surrounding climate policy and trade, rather than discussing in

terms of industrialised vs developing countries, as is often done.

For example, the fact that most large emitting countries have a small net balance of EET at a
country level suggests that the role of consumption-based accounting methods may be limited at
the country level, for example in the context of multilateral burden sharing agreements. Given
the large uncertainties surrounding EET measurement as highlighted in Chapter 2, it is likely
that the costs of reaching international agreement on a reasonable range of estimates may far
outweigh the gains from incorporating consumption-based metrics into such already politically
sensitive decisions. On the other hand, the role of consumption-based accounting methods may
be important at the sector level, particularly for key energy-intensive and trade-intensive sectors.
This suggests efforts to improve the estimations of EET flows for such sectors is likely to add
more value than repeating country-level estimations (as has been the trend in the literature to

date), more for the discussions about carbon leakage than about fairness and responsibility.
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Relevant constraints to the material balance approach have been highlighted in this chapter.
A sensitivity test was conducted using a case study of cement clinker to examine how results
vary when using world average emission factors and country specific ones. It showed differences
up to around 10%, but typically much smaller. The uncertainty due to this assumption is
relatively small, compared to the many other sources of uncertainty in EET estimation. It also
shed light on problems with simple methods commonly used in the literature to artificially
create country-specific sector level emission factors, as well as analysis (such as carbon leakage

assessments) using such data.

One important assumption that was not dealt with in depth in this chapter, is the treatment
of imported products in the estimation of EEE, as domestically sourced. This assumption may
lead to an overestimation of EEE for countries with substantial volume of intermediate-goods
trade such as China (the import content of China’s exports in 2005 was around 28% as shown
in Figure 1.3 on page 19). The magnitude of the overestimation does not seem large, however,
when comparing this study’s estimate of China’s total EEE with five other studies (Figure 3.20
on page 93). Methods to address this issue outside the use of a regional input-output framework
have been put forward and applied (e.g. by Huimin & Ye (2010) in their study on China) but
with the large number of countries covered, doing so was beyond the scope of this analysis.
Overall, the increasing availability of embodied carbon estimates for more products and regions
will improve the robustness of estimates under the approach used in this Nonetheless, this
examination demonstrated that there is value in providing product-level embodied carbon flows
in bilateral trade. It provides novel insights into the nature of the flows, which was not possible

in preceding studies, and country-total estimates are comparable to other studies.

Two new datasets were constructed — product level global bilateral trade in physical quantities
and carbon intensities of products. These will be made public upon completion of this thesis and
it is hoped that they will contribute towards new research, to complement other EET datasets in
the public sphere e.g. Peters et al. (2011b); Davis & Caldeira (2010); Davis et al. (2011).

3.7 Appendix
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Table 3.2: Carbon intensity factors, summary statistics

] \ Carbon intensity (kg CO,/kg) ‘

Mean 3.069838
Standard deviation 4.763699
Median 2.580637

Minimum 0
Max 69.74235
Variance 22.69283
Skewness 7.962029
Kurtosis 91.21711

N 1026

Table 3.3: Supply chain stage sector groupings

Sectors ‘

Food and meat; dairy; fish; cereals; veg and fruit; sugars; coffee tea cocoa; animal
beverages feed; other food; beverages; tobacco
Fuel and metal ore; coal coke; petroleum; gas ; electricity
mined
products

Raw materials

hides skins; oil seeds; crude rubber;cork wood; pulp; textile; crude
fertiliser; crude animal material; animal fats; veg. fats; processed fats;
leather

Upstream organic_chemicals; inorganic chemicals; colour dye; fertilisers; plastics
industrial primary; cement lime non-metallics; iron steel; nonferrous metals
products
Midstream essential oils; plastic non primary; insecticides; rubber manufactures; cork
industrial manufactures; textile articles
products
Industrial and power generating machines; industrial machinery; metalworking
transport machinery; general industrial equipment; office machinery; telecom
equipment machinery; electrical machinery; road vehicles; non-road transport; power
generating machines; industrial machinery; metal working machinery;
general industrial equipment; office machinery; telecom machinery;
electrical machinery; road vehicles; scientific instruments
Final pharmaceutical; paper; metal manufactures; prefab buildings; furniture;
consumer travel goods; apparel; foot ware; photo equipment; optical wear; other
goods manufactured goods
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Figure 3.20: Estimates of embodied carbon in trade for China across six studies for estimate years 2004 to
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Notes: China’s production-based emissions for this study is obtained from World Resource Institute (2012).
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Part 11

Carbon leakage effects
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Chapter 4

Asymmetric industrial energy prices

and international trade

4.1 Introduction

In recent years, carbon mitigation policies targeting industry sector emissions have proliferated
across the world. These include the European Union Emissions Trading Scheme (EU ETS),
Australia’s Carbon Pricing Mechanism (CPM), New Zealand’s ETS, the UK’s Climate Change
Levy, and British Columbia’s carbon tax scheme. There are also many in the pipeline including
California’s climate programme and pilot trading schemes in some of China’s provinces and
cities. These policies are intended to provide carbon-intensive sectors with an incentive to reduce

their emissions.

As countries adjust to stricter climate change policies at different speeds to reflect national
circumstances, one of the recurring debates is around the potential adverse impacts on trade
and investment decisions. In a closed economy without trade, a carbon price signal provides
incentives for efficiency improvements in production, innovation activity and demand substitu-
tion towards lower carbon goods. However, in a free-trade world, taking the lead internationally
by strengthening carbon price signals ahead of others can raise concerns about carbon leakage.
Multinational companies may also strategically use trade to avoid strong climate controls by
replacing the production of ‘dirty’ goods with imports from production facilities in regions
with lax control. Without appropriate measures to address the potential for carbon leakage,
implementing ambitious climate change policies could not only undermine efforts to reduce
global emissions. It may also have adverse effects in terms of lost jobs, economic output and

export revenue.

Politically, concerns around carbon leakage have been paramount in discussions around regu-
lating industry emissions, and are pivotal to the design of carbon pricing policies. The debate

is however compounded by the lack of empirical evidence. Among the barriers to finding
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statistical evidence is the nascent nature of carbon pricing instruments globally and thus the lack
of observed data. Where carbon prices have existed, the levels have been low. This is problematic
because disentangling the effect of small carbon prices from the multitude of more dominant
factors that drive trade and investment decisions — such as exchange rates, transport costs, trade
agreements, and relative costs of labour, capital and other input costs — would necessitate very
large datasets with many cross-sections and years. Furthermore, it is still early days, to compare
the relative stringency of the existing carbon pricing policies in a meaningful way. Definition
of the regulatory stringency variable poses another hurdle to empirical investigation.! So far,
crude measures like a Kyoto Protocol dummy has been used to test the impact of climate policy
on trade empirically (e.g. by Aichele & Felbermayr, 2012).

Consequently, quantification of competitiveness impacts and carbon leakage rates have mostly
relied on ex-ante simulation approaches using general and partial equilibrium modelling (e.g.
Babiker, 2005; Gerlagh & Kuik, 2007; Burniaux & Martins, 2000). It has been shown, how-
ever, that carbon leakage rates derived from such models are sensitive to model structure and
assumptions made, inter alia, about technological changes, supply elasticity of fossil fuels or
capital mobility (see Droge (2009) and Zhou et al. (2010) who provide a recent review of this
literature). A wide range of leakage rates are reported from these studies, from -14% (suggesting
a positive impact of carbon prices on domestic production) to +130% (the leakage effect more
than cancels the policy). This highlights the need for ex-post analysis to see if observed data
provides statistical evidence. The aim of this chapter is to help fill this empirical gap.

This chapter examines detailed sector-level bilateral trade data from the UN COMTRADE
database and investigates the impact of changes in relative energy prices between countries
on bilateral trade. Because carbon prices work by increasing the effective price of energy for
industry, examining the impacts of historic asymmetries in industrial energy prices offer insights
into the potential impact of asymmetric carbon prices (Aldy & Pizer, 2011). Econometrically,
this chapter uses dynamic panel techniques within a gravity framework. The analysis is applied
to extremely rich data — a strongly balanced panel dataset with 51 countries including countries
with varying levels of economic development (2550 country pairs), 66 sectors and over 16 years
(1996 to 2011). The richness of the data allows the disentangling of the estimates from a range

of potential confounding factors through the inclusion of fixed effects.

Analysis of carbon leakage using econometric methods has a key advantage over those using ex-
ante model simulation approaches, in that it is possible to scrutinise the statistical relationships
by subjecting the results to multiple checks. This chapter strives to assesses the robustness of
results rigorously. It puts to test whether the results are driven by the underlying theory, by
comparing the results across different model specifications. It also asses the sensitivity of the

results to underlying assumptions and variable definitions, and conducts tests to try to reduce

IComplications arise, for example, in the EU ETS where allowances were allocated for free to most sectors in the
first two implementing phases. In the UK Climate Change Levy, the tax revenue is also recycled back to firms via a
cut in the rate of the employer’s national insurance contribution.
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the possibility that the results are driven by other factors. By subjecting estimates to these tests,
it aims to understand the degree to which they are statistically robust. In this sense, it can be
argued that econometrically derived estimates of carbon leakage are more grounded in statistical
evidence, compared with estimates derived from calibrated models. The parameterisation of

such models can in turn be improved using the econometric estimations’ results.

This chapter presents evidence that a change in the energy price ratio between countries has a
statistically significant impact on the volume of trade between the two countries. This result is
robust across a range of alternative model specifications and estimators. In terms of magnitudes,
the estimates suggest that a one percent increase in the electricity price ratio between the
importer and exporter increases exports from the country with a relatively lower energy price to
the country with a relatively higher price by around 0.05% to 0.1%. This effect is an average
effect across all manufacturing sectors. Further investigation across sectors reveals that the effect

is heterogeneous across sectors.

The key novelties of this chapter are as follows. Firstly, it is the first analysis of this kind to
be conducted on a panel data of this scale and coverage. Aldy & Pizer (2011)’s study focuses
on the US whereas a related study by Gerlagh & Mathys (2011) cover 14 OECD countries. The
results in this study can be interpreted in the context of carbon leakage between and within
countries both rich and poor. Secondly, whereas the above two studies respectively examine the
influence of energy price and energy abundance in levels, this study explicitly tests the influence
of the energy price asymmetry between trading partners on bilateral exports. Thirdly, it explores
the variation of trade impacts across sectors. Finally, this empirical analysis is in line with the
recent advances in econometric techniques in the wider empirical trade literature, including the

treatment of dynamic effects and zeros in the data.

The structure of this chapter is as follows. Section 4.2 assesses three strands of relevant lit-
erature and asks: what is the evidence underpinning the debate around carbon leakage and
competitiveness impacts to date?; what are the insights from the wider empirical environment &
trade literature?; and what are the recent developments in the gravity model of trade literature?
Section 4.3 is on methodology, describing the empirical strategy, the variable definitions, the
econometric models and the data. Section 4.4 reports and discusses the results. Section 4.5
explores the sensitivity of the results to certain assumptions and variable definitions. The final

section offers conclusions.
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4.2 Literature

4.2.1 Evidence currently underpinning the carbon leakage and competitiveness
debates

Thus far, the vast majority of the quantitative examinations of interactions between climate
policy and trade flows employ ex-ante model simulation strategies,? typically using Computable
General Equilibrium (CGE) models (e.g. Babiker, 2005; Burniaux & Martins, 2000; Gerlagh
& Kuik, 2007; Kuik & Gerlagh, 2003; Paltsev, 2001). This group of studies simulate different
emission reduction targets under the Kyoto Protocol and have estimated a wide range of carbon
leakage rates. Central estimates are in the range of 5-25% according to Droge (2009) and 15-30%
according to Lanz et al. (2011). However, in some cases, models report leakage rates below
zero because of positive emission effects in the model, which are due to the role of technology
spillover from mitigation (Barker et al., 2007). Others report leakage rates above 100%, which
imply that emission reduction efforts in one region leads to more global GHG emissions rather

than less (if production moves to regions with less efficient technology for example).

These studies have identified several channels of carbon leakage, including price effects in
energy markets — carbon price induced improvements in energy efficiency in the regulated
region reduces energy demand and world energy prices fall, increasing energy demand in other
regions (Kuik & Gerlagh, 2003; Burniaux & Martins, 2000). The studies also demonstrate that
carbon leakage estimates are sensitive to model setup and assumptions, for example, supply
elasticity of fossil fuels, technological change, trade substitution elasticities, returns to scale,

market power and capital mobility to name but a few.

Partial equilibrium analysis has been applied in the context of the EU ETS, to examine its
potential impacts on trade and investment for heavy industry (e.g. Demailly & Quirion, 2008;
Monjon & Quirion, 2009; Demailly & Quirion, 2006; Hourcade et al., 2007). Sectoral differences
in carbon leakage rates estimated in these models reflect the differences in parameters such
as carbon intensity of production, abatement potential, ability to pass through abatement
costs to consumers, as well as different levels of sensitivity to multiple barriers of trade (e.g.
product differentiation, service differentiation, transport costs, capacity constraints and import
restrictions). Higher carbon leakage rates are estimated for the steel sector which exhibit high
product differentiation but also higher abatement potential, relative to the cement sector, which
is characterised by homogeneous products but high transport costs relative to value. Above all,
the macroeconomic and partial-equilibrium modelling studies highlight the need for empirical

analysis in order to better understand the nature and magnitude of these effects.

Several recent contributions have embarked on filling this important empirical shortcoming.
Aichele & Felbermayr (2012) and Aichele & Felbermayr (2011) empirically investigate the carbon

leakage and competitiveness impacts of legally binding mitigation targets under the Kyoto

2Gee Droge (2009) and Zhou et al. (2010) for a review of the literature.
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Protocol and find statistically significant and large effects. In the former paper, the authors
derive a gravity equation for the carbon content of trade and find that the Kyoto commitment
effect is associated with a decrease in domestic emissions by 7%, but an increase in the share of
imported embodied carbon emissions over domestic emissions by about 14%. The latter paper
uses a matching technique (matching bilateral country pairs) and also finds significant and large
effects: Kyoto countries” exports are reduced by 13% to 14%. However, the validity of these
results have been questioned in the literature, owing to several caveats. In particular, capturing
the environmental stringency of regulation using a Kyoto Protocol dummy is crude and limiting.
In addition, the reality was that the EU countries were the only ones among the Annex I group to
adopt significant climate policies. Yet the authors report that EU membership does not increase
CO, imports when EU and Kyoto membership are included in the regression. This suggests that
the changes to CO, net imports for Annex I countries in their estimations are driven by factors
other than the Kyoto Protocol commitments, most likely the effect of China joining the WTO in
2002, which coincided with most Annex I countries’ ratification of the Kyoto Protocol (Branger &
Quirion, 2013). This explanation is consistent with the fact that most Annex I countries” CO; net

imports are due to trade with China as shown in Chapter 2.

This chapter instead relates to a small recent literature which seeks to empirically examine the
relationship between energy price and trade, and use the results to infer the effects of carbon
pricing on future trade patterns. This strategy was pioneered by Aldy & Pizer (2011) in their
study which focuses on the US. This paper uses historical variation in industrial energy price
across states to investigate its effect on sectoral production and consumption. This enables an
empirical investigation of the impact of carbon pricing on US industrial supply and demand,
despite the absence of carbon pricing in the US historically. It finds that an increase in energy
prices in the US following the introduction of a 15$/ton carbon tax would induce a domestic
production decline of between 3 and 4 percent among energy-intensive sectors and a roughly 1
percent increase in imports. The authors also find evidence that responses to energy prices are
bigger for industries with higher energy intensity.

