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Abstract

In this thesis, we study Parisian excursions, which are defined as excursions of Brownian

motion above or below a pre-determined barrier, exceeding a certain time length. Employing

a new method, a recursion formula for the densities of single barrier and double barrier Parisian

stopping times are computed. This new approach allows us to obtain a semi-closed form

solution for the density of the one-sided stopping times, and does not require any numerical

inversions of Laplace transforms. Further, it is backed by an intuitive argument which is

premised on the recursive nature of the excursions and the strong Markov property of the

Brownian motion. The same method is also employed in our computation of the two-sided and

the double barrier Parisian stopping times. In turn, the resultant densities are used to price

Parisian options. In particular, we provide numerical expressions for down-and-in Parisian

calls. Additionally, we study the tail of the distribution of the two-sided Parisian stopping

time. Based on the asymptotic properties of its distribution, we propose an approximation

for the option prices, alleviating the heavy computational load arising from the recursions.

Finally, we use the infinitesimal generator to obtain several results on other variations of

Parisian excursions. Specifically, apart from the length, we are interested in the number of

excursions and the maximum height achieved during an excursion. Using the same generator,

we derive the joint Laplace transform of the occupation times of the Brownian motion above

and below zero, but only starting the clock each time after a certain length.
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Chapter 1

Introduction

Parisian options were first introduced by Chesney, Jeanblanc and Yor [14]. They are path

dependent options whose payoff depends not only on the final value of the underlying asset,

but also on the path trajectory of the underlying above or below a predetermined barrier L.

For example, the owner of a Parisian down-and-out call loses the option when the underlying

asset price S reaches the level L and remains constantly below this level for a time interval

longer than D, while for a Parisian down-and-in call, the same event gives the owner the

right to exercise the option. Parisian options are a kind of barrier option. However, it has

the advantage of not being as easily manipulated by an influential agent as a simple barrier

option, and thus is a guarantee against easy arbitrage.

No explicit pricing formula is known for this type of option. Previous literature has largely

focused on using Laplace transforms to price Parisian options. In Chesney et al. [14], Dassios

and Wu [21], and Shröder [43], the problem is reduced to finding the Laplace transform of the

Parisian stopping time, which is the first time the length of the excursion reaches level D. In

[14], the Laplace transform of the stopping time was obtained using the Brownian meander

and Azema martingale while Dassios and Wu [21] introduced a perturbed Brownian motion

and a semi-Markov model to obtain the Laplace transform. In both of these, an explicit form

of the Laplace transform of the distribution of the Parisian stopping time and consequently

that of the option price is found. Other methods of pricing Parisian options include the

PDE method, studied by Haber, Schönbucher and Wilmott [30], pricing by simulation, as in

Anderluh [5] and Bernard and Boyle [8], and a combinatorial approach in Costabile [16]. Zhu

and Chen [45] provided an analytic solution that involves a double integral, using a coordinate

transform.
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There exist also other types of Parisian options. Cumulative Parisian options, which are

related to the total excursion time above (or below) a barrier, are studied in [14], while double-

sided Parisian options are introduced in Dassios and Wu [19] and Anderluh and Weide [6].

Parisian option pricing under a jump diffusion model has been studied by Albrecher [3], and

Chesney and Gauthier [13] looked at American Parisian options. Edokko options, which are

generalisations of Parisian options, are introduced in Fujita and Miura [27]. Further, other

types of path-dependent options such as α-percentile options have been explored in Miura

[38], Akahori [2] and Dassios [17].

Several papers have also studied techniques to numerically invert the Laplace transforms of

the option prices. Labart and Lelong [34, 35] used an inversion formula based on the Abate

and Whitt [1] method. Bernard, Courtois and Quittard-Pinon [9] obtained numerical prices

by approximating the Laplace transforms using a linear combination of fractional functions.

This resulted in an approximate solution rather than an exact one, albeit to a high degree

of accuracy. In this thesis, we propose a different method to obtain the option price without

numerically inverting its Laplace transform. Instead, we work directly with the Laplace

transform of the stopping time and simply use it to obtain a recursive formula for the density.

We always know that a recursive formula for the density function exists and is discontinuous in

D because if t is the first time the length of the excursion reaches D, and kD < t < (k+ 1)D,

the excursion must start at t−D which is between (k− 1)D < t−D < kD, and there cannot

be any excursions greater than length D before this. Hence, the density for the stopping time

where t is between kD < t < (k + 1)D can be computed from the density of the previous

step. Furthermore, to find the density for kD < t < (k + 1)D, we will see later that we only

need to compute a finite sum of k terms, allowing for a simple and fast procedure. For small

time intervals, we give a direct and intuitive probabilistic proof of the formula for the density

function. For larger time steps, we write the density function as a recursive equation which

can be solved numerically. Furthermore, we also show how the prices of Parisian options can

be computed from the density of the Parisian stopping time.

Two-sided Parisian options are options which are knocked in or out when the underlying

asset spends D amount of time consecutively either above or below a single barrier. While

the same intuitive argument does not work for the two-sided case, we can obtain a recursion

for the density of the two-sided Parisian stopping time. The formula is very similar to that

of the one-sided case. However, when we study the tails of the two distributions, we find that
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the two-sided stopping time has an exponential tail, while the one-sided stopping time has a

heavier tail. This fact allows us to present an alternative method for pricing the option which

is faster than computing the recursions. Moreover, we extend the method to also price double

barrier Parisian options. Double barrier Parisian options are introduced in Dassios and Wu

[19] and Anderluh and Weide [6], and the Laplace transforms for the price of these options

are obtained. We derive the prices of double barrier Parisian options without numerically

inverting its Laplace transform.

Besides the lengths of excursions, we also look at the heights of Parisian excursions. This

has been studied in Gauthier [28] and Pitman and Yor [41], and is also related to Brownian

excursion areas studied in Louchard [36, 37] and Perman and Wellner [39]. In particular, we

obtain the Laplace transform of the stopping time which is the first time the Brownian motion

makes an excursion above the barrier of a certain length, and hits a second barrier during

the excursion. In the context of options, this will ensure that the stock price does not stay

around the barrier during the excursion of interest and is thus less easily manipulated. In the

Parisian default framework, as studied in Broeders and Chen [11] and Chen and Suchanecki

[12], this ensures that companies are given not just a grace period but also some leeway on

capital shortfall. Furthermore, Albrecher and Lautscham [4] generalised the classical ruin

concept to a concept of bankruptcy under which the probability of bankruptcy increases the

more negative the surplus becomes.

A generalisation of this framework leads us to consider the counting process of Parisian

excursions. This has not been studied in the literature, but it is closely related to the Brownian

local time, as seen in Karatzas and Shreve [32], Louchard [36] and Pitman and Yor [40].

Although not done in this thesis, this can have applications in mathematical finance, for

example it can be used to price a bond that pays off a continuous payment whenever the

price of a share is below a certain level for a certain period of time. This kind of bond can be

used as insurance for the firm. We present two methods, the first one more rudimentary where

we obtain the Laplace transform of the number of Parisian excursions. The second method

uses the perturbed Brownian motion introduced in Dassios and Wu [21] and the piecewise

deterministic semi-Markov model as detailed in Davis [22]. We extend further to derive the

Laplace transform of the Parisian stopping time for the Brownian meander and also the joint

Laplace transform of the Parisian occupation time above and below a barrier, which is the

occupation times, but with a qualifying period for each excursion. The Brownian meander

5



has been studied extensively, for example in Durrett and Inglehart [23, 24] and Hooghiemstra

[29], the maximum, first entrance times and occupation time distributions of the Brownian

meander are derived, while in Imhof [31], some joint densities involving the value and time of

the maximum over a fixed time interval for the Brownian motion and Brownian meander are

obtained.

This thesis is organised as follows:

Chapter 2 states an important result for the density of the Parisian stopping time. A re-

cursive formula is derived for the density and we provide both an intuitive argument as well

as a formal proof of this result. Furthermore, we propose a new procedure for pricing Parisian

options and an algorithm for pricing one-sided Parisian options is also given.

Chapter 3 extends the results of the above to the two-sided case. We compare the tails

of the one and two-sided Parisian stopping time distributions and the exact formula for the

asymptotic behaviour of the two-sided case is derived.

Chapter 4 generalises to the case of double barrier Parisian stopping times. The procedure

for pricing double barrier Parisian options is given in the chapter.

Chapter 5 derives the Laplace transform of a new stopping time, which is the first time

the Brownian motion makes an excursion of a certain length and also achieves a minimum

height during the excursion. We use a semi-Markov model to prove this result, and the same

model will also be used in the next few chapters.