In a similar vein, Gerlagh & Mathys (2011) use a country specific energy abundance measure to
proxy for marginal energy costs, and investigate its impact on net exports using a panel of 14
high income (OECD) countries over 28 years. The authors find that (i) there is high correlation
between energy abundance and price; and (ii) energy abundant countries have a high level of
energy embodied in exports relative to imports. These results therefore provide indirect support
to the existence of a carbon leakage effect. With respect to these studies, this chapter uses a

much wider dataset, covering 60 sectors in 51 countries over 21 years.

4.2.2 Insights from the wider empirical literature on environment & trade

The handful of ex-post analyses examining the impact of carbon policy on global trade patterns

form part of a wealth of empirical studies investigating trade impacts of environmental policy
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more generally. These are gathered under the heading of the so-called Pollution Haven Effect
(PHE). The argument goes, that changes in environmental regulation influence the distribution
of polluting industries between countries, because pollution abatement costs affect the firm’s
decisions on output, trade and investment.> Reviews of this literature have shown that the
empirical evidence to support this hypothesis is mixed (Copeland & Taylor, 2003; Jaffe et al.,
1995; Jeppesen et al., 2002, provide a detailed review).

The environment & trade literature offers important insights into a number of potential pitfalls
with the empirical investigation of carbon leakage effects. Firstly, it highlights the importance of
using panel data rather than cross-sectional data. Panel data analysis is preferable because fixed
effects can be used to control for unobserved heterogeneity at the country-pair level, such as
historical and structural factors. It can also better deal with endogenous variables (for example,
the level of trade may also impact environmental regulation stringency), and persistence in trade
levels over time. van Beers & van den Bergh (1997) using a cross-sectional study of 21 OECD
countries, find some evidence that the proxy variable for environmental policy impacts bilateral
trade. However, Harris et al. (2002) later extends this analysis using panel data models and finds
that the stringency variable is no longer significant when using fixed importer, exporter and time
effects. The empirical strategy used to model bilateral trade flows in this chapter draws from
recent developments in the gravity model of trade literature (applied in a variety of contexts)

and this is reviewed in the Section 4.2.3 below.

Secondly, the lack of good measures of regulatory stringency is problematic. Proxy measures
may suffer from measurement error — for example, van Beers & van den Bergh (1997) construct
their own indicator based mainly on energy intensity and recycling rates, whereas Grether &
de Melo (2004) use the difference in GDP per capita as a proxy. Membership of international
environmental agreements may be a crude or poor measure of policy stringency. For studies
focusing on the US (e.g. Henderson, 1996; Greenstone, 2002; Ederington et al., 2005), a popular
choice has been to use regulatory compliance cost as a share of value added in order to proxy
for regulatory stringency, typically using data from the pollution abatement cost expenditures
(PACE) (e.g. Levinson & Taylor, 2008). There are several known issues with this variable,
including an endogeneity problem.* A key strength of using historic energy price, as used herein,

is that it circumvents a number of these problems (Aldy & Pizer, 2011).

Thirdly, in a meta-analysis of 11 studies, Jeppesen et al. (2002) finds that the smaller the geo-

graphical coverage of the study, the larger the estimated effect of environmental regulation.

3The PHE can be distinguished from PHH (pollution haven hypothesis) which postulates that differences in
environmental regulation is the most important determinant of industry location and that these differences will
result in a relocation of pollution intensive industries out of regions with stringent environmental regulation, and
lead to specialisation in these industries in regions with lax environmental regulation. Theoretical models of this
hypothesis were formulated by Baumol & Oates (1988) and others. A related strand of literature investigates whether
(liberalisation of) trade is good or bad for the environment (e.g. Taylor & Copeland, 2004; Antweiler et al., 2001).

4The measure of abatement cost expenditure uses production level as the denominator, however, production level
can indirectly impact abatement cost via its impact on turn over, scale economies and technology, which in turn
impact industries’ ability to meet pollution control.
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Lastly, the same meta-analysis cautions against aggregating industries that are in fact heterogen-
eous, because pooling dissimilar industries can lead to aggregation bias in the results, leading to

overestimate the true effect for some sectors, and underestimate the effect for others.

In sum, a good proxy variable for environmental stringency, a panel dataset with reasonably wide
country coverage and disaggregation to account for sector heterogeneity are the key ingredients

for an empirical analysis of the impact of environmental regulation on trade patterns.

Additionally, related to the environment and trade literature is the body of literature which
examines the influence of environmental regulation and firm location. This in turn relates to
broader new economic geography (NEG) literature on the influence of factor endowments and
geographical considerations on location of production. Models of industry location are based
on a number of theories, including industry agglomeration (Ellison & Glaeser, 1999) as well as
the interaction between industry and country characteristics (Midelfart-Knarvik et al., 2000).
Although the review of this literature is beyond the scope of this sub-section, it is worth noting
that several studies in this literature also give support to the PHE (e.g. Mulatu et al. (2009);
Kahn & Mansur (2013)).

4.2.3 Developments in the gravity model of trade literature

This study uses a dynamic panel within a gravity model framework, controlling for fixed effects,
and draws heavily on the developments in the gravity trade literature. The gravity model of trade
was first applied by Tinbergen (1962) and Poyhonen (1963), and in its original form specifies
that bilateral trade flows are determined by the economic size of, and the distance between
two countries. The underlying principle is that trade relations are influenced by the size and
richness of the trading partners, as well as transportation costs. Population and income are used
as proxies for demand and supply, and distance proxies for transport costs.> This model, in
its various formulations, has been widely used as the "'workhorse’ of empirical trade studies. A
survey by Oguledo & Macphee (1994) found that 49 explanatory variables had been explored

empirically in this literature.

There are several different theoretical foundations to the model, with earlier gravity equations
derived from models that assume product differentiation (Anderson, 1979) and monopolistic
competition (Bergstrand, 1985). Later contributions incorporate economies of scale with produc-
tion differentiation (Helpman, 1987; Bergstrand, 1990) to reflect developments in trade theory
(e.g. Krugman, 1980). These mark a move away from classical Heckecher-Ohlin-Samuelson
(HOS) frameworks that focus on factor endowment differentials, that poorly explain trade pat-
terns, towards New Trade Theory (NTT) models that accommodate for intra-industry trade (ITT)
and offer explanations of both trade structure and volume. Key determinants in the resulting
formulation of the gravity model include relative factor endowment differences, overall bilateral

country size, similarity in country size and trade costs (Baltagi et al., 2003).

5Gravity models have also been successfully applied to flows including migration and foreign direct investment.
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Further important theoretical contributions include Anderson & Van Wincoop (2003) which
introduces substitutability between trade with different trading partners by relaxing the constant
elasticity of substitution (CES) assumption. This is done, in order to account for multilateral trade
resistance factors (or the border effect) which can be represented using time-variant bilateral
fixed effects within a panel data framework (Baldwin & Taglioni, 2006; Baier & Bergstrand, 2007).
Furthermore, Helpman et al. (2008) proposes a theoretical model that rationalises zero trade
flows using a model with firm heterogeneity and a correction for the probability of countries to
trade, by introducing the notion that the decision to export is not independent of the volume of

exports.

In addition to theoretical developments, a large number of empirical applications in the literature
on international trade have also contributed to improving the performance of bilateral trade
models.® Importantly, papers have demonstrated the sensitivity of estimation results to the
model specification. The choice of econometric technique can severely affect the magnitude of
the coefficients, although there is usually agreement across models in the sign of the parameters

for most gravity variables (Gomez-Herrera, 2013).

4.3 Empirical analysis: strategy, econometric model, data and de-

scriptive statistics

4.3.1 General approach

The objective of this study is to examine the relationship between historic asymmetries in
industrial energy prices and bilateral trade patterns. In particular, I test the hypothesis that
when the importer’s energy price is higher than its trading partner, a larger energy price gap
is associated with greater import flows. The empirical approach adopted to test the empirical

predictions is based on the gravity model, as stated above.

The results can then be used to infer the effects of potential asymmetries in carbon price on future
trade patterns. The key idea is that the impact of a carbon price on a firm is a function of its
energy use, because the level of carbon emissions are largely attributable to energy combustion
in production (although in some processes, there are non-energy related emissions also such
as process emissions in chemical and cement production). Indeed, high correlation between
electricity and carbon prices have been found in Europe (Sijm et al., 2006). The main advantage
of using energy prices is that, while experience with carbon prices is still limited globally, historic

data on industrial energy prices exists for many countries and many years.

To measure the difference in energy price between two trading partners, I define epgap;; as the

difference in the logs of energy prices, or in other words as a log of the ratio of energy prices:

6Some early contributions include Ghosh (1976) and Matyas (1997).
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epgapij; = In(EP;;) - In(EP;)

where EP;; and EP;; are the real industrial energy price respectively in importer i and exporter j
at time f. A positive value of epgap;;; implies that the importer i has a higher industrial energy
price than the exporter. Note that the energy price data availability is such that the epgap varies
by country, but not by sector.”

In a basic regression framework, I regress the value of trade on the electricity price gap to

establish whether there is a link:

Intrade;js; = Bo + Prepgapijt + Xijt + €ijst (41)

where Intrade;js; is the log-value of annual imports by country i from country j for sector s at

time t, X;j; is a vector of control variables and ¢;; is the error term.

The choice of control variables is derived from recent advances in the gravity literature. First,
I control for overall bilateral economic size, relative economic size (similarity of GDP) as well
as differences in relative factor endowments (similarity of capital-labour ratios) (Baltagi et al.,
2003; Wang et al., 2010; Egger, 2000). These three variables are specified as follows:

gdpt = In(GDP;; + GDP;;)

o) ~[oom se0m)

dpsim;;, = In|1 -
gapsimij n[ (GDPit—i—GDPjt GDPit+GDPjt

rfaci]-t =

GDP; GDP;
In ) _In /
CAPITA;, CAPITA;;

Overall bilateral economic size, gdpt, reflects the fact that the volume of exports should be
higher, the bigger the overall market size. gdpsim;;; measures the similarity in the levels of
GDP in the trading partners, hence captures the relative size of the two trading partners. Before
the log-linear transformation, this variable can take the value between 0 and 0.5. A higher
value indicates that the two trading partners are similar in size (GDP), with 0.5 indicating
equal country size. Theory predicts that the higher this value, the greater the expected share of
inter-industry trade (Egger, 2000). r f ac;;; measures the similarity in capital-labour ratios, or in
other words, the relative factor endowments. A value of 0 represents equal factor endowments
proportion. Bergstrand (1990) illustrates empirically using the gravity model that bilateral trade
between high income countries is positively related to similarity in relative factor endowments

(reflecting similarity in preferences).

7This issue is discussed further in Section 4.3.3.2.
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The gravity model also explains trade as a function of invariant country pair-specific determin-
ants such as distance, common language, common borders, common currency, colonial ties. Since
there is considerable sector variation in trade intensities, when the trade data is disaggregated
at sector level, using country-pair-sector fixed effects can usefully control for time invariant
sector characteristics such as the global market structure and the nature of the traded good (e.g.
homogeneous commodities are traded more intensively). In addition, time dummies control
for common macroeconomic shocks, such as the sharp fall in global trade volumes following
the financial crisis in 2008. The range of fixed effects used in this analysis substantially reduce
possible bias from omitted variables. At the same time, the specification of the fixed effects
has been shown to have a large impact in gravity model estimations, and sensitivity will be
examined in Section 4.5. Adding these extra terms in equation 4.1, the basic gravity relationship

is modelled as:

Intrade;js = Po + Prepgapiji + P2gdptije + B3gdpsimij + Parfacijs + wijs + ar + €ijse - (4.2)

where w;js are the country-pair-time fixed effects and «a; are the time dummies. The primary
objective of the study is to estimate the coefficient . The hypothesis here is that trade is larger
when the energy price gap is positive (exporter has the lower energy price) and larger, hence a

positive sign is expected for the coefficient g .

The gravity literature recommends applying a number of different specifications to the same data
to account for fixed effects, dynamics and the distribution of the dependent variable (Gémez-
Herrera, 2013; Head & Mayer, 2013). This chapter will follow this recommendation and use
different estimators — OLS, Arellano-Bond GMM, Poisson maximum likelihood (PML), negative
binomial and zero inflated negative binomial. The next subsection presents and discusses the
underlying issues and methodological constraints, to assess which specification is theoretically

most appropriate.

4.3.2 Econometric issues

Two key issues that arise when estimating the gravity equation are the persistence of trade over

time and the presence of zeros in the dependent variable data.

4.3.2.1 Dynamics

As will be seen in Section 4.3.3, the descriptive features of the sectoral trade data display strong

persistence. Therefore it is important to account for trade in past periods, by including one or
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several lags of the dependent variable. The dynamic specification for a linear model is:

n
Intrade;js; = Z/\plntmdeijs(t_p)+,31epgapl-]-t+ﬁ2gdptl-jt+ﬁ3gdpsimijt+ﬁ4rfaci]-t+a)1-]~5+at+el~jst
p=1
(4.3)

where lagged dependent variables enter as Z;Zl Aplntrade;is;_p), where, p is the number of
lags. This log-linearised model (estimated for example by OLS) has several limitations. Lagged
dependent variables are correlated with the fixed effect w;js and this can lead to a bias in the
estimate of the coefficient on the lagged dependent variables as well as the other regressors that
are correlated with the lagged dependent variable. This bias, however, decrease with the length
of the panel (Arellano & Honor¢, 2001; Nickell, 1981). OLS can be inefficient and biased where
the data is heteroskedastic (Santos Silva & Tenreyro, 2006) as is often the case with bilateral
trade data. To deal with these issues, a popular estimator is the Arellano-Bond difference
GMM (used for example by Carrere, 2006; Baier & Bergstrand, 2007; Olivero & Yotov, 2010;
Martinez-Zarzoso et al., 2009). In the first-difference transformation (Equation 4.4), constant

and individual effects are removed, reducing serial correlation:

n
Alntrade;j; = B1Aepgap;ji+prAgdpt;j+PsAgdpsim;j+PaAr facj+ Z ApAlntrade;jsi_p)+ar+Ag;js
p=1

(4.4)
The differenced equation is treated as a system of equations for each year t. Parameters are
estimated by using lagged values of the dependent variable as instruments of the endogenous
variables as well as the strictly exogenous regressors. It is particularly suited to panel data with a
short time dimension and large cross-section, as is the case in this analysis. A common problem
with the GMM estimation is that when the series is highly persistent (as is the case with trade),
the instruments are very weak predictors and this can leads to a small sample bias. However,
weak instruments tests conducted showed that the results presented in Section 4.4 below are

robust to this.

4.3.2.2 Presence of zeros

A common problem with trade data is the presence of zeros. With linear models such as OLS
and Arellano-Bond GMM, two options can be used to deal with this issue: using Intrade;;s; =
In(trade;j; + 1) as the dependent variable, and running the estimations on the sub-sample of
strictly positive observations (unbalanced panel). An alternative approach is to use non-linear
models — studies have shown that using such models initially developed for count data analysis

can be successfully applied to continuous variables (Wooldridge, 2010). Since the value of
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trade between two countries in any period is a non-negative integer, it is natural to model the
conditional mean as a log-link function of explanatory factors and estimate using the PML

model. Cluster robust standard errors are used to obtain correct inference: 8

n
trade;js; = exp(Prepgapiji+A, Ztradeijs(t—p)+ﬁ2gdptijt+,B3gdp5imijt+/34rfacijt+xijs+Tt)"H’lijst
=1

’ (4.5)
where Xj;; are country-pair-sector fixed effects, and T; are time trends. Westerlund & Wil-
helmsson (2011) conducts Monte Carlo simulations using panel data and argues that the PML
fixed effect estimator eliminates the problem of zero trade, while controlling for heterogeneity.
Another approach developed to address the issue of zeros is a two-step estimation technique. As
outlined by Helpman et al. (2008), bilateral trade can be viewed as a result of two processes —
one that generates zero counts and another that generates positive counts. Practically, this can be
implemented using “inflated” models, which essentially has the effect of increasing the variance
of the model and increasing the predicted probability of observing zero trade values. The zero
inflated negative binomial model, for example, assigns a probability p to generating zero counts,
and a probability (1 —p) to generate a negative binomial distribution, where 0 < p < 1. The
probability p is determined by a vector of bilateral characteristics such that p;; = F(#;;4) where
11ij is a vector of bilateral characteristics that predict the probability of zero, and ¢ are vector
parameters to be estimated. A zero inflation approach will indeed be applied in this chapter,

which uses data containing a non-trivial share of zeros at 25%.

4.3.2.3 The combination of the issues of dynamics and the presence of zeros

Accounting for dynamic effects in the framework of non-linear models therefore raises further
difficulties. While addressing the issue of zeros, the strict exogeneity assumption is violated in
equation 4.5 with the inclusion of the lagged dependent variables and fixed effects. A popular
technique used to circumvent this problem is to use a pre-sample mean of the dependent
variable as a proxy for the time invariant unobserved heterogeneity of export behaviour in place
of the true fixed effect (Blundell et al., 2002, 1999). Applications to data on environmental
regulation variables include Jug & Mirza (2005) and Egger et al. (2011).” Implementing the

latter, a pre-sample mean of bilateral exports can be specified as:

1 _
tmde,-js = ﬁ Z tmde,-jsr
r=0

8The fixed effect PML estimator is available in standard statistical software packages.
9 Alternatively, applying a quasi-differencing transformation (generalised method of moments estimator) has been
suggested (Wooldridge, 1997).
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where TP is the number of pre-sample observations. This country-pair and sector specific
pre-sample export variable, provides an attractive way to control for unobserved heterogeneity
of export patterns, because unlike the true fixed effect, it is exogenous of the lagged dependent
variables. The non-linear model with pre-sample mean estimator can be estimated in its

multiplicative form directly:

n
trade;j; = exp(, Ztradeijs(tfp) + Brepgapijr + P2gdptijr + Psgdpsimij + Par f acijs
p=1

+7/Dij + 5di5tl’]‘ + T + (j)tradeijspresmp) + Ujjst (4.6)

Because the pre-sample mean estimator may fail to capture every aspect of time-invariant
country-pair heterogeneity, the equation also includes standard gravity variables: yD;j; is a
vector of geographical dummies (contiguity, common official language and common currency),
and dist;; is the log of geographical distance. A dummy variable that takes the value of one if

the pre-sample export mean is equal to zero is also included.

The pre-sample mean estimator is best suited for data with a relatively stable mean. Yet in the
case of trade, there is a tendency for the mean to increase over time hence the pre-sample mean
is not a good proxy of the true fixed effect. It is therefore argued that the PML model specified by
Equation 4.5 which is equivalent to a model with individual specific constants, may be a more
appropriate model. With a 16 year panel, the bias introduced by violating the strict exogeneity

assumption is likely to be small.

Another consideration is the existence of over-dispersion in the data — this is not surprising
in trade data and was confirmed by two tests for the null hypothesis that the mean equals the
variance — Cameron and Trivedi’s regression based approach and Greene’s test using Lagrange
Multiplier. The PML model in its pure form assumes that the data are equi-dispersed i.e. there
is equality of conditional mean and variance, therefore u;;; has an expected value of one. Several
solutions have been proposed to overcome this problem including the negative binomial model
(Helpman, 1987) and the Poisson pseudo-maximum likelihood (PPML) estimator developed
by Santos Silva & Tenreyro (2006). The latter approach relaxes the assumption of equality
between the conditional variance and the mean, but rather performs optimally when the two
are proportional hence can be applied to over-dispersed data.'® However, the fixed effect PML
estimator which is available in standard statistical software packages now relaxes the equi-
dispersion assumption hence consistent with the PPML, although the latter is computationally

more efficient.

A further point to note about the empirical model’s structure is that it yields common elasticities

10The authors argue that this is the most natural procedure without any further information on the pattern of
heteroskedasticity. They show that the model performs well with cross-sectional data, and can provide a consistent
estimator of bilateral trade in gravity models, even when the data has many zeros.
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with respect to energy prices for imports and exports. This is because by applying the estimation
models to bilateral data which is symmetric, any one observation of bilateral trade can be
consider an import and an export at the same time.!! This is important because the possibility
that that some individual trade flows for a particular country may face a larger or smaller impact

than the average cannot be ruled out.

4.3.3 Data

One of the key strength of this study is the richness of the dataset gathered for the analysis.
This dataset records bilateral trade between 51 countries (both high, middle and low income)
12-and 66 sectors for the period 1996 to 2011. The data is disaggregated at 2-digit SITC sector

resolution and covers all traded sector categories.!'3

4.3.3.1 Bilateral trade

Sectoral bilateral trade data in US dollars (US$) at current prices for the dependent variable
was extracted from UN COMTRADE, via World Integrated Trade Solution (WITS). The bilateral
trade data in the sample covers between 70% to 90% of world trade obtained from the WTO
Statistics Database (World Trade Organisation, 2012), depending on the year, as shown in Figure
4.1. Here, trade expressed in nominal value terms is used unlike Chapter 3 where trade data
in physical quantities is used, because the data in monetary terms is more complete across
the 16 year time period. Using trade data in physical quantities is strongly advantageous for
quantifying volumes of trade embodied carbon in Chapter 3, as it leads to better understanding
of the relative size of trade flows across countries, and avoids problems regarding exchange rates
and price assumptions. It is less important in this chapter, which examines the 'within’ variation

in bilateral trade over time, for a specific sector and country pair.

Although the trade data is available at a more granular level, the chosen level of sector aggrega-

tion reflects the optimal trade-off between several considerations. More sector disaggregation can

I Estimate elasticities separately for imports and exports is of course possible for a subset of countries, but this is
not the objective of this study.

12 Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, Chinese Taipei (Taiwan), Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, India, Indonesia, Ireland, Israel, Italy,
Japan, Kazakhstan, South Korea, Latvia, Lithuania, Luxembourg, Malta, Mexico, Netherlands, New Zealand, Norway,
People’s Republic of China, Poland, Portugal, Romania, Russian Foundation, Singapore, Slovak Republic, Slovenia,
South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, United Kingdom, United States and Venezuela.

13Meat, dairy product, fish, cereals, vegetables & fruit, sugars, coffee&tea&cocoa, animal feed, other food, beverages,
tobacco, hides&skins, oil seeds, crude rubber, cork&wood, pulp, textile, crude fertiliser, metal ore, crude animal
material, coal&coke, petroleum, gas, electricity, animal fats, vegetable fats, processed fats, organic chemicals,
inorganic chemicals, colour dye, pharmaceutical, essential oils, chemical fertilisers, primary plastics, non-primary
plastics, insecticides, leather, rubber manufacturers, cork manufacturers, paper, textile articles, cement&lime&non-
metallics, iron&steel, non-ferrous metals, metal manufacturers, power generating machinery, industrial machinery,
metal working machinery, electrical machinery, road vehicles, non-road transport vehicles, prefabricated buildings,
furniture, travel goods, apparel, footwear, scientific instruments, photo equipment & optical wear, other manufactured
goods, non-gold coins, gold coins.
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Figure 4.1: The share of world trade covered by the sample bilateral trade data in this study
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Source: Author based on data from WTO Statistics Database (2012)

be advantageous particularly for heterogeneous sectors, enabling control for sub-sector specific
characteristics. However, moving to the three or four-digit level substantially increases the
number of zero values in the dependent variable and results in a very skewed distribution. At 66
sector level the share of zeros is below 25%, which is manageable for the estimation techniques
used. It is important, nonetheless, to check whether the estimation results are sensitive to sector

aggregation levels, and this is explored in Section 4.5.

With regards to the missing 25% of observations, it is possible that these represent a genuine
zero i.e. no trade in sector s for the country-pair ij for a particular year. It is also possible that
zeros represent missing data, or rounding down errors. Unfortunately this distinction cannot be
made in COMTRADE data, which includes only positive values, and there is limited consensus
in the literature about the share of zeros and missing values.'* Zeros can be ignored so long as
they are randomly distributed, however, if this is not the case, it will introduce a selection bias.
There are reasons to believe that zero values of the dependent variable largely reflect genuine
zeros (no trade for these products). The value is obtained in this dataset by taking the maximum
of two mirroring statistics, which means both the importer and exporter individually recorded
zero trade for that product. Also, the panel is relatively recent, compared to the previous studies

which consider missing values from a much longer panel and the sample covers major trading

l4Whereas Gleditsch (2002) states that around 80% are zeros (no trade) and the rest are missing values, on the other
hand, Feenstra et al. (2005) finds around 60% to be zeros. Bernasconi (2009) develops a method which distinguishes
between reporting and non-reporting countries, and assumes that missing values for reporting countries are zeros.
Using this assumption, she finds that only 30% of missing values represent no-trade.
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nations.

4.3.3.2 Energy prices

The energy price series are obtained from the IEA Energy price and taxes information (IEA,
2012a). As described in IEA (2012b), the series for Energy end-use prices in US$ gives informa-
tion on total prices (including taxes) for industrial users by fuel type (electricity, coal etc). The
raw data is recorded in national currency per physical unit and submitted to the IEA Secretariat
by national country administrations. This is transformed by the IEA to US$/unit using the
exchange rates to the US$ from the OECD Main Economic Indicators. Annual data are twelve
month averages. Industry prices and taxes are the average of amounts paid for the industrial
and manufacturing sectors. This include transport costs to the industrial consumer, taxes that

have to be paid by the industrial consumer, and reflect prices actually paid (net of rebates).

When converted to US$/unit, the differences between country end-use prices for industry and
the world market price is attributed, not to the exchange rate differentials but other pricing
parameters. These include transport costs, transformation costs, energy abundance, costs of

non-tradable energy sources, market structure and national and local taxes.

Of the various fuel price series available, the electricity price is used to proxy for the industrial
energy price. Electricity is by far the most complete price series available in the database (70%
in the sample used here). The problem of missing data is particularly serious for coal and
gas (around or less than 50% of data), and for countries important in trade (e.g. China’s gas,
Germany’s coal). Oil price series are also very incomplete for all three types of oil — light fuel oil,
low sulphur oil and high sulphur oil. Therefore using any of the other fuel price series to proxy
for industrial energy price would severely restrict the sample size. Ideally if the prices were
more complete, it would be possible to combine the fuel price data with sector energy use data to
calculate a country-sector specific energy price index. For example, for sectors that rely heavily
on coal, the coal price can be weighted more than for other fuel types. Given the current data
availability, using electricity appears to offer a reasonable option for a number of reasons. In
many key industrial regions such as the US and Europe, electricity costs represents the majority
of energy expenditure for the majority of manufacturing sectors (Aldy & Pizer, 2011; Eurostat,
2012). On a global scale, in 2004, while the amounts of coal, gas, oil and electricity used in
industry are similar, electricity accounted for the highest share of industry CO, emissions at
40%, followed by coal 25% (IEA, 2007b). Electricity price is also positively correlated with the
available prices for oil, gas and coal. A simple panel fixed effect regression (by country) shows
that the change in yearly oil, gas and coal prices have a positive and statistically significant effect
on the change in electricity prices over time. Therefore it is argued that industrial electricity

price provides a reasonable proxy for industrial energy price.

Several obstacles were encountered when using the total energy price expressed in US$/unit

to construct the dataset. First of all, it reflects nominal prices rather than real (i.e. it does not
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Figure 4.3: Top 30 total exports by sector in 2008, in sample data (US$ Billions)

Figure 4.2: Top 20 total exports by bilateral trading route in 2008, in sample data (US$ Billions)
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Figure 4.4: Cross-country differences in total electricity prices (including tax) for industry (in real prices,
US$/MWh), years 1995 and 2008
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account for inflation). This is problematic because different countries have different inflation
rates (energy specific) during the period which this analysis covers.!> To address this, energy
price series are deflated using a fuel specific real price index available from the same IEA
database, for IEA/OECD countries only. These are compiled by the national statistical services.
In addition to producer price indices and consumer price indices, sub-indices for energy products
are sometimes available. For non-OECD countries or for OECD countries where the fuel specific
real price index is not available, I apply the World Bank Manufactures Unit Value (15) Index
(World Bank, 2012). The MUV is a composite index of prices for manufactured exports from the
fifteen major developed and emerging economies to low- and middle-income economies, valued
in US$.

Having transformed the energy prices into real energy prices, there remains a problem of
missing values (no electricity price data). Missing values are imputed using country specific
indices: electricity real price index, total energy real price index, producer price index, electricity
wholesale price index and electricity consumer price index. The average of the five imputed
prices is taken. This reduces missing values for energy price from 31% to 20% of observations.

4.3.3.3 Other data

GDP and population data are obtained from IMF World Economic Outlook (IMF, 2012). For
Taiwan, GDP data was obtained from Taiwan national statistics (National Statistics of Republic
of China (Taiwan), 2012). GDP data are available in US$ in current prices. These are converted
into real prices using the GDP deflator index, which is also available from the IMF database.
Because the latter has different base years for different countries, I adjust the deflator index, such
that the 2005 =100 for all countries.

Additionally, standard gravity model variables obtained from the Gravity Dataset provided by
CEPII are used for estimations using the pre-sample mean technique (CEPII, 2012). Data on
labour and capital prices were obtained from United Nations Industrial Development Organiza-
tion (2011) and extracted from ESDS, in order to conduct robustness checks on the influence of

other bilateral time variant determinants of trade.

4.3.4 Descriptive statistics

Exports (in value terms) on an aggregate level rose steadily during the decade from 1991 ($3,515
billion), doubling to $6,494 billion in 2002 according to the WTO data as shown in Figure 4.1. It
then increased at a faster rate until disrupted by the financial crisis and subsequent economic

I5The IEA database also gives energy prices in terms of US$/unit using PPP. This measure addresses concerns
that, because of wide fluctuations in exchange rates, international price comparisons using exchange rates do not
capture relative purchasing power in each currency. Hence they convert the national currency prices using average
purchasing power parities. Controlling for relative purchasing power is different from controlling for inflation and
not immediately relevant for the purpose here.
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Table 4.1: Descriptive statistics

tmdefjt lnradefjt epgapijs gdpti gdpsim;j, ‘ rfacij ‘ dist;

overall
mean 4924491 | 5.620122 0 6.791015 | -1.654019 | 1.186787 | 5915.786
std. dev. | 476347.4 4.0764 5275219 | 1.219263 | 1.057392 .950066 4695.793
variance | 2.27e+11 16.61703 | .2782794 | 1.486601 1.118078 9026254 | 2.21e+07
min 0 0 -2.229854 | 2.454198 | -7.178076 | .0000267 | 160.9283
max 8.60e+07 | 18.26955 | 2.229854 | 9.887039 | -.6931472 | 5.033718 | 19539.48
median | 430.2025 | 6.066578 | -.0006437 | 6.804666 | -1.281719 | .9628906 | 5406.409
N 2512992 2512992 1724148 2041484 2041484 2041484 2512992

between
std. dev. | 424265.9 | 3.728867 | .5036073 | 1.192057 | 1.052191 .9002405 | 4695.808
min 0 0 -1.96002 | 2.930351 | -6.937026 | .0203294 | 160.9283
max 5.11e+07 17.7345 1.96002 9.698107 | -.6937601 4.62633 19539.48

within

std. dev. | 216578.9 | 1.647018 | .1943792 | .2854588 | .2186315 .2970659 0

min -2.59e+07 | -8.897687 | -1.218422 | 5.948761 | -4.070698 | -.9104433 | 5915.786
max 5.21e+07 | 18.24153 1.2128 8.816855 | .6480542 | | 4.041534 | 5915.786

recession in 2008 (dropping from $16,140 billion to $12,542 billion between 2008 and 2009),
when world exports fell sharply. Since 2009, aggregate exports have been on an upward trend
again, reaching $18,255 billion in 2011.