Chapter 6 provides some results on the counting process of Parisian excursions up to an

exponential time. In particular, we look at the Laplace transform of the number of excursions

of a certain length above or below a barrier, the joint distribution of the number of excursions

above and below the barrier, and the joint distribution of the number of excursions above the

barrier of different lengths.

Chapter 7 further explores the counting process using the piecewise deterministic semi-Markov

model. We obtain the Laplace transforms of some stopping times related to more than one

Parisian type excursions.

6



Chapter 8 looks at the Parisian stopping time for the Brownian meander and its Laplace

transform is obtained.

Chapter 9 extends the framework to explore Parisian occupation times with a qualifying

period. We obtain the joint Laplace transform of the cumulative occupation time of the

Brownian motion above and below the barrier but we only start the clock each time after a

qualifying period.

Chapter 10 concludes this thesis.

7



Chapter 2

One-sided Parisian Options

Parisian options are options whose payoff depends on the path trajectory of the underlying

asset above or below a barrier. For instance, a Parisian down-and-in call is a call option that

gets knocked in when the underlying stays below a barrier for D amount of time consecu-

tively. This is illustrated in the following picture, where the option is knocked in at τ−L,D.

The mathematical definition of τ−L,D will be given in the next section but we use it here for

illustrative purposes. It is the stopping time which is the first time the underlying process

goes below barrier L, for L > 0 and stays below for a period longer than D.

Figure 2.1: Illustration of a Parisian Down-and-in Call

In order to price Parisian options, we need to find the distribution of the Parisian stopping

time. Here, we propose a new method to numerically obtain the density of the Parisian

stopping time. This comes in the form of a recursion formula, and thus we note that the

procedure is more efficient for long window length relative to the time to maturity. In this
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chapter, we look at the one-sided case, where we are only interested in excursions either above

or below the barrier. The Laplace transform of the density is obtained in Chesney, Jeanblanc

and Yor [14] using the Azema martingale and in Dassios and Wu [21] using a semi-Markov

model. We show how this Laplace transform can be analytically inverted into a recursion.

The advantage of this method is that the recursions are easy to program as the resulting

formula only involves a finite sum and does not require a numerical inversion of the Laplace

transform. We then propose a new algorithm for pricing Parisian options. This chapter is

mostly based on Dassios and Lim [18], which was published earlier this year.

2.1 Definitions

We will use the same definitions for the excursions as in Chesney et al [14]. Let S be the under-

lying asset following a geometric Brownian motion, and Q denote the risk neutral probability

measure. The dynamics for S under Q is

dSt = St(rdt+ σdWt), S0 = x (2.1)

where Wt is a standard Brownian motion under Q, and r and σ positive constants. We also

introduce the notations

m =
1

σ

(
r − σ2

2

)
, b =

1

σ
ln

(
L

x

)
, k =

1

σ
ln

(
K

x

)
so that the asset price St = xeσ(mt+Wt). For L > 0, we define

gSL,t = sup{s ≤ t|Ss = L}, dSL,t = inf{s ≥ t|Ss = L}

with the usual convention that sup ∅ = 0 and inf ∅ = ∞. The trajectory of S between gSL,t
and dSL,t is the excursion which straddles time t. We are interested here in t − gSL,t, which is

the age of the excursion at time t. For D > 0, we now define

τ+
L,D(S) = inf{t ≥ 0|1St>L(t− gSL,t) ≥ D}

τ−L,D(S) = inf{t ≥ 0|1St<L(t− gSL,t) ≥ D}.
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Hence, τ+
L,D(S) is the first time that the length of the excursion of process S above the barrier

L reaches level D, while τ−L,D(S) corresponds to the excursion below level L. We also introduce

the following notation for the stopping times where we refer to the standard Brownian motion

W instead of S. Furthermore, without loss of generality since any time t of interest can be

expressed in units of the window length D, we let D = 1 from now on and drop its notation.

τ+
b = inf{t ≥ 0|1Wt>b(t− gWb,t) ≥ 1}

τ−b = inf{t ≥ 0|1Wt<b(t− gWb,t) ≥ 1}.

We denote by Cd
i (x, T ) the price of a Parisian down-and-in call with initial underlying price

x, maturity T , and parameters K,L,D, r fixed. The owner of a Parisian down-and-in option

receives the payoff only if there is an excursion below the level L which is of length greater

than D. This will be the case if τ−L (S) ≤ T . We have the price formula

Cd
i (x, T ) = EQ

[
e−rT1{τ−L (S)≤T}(xe

σ(mT+WT ) −K)+
]
.

We introduce a new probability measure P , which makes Zt = Wt +mt a standard Brownian

motion under P . Applying Girsanov’s Theorem, we have

Cd
i (x, T ) = EP

[
e−(r+ 1

2
m2)T1{τ−b ≤T}

emZT
(
xeσZT −K

)+
]
.

To simplify things, we also let

∗Cd
i (x, T ) = e(r+ 1

2
m2)TCd

i (x, T ).

We denote by Ft = σ(Zs, s ≤ t) the natural filtration of the Brownian motion (Zt, t ≥ 0).

Then τ−b is an Ft-stopping time, and by the strong Markov property of Brownian motion

∗Cd
i (x, T ) = EP

[
1{τ−b ≤T}

EP

[
emZT

(
xeσZT −K

)+ |Fτ−b
]]

= EP

1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy

 .
We will first look at the stopping times τ−b and τ+

b . We want to obtain the density functions

for these two random variables. We denote by f−b (t) the density function of τ−b and f+
b (t) the
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density function of τ+
b .

2.2 Density of the one-sided Parisian stopping time

In this section, we present the recursive formula for the density function of τ−b . First, we give

the intuitive proof for the first two steps of the recursion. This results in explicit formulas

for when the time frame we are interested in is only at most twice that of the window length.

We then provide a more formal proof which will give a recursive equation for all values of t.

We present the proof for the excursions below the barrier, τ−b , and the result for τ+
b follows

due to the symmetry of Brownian motion.

Theorem 2.1 For b ≤ 0, the density function of τ−b can be written as a recursion as follows:

f−b (t) =
n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ... (2.2)

for t > 1, where Lk(t) is defined recursively as follows:

L0(t) =
1

2π
√
t
e−

b2

2t , for t > 0 (2.3)

Lk+1(t) =

∫ t−k

1

Lk(t− s)
√
s− 1

2πs
ds, for t > k + 1 (2.4)

and

f+
b (t) = f−−b(t). (2.5)

2.2.1 Intuitive Proof for 1 < t < 3

We look at the case b = 0, where we start at the barrier, S0 = L. We denote by Tx the first

hitting time of level x of a standard Brownian motion, and recall the notation gt as the last

time the Brownian motion is at 0 before time t. We want to find the density of τ−0 , which

is the first time the excursion reaches length 1. The density of τ−0 vanishes for t < 1. For

1 < t < 2, the excursion must start at 0 < t − 1 < 1. Now, we modify the problem slightly

and find instead P (τ−0 − 1 ∈ dt), the probability density for t being the start of the excursion

greater than length 1. For 0 < t < 1, we condition the value of the Brownian motion at time

1. At time 1, the probability that the start of an excursion of length 1 occurred at time t is
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equal to the probability that t is the time of the last exit time g1, that the Brownian motion

travelled to x between time t to time 1, and that the Brownian motion does not hit 0 before

a further time period t, such that the total time spent above 0 is 1. The required probability

is obtained by integrating over x.

P (τ−0 − 1 ∈ dt) =

∫ ∞
0

P (g1 ∈ dt,W1 ∈ dx, Tx ≥ t)dx

= P (g1 ∈ dt)
∫ ∞

0

P (W1 ∈ dx|g1 = t)P (Tx ≥ t)dx

where we condition on the value of the Brownian motion at time 1. The distribution of g1

follows the arcsine law (see Chung [15]), and is

P (g1 ∈ dt) =
1

π
√
t
√

1− t
dt.

We note that W1|g1 = t has the same distribution as a Brownian meander of excursion length

1− t and has density (see [15])

P (W1 ∈ dx|g1 = t) =
x

2(1− t)
e−

x2

2(1−t)dx.

Thus, we have

P (τ−0 − 1 ∈ dt) =
1

π
√
t
√

1− t
dt

1

2

∫ ∞
0

x

1− t
e−

x2

2(1−t)

∫ ∞
t

x√
2πu3

e−
x2

2ududx

=
1

π
√
t
√

1− t
1

2

√
1− tdt

=
1

2π
√
t
dt.