At the country-pair-sector level, there is considerable variation in exports as shown in the first
column of Table 4.1. With a mean of $42 million, exports range from zero trade and up to $86
billion (Canadian exports of petroleum to the US in 2011). As shown in Figures 4.2 and 4.3,
more variation comes from the sector heterogeneity (in trade intensity and value) than from the

bilateral-pair heterogeneity.

In terms of the industrial electricity prices, there is considerable variation across countries as
shown in Figure 4.4. In 1995, prices were below 50US$/MWh in China, South Africa, Romania,
Canada, New Zealand and the USA (no tax included), but three times higher in Italy and Japan.
A general increase in prices over the next decade can be observed by comparing the two graphs,
as well as a widening of the range of prices. In 2008, real industrial electricity prices remained
low (below 60US$/MWh) for Kazakhstan, Russia, Indonesia, Taiwan, Norway, China, Korea and
Sweden, whereas users in Italy and Cyprus faced prices exceeding 200US$/MWh. Notice that in
some countries, real electricity prices for industry went down over the period, such as in Japan

and in Norway.

The descriptive statistics in Table 4.1 shows that when expressed as the difference of the logs (i.e.
the log ratio) the electricity price gap’s mean is zero because of the symmetrical nature of the data
— the energy price gap between US and UK is expressed as a negative value when considering UK

exports to the US, and as a positive value of the same magnitude when considering US exports to
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the UK. Notably, the within-group standard deviation of the electricity price ratio is high. That
is to say that the historical fluctuations in the energy price gap have been considerable, driven

by underlying factors such as energy taxes, energy supply and demand.

4.4 Results

4.4.1 All sectors

Implementing the estimation techniques described in Section 4.3.2, Table 4.2 reports the para-
meter estimates from five different models employed, considering all 66 sectors. The dependent
variable is the natural logarithm of trade for the OLS and the Arellano-Bond GMM estimations,
and trade in levels for the Poisson maximum likelihood, negative binomial and the zero inflated
negative binomial estimations. Unobserved heterogeneity is controlled for using fixed effects for
country-pair-sector for models (1) to (3) and using the pre-sample mean scaling estimator for
models (4) to (5). For the latter group of models, the data for the years 1991 to 1995 is used for
the pre-sample mean estimator. All models assess variation in trade and energy prices during
the years 1996 to 2011.

The main result from table 4.2 is that the electricity price gap is statistically significant and has a
positive effect on bilateral trade. In other words, trade tends to develop between countries with
different energy prices. This result holds across the five model estimations. More specifically, a
one percent increase in the electricity price ratio (when the importer has a higher energy price)

is associated with a change in bilateral import levels by 0.05 to 0.17%.

In addition, across the models, the coefficients for the lagged dependent variables always exhibit
a parameter estimate which is significantly different from zero. This suggests there is strong
‘think-back’ or ’stickiness’ in the level of sectoral trade between two countries, and highlights
the importance of using a dynamic panel estimator as. This finding is consistent with the recent
literature (Olivero & Yotov, 2010, 2012).

I now discuss the results in greater detail. The first column refers to the results based on the
baseline OLS model with fixed effects at the country-pair-sector level. I use robust standard
errors clustered at the country pair level, given the data (electricity price gap does not vary
by sector). Two lags of the dependent variable are included, to allow comparison with other
estimations in the table. In addition to year dummies, linear time trends are included for the
importer and exporter. Although not as flexible as importer-time and exporter-time dummies,
time trends offer a way to capture time variant characteristics of the trading countries, while

keeping the estimations computationally manageable.

The key explanatory variable epgap;;; has a positive and significant coefficient estimate of 0.08.16

The control variables are significant and the signs are consistent with expectation. Increase

16For the purpose of comparison, the coefficient on the epgap variable when running the OLS estimation without
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Table 4.2: Results for all sectors

1) () (3) 4) (5)
Arellano-Bond
OLS GMM PML, fe Negative binomial Zero inflated NB
Electricity price gap 0.08*** 0.11%** 0.05*** 0.17*** 0.15%**
(0.01) (0.01) (0.01) (0.06) (0.05)
Control variables
Relative fact. endow. -0.05%** -0.01 -0.03** -0.04*** -0.05%**
(0.01) (0.00) (0.02) (0.02) (0.02)
GDP total 0.32%** 0.62%** 0.53%** 0.36%** 0.27%**
(0.02) (0.01) (0.02) (0.08) (0.08)
GDP similarity 0.20%** 0.58%** 0.29%** 0.27%** 0.23%**
(0.02) (0.01) (0.03) (0.04) (0.04)
Gravity variables
distance -0.00%** -0.00***
(0.00) (0.00)
contiguity 0.60*** 0.60***
(0.06) (0.06)
common offical language 0.271%** 0.18***
(0.06) (0.04)
common currency 0.21%** 0.19%**
(0.06) (0.05)
Lagged dep. vars.
trade_ij(t-1) 0.38*** 0.16%** 0.32%** 0.37%** 0.35%**
(0.00) (0.01) (0.02) (0.01) (0.01)
trade_ij(t-2) 0.08*** 0.00** 0.01*** 0.271%** 0.20%**
(0.00) (0.00) 0.01** (0.01) (0.01)
trade_ij(t-3) 0.00%** (0.00)
(0.00)
Pre-sample info.
trade presample mean 0.02 0.00
(0.02) (0.02)
zero presamp mean dum -0.21 -0.26
(0.31) (0.38)
Inflation equation
trade presample mean -0.49%**
zero presamp mean dum -1.63%***
distance -0.00*
contiguity -0.65%**
common offical language 0.13
common currency -0.08**
-0.07
Countrypair sector effects Yes Yes Yes pre-samp pre-samp
Country time trend Yes No Yes Yes Yes
Year effects Yes Yes Yes Yes Yes
Observation number 1706402 1745418 1706402 1706402 1706402
Endogeneity test (p-value) <1%
Identification test (p-value) <1%

Robust Standard errors in parentheses: * p<.05, ** p<.01, ***p<0.001
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in total economic mass increases bilateral exports, and the similarity in GDP also tends to
increase trade. The positive coefficient on the latter suggests existence of intra-industry trade.
The coefficient on rfac;j; is negative, suggesting that the model is consistent with the Linder

hypothesis — that bilateral trade is negatively related to differences in relative factor endowments.

The second column reports estimates based on the differenced Arellano-Bond GMM estimator
(one-step estimation with cluster-robust standard errors), which gives a positive and statistically
significant coefficient estimate of 0.11. Here, the first-differenced lagged dependent variable
is instrumented by its own lags in levels.!” Residual based tests were also conducted to test
whether the explanatory variables are endogenous. The null hypothesis of endogeneity was
rejected at the 0.1% significance level, therefore, this suggests that the assumption that these
variables are exogenous holds. The estimation results again find that the energy price gap
variable is positive and significant. In this differenced specification, it is not possible to account
for importer and exporter linear time trends. The Arellano-Bond estimator results clearly show
that there is considerable persistence in trade over time, as all six lagged explanatory variables
are found to be statistically significant. The optimal lag structure (six lags) has been selected on
the basis of the autocorrelation test. The coefficient on the first lag is large, and the subsequent

ones are smaller.!®

When six lags are specified, the Arellano-Bond test statistic of second
order serial correlation (AR(2)) showed value of z = —0.36, with an associated p-value of 0.721.
Hence the null hypothesis of the absence of serial correlation can no longer be rejected.!” The
Sargan and Hansen tests for over-identification of restrictions is also conducted to test the null
hypothesis that the instrumental variables are uncorrelated with the residuals. The hypothesis is
not rejected, thus the possibility of orthogonality between the instruments and the residuals as
required by the GMM cannot be rejected. Additionally, the weak instruments test (first-stage
F-statistic and apply the rule of thumb developed by Staiger & Stock (1997)) indicated the risk is
low. Although this model addresses the issue of dynamics, it does not deal well with the issue of

zeros in the dependent variable.

The Poisson maximum likelihood model estimation is shown in column (3). The coefficient on the
key explanatory variable epgap;;; is positive at 0.05 and statistically significant at conventional

levels.20 The coefficients on the control variables are in line with other models.

Turning now to the negative binomial model and the zero-inflated negative binomial model

results in column (4) and (5), the coefficient on the epgap is positive and significant and the

the lagged dependent variables is 0.10***(0.01). That the inclusion of the lagged dependent variables leads to a
downward bias is consistent with theory, which predicts that the bias is negative if the coefficient is positive and
smaller than one.

17 As a comparison, a System GMM estimator was also estimated. The results were similar.

180nly three lags are shown in the table in the interest of space. Additionally, it was tested whether the electricity
price gap is endogenous, using residual based tests. Lagged values of the price gap were used as instruments. The
null hypotheses of exogeneity at the 10% significance level was not rejected. Therefore, it suggests that there is no
need to account for endogeneity bias for this variable.

19The test for AR(1) process in first differences rejects the null hypothesis, as expected.

20 Again for the purpose of comparison, the coefficient on the epgap variable when running this estimation without
the lagged dependent variables is 0.06***(0.00).
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magnitude of the effect is similar, with relatively high values of 0.17 and 0.15 respectively. For
both columns, the pre-sample mean scalar is positive and but not significant. This is to be
expected for reasons discussed in Section 4.3.2.3 (trade tends to increase over time), and suggests
that the PML model with true fixed effects performs better. However, the control variables have
expected signs, and may be controlling well for the time-invariant country pair characteristics.
Distance is negative and significant effect (but with a zero coefficient). Overall economic size,
similarity and contiguity has a positive and statistically significant effect as is expected. Two
lags of the dependent variable are significant.

Comparing the two columns’ results, the zero-inflated negative binomial model (column 5)
includes a probit equation for zero trade. As described in Section 4.3.2.2, a predicted probability
of generating a zero count is estimated using a vector of gravity variables and the pre-sample
mean estimator. As shown in the table, all explanatory variables included in the probit equation
are statistically significant. The rationale behind the zero inflation model is that the zeros in
the dependent variable may be non-random. Companies may first choose whether or not to
trade, and subsequently decide on how much to trade. The first decision, may be characterised
by the existence of a fixed cost of trade which should be higher than the potential benefit of
trade, if there is zero trade observed. As only non-zero trade flows are observed for a subset of
country-pair-sectors who decided to trade in the first place, this suggests that for this subset, their
average potential gains from trade are higher than the average. Estimating the coefficient for
the effect of electricity price gap on exports based only on observed trade flows then leads to an
overestimate (assuming that there is a constant effect of a price gap on trade flows). Comparing
columns (4) and (5), the coefficient on epgap is indeed lower for the zero-inflated negative
binomial model, which includes an adjustment of the conditional mean, by giving more weight
to zero observations. This suggests that there is evidence of a selection bias that can to some

extent be addressed by the inclusion of a zero-inflation equation.

Figure 4.5 shows the epgap coefficient estimate (middle bar), one standard deviation in each
direction (the box) and the top and bottom bars indicate the upper and lower limits of the 95%
confidence intervals for each of the seven models. The large standard deviation on epgap under
the negative binomial and zero inflated negative binomial models may be attributable to the

poor quality of the pre-sample mean estimator, as explained above.

Comparing the 95% confidence intervals for the epgap coefficient estimates across the five
models in Figure 4.5 enables some conclusions to be drawn. The results collectively support
the hypothesis that energy price asymmetry plays a role in bilateral trade flows. However, it
also shows that the results are sensitive to model specification and the magnitude of the effect is
estimated with limited precision. The estimates by PML and Arellano-Bond have a relatively
narrow 95% confidence interval, but their intervals do not overlap. The PML is preferred over
the Arellano-Bond specification from the perspective that it is able to control for importer and
exporter specific time variant characteristics, by using linear time trends. This is shown to be

important in Section 4.5. However, the PML represents a lower-end estimate. Across all five
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Figure 4.5: EPGAP coefficient estimates 95% confidence intervals across 5 models
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Note: The epgap coefficient estimate across the seven models are represented by the middle bar of the box. The boxes
represent one standard deviation in each direction and the top and bottom bars indicate the upper and lower limits

of the 95% confidence intervals.

models, there is some overlap in the estimates’ 95% confidence intervals are in the area of 0.05

and 0.15, suggesting the true effect is more likely to lie in this range.

4.4.2 Sector level

The importance of sector heterogeneity in the trade impacts of carbon pricing has been explored
in partial equilibrium modelling for Europe’s heavy industry, as well as in econometric analysis
for the EU production sectors (Section 4.2.1). This section examines whether similar evidence

can be found for a wider geographical scope.

Unfortunately sector level industrial energy price data is available for few of the 51 countries
covered in this study. In the absence of this data, one way to investigate this issue is to assume
that the average sector energy intensity in the US (or other countries for which data is available) is
representative, and apply to all countries. Another strategy involves interacting sector dummies
with the energy price variable epgap;j;. This approach is adopted in this section. On one hand,
this avoids making the assumption that sector energy intensities are uniform across countries.
On the other, it assumes that the same energy price level is faced by all sectors in one country.
There is by definition measurement error, because in reality sectors may face different prices
within a country e.g. they may have long-term contracts with energy suppliers, self-generation
or other energy subsidies. The assumption of a uniform energy price level across all sectors in

one country becomes more problematic, as the level of sector disaggregation increases.

As a start, the 66 sectors are aggregated into 17 sector groups — the categorisation is described in
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Table 4.5 in the Appendix. The sector-group dummies SGROUP are then interacted with the

country-pair specific epgap variable such that in the non-linear form:

n
trade;j; = exp(}, Ztmdeijs(t—p) + Brepgapij: + B2gdptijs + Pagdpsim;ji + Bar facijs
p=1

n=g
+9SGROUP + ka(SGROUP*epgapijt) + Xiji+ T) + eija (4.7)

k=1
The Poisson maximum likelihood estimator is used to estimate the above, as the preferred model.
Post estimation tests are conducted to evaluate whether the slope of the coefficients differ from
one another.?! The p-values for the conducted test for each sector group’s interaction were
checked, and it was found that the p-value for the test is below 0.1 (hence where the hypothesis

is not rejected at the 10% level) for over 30%. Hence it indicates that the effect of the energy

price gap is heterogeneous across different sector groups.

Because the PML is a non-linear model, the interaction terms are difficult to interpret. Thus
I run this estimator for the 17 sector groups separately. The results reported in Table 4.3 give
support to the notion that impacts of the energy price gap on trade are heterogeneous across
sectors. The coefficient is positive and statistically significant at conventional levels for half the
sectors — mining, fuel, iron & steel, pulp & paper, chemicals, semi-manufacturing, transport
equipment, textile & clothing and finally, the “other manufacturing” sector group. Many of these
are energy intensive sectors, but some non-energy intensive industries also experienced larger
impacts (transport equipment and textiles). It is also interesting to note that the coefficient is
not statistically different from zero for several energy-sectors such as fertilisers, non-ferrous
metals (aluminium) and cement & lime. This suggests an interesting phenomenon: trade in
the latter energy-intensive industries may be more resilient to higher energy prices than less

energy-intensive industries that compete with large volumes of net imports such as textiles.