We denote this by L0(t). For 0 < t < 1, L0(t) is the probability that t is the start of one

excursion greater than length 1. For 1 < t < 2, however, there can be up to 2 excursions,

and since we are only interested in the first excursion greater than length 1, we subtract the

probability that there are indeed 2 excursions. We denote by L1(t) the probability density

of t being the start of two excursions greater than length 1, for 1 < t < 2. We break this

probability up into 3 parts, the probability that the Brownian motion makes a first excursion

of length 1, L0(s− 1), that it travelled to x at time s, hits 0 again at time u, s < u < t, and

that starting at 0 at time u, it will make a second excursion of length 1 at time t, L0(t− u).
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The required probability is then obtained by integrating over all s, x and u.

L1(t) =

∫ t

1

L0(s− 1)

∫ ∞
0

P (Ws ∈ dx|gs = s− 1)

∫ t

s

P (Tx ∈ du)L0(t− u)

=

∫ t

1

L0(s− 1)

∫ ∞
0

xe−
x2

2

∫ t

s

x√
2π(u− s)3

e−
x2

2(u−s)
1

2π
√
t− u

dudsdx

=

∫ t

1

L0(s− 1)
1

2π

√
t− s

t− s+ 1
ds

=

∫ t

1

L0(t− s) 1

2π

√
s− 1

s
ds

where we condition on the start of the first excursion greater than length 1 s− 1, the value of

the Brownian motion at the end of this excursion Ws, and the first time the Brownian motion

comes back to zero again after that u. Moreover, L0(t−u) is the probability that t is the start

of an excursion with length larger than 1, given that we start from 0 at u. For 2 < t < 3, the

density of τ−0 is L0(t− 1)−L1(t− 1). The same argument follows by induction for t > 3 and

we obtain the recursion.

2.2.2 General case (b ≤ 0)

Below we give the formal proof for the recursive formula of the theorem for time t ≥ 1.

Proof. For simplicity, we define the following function.

Ψ(x) = 1 + x
√

2πe
x2

2 N (x)

where N (x) denotes the standard normal distribution function. The Laplace transform ĥ(β)

of a function h(t) on the positive real line is defined by

L(h(t)) = ĥ(β) =

∫ ∞
0

e−βth(t)dt.

For b ≤ 0, the Laplace transform of the density f−b (t) of the stopping time (with D = 1) is

f̂−b (β) =
e
√

2βb

Ψ(
√

2β)
.

Chesney et al. [14] obtained this using the Azema martingale, while Dassios and Wu [21]

derived the same result using a semi-Markov model which we will be using later. Instead of

13



inverting this numerically, we find a direct formula for f−b (t) by writing the above equation

as a renewal equation, which can then be solved recursively. First, we rewrite Ψ(
√

2β) as

1

β
e−βΨ

(√
2β
)

=
e−β

β
+ 2

√
π

β

∫ √2β

−∞

1√
2π
e−

x2

2 dx

=
e−β

β
+

√
π

β

(
1 + 2

∫ √2β

0

1√
2π
e−

x2

2 dx

)

=

√
π

β
+
e−β

β
+

∫ 1

0

e−βs√
s
ds

=

√
π

β
+

∫ ∞
1

e−βsds+

(∫ ∞
0

e−βs√
s
ds−

∫ ∞
1

e−βs√
s
ds

)
= 2

√
π

β
+

1

β

∫ ∞
1

e−βs

2s3/2
ds

= 2

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.

So we have

f̂−b (β) =
e−βe

√
2βb

2
√
πβ
(

1 + 1
2
√
πβ

∫∞
1

e−βs

2s3/2
ds
) (2.6)

= e−β
∞∑
k=0

(−1)k
e
√

2βb

2
√
πβ

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
. (2.7)

We denote

L̂k(β) =
e
√

2βb

2
√
πβ

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
. (2.8)

Since L̂1(β)→ 0 as β →∞, and L̂k(β) is continuous and decreasing in β, there exists β∗ > 0

such that the above expansion from line (2.6) to (2.7) is valid for all β > β∗. Furthermore,

we have the following Laplace inversions

L−1

(
e
√

2βb

2
√
πβ

)
=

1

2π
√
t
e−

b2

2t (2.9)

L−1

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

√
t− 1

2πt
1{t>1}. (2.10)
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Equation (2.9) can be checked by integrating∫ ∞
0

e−βt
1

2π
√
t
e−

b2

2t dt

=
e
√

2βb

2
√

2β

∫ ∞
0

√
2β − b

t

2π
√
t
e−

(b+
√
2βt)2

2t dt+
e−
√

2βb

2
√

2β

∫ ∞
0

√
2β + b

t

2π
√
t
e−

(b−
√
2βt)2

2t dt

=
e
√

2βb

2
√
πβ

where both integrals are evaluated using a change of variable x = b±
√

2βt√
t

and the second term

turns out to be zero. The LHS of (2.10) is the product of two functions whose inversion is

known, so by taking their convolution we get

L−1

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

∫ t

0

1

2π
√
t− s

1

2s3/2
1{s>1}ds

=

[
−
√
t− s

2πt
√
s

]t
1

=

√
t− 1

2πt
1{t>1}.

Hence, taking the Laplace inversion of equation (2.8), we obtain that Lk is the kth convolution

of (2.10), and L0 is the expression obtained in (2.9). Finally, we note that for n < t < n+ 1,

Lk(t) is zero for k > n, so we only need a finite sum up to n, where the series expansion is

valid for β > β∗.

2.2.3 General case (b > 0)

We let Tb be the first hitting time of a standard Brownian motion of level b. For b > 0, we

are only concerned with the case where Tb < D. Without loss of generality, we take D = 1.

If Tb ≥ 1, the Parisian stopping time τ−b = 1 since we are already below the barrier, and the

problem simplifies.

Theorem 2.2 For f−b (t, Tb < 1) the probability density function of τ−b on the set {Tb < 1},

f−b (t, Tb < 1) =
n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ... (2.11)
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for t > 0, where Lk(t) is defined recursively as follows:

L0(t) = 1{0<t≤1}
1

2π
√
t
e−

b2

2t + 1{t>1}
1

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)
(2.12)

Lk+1(t) =

∫ t−k

1

Lk(t− s)
√
s− 1

2πs
ds, for t > k + 1. (2.13)

Furthermore,

f+
b (t, Tb < 1) = f−−b(t, T−b < 1). (2.14)

Proof. In this case, we have

E
[
e−βτ

−
b (t)1{Tb<1}

]
= E

[
e−β(Tb+τ

−
0 )1{Tb<1}

]
= E

[
e−βTb1{Tb<1}

] 1

Ψ
(√

2β
)

= e−β
∞∑
k=0

(−1)k
E
[
e−βTb1{Tb<1}

]
2
√
πβ

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

As in the previous case, there exists some β∗ such that the series expansion is valid for β > β∗

since L̂1(β)→ 0 as β →∞ and L̂k(β) is continuous and decreasing in β. We have

L0(t) = L−1

(
E
[
e−βTb1{Tb<1}

]
2
√
πβ

)
= 1{0<t≤1}

∫ t

0

b√
2πs3

e−
b2

2s
1

2π
√
t− s

ds

+1{t>1}

∫ 1

0

b√
2πs3

e−
b2

2s
1

2π
√
t− s

ds

= 1{0<t≤1}
1

2π
√
t
e−

b2

2t + 1{t>1}
1

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)

and Lk for k = 1, 2, ... is the same as the previous case.
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2.3 Pricing one-sided Parisian Options

2.3.1 Down-and-in Parisian call

We look in particular at the case of a down-and-in call option. Let S be the underlying asset

price as in (2.1), L the barrier level, and m, b, l defined as in section 2.1.

m =
1

σ

(
r − σ2

2

)
, b =

1

σ
ln

(
L

x

)
, k =

1

σ
ln

(
K

x

)
.

We denote by Z(.) the probability density function of a standard normal random variable, and

Nρ(., .) the joint cumulative function for a pair of bivariate standard normal random variables

with correlation coefficient ρ. We present the following pricing formula for ∗Cd
i (x, T ).

Theorem 2.3 The price of a down-and-in Parisian call option on the underlying S with

barrier L < x (ie. b < 0) and maturity time T > 1, is given by

∗Cd
i (x, T ) =

√
2π

∫ T

0

f−b (t) (xψ(σ +m,hb, b, ρ, t)−Kψ(m,h′b, b, ρ, t)) dt (2.15)

where f−b (t) is the density function of the Parisian stopping time with barrier b as in Theorem

2.1, and we define the function

ψ(x, y, b, ρ, t) = e
x2(1+T−t)+2bx

2

(
Z(−x)N

(
−xρ− y√

1− ρ2

)
− ρZ(y)N

(
−x− ρy√

1− ρ2

)
−x (N (−x)−Nρ(−x, y))) (2.16)

and

hb =
1√

1 + T − t
(k − b− (σ +m)(1 + T − t)) (2.17)

h′b =
1√

1 + T − t
(k − b−m(1 + T − t)) (2.18)

ρ =
1√

1 + T − t
. (2.19)

Proof. As in the previous section, we change to a measure P under which Zt is a standard

Brownian motion. Furthermore, since τ−b is an Ft stopping time, by the strong Markov
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property of Brownian motion, we have

∗Cd
i (x, T ) = EP

[
1{τ−b ≤T}

E
[
emZT

(
xeσZT −K

)+ |Fτ−b
]]

= EP

1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy

 .
It is easy to see that τ−b and Zτ−b

are independent (see Chesney et al. [14] for more detail).