An attempt was also made to examine the issue of heterogeneity further, by repeating the above
at the 66 sector level. At this granular level, observation numbers are significantly reduced
to between 15,000 and 30,000 observations. Only for a very small number of shares, an effect
statistically different from zero was found for the energy price gap variable, although the control
variables and lagged dependent variables had the expected signs. Table 4.4 reports the sectors
for which the coefficient on the energy price gap variable is statistically significant at least at the
10% level.

It is important to bear in mind that the magnitude of coefficients are imprecisely estimated
— they are sensitive to model specification. The further disaggregation of sector-groups also

magnifies both problems of measurement error (the epgap is averaged over the country pair

2l Whether the levels differ cannot be estimated because the model examines within group variation.
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Table 4.4: Sectors with epgap coefficient statistically different from zero, estimation by 66 sectors using

PML

Sector Energy price gap

insecticides 0.05% (0.03)
metal manufacture 0.04** (0.02)
metal ore 0.08* (0.05)
other manufacturing 0.05* (0.03)
paper 0.04*** (0.02)
petroleum 0.14%** (0.05)
pharaceutical 0.07* (0.04)
road vehicles 0.08** (0.03)
sugars 0.11** (0.04)
telecom machinery 0.11** (0.05)

*p<.05, ** p<.01, **p<0.001. Robust standard errors clustered at country-pair in parentheses.

and not differentiated by sector) and reduced sample size. Nonetheless, the analysis in this
subsection provides some evidence that the magnitude of this effect varies across sectors. As
should be expected, it suggests that impacts are more pronounced for relatively energy intensive

sectors.

4.4.3 How does an energy price gap relate to a carbon price gap?

Interpreting a one percent change in the energy price gap variable is not intuitive. To aid
interpretation of the results, I use an example of the UK and South Korea in 2007. To calculate
this, it is necessary to take account of the different carbon intensity of electricity in each country.
In 2007, South Korea had an average carbon intensity of 0.4558 tCO,/MWh whereas the UK’s
intensity was slightly higher at an average of 0.4882 tCO,/MWh. The real electricity price in the
UK in 2007 was 101.40US$/MWh and 65.44US$/MWh in South Korea. Recall that the energy
price gap is defined as epgap;;; = In(EP;;) —In(EP;;) hence epgap;;; = ln(g—llj;’r). The energy price
gap without carbon pricing is thus 0.44.%? Implementing a $30/tCO, in the UK and $5/tCO,
in South Korea would instead imply an electricity price gap of 0.54.23 Thus, a carbon price
asymmetry of $25/tCO, between the UK and South Korea roughly equates to a 10% change in
the epgap.

This example is illustrative, however. A crude method is used to translate the impact of a carbon
price on industrial electricity prices, by simply taking the respective country’s average electricity
carbon intensity and multiplying by the carbon price. In reality, this is a function of multiple

factors including the carbon intensity of the marginal electricity technology in the system, as

2211(101.4) — In(65.4) = 0.43855083
2311(101.4+ (30%0.4882)) — [n(65.4 + (5+0.4558)) = .53921072
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well as the short-term demand and supply elasticities in response to the introduction of the
carbon price.?* If anything, this simplifying assumption is likely to overstate the impact on
electricity price because the electricity prices faced by industries consists of many components

including wholesale electricity prices and taxes.

It is also worth noting that the variance of the epgap observed historically is large —a 10%
change in the electricity price gap variable discussed here is small relative to one standard
deviation in this variable, as shown in the descriptive statistics (Table 4.1). That is to say that
the historical fluctuations in the energy price gap has been considerable, due not to climate
policies, but to underlying factors (energy taxes, energy supply and demand, etc.). Therefore,
from the perspective of ordinary fluctuations in the electricity price gap, the 10% change that
has been discussed here represents around a half of one standard deviation (within variation),
hence, nothing out of the ordinary. It would be reasonable to expect that even when exposed to
international competition, firms will be able to absorb carbon price differentials (of the kind of
magnitudes discussed here), at least in the short run. Hence the additional asymmetries that may

be induced by carbon price differentials will be smaller in comparison to underlying variations.

4.5 Robustness checks

Aggregation bias

The analysis in Section 4.4.2 demonstrated that the results in general hold when the panel is
aggregated at different sector resolution. This suggests the possibility that results for these
estimations can be sensitive to the level of sector aggregation in the data. To test sensitivity, the
panel was aggregated at different sector resolution — at the 266 sectors (3 digit SITC sectors),
10 sectors (3 digit SITC sectors), and up to the aggregated country level. It was not possible to
fit any model to the data at the original 900+ product level, due to the large share of zeros and
the distribution of the dependent variable observations with positive values, which becomes
extremely skewed towards the left (many small observations). Because the energy price gap is at
country-pair level, it is natural to run the regressions at the country-pair level. If the results do
not hold, it is possible that statistically significant results obtained in the sector-level analysis
may be driven by artificially inflated observation numbers. The country level estimation, suffers
from the problem of a much reduced sample size. However, the energy price gap coefficient
is statistically significant from zero across five mohels hence provides support to the main
empirical results presented in this chapter. Similarly the results of the regressions at the 266
and 10 sector level gave support — the coefficients on the epgap;;; were statistically significant

and similar in magnitude, particularly for the PML model.

24The impact of carbon pricing on electricity price is usually calculated using macro economic models and CGE
models. Given the absence of modelling analysis results, however, the alternative simpler method was applied.

123



Sensitivity to fixed effects specification

Baltagi et al. (2003) experiment with eight different fixed effects models and show how the
specification of the fixed effects impacts estimations of the gravity model. He argues for the
importance of controlling for a full interaction of the importer, exporter and time dimensions
to analyse bilateral trade flows — that is, including importer specific time effects, exporter
specific time effects, as well as importer-exporter fixed effects. This method ensures that all
characteristics that could possibly be correlated with annual bilateral exports between the two
countries, other than those that are time-variant and bilateral specific, have been accounted for,
hence acts as an additional check on potential omitted variable bias. Due to issues with the
practical implementation of the full interaction of importer, exporter and time dummies in this
analysis (the large number of countries implies large number of dummy variables), linear time
trends (importer and exporter specific) were included instead in the regressions. Two tests are

possible, to assess the sensitivity of the results to the inclusion of the time trends.

First I compare the results to a specification excluding the time trends. In this case, the estimation
included only the time invariant country-pair-sector fixed effects, and a time dummy. Across
all five models, the coefficient on the energy price gap was statistically significant, but smaller
than the estimations with the linear time trends (e.g. the OLS coefficient is reduced from 0.08***
(0.01) to 0.04**(0.02) and the PML is reduced from 0.05** (0.01) to 0.04*** (0.01)). This suggest
that besides time invariant factors, time-variant exporter and importer specific factors such as
cultural and institutional change and business cycles also matter. Moreover, it suggests that
the variation that is taken out by the importer-time and exporter-time linear trends represent
factors which have the net effect of reducing bilateral exports. The results indirectly support the
argument made that controlling for all interaction effects in gravity models is important and
that ignoring them can lead to biased estimates and incorrect inferences (Baltagi et al., 2003;
Kellenberg & Levinson, 2011). In this analysis, all models except the Arellano-Bond difference

GMM took included linear time trends for the importer and exporter.

In addition, including importer-time and exporter-time specific fixed effects is theoretically
possible, and computationally helped by the Pseudo Poisson Maximum Likelihood (PPML) es-
timator (Santos Silva & Tenreyro, 2006). This would represent the most demanding specification,
controlling for all characteristics that could possibly be correlated with bilateral trade flows
between two countries, other than those that are time-variant and bilateral specific. Importantly,
this should control for any other unobserved country specific influences on their energy prices.
However, comparing the results from this was not possible as the model did not converge for the

dataset used.
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Other idiosyncratic factors

It is reasonable to believe that the estimated effect of the energy price gap is in fact capturing
variations in other time-variant factors, the labour and capital price differentials. The FDI and
industry location literature, as well as the gravity model of trade literature have examined the
role of labour price and capital price differentials in international trade patterns, although
the evidence is mixed (Baltagi et al., 2007). It is possible that such variations (which are also
country-pair-time specific) are inadequately addressed by the combination of the fixed effects.
Unfortunately the data on capital prices (country level), and labour prices (country sector level)
had many missing values. Due to the gaps in the data, over 79% of observations were dropped.
Nonetheless using the available data, after converting to real price and constructing gap variables
for each, these were included directly into the estimations to test that there is indeed no omitted
variable biased here. OLS, PML and Arellano-Bond GMM equations were used (both with and
without the energy price gap). For both variables, across the three models, the coefficient was
not statistically different from zero, and the coefficients on the energy price gap were similar to

the reference results. The signs of the control variables were as expected.

Specification of the energy price gap

To test the possibility that the estimated effects are sensitive to the specification of the energy
price gap variable. Estimations with several alternative specifications of the energy price gap
were carried out. The estimations were repeated using the absolute difference, only the positive
values then only the negative values (to check asymmetry), the absolute difference over the sum
of the energy prices (following Kellenberg & Levinson (2011)), and also by constructing the
reverse ‘similarity’ variable (following Costantini & Mazzanti (2012)). The hypothesis that a
larger gap is associated with more bilateral exports stood up to these tests in all models except
the OLS. A negative relationship was found between the similarity in energy prices between two

trading partners and their bilateral trade.

Dynamic lag selection

Dynamic estimations raise the question as to how many lags of the dependent variable to include.
There is a trade-off involved with lag length selection — using too few lags can decrease accuracy
because information is lost, but adding lags can also increase estimation uncertainty. Sensitivity
testing to the inclusion of only two lags in the non-linear models was conducted by including
different numbers of lags of the dependent variable. The results demonstrate that the marginal

value of including additional lags is such that two lags represents a good choice.
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Other concerns

To ensure that results are not driven by observations with extreme values, the models were
also run using a variation of transformations of the dependent variable. Observations with
large values of the dependent variable (top 1%) are discarded under "trimming’ and capped
under Winsoring. The outlier issue is of concern particularly with least square models, and also
because of the known quality issues with the COMTRADE trade data described in Section 4.3.3.
It was found that trimming and Winsoring of the dependent variable does not change the results
significantly.

Particularly for the linear models (OLS and Arellano-Bond), there is concern that the issue of
zeros in the dependent variable is inadequately addressed, by simply adding one before taking
the natural log. Estimations using an unbalanced panel is conducted as a test, excluding the
observations to those strictly with positive values. When excluding the zero observations, it was
not possible to specify the first differenced Arellano-Bond estimator with a lag structure such
that the conditions of absence of serial correlation and over-riding identification are met. This
may be explained by the fact that the first-difference transform magnifies gaps in unbalanced
panels, and this issue may be serious when 25% of the observations have a value of zero. For all
other models, the size of the coefficients on the energy price gap is usually smaller than when
using a balanced panel, as one would expect, but overall the results are similar. This suggests

that the issue of zeros has been adequately addressed in this analysis.

Overall, I probed the robustness of the estimates to determine the sensitivity of the results but I
find little evidence contradicting the basic conclusions of this paper. The results presented in
Table 4.2 remain robust. The industrial energy price gap effect on bilateral trade is positive and
significant at the 1 percent level.

4.6 Conclusions

As countries strengthen carbon pricing policies at different speeds, there is considerable interest
around the potential trade impacts particularly for the energy intensive trade-exposed sectors.
This paper measured the response of bilateral trade to differences in industrial energy prices,
which historically vary across countries. Using a 16 year panel dataset that includes 51 countries
and 66 sectors (covering 80% of global merchandise trade) and a gravity model framework, I
estimate the effect of energy price asymmetry on trade. The coverage and detailed disaggregation

of the data used also goes beyond previous work.

I find evidence that trade tends to develop between countries with different energy prices. In
terms of magnitudes, the estimated effect implies that a 10% increase in the electricity price
ratio between the importer and exporter (which by example can be represented by a carbon

price gap of $25/tCO, in between the UK and South Korea) increases bilateral trade levels by
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around 0.5% to 1.5%. However, this is an average effect across 66 sectors and when the sectors
are examined separately, the effect of the energy price gap is statistically different from zero for
some sectors but not others. This suggests that the link between trade and energy price exists for

only a few sectors of the economy.

The hypothesis was tested using a number of different models, both linear and non-linear. While
I argued that theoretically, the Poisson Maximum Likelihood model is the preferred model,
nonetheless, the characteristics of the panel dataset used suggests trade-offs between each model
specification. Indeed the portfolio-approach is recommended in the gravity model of trade
literature. In the chosen model specifications, I account for the persistence in trade (using the
latest pre-sample mean estimator technique), issue of zero-values in bilateral trade data, and
different specifications of non-linear models used for panel data, as well as the sensitivity of

panel gravity estimations to different fixed effects.

The small, positive and statistically significant effect of the energy price gap on trade holds
across the five models. This suggests that the existence of the effect is robust across model
specification, and not driven by the underlying assumptions of the models. The sensitivity of the
results to other potential sources of bias was further assessed by subjecting it to rigorous testing.
The results were robust to potential aggregation bias, fixed effects specification, dynamic lag
selection, the specification of the energy price gap variable, as well as the possibility that the
energy price gap is capturing the effect of other time variant factors. Nonetheless, a key finding
was that the magnitude of the effect is difficult to establish with precision with the data and
methods used here. The estimated effect is thus expressed as a range, where there is overlap in

the 95% confidence intervals of the five specifications — the area of 0.05 and 0.15.

The findings in this chapter suggest that the concerns around short-term impacts on carbon
leakage and competitiveness are not entirely ungrounded, but that such concerns have been
overstated. For most sectors, international differences in energy or carbon prices do not influence
trade patterns, hence leakage concerns need not dictate the design of carbon mitigation policy
instruments. In sectors where I find evidence that trade tends to develop between countries with
energy price differences is problematic, it is important to note that this is problematic, only if
the difference in energy prices results from different carbon prices. If the difference arises from
asymmetric carbon prices, this could then lead to carbon leakage (either positive or negative).

Otherwise, the development of trade is good news.

The elasticities obtained in this study can be interpreted in a broader geographical context
compared to previous studies which examined only industrialised countries. This analysis used
bilateral trade data covering more countries, which represent economies with different levels of
development. This is important, because carbon pricing policies are being implemented across
the Annex-I and non-Annex I divide, and carbon leakage is no longer a rich nation’s problem.
For example, carbon leakage concerns have been raised following China’s pledge to achieve its
GDP energy intensity reduction targets largely through changes in sectoral composition of GDP
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(Tekes, 2011). The estimations from this study would predict that changes of production do not

imply large changes in trade patterns, at least in the short-term.

One of the key limitations to this analysis is the lack of sector-level disaggregation in the
electricity price information, given the large number of countries in the data sample. While the
detailed trade data allows controlling for sector and country-pair fixed effects, unfortunately,
sectoral level variation in the energy price data was not available. As more detailed data become
available, incorporating this variation into the analysis will likely enable more robust estimations

at sector level.

4.7 Appendix
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Table 4.5: 17 Sectors groups — sector grouping

|

2-digit SITC (Rev. 3) sectors included

0 Food and meat; dairy; fish; cereals; veg and fruit; sugars; coffee tea
beverages cocoa; animal feed; other food; beverages; tobacco
1 Raw materials hides skins; oil seeds; crude rubber;cork wood; crude
animal material; animal_fats; veg. fats; processed fats;
2 Mining (ores) metal ore;
3 Fertilisers crude fertiliser; fertilisers; insecticides;
4 Fuel coal coke; petroleum; gas ; electricity
5 Non ferrous nonferrous metals
metal
6 Iron & steel iron steel; metal manufactures
7 Cement, lime cement; lime ; glass
and
non-metallics
8 Pulp & paper pulp; paper
9 Chemicals organic chemicals; inorganic chemicals; colour dye;
essential oils
10 Pharmaceutical pharmaceutical
11 Plastic plastics primary; plastic non primary
12 Semi- leather manufactures; rubber manufactures; cork
manufacturing manufactures;
13 Machine power generating machines; industrial machinery;
manufacturing metalworking machinery; general industrial equipment;
office machinery; telecom machinery; electrical machinery;
power generating machines; industrial machinery; metal
working machinery; general industrial equipment; office
machinery; telecom machinery; electrical
machinery;scientific instruments; photo equipment; optical
wear
14 Transport road vehicles; non-road transport
equipment
15 Textile and textile; textile articles; travel goods; apparel; foot ware
clothing
16 Other prefab buildings; furniture; other manufactured goods
manufacturing
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Chapter 5

Net embodied carbon effects from

carbon pricing policies

5.1 Introduction

Chapter 3 sought to improve upon estimates of embodied carbon in trade by conducting a
detailed quantification of global embodied carbon in bilateral trade at the product level, using
the material balance approach. Chapter 4 aimed to provide econometric estimates of the impacts
of industrial energy prices on trade flows using observed data. Combining the findings from
this thesis, this short chapter assess the magnitude of the energy price effect on trade, as well as
potential net impacts of carbon pricing policies in terms of net embodied carbon.! The results
are used to infer the effects of potential carbon leakage.

Any unilateral carbon pricing measure, invariably raises concerns about carbon leakage. In the
EU ETS, large volumes of free allowances have been allocated to energy intensive and trade
exposed (EITE) sectors to address carbon leakage. Similar proposals have appeared in climate
legislation in (and proposals for) the US, Japan and elsewhere (Heilmayr & Bradbury, 2011;
Ellerman et al., 2010). In Australia’s Carbon Pricing Mechanism (CPM), the majority of emissions
allowances are allocated by auction from the start of the flexible price phase (CDC Climate
Reserach, 2012), but free emission allowances are also set aside for industries which fall under
the EITE category.

Before one can answer whether or not these measures are necessary, one must ask whether the
unilateral carbon price is likely to result in substantial leakage in the first place. In general,
quantitative assessments of the potential trade impacts from unilateral policy to date have been

conducted using ex-ante partial and general equilibrium models, but they predict a wide range

I This is defined as embodied emissions in imports minus embodied emissions in exports. It is also termed the
Balance of Embodied Emissions in Trade (BEET).

130



of outcomes — central carbon leakage rates fall between 5% and 30%. As reviewed in Section

4.2.1, as of yet, empirical analysis of the trade impacts of carbon pricing policy remain few.

This chapter aims to apply the results from this thesis to evaluate the range of the magnitude of

potential leakage. Three steps are involved.

1. Ilustrate the magnitude of the effect of energy price on trade, using the examples of UK
imports from South Korea, French imports from and Indonesia and finally by generalising

these examples.

2. Simulate the near-term impact of carbon prices on bilateral import and export levels, using
the estimation results from Chapter 4. The simulation is conducted for Australia’s CPM

and a hypothetical unilateral carbon price in the US.

3. Convert the near-term effects on trade to embodied carbon terms, for carbon price on trade
for Australia’s CPM .

For data reasons, the embodied carbon flows quantified in this thesis is based on world average
emission factors (WAEF) and consequently cannot directly be used to quantify carbon leakage
effects as explained in Section 3.1. However, as will be demonstrated, the results from this
research can be combined to provide insights useful for the the policy debates around carbon

leakage.

Applying the results from previous chapters, analysis in this chapter finds that historically,
energy price differences explain a very small share of the variation in bilateral trade (less than
0.1%). In addition, using Australia’s new carbon pricing policy as an example, a small net effect
of the impacts of CPM on embodied emissions in exports (EEE) and imports (EEI) is found, in

the order of 0.9% of Australia’s domestic annual CO, emissions.

5.2 The magnitude of the energy price gap effect

5.2.1 An illustration using an example for UK’s imports from South Korea, and
France’s imports from Indonesia

The analysis in Chapter 4, found the energy price gap effect on bilateral trade is positive and
significant. This then raises the question as to how much of the overall variation in sectoral
bilateral trade is explained by energy price differences. Two simple examples are used to

illustrate the magnitude of the effect.

During the period 2003 to 2004, South Korea’s real industrial electricity price increased from 44
to 49 US$/MWh. Over the same period, UK’s real electricity prices rose from 73 to 84 US$/MWh.
Recall that the energy price gap is defined as epgap;;; = In(EP;;) - In(EP;;) which can also be
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expressed as epgap;j; = In (g_lljli) . In other words, the energy price gap between two countries
]

is defined as the difference of the natural logs of the importer’s industrial electricity price and

the exporter’s. In the case of UK and South Korea, the implied change over this period reflects

roughly a 3% increase in the epgap .2

Chapter 4 found that a 1% increase in the energy price gap was associated with a 0.05% to 0.15%
increase in bilateral trade. These results thus predicts that a 3% change in the price gap between
the UK and South Korea will increase South Korea’s exports to the UK by 0.15% to 0.45%. What
was actually observed over this period was a 40% growth in South Korea’s exports to the UK. The
electricity price gap is therefore explaining between 0.4 to 1% of the change in trade volumes.
Other explanatory factors, such as underlying trends in transport costs, globalisation and supply
chain integration, population growth and economic growth cycles are likely to play important

roles in explaining this variation in trade over time.

In another example, between 2007 and 2008, Indonesia’s real industrial electricity price de-
creased from 58 to 55 US$/MWh, while France’s increased from 58 to 66 US$/MWh. This reflects
roughly an 8% increase® in the energy price gap, as electricity prices rise for French industry.
Thus by applying the range of the estimated effect, France’s imports are predicted to increase by

0.4% and 1.2%. During this period, French imports from Indonesia increased by 21%.

5.2.2 A generalised analysis of the variance

Generalising the above two examples, this section tries to evaluate the share of variation in
bilateral trade which is explained by the energy price gap in general. The following evaluation
approach adopted from Wooldridge (2010) is chosen for transparency and simplicity.* The
variation in the variables epgap;;; and trade;;; are compared in the following way:

var(Byepgap;j;)

* varl = var(trade;j;)

var(p, epgap;j—p1 ePg“Pijt)
var(trade;j;—trade;;;)

e var2 =

The first compares the overall variation and the second looks at the de-meaned variation. The
variables are expressed in natural logarithms as defined in Section 4.3.1. The indicators are
applied to data for all sectors (at the country pair level), and the evaluation is also conducted at
the sector-level. Results are presented for a select number of sectors in Table 5.1. The estimation
results from Section 4.4 are used for the beta coefficients. There is some variation across sectors.

For the iron and steel sector, the energy price difference can explain around 0.2% of the variation

2(1n(84/49) —In(73/44)) = 0.0327.

3(1n(66/58) —1n(58/55)) = 0.0761.

4Other common checks such as the partial R-square are not suitable for this data and estimation method (panel
data with fixed effects).
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Table 5.1: Analysis of the variance

Country pair level 0.05%** - 0.15%** 0.00% - 0.03% 0.01% - 0.09%
Iron and steel 0.08*** 0.01% 0.18%
Semi-manufacturing 0.04* 0.00% 0.01%
Food 0.02 0.00% 0.00%
Fuel 0.18*** 0.04% 0.06%
Transport equipment 0.13*** 0.03% 0.04%
Textiles 0.05** 0.00% 0.01%
Paper & pulp 0.05** 0.00% 0.01%

in trade according to the second indicator. For Fuel and Transport equipment, the price gap
explains around 0.05%, However, across the entire sample, the variation in the energy price gap

variable explains a very small share of the variation in trade, typically well below 0.1%.

As noted in Section 4.4.3, it is worth recalling that the historical variation in the electricity price
gap has been considerable (as shown in the descriptive statistics in Table 4.1). Few meaningful
carbon prices were in place during the time-period covered in the data. Thus energy price
gap variations have been driven by factors other than climate policies. Therefore, from the
perspective of ordinary fluctuations, additional changes to the energy price gap that may be
caused by carbon pricing are unlikely to explain a much further part of the variation in bilateral

trade.

5.3 The trade impacts of carbon pricing policies

What does the energy price gap effect translate to, in terms of carbon price differences? In
Section 4.4.3, an example was used to illustrate how a one percent change in the energy price
gap variable may translate in carbon price terms. This section takes this one step further. It
takes two examples of unilateral carbon price policies and predicts the impacts on imports and
exports using simple simulations. The simulations are conducted on the Australian CPM and a

hypothetical carbon prices in the USA.

The simulation involves a few simple steps. First, I predict the level of trade in the absence of
the carbon price, using the same models as in Section 4.4.1 and the observed energy price gap.
Second, I generate a new energy price gap variable which takes account of the unilateral carbon
price. To do so, the expected impact of the carbon price on electricity price is taken from the
literature. Then I predict the level of trade using the new energy price gap, using the coefficient
estimates from the original model. The difference between the two levels of trade gives the
predicted carbon price impact. This simulation is run separately for imports and exports, and
using four models for comparison — Arellano-Bond GMM, PML, Negative binomial and Zero
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Table 5.2: Predicted impact of unilateral carbon price in Australia (A$23/tCO, ) on Australian imports
and exports across four model specifications

’ ‘ Impact on imports ‘ Impact on exports ‘

Arellano-Bond 1.29% -1.27%
PML 0.54% -0.56%
Negative Binomial 1.61% -1.55%
Zero inflated NB 1.34% -1.21%

Note: The models are: differenced Arellano Bond GMM (one-step estimation with cluster-robust standard errors);
Poisson maximum likelihood model, negative binomial model and zero inflated negative binomial model. The PML
is estimated in levels, includes two lags of the dependent variable, country-pair-sector specific fixed effects, country

time trends and time dummies. The latter two are also estimated in levels, and include two lags of the dependent
variable, country-pair-sector specific fixed effects (using the pre-sample mean estimator), country time trends and

time dummies. (Equation 4.6).

inflated negative binomial.

5.3.1 Australia’s Carbon Pricing Mechanism

Based on the Australian Treasury’s modelling of the CPM (The Treasury, 2012), implementation
of the A$23/tCO, carbon tax, is estimated to raise retail prices of electricity by 10%. Unfor-
tunately, no estimates of the impact on industrial electricity prices are reported in the study.
However, since the mark-up on the retail price is higher, industrial prices are, if anything, more
insulated from the CPM. 10% is therefore a maximum estimate of the impact on the industrial
energy price. Note that this analysis assumes zero free allowance allocation, thus the Australian

sectors face the full impact of carbon pricing.

Table 5.2 presents the predicted impacts of the CPM on Australia’s imports and exports, using
the Arellano-Bond, PML, negative binomial and zero inflated negative binomial equations.
Between the four models, Australian imports are predicted to increase, on the order of 0.56%
to 1.61%. Exports are predicted to decline by 0.54% to 1.55%. As noted in Section 4.3.2.3, the
empirical model’s structure is such that it yields common elasticities for imports and exports.
Hence the asymmetry between import and export impacts are driven by the differences in sector
compositions of Australia’s imports and exports. The net effect depends on the size of imports

and exports.

Decomposing the estimates from the PML specification by sector, Table 5.3 reports the sector-
specific trade impacts. The method used to account for sector heterogeneity are described in
Section 4.4.2. The results indicate that when looking at the sector level, some are predicted to
experience outside of the range for the country-level. Among those with the largest impact are
some basic industries and energy intensive industries such as fuel, iron & steel, mining. Some
non-energy intensive sectors also experienced larger impacts where trade volumes are high, for

example transport equipment, and textiles.
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Table 5.3: Predicted impact of unilateral carbon price in Australia (A$23/tCO;) on Australian imports
and exports, by sector group, using PML

‘ Impact on imports ‘ Impact on exports ‘

Food (0.38%) (-0.37%)

Raw materials (0.39%) (-0.38%)
Mining 0.91% -0.89%
Fertilisers (0.38%) (-0.37%)
Fuel 1.75% -1.72%

Non ferrous metals (0.88%) (0.89%)
Iron & steel 0.97% -0.89%
Cement, lime, glass (0.35%) (-0.33%)
Paper & pulp 0.67% -0.62%
Chemicals 0.68% -0.67%
Pharmaceuticals (0.60%) (-0.55%)
Plastic (0.28%) (-0.26%)
Machinery (0.42%) (-0.40%)
Transport equipment 1.38%) -1.34%
Textile (0.83%) (-0.87%)
Other manufact. (0.35%) (-0.34%)

Note: Brackets indicate the underlying beta coefficient is not significantly different from zero. The PML is used here,
estimated in levels, includes two lags of the dependent variable, country-pair-sector specific fixed effects, country
time trends and time dummies. The latter two are also estimated in levels, and include two lags of the dependent
variable, country-pair-sector specific fixed effects (using the pre-sample mean estimator), country time trends and

time dummies. (Equation 4.6).
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Under Australia’s Clean Energy Future legislation, additional assistance is provided for “strategic
sectors”, such as coal, steel and LNG. The Steel Transformation Plan provides, for example,
assistance of A$300 million over four years, to encourage low-carbon investment and R&D,
environmental and productivity improvements, as well as skills training in the sector (Australian
Government, 2011). In addition, under the Jobs and Competitiveness Program, “strongly EIET”
industries including many listed in Table 5.3 will receive 94.5% of their historic emissions
multiplied by the average sectoral emission benchmark, and “moderately EITE” sectors will
receive 66%.° This analysis suggests that the choice of assisted sectors appears well targeted, at
least for iron & steel and coal. However, whether the levels of compensation are well chosen
is unclear. If firms are over-compensated, this may be due to the lack of evidence on carbon
leakage effects, as well as by other factors such as contribution to employment or successful

lobbying.

5.3.2 A unilateral carbon price in the US of $15/tCO,

Aldy & Pizer (2011) simulate the effect of a policy scenario whereby the US implements a
$15/tCO;, carbon tax unilaterally, and assesses its impact on industrial supply and demand
(and the resulting competitiveness effect) using 1985-1994 data, assuming energy prices remain
stable in all other countries. The authors assume that such a carbon price leads to an 8%
increase in industrial sector electricity price, based on results of the US Energy Information
Administration’s modelling of the potential impact of the Lieberman-Warner Climate Security
Act 2007 (US Energy Information Administration, 2008), and find a positive but small effect.
Specifically, their results find that a unilateral US$15/tCO, carbon price is associated with a
1.4% decline in domestic supply, and about two thirds of this is due to a reduction of domestic
demand. Therefore, only one third of the decrease in domestic output is due to the rise in net
imports, hence implying a very small trade impact — an indirectly estimated impact on net trade
(the difference between domestic supply and demand) which they term the ‘competitiveness

effect’.

Using this assumption of 8% impact on electricity price, and the same method applied to the
Australian CPM, I simulate the impact on imports and exports for hypothetical unilateral carbon
price policy in the US. The results are presented in Table 5.4. Under all four models, the change
in the epgap leads to an increase in bilateral imports to the US, and a decrease in bilateral
exports. Impact on increased imports are estimated to be in the range of 0.27 t01.28%, whereas
the impact on reduced exports is between 0.28% and 1.17%. The effect on imports and exports is
asymmetrical because for each country the US trades with, the share of imports to that country
relative to total imports, is different from the share of exports to that country relative to total

exports.