We denote the density functions of τ−b and Zτ−b
by f−b (t) and v(z) respectively. The density

of Zτ−b
is associated to the Brownian meander and for window length D = 1 is (see Yor [44]

for more detail)

v(dz) = P (Zτ−b
∈ dz) = (b− z)e−

(z−b)2
2 1{z<b}dz.

So we have

∗Cd
i (x, T ) =

∫ T

0

∫ ∞
−∞

f−b (t)v(dz)

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − t)

e−
(y−z)2
2(T−t)dydt

=
√

2π

∫ T

0

f−b (t)

∫ b

−∞

∫ ∞
k

(b− z)e−
(z−b)2

2 emy (xeσy −K)
1

2π
√
T − t

e−
(y−z)2
2(T−t)dydzdt.

We are interested to evaluate the double integral with respect to y and z.

1

2π
√
T − t

∫ b

−∞

∫ ∞
k

emy(xeσy −K)(b− z)e−
(z−b)2

2 e−
(y−z)2
2(T−t)dzdy

=
1

2π
√
T − t

∫ b

−∞

∫ ∞
k

xe(σ+m)y(b− z)e−
(z−b)2

2 e−
(y−z)2
2(T−t)dzdy

− 1

2π
√
T − t

∫ b

−∞

∫ ∞
k

Kemy(b− z)e−
(z−b)2

2 e−
(y−z)2
2(T−t)dzdy.

We look at the first integral on the RHS. The integrand can be written as the joint density

function of a bivariate normal distribution.

x
1

2π
√
T − t

∫ b

−∞

∫ ∞
k

e(σ+m)y(b− z)e−
(z−b)2

2 e−
(y−z)2
2(T−t)dzdy

= x exp

{
(σ +m)2(1 + T − t) + 2b(σ +m)

2

}
1

2π
√
T − t∫ b

−∞

∫ ∞
k

(b− z) exp

{
−(y − (b+ (σ +m)(1 + T − t)))2

2(T − t)

}
exp

{
− (z − (b+ (σ +m)))2

2(T − t)/(1 + T − t)

}
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exp

{
2(y − (b+ (σ +m)(1 + T − t)))(z − (b+ (σ +m)))

2(T − t)

}
dzdy

= x exp

{
(σ +m)2(1 + T − t) + 2b(σ +m)

2

}
1

2π
√

1− ρ2

∫ −(σ+m)

−∞

∫ ∞
hb

(−v − (σ +m)) exp

{
−u

2 − 2ρuv + v2

2(1− ρ2)

}
dudv (2.20)

where we have used the transformation u = y−(b+(σ+m)(1+T−t)√
1+T−t and v = z − (b+ (σ +m)), hb,

h′b and ρ as defined in (2.3) - (2.5). Now, we have the following result for (U, V ) bivariate

normal with mean 0, variance 1, and correlation coefficient ρ.

1

2π
√

1− ρ2

∫ ∞
hb

∫ −(σ+m)

−∞
ve
− (u2−2ρuv+v2)

2(1−ρ2) dudv

=
1

2π

∫ ∞
hb

∫ −(σ+m)−ρu√
1−ρ2

−∞

(√
1− ρ2w + ρu

)
e−

1
2

(u2+w2)dudw

where we used the transformation v − ρu = w
√

1− ρ2. Now applying integration by parts,

we obtain√
1− ρ2

2π

∫ ∞
hb

[
−e−

1
2

(u2+w2)
]−(σ+m)−ρu√

1−ρ2

−∞
+

ρ

2π

∫ ∞
hb

ue−
1
2
u2
∫ −(σ+m)−ρu√

1−ρ2

−∞
e−

1
2
w2

dwdu

=

√
1− ρ2

2π

∫ ∞
hb

−e−
((σ+m)2+2ρ(σ+m)u+u2)

2(1−ρ2) du

+
ρ

2π

{[
−e−

1
2
u2
∫ −(σ+m)−ρu√

1−ρ2

−∞
e−

1
2
w2

dw

]∞
hb

+

∫ ∞
hb

e−
1
2
u2e
− 1

2

(
−(σ+m)−ρu√

1−ρ2

)2 (
−ρ√
1− ρ2

)
du

}

= −
√

1− ρ2

2π

∫ ∞
hb

e−
1
2

((σ+m)2+2ρ(σ+m)u+u2)du

(
1 +

ρ2

1− ρ2

)
+

ρ

2π
e−

1
2
h2b

∫ −(σ+m)−ρhb√
1−ρ2

−∞
e−

1
2
w2

dw.

Here, we apply another transformation v = u+(σ+m)ρ√
1−ρ2

to the first integral above. This gives us

− 1

2π

∫ ∞
hb+(σ+m)ρ√

1−ρ2

e−
1
2

((σ+m)2+v2)dv + ρZ(hb)N

(
−(σ +m)− ρhb√

1− ρ2

)

= −Z(−(σ +m))N

(
−(σ +m)ρ− hb√

1− ρ2

)
+ ρZ(hb)N

(
−(σ +m)− ρhb√

1− ρ2

)
.
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So we have

1

2π
√

1− ρ2

∫ −(σ+m)

−∞

∫ ∞
hb

(−v − (σ +m)) exp

{
−u

2 − 2ρuv + v2

2(1− ρ2)

}
dudv

= Z(−(σ +m))N

(
−(σ +m)ρ− hb√

1− ρ2

)
− ρZ(hb)N

(
−(σ +m)− ρhb√

1− ρ2

)
−(σ +m) (N (−(σ +m))−Nρ(−(σ +m), hb)) .

Substituting this back into (2.18), we obtain xψ (σ +m,hb, b, ρ, t). Doing the same for the

second integral, we get xψ (σ +m,hb, b, ρ, t)−Kψ (m,h′b, b, ρ, t).

Theorem 2.4 The price of a down-and-in Parisian call option on the underlying S with

barrier L > x (ie. b > 0) and maturity time T > 1, is given by

∗Cd
i (x, T ) = xφ(σ +m)−Kφ(m) (2.21)

+
√

2π

∫ T

0

f−b (t;Tb < 1) (xψ(σ +m,hb, b, ρ, t))−Kψ(m,h′b, b, ρ, t)) dt

where f−b (t, Tb < 1) is the density function of the Parisian stopping time with barrier b in

Theorem 2.2, and ψ, hb, h
′
b, ρ defined as in Theorem 2.3, and we also used the function

φ(x) = e
x2T
2

(
N (b− x)−N 1√

T

(
b− x, k − xT√

T

))
−e

x2T+4bx
2

(
N (−b− x)−N 1√

T

(
−b− x, k − 2b− xT√

T

))
. (2.22)

Proof. For b > 0, we split into the case when Tb > 1 and Tb < 1.

∗Cd
i (x, T ) = EP

1{Tb>1}1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy


+EP

1{Tb<1}1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy

 .
For z < b, the law of Z1 on the set {Tb > 1} is

P (Z1 ∈ dz, Tb > 1) = P (Z1 ∈ dz)− P (Z1 ∈ dz, Tb < 1)
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=
1√
2π

(
e−

z2

2 − e−
(z−2b)2

2

)
dz

where the second term is due to the reflection about b. Since we start below the barrier,

τ−b = 1 if Tb > 1. So we have

EP

1{Tb>1}1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy


= EP

[
1{Tb>1}1{1≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − 1)

e−
(y−Z1)

2

2(T−1) dy

]

=
1√

2π(T − 1)

∫ b

−∞

∫ ∞
k

emy (xeσy −K) e−
(y−z)2
2(T−1)

1√
2π

(
e−

z2

2 − e−
(z−2b)2

2

)
dzdy

= xφ(σ +m)−Kφ(m)

where the last step involves writing the integrand as the density function of a pair of bivariate

normal random variables as before to obtain a joint cumulative distribution function. On the

set {Tb < 1}, Zτ−b is again independent of τ−b , so we have

EP

1{Tb<1}1{τ−b ≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τ−b )

e
−

(y−Z
τ−
b

)2

2(T−τ−
b

) dy


=

∫ T

0

∫ ∞
−∞

f−b (t;Tb < 1)v(dz)

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − t)

e−
(y−z)2
2(T−t)dydt

=
√

2π

∫ T

0

f−b (t;Tb < 1) (xψ(σ +m,hb, b, ρ, t))−Kψ(m,h′b, b, ρ, t)) dt

where the proof is as before.

2.3.2 Down-and-out Parisian call

A Parisian down-and-out call can be priced using the prices for the down-and-in calls with

the same barrier, strike price and initial asset price. We let CBS(x, T ) denote the price of a

vanilla call option with initial asset price x, maturity T , and strike price K. Then

CBS(x, T ) = EQ
[
e−rT (ST −K)+

]
.
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We also denote Cd
o (x, T ) as the price of a down-and-out call with the same parameters. We

have for L ≤ x (b ≤ 0),

Cd
o (x, T ) = EQ

[
e−rT (ST −K)+1{τ−b >T}

]
= EQ

[
e−rT (ST −K)+

]
− EQ

[
e−rT (ST −K)+1{τ−b ≤T}

]
= CBS(x, T )− e−(r+ 1

2
m2)T

(∗Cd
i (x, T )− xφ(σ +m)−Kφ(m)

)
.

This parity relationship allows us to price the down-and-out Parisian calls.

For L > x (b > 0), we only need to consider the case when Tb < 1, since when Tb > 1,

τ−b = 1 and the option is knocked out. Hence, the price of the option is

Cd
o (x, T ) = EQ

[
e−rT (ST −K)+1{τ−b >T}

1{Tb<1}

]
= EQ

[
1{Tb<1}(ST −K)+e−rT

]
− EQ

[
1{Tb<1}1{τ−b <T}

(ST −K)+e−rT
]

= EQ
[
1{Tb<1}EQ

[
(ST −K)+e−rT |FTb

]]
− e−(r+ 1

2
m2)T

(∗Cd
i (x, T )− xφ(σ +m)−Kφ(m)

)
= EQ

[
1{Tb<1}CBS(L, T − TL)

]
− e−(r+ 1

2
m2)T

(∗Cd
i (x, T )− xφ(σ +m)−Kφ(m)

)
=

∫ 1

0

b√
2πt3

e−
b2

2tCBS(L, T − t)dt− e−(r+ 1
2
m2)T

(∗Cd
i (x, T )− xφ(σ +m)−Kφ(m)

)
.

2.3.3 Up-and-in Parisian call

For an up-and-in Parisian call, we have the following pricing formulae:

Theorem 2.5 The price of an up-and-in Parisian call on the underlying S with barrier L > x

(ie. b > 0) and maturity time T > 1, is given by

∗Cu
i (x, T ) =

√
2π

∫ T

0

f+
b (t)(xψ(−(σ +m), hb, b,−ρ, t)−Kψ(−m,h′b, b,−ρ, t))dt (2.23)

where f+
b (t) is the density function of the Parisian stopping time with barrier b as in Theorem

2.1, hb, h
′
b and ρ are defined as in Theorem 2.3, and N̄ρ(x, y) = P (X > x, Y > y) is the

survival function of the bivariate normal random variables X and Y with correlation coefficient

ρ.

Theorem 2.6 The price of an up-and-in Parisian call on the underlying S with barrier L < x
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(ie. b < 0) and maturity time T > 1, is given by

∗Cu
i (x, T ) = xφ′(σ +m)−Kφ′(m) (2.24)

+
√

2π

∫ T

0

f+
b (t;Tb < 1)(xψ(−(σ +m), hb, b,−ρ, t)−Kψ(−m,h′b, b,−ρ, t))dt

where f+
b (t;Tb < 1) is the density function of τ+

b conditioned on the set Tb < 1 as in Theorem

2.2, and ψ, hb, h
′
b, and ρ are as in the previous theorem. Furthermore, the function φ′(x) is

defined as

φ′(x) = e
x2T
2

(
N̄ρ
(
b− x, k − xT√

T

)
− e

x2T+4bx
2 N̄ρ

(
−b− x, k − (2b+ xT )√

T

))
. (2.25)

2.3.4 Up-and-out Parisian call

We denote by Cu
o the price of a up-and-out Parisian call. As in above for down-and-out call

options, the Parisian up-and-out calls can be priced using parity relationships. For b > 0, we

have

Cu
o (x, T ) = CBS(x, T )− Cd

o (x, T )

and for b ≤ 0,

Cu
o (x, T ) =

∫ 1

0

b√
2πt3

e−
b2

2tCBS(L, T − t)dt− e−(r+ 1
2
m2)T (∗Cu

i (x, T )− xφ′(σ +m)−Kφ′(m)) .

2.3.5 Put-call parities

Furthermore, we can obtain the prices of the one-sided Parisian put options by using some

put-call parity relations. We denote by P d
o (x, T,K, L) the price of a down-and-out Parisian

put with initial asset price S0 = x, maturity T , strike price K and barrier L and so on.

Quoting the results obtained in Labart and Lelong [34] Section 5, we have

P d
o (x, T,K, L) = xKCu

o (
1

x
, T,

1

K
,

1

L
)

P u
o (x, T,K, L) = xKCd

o (
1

x
, T,

1

K
,

1

L
)

P u
i (x, T,K, L) = xKCd

i (
1

x
, T,

1

K
,

1

L
)

P d
i (x, T,K, L) = xKCu

i (
1

x
, T,

1

K
,

1

L
).
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2.4 Numerical Results

The following table shows the density and cumulative function for b = 0 at intervals of 0.5,

computed using a time step of h = 0.001.

Table 2.1: Density f−0 (t) for 0 < t ≤ 10
t f−0 (t) F−0 (t) t f−0 (t) F−0 (t)

1.5 0.225192 0.224967 6.0 0.032951 0.596578
2.0 0.159195 0.318230 6.5 0.029312 0.612044
2.5 0.115597 0.385764 7.0 0.026296 0.625858
3.0 0.089488 0.436448 7.5 0.023763 0.638296
3.5 0.071858 0.476398 8.0 0.021613 0.649571
4.0 0.059334 0.508918 8.5 0.019768 0.659854
4.5 0.050062 0.536056 9.0 0.018171 0.669282
5.0 0.042972 0.559146 9.5 0.016778 0.677967
5.5 0.037410 0.579104 10.0 0.015554 0.686003

The following graph shows the distribution function F0(t) plotted against t, for 0 ≤ t ≤ 50.
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Figure 2.2: Graph of F0(t) vs t for 0 < t ≤ 50

Below is a table of the prices of Parisian down-and-in calls. Using the same parameters

as in Bernard, Courtois and Quittard-Pinon [9], σ = 0.2, r = 0.05, T = 1 year, K = 95, and
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L = 90, we obtain the same results up to 2 decimal places at different window lengths D and

initial stock price S0.

Table 2.2: Price of Parisian Down-and-in call
S0 D = 1 month D = 2 months D = 3 months D = 4 months
80 2.599144 1.917126 1.325256 0.894224
82 2.915856 1.951244 1.278959 0.833757
84 3.024509 1.850371 1.158805 0.732982
86 2.862540 1.630234 0.983769 0.605966
88 2.466282 1.337957 0.783991 0.471268
90 1.969965 1.034182 0.589757 0.345171
92 1.558517 0.798889 0.445765 0.255106
94 1.223695 0.610794 0.332570 0.185555
96 0.957872 0.465487 0.247251 0.134427
98 0.747613 0.353669 0.183210 0.097016
100 0.581894 0.267937 0.135329 0.069763

The table below gives a comparison of the CPU times for our algorithm and that using the

Laplace inversion technique in [34], computed using the above parameters and S0 = 90. Due

to the increasing number of recursions required, the computation times increase rapidly as

the window length decreases. As we can see in the table below, our algorithm is very efficient

for long window lengths relative to the time to maturity. For window lengths of 2 months and

above, the CPU time required for this algorithm is less than a second. However, for window

length of 1 month, our algorithm is slower because of the large number of recursions.

Table 2.3: Computation times (s)
D Recursion formula Laplace inversion

1 month 2.56 1.06
2 months 0.98 1.24
3 months 0.70 1.48
4 months 0.58 1.66
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2.A Appendix to Chapter 2

The code is written in R. First we compute the density f−b (t) for different values of t, using n

number of steps and h for the size of each time step. Using the numerical values of f−b (t), we

can do a numerical integration and use Theorem 2.3 to obtain the price of the down-and-in

Parisian call. We note that since we have chosen the window length D as the unit of time, all

parameters (r, σ) are correspondingly normalised depending on the window length. Below is

the code for pricing a down-and-in Parisian call option using the parameters σ = 0.2, r = 0.05,

T = 1 year, K = 95, and L = 90, number of time steps n = 1000, D = 3 months, and initial

price S0 = 92.