5Both declining at 1.3% each year.
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Table 5.4: Predicted impact of unilateral carbon price in the US ($15/tCO, ) on US imports and exports
across four models

’ ‘ Impact on imports ‘ Impact on exports

Arellano-Bond 0.85% -0.84%
PML 0.27% -0.28%
Negative Binomial 1.28% -1.17%
Zero inflated NB 1.01% -0.95%

Note: The models are: differenced Arellano Bond GMM (one-step estimation with cluster-robust standard errors);
Poisson maximum likelihood model, negative binomial model and zero inflated negative binomial model. The PML
is estimated in levels, includes two lags of the dependent variable, country-pair-sector specific fixed effects, country

time trends and time dummies. The latter two are also estimated in levels, and include two lags of the dependent
variable, country-pair-sector specific fixed effects (using the pre-sample mean estimator), country time trends and

time dummies. (Equation 4.6).

The magnitudes of the effects for Australia are higher than those estimated for the US (Table 5.4
in Section 5.3.2) because of the higher carbon price (A$23/tCO, approximately equates to a
US$24/tCO, carbon price), and also because of differences in sector composition of the US and

Australian imports and exports.®

Whilst this is not a direct comparison — the sample period used here (1996 to 2011) does not
overlap with the period used by Aldy & Pizer (2011) (1985-1994) and the outcome variables
are different — the simulation results are supportive of one another. In sum, short-term trade

impacts from a proposed unilateral US carbon tax is predicted to be small.

5.4 Embodied carbon impacts of Australia’s Carbon Pricing Mechan-

ism

The predicted change in Australia’s imports and exports due to the CPM found in Section 5.3.1
can be translated into embodied carbon emission, in order to understand the impact of the policy
on net EET trade. To do so, I multiply the predicted trade impacts by the embodied carbon
estimates presented in Chapter 3.

The product level embodied carbon in bilateral trade is aggregated to calculate Australia’s
embodied carbon in total imports and exports in 2006. EEI and EEE are found to be 91Mt and
161Mt CO, respectively. The negative balance in embodied carbon is around 70Mt CO, or 18%
of Australia’s production-based emissions. Figure 5.2 in the Appendix presents Australia’s EEE
and EEI by trading partner. Australia’s EET embodied in trade with China, the US, Japan, South
Korea and Malaysia collectively accounts for around 50% of the total, for both exports and

imports.

SHow the different model specifications lead to differences in the estimated impact of the energy price gap on
trade is explained in Section 4.4.1.
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Table 5.5: The impact of CPM on Australia’s embodied carbon trade, simulation results at the country
level for 2006

EEI EEI EEE EEE net EET net EET
without tax with tax without tax with tax without tax with tax
Total (Mt CO2) 91.43 92.01 161.36 160.30 -69.92 -67.86
Change (Mt C02) 0.58 -1.06 2.06
net embodied carbon 0.53%

Note: Underlying trade impacts are obtained from the PML estimator. Carbon leakage here is defined as the share of

net imported over domestic emissions.

Tables 5.5 presents the results of the net EET effect, using trade impacts estimated by the PML
specification at the 16 sector level (coefficients are reported in Table 4.3). It shows the levels of
Australia’s EEI and EEE and net EET (EEI minus EEE) for 2006, with and without the CPM. Table
5.5 uses trade impacts calculated at the country level and shows that the CPM increases the
carbon embodied in Australia’s imports by 0.58Mt of CO,, and decreases their exports by 1.06Mt
CO,. This gives an increase of net carbon imports of 2.06Mt CO,. This in turn translates into a
ratio of net carbon imports over domestic emissions by about 0.53%. Since the PML specification
coefficients represent a lower bound estimate of the energy price effect on trade (see Figure 4.5),
this exercise was repeated using the Arellano Bond model and the net EET effect was found to
be around 0.86%. The results suggest the CPM is likely to increase Australia’s net imports of

embodied carbon in the area of 0.5% to 0.9%.

5.5 Net embodied carbon effect vs carbon leakage effect

How does the net EET effect relate to the carbon leakage effect? In Section 5.4, the measurement
of net embodied carbon effect of the CPM was based on EET estimates from Chapter 3 calculated
using world average emission factors. How the net EET effect relates to carbon leakage is
determined by the degree to which Australia and its trading partners’ emission factors diverge
from the world average. A serious attempt to translate the 0.86% impact of the CPM on
Australia’s net EET into carbon leakage rates require further data. In particular, country and
sector specific emissions intensity data is necessary not only for Australia but also its key trading
partners, but high quality data with good coverage is difficult to obtain as discussed in Section
3.5. Although this is beyond the scope of this analysis, in this specific case, the good news is that
the matter is somewhat simplified by the fact that Australia has a large net export balance (Table
5.5). This means that what matters more is understanding how Australian sectors’ emission

intensities deviate from the average.

It does not seem implausible to assume that the emission intensities of Australia’s industry
sectors do not diverge significantly from the world average. Australia has an abundant coal

supply and is the world’s ninth-largest coal consumer and records higher than average levels of
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carbon emissions in per capita and per GDP terms, relative to the world average (World Resource
Institute, 2012). 70% of electricity is coal-fire powered. However such indicators may not give
a good indication of relative emission factors for Australia’s manufacturing sectors. Industrial
process emissions intensity is lower than the world average, when measure per unit of GDP.
The same applied to energy emissions intensity in manufacturing in per $GDP terms (World
Resource Institute, 2012). Indeed, many key mainland industrial production centres, rely more
on gas than coal (IEA, 2011b). The cement case study in Section 3.5 also showed that Australia’s
emission factor is close to the world average. Thus, the net EET effect estimated in this chapter

may be in the right ballpark of Australia’s carbon leakage effect.

5.6 Robustness and key assumptions

Firstly, the estimates of the net embodied carbon effect from carbon pricing policies in this
chapter rely on the quality of the underlying EET estimates. As was discussed in Chapters 2
and 3, the variations in the choice of methodology, assumptions and parameter choices within
studies as well as underlying data all give rise to varying estimates of embodied carbon. As has
been empasised, product level EET estimation required using world average emission factors
for products. Hence over- or under-estimations of EET can occur if Australian production

technologies deviate significantly from the world average.

Figure 5.1, plots Chapter 3’s estimates of Australia’s embodied carbon against estimates from
three other studies and shows they are comparable. The estimate years for these studies are
between 2004 and 2006, due to availability of estimates for Australia. As the Figure shows,
estimates of Australia’s EEE and EEI in Chapter 3 are slightly higher relative to other studies
(purple bar on the right side of Figure 5.1). Comparing the production- and consumption-based
emissions with the study for the same year shows they differ by less than 5%. It is more difficult
to compare the differences in terms of EEE and EEI as the estimate years differ and the time trend
suggested by the comparison is ambiguous (estimated 2005 emissions are lower than 2004) and
not aligned with the increasing trend globally. Overall, the net embodied carbon effect estimated
here appears robust to the embodied carbon estimates used. If anything, using embodied carbon

data from other studies would find a smaller net embodied carbon impact.

Secondly, the net embodied carbon effect estimates also rely on the quality of the underlying
elasticities estimated using a regression framework. As shown in Section 4.4.1, the magnitudes
of the effect of the energy price gap on imports and exports are imprecisely estimated. However,
using a feasible range of coefficient estimated from different models enables us to also understand
a feasible range of the net EET effect.

Thirdly, this analysis assumes that a 1% change in trade flows in value terms corresponds to

a 1% change in EET flows. This is because the impact of asymmetric energy prices on trade
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Figure 5.1: Embodied carbon in Australia’s trade - A comparison of results from three studies for years
2004 to 2006.
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Notes: Australia’s production-based emissions for this study is obtained from United Nations Framework Convention
on Climate Change (2012). Peters et al. (2011) does not explicitly report EEE and EEI estimates.

was estimated using bilateral trade data in value terms. Flows of embodied carbon in trade, are

measured in tonnes of carbon dioxide.

A one-to-one proportionality is assumed when translating the estimated change in trade levels
(in value terms) due to the CPM, to changes in embodied carbon. If additional assumptions
are made to allow for price and exchange rate adjustments, this would imply a smaller coeffi-
cient of proportionality, hence a smaller net embodied carbon effect than when using the 1:1

proportionality assumption.

Fourthly, as noted, this analysis does not account for the fact that compensation was paid to EITE
sectors. The details of the “additional assistance” has not been released publicly, hence they are
difficult to address. In terms of the allocation of free allowances to these sectors, this analysis
makes the key assumption that the opportunity cost of freely allocated allowances provides the
same carbon signal to the sectors, in order to incentivise greater emissions reduction. There is
some evidence in the literature against this assumption from the early phases of the EU ETS (e.g.
Lecourt et al., 2013). However, it is unclear whether the EU experience can be generalised to
different ETS schemes.

Finally, it is also worth noting that the predicted change in Australia’s imports and exports
resulting from the carbon price under the CPM is based on the estimated impact of asymmetric
industrial electricity prices on trade flows for 51 countries, and is not specific to Australia’s
trade. This is problematic if factors driving Australia’s trade substantially differ from those that

characterise the average trade for the set of 51 countries. Given Australia’s sustained high terms
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of trade in mining exports (The Treasury, 2012), a more detailed sector-specific analysis for

Australia may be warranted.

In sum, the additional assumptions made are reasonable. While there is room for further
investigation and improvements, there is no serious contradictions that underly the basic results

— that the magnitude of the effects of energy price differences on trade is small.

5.7 Conclusion and discussion

The objective of this chapter is to contribute to the understanding of carbon leakage impacts
of climate policy. It does so by combining a number of empirical findings from this thesis. In
Chapter 3, embodied carbon were quantified using the material balance approach, for bilateral
trade between 195 countries and 970 traded products. In Chapter 4, the statistical relationship
between asymmetric industrial energy prices and bilateral trade flows was examined using
dynamic panel data methods within a gravity framework. These two strands of empirical

analyses were needed to estimate net embodied carbon impacts from carbon pricing.

As a start, the magnitude of the effects estimated in Chapter 4 are illustrated using the examples
of UK’s imports from South Korea and France’ imports from Indonesia. These examples were
then generalised across the entire sample and the variation in the energy price gap variable
was found to explain a small share of the variation in trade. Although larger for some sectors
than others, it can still be said that less than 0.1% of the overall variation in bilateral trade is

explained by energy prices.

Next, simulations using the estimation models from Chapter 4 were conducted to assess the
near-term trade impacts of carbon pricing policies and were assessed for Australia’s CPM and
a hypothetical carbon price scenarios in the US. The simulations predicted that the change in
energy price induced by a carbon price tends to increase imports and reduce exports. Sector
level simulations for Australia’s CPM showed that impacts on imports and exports vary across

sectors. However, evidence of substantial trade impacts is not found for any sector.

Finally, using the example of Australia’s CPM, the near term effects on trade was translated to
embodied carbon terms using EET estimate from Chapter 3. This analysis finds a small net
embodied carbon effect as a result of the introduction of the A$23/tCO, carbon price, in the
order of magnitude of 0.5-% to 0.9% relative to Australia’s domestic annual CO, emissions.
Although this cannot be interpreted directly as a carbon leakage effect, the true carbon leakage
effect is unlikely to be significantly higher. Thus suggests the CPM would imply around a very

small percentage shift of carbon emissions overseas.

The results obtained in this ahapter represents a middle-of-the-range estimate, compared with
the previous modelling analysis conducted for the CPM, which have found mixed results.

Siriwardana et al. (2011) found a 0.32% positive net impact on trade (terms of trade), Meng
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et al. (2013) found a negative impact on exports (3.8% to 6.4%), and finally the analysis by The

Treasury (2012) found a small impact on trade.”

How robust are these results? The quality of the EET measurement and the estimates of the
effect of energy price on trade from previous chapters largely determine the reliability of the
results in this. Furthermore, a number of assumptions are required in order to translate the
estimated trade impact of historic industrial energy price asymmetry into predictions about
embodied carbon, as discussed in Section 5.6. However, Furthermore, these need to be weighted

against all of the assumptions that go into the complex model based estimates.

Australia is currently in the midst of a heated debate on carbon leakage and competitiveness
impacts. The CPM implemented as part of the Clean Energy Future legislation is now in
operation and due to transfer to an ETS system in 2015. The quantified impacts obtained in this
work can provide empirically grounded assessments of the policy to inform the surrounding
discourse. The approach presented in this paper complements the quantitative assessments

provided by modelling analysis.

Based on the findings in the chapter, policies to "prevent’ carbon leakage may be justified only
for a few sectors, and are likely to be required in small measures. For many of the sectors, such
policies may have only a limited impact because little leakage is expected in the first place.
Indeed, many have pointed out the economic drawbacks of free allocation (Hepburn et al.,
2006; Sterner & Muller, 2008), and the damage to emissions trading’s credibility with polluters
receiving large windfall profits (Sandbag, 2011). In Australia, critics of free allocation point
to forgone tax revenues which could have been hypothecated towards low-carbon investments
(Denniss, 2012). In addition, questions have been raised as to whether the free allocation of
emission allowances could place Australia in breach of its obligations under the World Trade
Organization (WTO) agreements (Haywood, 2011). It appears there is both empirical and
political currency in providing data driven, econometrically based and transparent estimates of

trade and embodied carbon impacts.

7See the Literature Review in the Appendix, on the existing literature on the CPM trade impacts.
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5.8 Appendix

5.8.1 Literature

Carbon leakage effects in the Australian context have been thus far examined using general
equilibrium models. Meng et al. (2013) uses a static computable general equilibrium model
with an environmentally extended social accounting matrix, and finds that a A$23/tCO, carbon
tax reduces Australian exports by 3.8% in the case with no free allowance allocation, and by
6.4% in the case with compensation. This is explained in terms of the rise in commodity prices
due to the carbon tax which makes exports less attractive. This price effect is magnified with
industry assistance (free allowance allocation) because it increases domestic demand, which
further increases commodity prices. Although the assumptions are not made clear, the fact that
industry assistance is found to increase domestic demand implies that the paper is modelling a
scenario with over-compensation for industry, and this needs to be considered when interpreting

and comparing the results.

Siriwardana et al. (2011) uses the same static computable general equilibrium model as Meng
etal. (2013) (i.e. ORANI-G) but without the aforementioned extension. The authors find a 0.32%
positive effect on Australia’s terms of trade, i.e. higher net exports® from a A$23/tCO,carbon tax
without compensation. In this model, the carbon tax leads to inflation, and this appreciates the
real exchange rate (The Australian dollar becomes relatively weak), driving down the price of

exports in domestic currency terms.

The Australian Treasury’s modelling analysis does not explicitly report predicted trade impacts,
nor does it compare scenarios with and without EITE sector compensation — the specified levels
of compensation under the Jobs and Competitiveness Program is implicit within the scenarios
reported. However, the analysis of the impacts on industry output finds that changes to trade
volumes are likely to be small: “At the broad sectoral level, structural changes due to carbon
pricing are much smaller than the effects of ongoing changes in the terms of trade or tastes...
Sectors will grow at similar rates with or without carbon pricing.” (The Treasury, 2012, Section
5.4.1) “Modelling results show this transitional assistance will support output in emission-
intensive industries. Output remains as high as, or higher than, it would be in the... scenario

without domestic carbon pricing.” (The Treasury, 2012, Box 5.5).