# load package

library(mnormt)

#parameters

n <- 1000

t <- 4

r <- 0.05

sigma <- 0.2

S0 <- 92

L <- 90

K <- 95

t<-t-1

h<-1/n

r<-r/(t+1)

sigma<-sigma/sqrt(t+1)

b<- 1/sigma*log(L/S0)

m<- 1/sigma*(r-sigma^2/2)

f<-mat.or.vec(t*n,1) #vector of densities for tau

L1<-1/sqrt(pi*(1:(t*n)-0.5)*h)*exp(-b^2/(2*(1:(t*n)-0.5)*h))

L2<-mat.or.vec(t*n,1) #vector of Lk’s

x<-sqrt(((1:(t*n)-0.5)*h))/(pi*(1+((1:(t*n)-0.5)*h)))
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f<-L1

for(i in 1:(t-1)) {

y<-convolve(L1[((i-1)*n+1):((t-1)*n)],rev(x[1:((t-i)*n)]),type = "open")

L2[(i*n+1):(t*n)]<-y[1:((t-i)*n)]*h

f<-f+L2*(-1/2)^i

L1<-L2

L2<-mat.or.vec(t*n,1)

}

f<-f/(2*sqrt(pi)) #we obtain the density for \tau_b^-.

rho<-1/sqrt(1+((t*n):1-0.5)*h)

c1<-S0*exp(((sigma+m)^2*(1+((t*n):1-0.5)*h)+2*b*(sigma+m))/2)

c2<-K*exp((m^2*(1+((t*n):1-0.5)*h)+2*b*m)/2)

k1<-1/sqrt(1+((t*n):1-0.5)*h)*(1/sigma*log(K/S0)-b-(sigma+m)*(1+((t*n):1-0.5)*h))

l1<-rep(-(sigma+m),times=(t*n))

k2<-1/sqrt(1+((t*n):1-0.5)*h)*(1/sigma*log(K/S0)-b-m*(1+((t*n):1-0.5)*h))

l2<-rep(-m,times=(t*n))

mnorm1<-mat.or.vec(t*n,1) #cdf of bivariate normal computed at (l,k)

for(i in 1:(t*n)) {

varcov<-matrix(c(1,rho[i],rho[i],1),2,2)

mnorm1[i]<-pmnorm(c(l1[i],k1[i]),c(0,0),varcov)

}

mnorm1<-pnorm(l1)-mnorm1

mnorm2<-mat.or.vec(t*n,1) #cdf of bivariate normal computed at (l’,k’)

for(i in 1:(t*n)) {

varcov<-matrix(c(1,rho[i],rho[i],1),2,2)

mnorm2[i]<-pmnorm(c(l2[i],k2[i]),c(0,0),varcov)

}
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mnorm2<-pnorm(l2)-mnorm2

q<-c1*(dnorm(l1)*pnorm((l1*rho-k1)/sqrt(1-rho^2))

-rho*dnorm(k1)*pnorm((l1-rho*k1)/sqrt(1-rho^2))

-(sigma+m)*mnorm1)-c2*(dnorm(l2)*pnorm((l2*rho-k2)/sqrt(1-rho^2))

-rho*dnorm(k2)*pnorm((l2-rho*k2)/sqrt(1-rho^2))-m*mnorm2)

q<-sqrt(2*pi)*q

price<-f%*%q*h*exp(-(r+0.5*m^2)*(t+1))

For L > x (b > 0), there is an extra term for Tb > 1. The code for b > 0 is

# load package

library(mnormt)

#parameters

n <- 1000

t <- 4

r <- 0.05

sigma <- 0.2

S0 <- 80

L <- 90

K <- 95

t<-t-1

h<-1/n

r<-r/(t+1)

sigma<-sigma/sqrt(t+1)

b<- 1/sigma*log(L/S0)

m<- 1/sigma*(r-sigma^2/2)

k<- 1/sigma*log(K/S0)

f<-mat.or.vec(t*n,1) #vector of densities for tau
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L1<-mat.or.vec(t*n,1) #vector of Lk starting at L0

L1[1:n]<-1/sqrt(pi*(1:n-0.5)*h)*exp(-b^2/(2*(1:n-0.5)*h))

L1[(n+1):(t*n)]<-2/sqrt((pi*((n+1):(t*n)-0.5)*h))*

pnorm(-b*sqrt(1-1/(((n+1):(t*n)-0.5)*h)))*

exp(-b^2/(2*(((n+1):(t*n)-0.5)*h)))

L2<-mat.or.vec(t*n,1) #vector of Lk’s

x<-sqrt(((1:(t*n)-0.5)*h))/(pi*(1+((1:(t*n)-0.5)*h)))

f<-L1

for(i in 1:(t-1)) {

y<-convolve(L1[((i-1)*n+1):((t-1)*n)],rev(x[1:((t-i)*n)]),type = "open")

L2[(i*n+1):(t*n)]<-y[1:((t-i)*n)]*h

f<-f+L2*(-1/2)^i

L1<-L2

L2<-mat.or.vec(t*n,1)

}

f<-f/(2*sqrt(pi))

rho<-1/sqrt(1+((t*n):1-0.5)*h)

c1<-S0*exp(((sigma+m)^2*(1+((t*n):1-0.5)*h)+2*b*(sigma+m))/2)

c2<-K*exp((m^2*(1+((t*n):1-0.5)*h)+2*b*m)/2)

k1<-1/sqrt(1+((t*n):1-0.5)*h)*(1/sigma*log(K/S0)-b-(sigma+m)*(1+((t*n):1-0.5)*h))

l1<-rep(-(sigma+m),times=(t*n))

k2<-1/sqrt(1+((t*n):1-0.5)*h)*(1/sigma*log(K/S0)-b-m*(1+((t*n):1-0.5)*h))

l2<-rep(-m,times=(t*n))

mnorm1<-mat.or.vec(t*n,1) #cdf of bivariate normal computed at (l,k)

for(i in 1:(t*n)) {

varcov<-matrix(c(1,rho[i],rho[i],1),2,2)

mnorm1[i]<-pmnorm(c(l1[i],k1[i]),c(0,0),varcov)

}
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mnorm1<-pnorm(l1)-mnorm1

mnorm2<-mat.or.vec(t*n,1) #cdf of bivariate normal computed at (l’,k’)

for(i in 1:(t*n)) {

varcov<-matrix(c(1,rho[i],rho[i],1),2,2)

mnorm2[i]<-pmnorm(c(l2[i],k2[i]),c(0,0),varcov)

}

mnorm2<-pnorm(l2)-mnorm2

q<-c1*(dnorm(l1)*pnorm((l1*rho-k1)/sqrt(1-rho^2))

-rho*dnorm(k1)*pnorm((l1-rho*k1)/sqrt(1-rho^2))

-(sigma+m)*mnorm1)-c2*(dnorm(l2)*pnorm((l2*rho-k2)/sqrt(1-rho^2))

-rho*dnorm(k2)*pnorm((l2-rho*k2)/sqrt(1-rho^2))-m*mnorm2)

q<-sqrt(2*pi)*q

price<-f%*%q*h

rhot<-1/sqrt(t+1)

varcov<-matrix(c(1,rhot,rhot,1),2,2)

phi1<-exp((sigma+m)^2*(t+1)/2)*(pnorm(b-(sigma+m))

-pmnorm(c(b-(sigma+m),(k-(sigma+m)*(t+1))/sqrt(t+1)),c(0,0),varcov))-

exp((sigma+m)^2*(t+1)/2+4*b*(sigma+m)/2)*((pnorm(-b-(sigma+m))

-pmnorm(c(-b-(sigma+m),(k-2*b-(sigma+m)*(t+1))/sqrt(t+1)),c(0,0),varcov)))

phi2<-exp(m^2*(t+1)/2)*(pnorm(b-m)

-pmnorm(c(b-m,(k-m*(t+1))/sqrt(t+1)),c(0,0),varcov))-

exp(m^2*(t+1)/2+4*b*m/2)*((pnorm(-b-m)

-pmnorm(c(-b-m,(k-2*b-m*(t+1))/sqrt(t+1)),c(0,0),varcov)))

price<-price+S0*phi1-K*phi2

price<-price*exp(-(r+0.5*m^2)*(t+1))
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Chapter 3

Two-sided Parisian Options

Two-sided Parisian options get knocked in or out when the underlying either stays D amount

of time above or below the barrier, whichever comes first. The stopping time τL,D is the first

time the underlying process either stays above or below the barrier L for a period longer than

length D, and is defined using the two one-sided Parisian stopping times,

τL,D = τ+
L,D ∧ τ

−
L,D.

The knock in mechanism is illustrated in the following graph. The min-in Parisian call is

knocked in at time τL,D, where the underlying has in this case spent D amount of time above

the barrier.

Figure 3.1: Illustration of a Parisian min-in call

To simplify notation, we take both the window lengths to be equal to 1, so for barrier b,
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we have

τb = τ+
b ∧ τ

−
b .

The two-sided Parisian options were first introduced in Dassios and Wu [21]. The Laplace

transform of its pricing formula was given in their paper. We extend our results from the

previous chapter to the case of two-sided Parisian options. Here, we discover some interesting

results about the tails of the distributions of the one and two-sided Parisian stopping times.

We assume that the underlying asset follows a geometric Brownian motion, with dynamics

as in (2.1). Denoting by Cmin
i (x, T ) the price of a Parisian min-in call option with initial

underlying price x, maturity T and parameters K, L, D and r fixed, we have the pricing

formula
∗Cmin

i (x, T ) = EP
[
1{τb≤T}e

mZT (xeσZT −K)+
]
.

3.1 Density of the two-sided Parisian stopping time

In this section, we give an analytical formula for the density of the two-sided Parisian stopping

time. The formula is very similar to that for the one-sided stopping time.

Theorem 3.1 For f0(t) the probability density function of τ0,

f0(t) =
n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ... (3.1)

for t > 1, where Lk(t) is defined recursively as follows:

L0(t) =
1

π
√
t
, for t > 0 (3.2)

Lk+1(t) =

∫ t−k

1

Lk(t− s)
√
s− 1

πs
ds, for t > k + 1. (3.3)

Proof. The Laplace transform of the density of τ0 is (see Dassios and Wu [21])

f̂0(β) =
1

Ψ(
√

2β)− eβ
√
πβ

.
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We have

1

β
e−β

(
Ψ
(√

2β
)
− eβ

√
πβ
)

=
e−β

β
+ 2

√
π

β

∫ √2β

−∞

1√
2π
e−

x2

2 dx−
√
π

β

=
e−β

β
+

√
π

β

(
1 + 2

∫ √2β

0

1√
2π
e−

x2

2 dx

)
−
√
π

β

=
e−β

β
+

∫ 1

0

e−βs√
s
ds (3.4)

=

∫ ∞
1

e−βsds+

(∫ ∞
0

e−βs√
s
ds−

∫ ∞
1

e−βs√
s
ds

)
=

√
π

β
+

1

β

∫ ∞
1

e−βs

2s3/2
ds

=

√
π

β

(
1 +

1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.

So

f̂0(β) =
e−β

√
πβ
(

1 + 1√
πβ

∫∞
1

e−βs

2s3/2
ds
)

= e−β
∞∑
k=0

(−1)k
1√
πβ

(
1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
and as above, there exists a β∗ such that this is valid for all β > β∗. Hence we have the

recursive solution.

Remark 3.2 The only difference between the one-sided and two-sided Parisian stopping time

densities is that there is a factor of 2 in the formula for the one-sided stopping time.

Similarly for b > 0, we have the following recursive solution for the density of τb on the set

{Tb < 1}.

Theorem 3.3 For b > 0, we denote fb(t, Tb < 1) the probability density function of the

two-sided stopping time τb on the set {Tb < 1}. We have

fb(t, Tb < 1) =
n−1∑
k=0

(−1)k Lk(t− 1), for n < t ≤ n+ 1, n = 1, 2, ... (3.5)
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for t > 0, where Lk(t) is defined recursively as follows:

L0(t) = 1{0<t≤1}
1

π
√
t
e−

b2

2t + 1{t>1}
2

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)
(3.6)

Lk+1(t) =

∫ t−k

1

Lk(t− s)
√
s− 1

πs
ds, for t > k + 1. (3.7)

Proof. We have

E
[
e−βτb1{Tb<1}

]
= E

[
e−β(Tb+τ0)1{Tb<1}

]
= E

[
e−βTb1{Tb<1}

] 1

Ψ(
√

2β)− eβ
√
πβ

= e−β
∞∑
k=0

(−1)k
E
[
e−βTb1{Tb<1}

]
√
πβ

(
1√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

We have

L0(t) = L−1

(
E
[
e−βTb1{Tb<1}

]
√
πβ

)

= 1{0<t≤1}

∫ t

0

b√
2πs3

e−
b2

2s
1

π
√
t− s

ds+ 1{t>1}

∫ 1

0

b√
2πs3

e−
b2

2s
1

π
√
t− s

ds

= 1{0<t≤1}

∫ ∞
b√
t

2

π
√

2π
e−

x2

2

√
x2

tx2 − b2
dx+ 1{t>1}

∫ ∞
b

2

π
√

2π
e−

x2

2

√
x2

tx2 − b2
dx

= 1{0<t≤1}

∫ ∞
b2

t

1

π
√

2π
e−

y
2

√
1

ty − b2
dy + 1{t>1}

∫ ∞
b2

1

π
√

2π
e−

y
2

1√
ty − b2

dy

= 1{0<t≤1}
2

π
√
t
e−

b2

2t

∫ ∞
0

1√
2πt

e−
x2

2t dx+ 1{t>1}
2

π
√
t
e−

b2

2t

∫ ∞
b
√
t−1

1√
2πt

e−
x2

2t dx

= 1{0<t≤1}
1

π
√
t
e−

b2

2t + 1{t>1}
2

π
√
t
e−

b2

2tN

(
−b
√
t− 1

t

)

and we have that Lk for k = 1, 2, ... is the same as the previous case.

For b < 0, we have

fb(t, Tb < 1) = f−b(t, T−b < 1)

due to the symmetry of the standard Brownian motion.
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3.2 Tail distributions of the two-sided Parisian stopping

time

In this section, we prove that the two-sided stopping time τ0 has an exponential tail, unlike

that for the one-sided stopping time τ−0 . We present some numerical results and graphs to see

what happens when t → ∞. Furthermore, we compare this to the one-sided stopping time

τ−0 , which has a heavier tail as we will see.

Theorem 3.4 We denote F̄0(t) as the tail of the distribution of the two-sided Parisian stop-

ping time with barrier 0, τ0. It has an exponential tail. As t→∞, we have

F̄0(t) ∼ Cβ∗e
−β∗t (3.8)

for some constant Cβ∗ and β∗ > 0 such that −β∗ is the unique solution of the equation∫ 1

0

e−βs√
s
ds+

e−β

β
= 0 (3.9)

and

Cβ∗ = 2e−β
∗
. (3.10)

Proof. First, we have

f̂0(β) =
1

Ψ(
√

2β)− eβ
√
πβ

=
1

β
(∫ 1

0
e−βs√
s
ds+ e−β

β

)
=

1

1 +
∫ 1

0
(1− e−βv) 1

2v3/2
dv

=

∫ ∞
0

e−ue
−u
∫ 1
0 (1−e−βv) 1

2v3/2
dv
du

= E
(
e−βXT

)
where XT is a subordinator (Lévy process) with Lévy measure 1

2v3/2
for v < 1 at an indepen-

dent exponential time T ∼ Exp(1). Hence, we observe an interesting connection between the

distributions of the Parisian stopping time and that of the Lévy process XT . This suggests

possibilities for further study. The first step above follows from (3.4) and the second step can
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be derived as below:∫ 1

0

(1− e−βv) 1

2v3/2
dv =

∫ 1

0

∫ v

0

βe−βudu
1

2v3/2
dv

=

∫ 1

0

βe−βu
∫ 1

u

1

2v3/2
dvdu

=

∫ 1

0

βe−βu
(

1√
u
− 1

)
du

= β

(∫ 1

0

e−βs√
s
ds+

e−β

β

)
− 1.

Next, we define two new discrete random variables T and T :

P (T = kh) = e−kh(1− e−h) k = 0, 1, ...

P (T = kh) = e−(k−1)h(1− e−h) k = 1, 2, ....

We note that T is the upper bound for T and T is its lower bound. Hence, we have that

P (T ≤ t) ≤ P (T ≤ t) ≤ P (T ≤ t), and thus

P (XT > x) ≤ P (XT > x) ≤ P (XT > x)

since Xt is a subordinator and hence increasing. Our aim is to show that as h → 0, both

P (XT > x) and P (XT > x) converges to the same limit which is then equal to P (XT > x).