These modelling analyses clearly have not been effective in allaying concerns among policy
makers about “perceived carbon leakage”. This may be due to the very complex nature of the

models used ° and the numerous assumptions they necessitate. For example regarding growth

8This is not defined in the paper, and interpreted as the impact on net trade according to convention.

9The Australia Treasury model for example consists of a number of models. The GTEM provides the international
economic and emissions context for modelling of the Australian economy. Projections of the national, regional and
sectoral impact of carbon taxes are obtained from the MMRF model. The model for the assessment of greenhouse-gas-
induced climate change (MAGICC) estimates the GHG atmospheric concentration levels. The ROAM model and the
SKM MMA model provide detailed bottom-up information on the Australian power sector. Road and Transport is
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trends, exchange rates, productivity and technology changes, fossil fuel demand elasticities,
trade elasticities, specification of sector demand and supply functions, energy efficiency options,
nominal wage levels and exchange rates to name but a few. This suggests that there is room to
compliment the existing knowledge with analysis using different methods. Although econo-
metric estimations also involve multiple assumptions and require careful interpretation, it also
has advantages. For example, observed data is used directly rather than after calibration of the

model.

5.8.2 Supplementary charts

modelled by the Energy sector model (ESM). Household impacts are simulated using the price revenue incidence
simulation model and distribution model (PRISMOD.DIST). When multiple models are used, the accuracy of results
is subject to the degree of integration among the models and the way they are integrated (Siriwardana et al., 2011).
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Figure 5.2: Australia’s embodied emissions in exports and imports by trading partner in 2006
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Chapter 6
Synthesis and conclusions

This thesis conducted two separate but related strands of research: the first on quantifying
embodied carbon in trade, and the second strand on the trade impacts of asymmetric climate

policy. It was presented as two Parts, each comprising of two research papers:

1. Embodied carbon in trade

* A survey of the empirical literature

¢ Product-level embodied carbon flows in bilateral trade
2. Carbon leakage and competitiveness impacts

* Asymmetric industrial energy prices and international trade

* Estimating net embodied emissions impacts from carbon pricing policies

To conclude the thesis, this Chapter briefly synthesises the two strands of research, highlighting
the original contributions, key findings, and policy implications. Finally, it offers suggestions for

future work.

Both embodied carbon in trade and carbon leakage have received much attention, as was
discussed in Chapter 1. The empirical relationships between climate change policy and trade
can inform many policy questions, as was discussed in Chapter 2. At a higher level of policy
discussions, EET quantified at the country level has been used as a tool to deliberate issues
around the fair allocation of mitigation responsibility in the presence of trade, as well as the
validity, efficacy and fairness of climate change policies founded on the convention of production-
based emissions accounting and inventory. Many have argued that explicitly incorporating
consumption-based principles to complement production-based principles can improve fairness
of outcomes in terms of the distribution of responsibility across producers and consumers. At

a lower level, or in terms of detailed policy elements, embodied emissions in trade (EET) flows
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quantified at the sector level have facilitated discussions around the carbon leakage concerns
that surrounds the implementation of unilateral climate change policies. They can provide
useful insights for the potential design, functioning and distributional consequences of measures

to address these concerns.

This thesis tried to contribute to the evidence base for these debates surrounding climate change
policy and trade. Part 1 sought to improve upon estimates of embodied carbon in trade. Part 2
aimed to provide more empirically grounded estimates of trade impacts from climate change

policies.

6.1 Main results and policy implications

6.1.1 Embodied carbon in trade

Previous reviews of the embodied carbon literature have focused on methodology (e.g. Lutter
et al., 2008; Wiedmann et al., 2009; Hertwich & Peters, 2010; Liu & Wang, 2009; Wiedmann et al.,
2011; Peters & Solli, 2010) but the reported results had yet to be subject to careful comparative
evaluation. Chapter 2 sought to fill this gap.

The literature finds large and growing volumes of carbon dioxide emissions embodied in global
trade (around 30% of global carbon emissions in 2006). Yet the synthesis in Chapter 2 found
that quantities of EET at the country level remain highly uncertain for most countries and
years. Significant inconsistencies are apparent when comparing reported results across the
studies surveyed. For example, China’s EEE in 2005 is found to be in the range of 18% to 49%
of their production-based emissions, whereas the estimated EEI for the same year ranged from
8% to 44%. By examining the sources of uncertainty inherent in the models used, it concludes
the methodological and data considerations limit the practical application of consumption-
based accounting in climate policy in a serious way. However, there may be a case for incorpor-
ating consumption-based principles into strategies for CO, mitigation, for example as a shadow
indicator for countries with large net imports of embodied carbon. Moreover, better quantitat-
ive understanding of embodied carbon at the sector or supply chain level can provide useful
insights for policy, such as the potential design, functioning and distributional consequences

of measures to address these concerns.

To complement and improve the existing empirical work synthesised in Chapter 2, Chapter 3
quantified global embodied carbon in bilateral trade at the product level. This represents a
first quantification exercise of global embodied carbon at this level of disaggregation both in
terms of countries and sectors. This was done by collecting product carbon intensity factors
from multiple data sources and using the material balance approach, whereby bilateral trade
flows expressed in physical quantities are multiplied by product pollution intensities. Although
it has limitations of its own, this method overcomes a number of key sources of uncertainty in

the existing studies.
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The granular mapping of embodied carbon revealed a number of new insights which were
masked in previous quantifications using aggregated models. It found that focusing attention
on the balance of embodied carbon in trade between Annex I and non-Annex I regions in-
vites simplistic and problematic interpretations of EET estimates. For example, China’s large
surplus and the US’s large deficit of EET has been highlighted in the literature (e.g. Peters & Her-
twich, 2008; Davis & Caldeira, 2010; IEA, 2008) and in the media (Watts, 2009; The Economist,
2011). This study examines EET in bilateral trade and shows that other than trade with China,
embodied carbon is focused in regional trade — for the US, the embodied carbon trade flows
with neighbouring countries such as Canada and Mexico are also important. It suggests that
regional harmonisation of climate mitigation policy should be a priority.

In terms of the distribution of global EET across products, 70% of global EET is attributable
to 15% of the 970 products examined. This suggests that focusing mitigation efforts and
trade-measures on these products would be an effective strategy to address potential carbon

leakage, and to decarbonising international supply chains.

Examining product level bilateral trade in EET revealed striking differences in the origin and
destination of countries’ EEI and EEE, as well as the product compositions. For example,
China’s carbon imports are typically embodied in primary inputs to industrial production
and originate from resource-rich countries. In contrast, China exports embodied carbon via
manufactured products such as electronics, apparel, and also up-stream industrial products,
to economies such as the US, EU, Japan and South Korea. Evaluating the type of products by
which a country imports and exports embodied carbon revealed that some countries (e.g. Brazil,
Russia, Australia) export considerably more embodied carbon than they import. Typically the
emissions are embodied in exports of upstream industrial products such as ores and basic chem-
icals. Other countries import more than they export (e.g. US, Singapore and Belgium). Many
countries both import and export large volumes of embodied carbon (e.g. China, Japan, EU). It
is argued that grouping countries according to patterns of production and consumption may
be more relevant in discussions surrounding climate policy and trade, rather than discussing
in terms of industrialised vs developing countries, as is often done. The new grouping suggests,
for example, that advancing consumption-based accounting principles for climate policy is

particularly relevant for countries with high levels of net imports of embodied carbon.

Although there are important limitations to quantifying EET using the material balance approach,
this examination demonstrated that there is value in providing product-level embodied car-
bon flows in bilateral trade. It provides novel insights into the nature of the flows, which
were not possible in preceding studies. The case study on the cement sector underlined the
importance of obtaining reliable country specific emission factors for EET estimations, and
shed light on problems with methods commonly used in the literature to artificially create

country-specific sector level emission factors.

Two new datasets were constructed — product level global bilateral trade in physical quant-
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ities and carbon intensities of products. These will be made public upon completion of this
thesis and it is hoped that they will contribute towards new research, to complement other EET
datasets in the public sphere e.g. Peters et al. (2011b); Davis & Caldeira (2010); Davis et al.
(2011).

6.1.2 Carbon leakage impacts of unilateral climate policy

The second line of analysis is quantification of carbon leakage — how unilateral carbon pricing
measures relate to trade patterns. So far, quantitative assessments of carbon leakage have been
conducted using ex-ante partial and general equilibrium models. However, results are sensitive
to model structure and assumptions made, inter alia, technological changes, supply elasticity
of fossil fuels or capital mobility. A wide range of leakage rates have been reported by these
studies, highlighting the need for empirical analysis to improve understanding of these effects
and their magnitudes.

There are a number of empirical papers that study carbon leakage in various contexts, yet there
is limited agreement in the magnitude of the effect. As indicated in Chapters 4 and 5, this thesis

has contributed to this line of empirical research.

The approach taken in Chapter 4 was to examine the response of bilateral trade to industrial
energy prices. The effect of energy price on trade is positive and significant at the 1 percent
level across several model specifications (both linear and non-linear), such that a one percent
increase in the electricity price ratio between the importer and exporter increases bilateral
export levels of around 0.05% to 0.15%. In other words, where the exporter has a lower
industrial energy price, a larger energy price gap between the two countries is associated with
greater bilateral trade activity. It also found that differences in industrial energy price explain
a small part of the variation in trade flows (<0.1%). Whilst a number of empirical studies
conduct comparable analysis, this study is the first to examine trade impacts using bilateral
trade between over 50 countries, and using dynamic panel methods within a gravity model

framework.

Simulations were conducted to extrapolate from the results of the econometric analysis, what
are the predicted trade impacts associated with a unilateral carbon tax in the US. In line with
the simulation in the paper by (Aldy & Pizer, 2011), it was estimated that a $15/tCO, carbon
tax (assuming no carbon pricing in other regions) increases US imports by around 1%, and

decreases exports by a similar degree.

Finally, to demonstrate how the empirical research conducted in this thesis can help inform
concrete policy debates, the findings from Chapters 3 and 4 were combined to provide more
estimates of net embodied carbon impacts from carbon pricing. To do so using the example of
Australia’s Carbon Pricing Mechanism (CPM) involved simulating the impact of the A$23/tCO,

carbon tax on Australia’s bilateral import and export levels using estimation results from Chapter
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4, then translating the trade impacts into embodied carbon using quantification from Chapter
3. A small net embodied carbon effect is found from Australia’s Carbon Pricing Mechanism,
in the order of magnitude of 0.5% - 0.9% of Australia’s domestic CO; emissions is found. To
the author’s knowledge, this is the first estimate of the net embodied carbon effects for Australia,
which are derived from a regression framework rather than using equilibrium simulation

modelling.

Therefore, the quantified impacts obtained in this work can provide empirical assessments of
carbon leakage effects of the CPM. A number of assumptions are required in order to translate
the estimated trade impact of historical industrial energy price asymmetry into predictions
about the net embodied carbon effect. Nonetheless, robustness tests on these assumptions found
that there is no serious contradictions that underly the basic results — that the magnitude of the
effects of energy price differences on trade is small. These assumptions also need to be weighted
against all of the assumptions that go into estimates based on more complex models. The results
obtained represents a middle-of-the-range estimate, compared with the previous modelling
analysis conducted for the CPM, which have found mixed results — one study found a 0.32%
positive net impact on trade (terms of trade), another found a negative impact on exports (3.8%

to 6.4%), and finally the Australian Treasury analysis found a small impact on trade.

The findings from this thesis suggests that policies to ’prevent’ carbon leakage may be justified
only for a few sectors, and are likely to be required in small measures. For many of the sectors,
such policies may have only a limited impact because little leakage is expected in the first place.
Indeed, many have pointed out the economic drawbacks of free allocation. Therefore, concerns

about impacts on carbon leakage are not entirely unfounded, but have been overstated.

This study finds a substantially smaller net embodied carbon effect, compared with the pre-
vious empirical analysis. The study by (Aichele & Felbermayr, 2012) finds a 14%! carbon
leakage rate for Annex I countries as a result of then Kyoto Protocol commitments. Part of the
discrepancy may be explained by the use of world average emission factors in this study. At the
same time, the approach presented in Chapter 5 is arguably more empirically grounded because
it estimates trade impacts based on real historic data. Aichele & Felbermayr (2012) instead
derives the statistical relationship based on estimated embodied carbon flows, measuring of

which involves a considerable degree of uncertainty as demonstrated in Chapter 2.

This is application one of many ways in which the empirical research conducted in this thesis

can help better inform a variety of policy debates surrounding climate change policy and trade.

6.2 Summary of policy implications

* Methodological and data considerations involved in measuring embodied carbon in trade

limit the practical application of consumption-based accounting in climate policy in a

1 Also expressed as a ratio of net carbon imports over domestic emissions
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serious way, but it may be a useful shadow indicator for countries with large net imports

of embodied carbon.

Embodied carbon flows are focused in regional trade, hence regional harmonisation of

climate mitigation policy should be a priority.

Focusing mitigation efforts and trade-measures on certain products would be an effective
strategy to address potential carbon leakage, and to decarbonise international supply
chains — around 70% of global embodied carbon in trade is attributable to 15% of the
traded product-categories examined.

Patterns of production and consumption may be more relevant in discussions surround-
ing climate policy and trade, because the revealed complexity of EET flows renders the
conventional grouping of countries — industrialised countries vs developing countries —

inappropriate.

Most large emitting countries are both large producers and consumers of embodied carbon,
and tend to have a small net balance of EET at a country level. This suggests that the
role of consumption-based accounting methods may be limited at the country level, for

example in the context of multilateral burden sharing agreements.

The role of consumption-based accounting methods may be important at the sector level,
particularly for key energy-intensive and trade-intensive sectors. This suggests efforts to
improve the estimations of EET flows for such sectors is likely to add more value to carbon

leakage discussions.

Overall, concerns about impacts on carbon leakage are not entirely unfounded, but have
been overstated. Historical differences in industrial energy price explain a small part of
the variation in bilateral trade flows.

6.3 Future directions

6.3.1 Quantifying embodied carbon in trade

The propensity to improve measurement of embodied carbon flows using the material balance

methodology will be a function of improved and increased availability of carbon intensity

multipliers at the product level. Carbon intensity estimates have been obtained largely from

few countries such as Germany, the US, Japan. A considerable share of LCA data are privately

owned. Estimates are also rarely available as time-series. Chapter 2 suggests there is a strong

case for focusing detailed analysis of embodied carbon in the global production supply chains

for some 150 key industrial products — including certain metal product, chemicals, ore and

mining product, as well as some down-stream consumer products — which account for 70% of
global EET flows.
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6.3.2 Carbon leakage impacts

This research found evidence of the carbon leakage effect, although small in magnitude. The
implications of this finding can be politically sensitive. Some interesting extensions to this work
may be to address some of the related concerns about the impacts of climate change regulation
on domestic industry sectors, which will continue to be an important theme in political debates

surrounding these policies:

* effect of carbon leakage on employment —are the sectors most impacted, labour intensive?

* effect on profits — how will multi-national companies evaluate embodied carbon in supply

chain vs value chain?

Another important issue for future research is the trade-off between the impact of unilateral
carbon pricing policies on international trade, and on other channels of emissions mitigation for
industry, such as innovation and demand substitution. By imposing a price on carbon emissions,
climate change policies not only provide incentives for firms to import carbon-intensive in-
puts/products from countries with lower carbon prices. They also provide incentives to develop
new technologies that reduce the emissions intensity of their output. Better understanding,
therefore, of the interaction between carbon leakage and induced technological change will be
interesting for policy makers, who envisage environmental policies to create leadership in clean

industrial production.
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