Now we have

E
(
e−βXT

)
=
∞∑
k=0

e−kh(1− e−h)e−kh
∫ 1
0 (1−e−βv) 1

2v3/2
dv

and

E
(
e−βXT

)
=
∞∑
k=1

e−(k−1)h(1− e−h)e−kh
∫ 1
0 (1−e−βv) 1

2v3/2
dv
.

We look first at E
(
e−βXT

)
. We define the function ĝh(β) as

ĝh(β) = e
−h
∫ 1
0 (1−e−βv) 1

2v3/2
dv
.
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Then

∞∑
k=0

e−kh(1− e−h)e−kh
∫ 1
0 (1−e−βv) 1

2v3/2
dv

=
∞∑
k=0

e−kh(1− e−h) (ĝh(β))k

=
1− e−h

1− ĝh(β)e−h
.

Now, we denote by L(x) the tail distribution P (XT > x), and L̂(β) its Laplace transform. So

we have

L̂(β) =
1− 1−e−h

1−ĝh(β)e−h

β

=
e−h 1−ĝh(β)

β

1− ĝh(β)e−h

L̂(β)
(
1− ĝh(β)e−h

)
= e−h

1− ĝh(β)

β
.

Inverting the Laplace transform on both sides, we have

L(x)−
∫ x

0

L(x− y)dGh(y)e−h = e−hGh(x).

Let β∗ be such that −β∗ is the solution to the equation

1 +

∫ 1

0

(1− e−βv) 1

2v3/2
dv = 0.

We note that this equation has a unique negative solution, because the expression on the left

hand side of this equation is decreasing for negative β. Furthermore, as β → 0, the expression

approaches 1, and as β → −∞, the expression approaches −∞. Next, we define L
∗
(x) as

L(x)eβ
∗x = L

∗
(x).

Then we have

L
∗
(x)e−β

∗x −
∫ x

0

L
∗
(x− y)e−β

∗(x−y)dGh(y) = e−hGh(x)

L
∗
(x)−

∫ x

0

L
∗
(x− y)eβ

∗ydGh(y) = e−heβ
∗xGh(x).
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By the key renewal theorem (see Feller [26]), we have that as x→∞,

L
∗
(x) →

∫∞
0
e−heβ

∗yGh(y)dy∫∞
0
yeβ∗ydGh(y)

=
e−h

(
1− e−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
)

−β∗ d
dβ∗
ĝh(β∗)

=
e−h

(
1− e−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
)

−β∗
(
h
∫ 1

0
eβ∗v 1

2
√
v
dv
)
e
−h
∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
.

We denote this by Ch. When h→ 0, we get

Ch =

∫ 1

0
(1− eβ∗v) 1

2v3/2
dv

−β∗
∫ 1

0
eβ∗v 1

2
√
v
dv

=
−1

−β∗

2

(∫ 1

0
eβ∗v 1√

v
dv − eβ∗

β∗

)
− eβ∗

2

= 2e−β
∗
.

Likewise, we denote by l(x) the tail distribution P (XT > x), and l̂(β) its Laplace transform.

Similarly, we can compute

l̂(β) =
1− 1−e−h

1−ĝh(β)e−h
ĝh(β)

β

=

1−ĝh(β)
β

1− ĝh(β)e−h

l̂(β)
(
1− ĝh(β)e−h

)
=

1− ĝh(β)

β
.

Inverting the Laplace transform, we have

l(x)−
∫ x

0

l(x− y)dGh(y)e−h = Ḡh(x)

and we define l
∗
(x) as

l(x)eβ
∗x = l

∗
(x).
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Then we have

l
∗
(x)−

∫ x

0

l
∗
(x− y)eβ

∗ydGh(y) = eβ
∗xGh(x).

By the key renewal theorem,

l
∗
(x) →

∫∞
0
eβ
∗yGh(y)dy∫∞

0
yeβ∗ydGh(y)

=
1− e−h

∫ 1
0 (1−eβ∗v) 1

2v3/2
dv

−β∗
(
h
∫ 1

0
eβ∗v 1

2
√
v
dv
)
e
−h
∫ 1
0 (1−eβ∗v) 1

2v3/2
dv
.

We denote this by Ch. When h→ 0, we get

Ch = 2e−β
∗
.

Finally, we note that since we have

eβ
∗xP (XT > x) ≤ eβ

∗xP (XT > x) ≤ eβ
∗xP (XT > x)

L
∗
(x) ≤ eβ

∗xF̄0(x) ≤ l
∗
(x)

and as h→ 0, L
∗
(x) and l

∗
(x) converges to the same limit as x→∞, we have that eβ

∗xF̄0(x)

also converges to this limit as x→∞. We thus have the result

F̄0(t)→ 2e−β
∗
e−β

∗t

as t→∞.

Remark 3.5 We can compute β∗ numerically to be 0.854 and Cβ∗ = 2e−β
∗

to be 0.851.

3.3 Numerical Results

The table below presents the survival function for both τ0 and τ−0 , computed using a time

step of h = 0.001 with R.
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Table 3.1: One and two-sided survival functions for 0 < t ≤ 10
t F̄0(t) F̄−0 (t) t F̄0(t) F̄−0 (t)

1.5 0.555931 0.775033 6.0 0.015114 0.403422
2.0 0.369469 0.681770 6.5 0.010779 0.387956
2.5 0.242144 0.614236 7.0 0.007910 0.374142
3.0 0.159600 0.563552 7.5 0.006003 0.361704
3.5 0.105503 0.523602 8.0 0.004726 0.350429
4.0 0.070093 0.491082 8.5 0.003866 0.340146
4.5 0.046893 0.463944 9.0 0.003278 0.330718
5.0 0.031679 0.440854 9.5 0.002872 0.322033
5.5 0.021687 0.420896 10.0 0.002586 0.313997

We can see that the two-sided survival function goes to 0 much faster than the one-sided

case.

The following graph compares the density functions of the one and two-sided case. The

red line represents f0(t) while the black line f−0 (t), plotted against time. This graph suggests

that f−0 (t) has a heavier tail.
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Figure 3.2: Graph of f0(t) and f−0 (t) vs t for 0 < t ≤ 50

The following graph depicts the tails F̄0(t) (black) and the approximation Cβ∗e
−β∗t (red).
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Figure 3.3: Graph of F̄0(t) and Cβ∗e
−β∗t vs t for 0 < t ≤ 20

From Figure 3.2, we can see that the tail of the one-sided case is heavier than that of

the two-sided case, and Figure 3.3 suggests that the approximation is rather good for the

two-sided case. The following graph plots F̄−0 (t) against ln (t).
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Figure 3.4: Graph of ln(F̄−0 (t)) vs ln(t) for 0 < t ≤ 50

Remark 3.6 The above graph has a slope of 0.5, thus suggesting that the one-sided stopping
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time has a power tail with exponent 0.5. This has, however, not been proved mathematically

and thus provides another possibility for future research.

Remark 3.7 Based on the asymptotics in Theorem 3.4, we propose a new method of obtaining

the density of the two-sided stopping time when b = 0. From the recursions in Theorem 3.1,

we can compute the closed form formulas for the density f0(t) for 1 < t ≤ 4. For t > 4, we

approximate the density with the asymptotics. We have from Theorem 3.1

L0(t) =
1

π
√
t
, for t > 0.

L1(t) =

∫ t

1

L1(t− s)s− 1

πs
ds

=

∫ t−1

0

√
t− s− 1

π2(t− s)
√
s
ds

=

[
2 arctan

(√
s

t− s− 1

)
− 2√

t
arctan

(√
s

t(t− s− 1)

)]t−1

0

=
1

π
− 1

π
√
t
.

L2(t) =

∫ t−1

1

L2(t− s)
√
s− 1

πs
ds

=
1

π2

∫ t−1

1

(√
t− s− 1

t− s
ds−

√
t− s− 1√
s(t− s)

)
ds

=
1

π2

[
2 arctan(

√
t− s− 1)− 2

√
t− s− 1

]t−1

1

− 1

π2

2 arctan

√
s

t− s− 1
−

2 arctan

(√
s

t(t−s−1)

)
√
t


t−1

1

=
2
√
t− 2

π2
−

4 arctan
√

t−2
t

π2
√
t

.
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Hence, we have an approximation for the density:

f0(t) =



1
π
√
t

for 1 < t ≤ 2
2
π
√
t
− 1

π
for 2 < t ≤ 3

2
π
√
t
− 1

π
− 4

π2 tan−1
√
t− 2 + 4

π2
√
t
tan−1

√
t−2
t

+ 2
π2

√
t− 2 for 3 < t ≤ 4

2β∗e−β
∗(t+1) for t > 4

,

where β∗ = 0.854.

3.4 Pricing two-sided Parisian Options

3.4.1 Min-call-in Parisian call

A min-call-in Parisian call is a call option that gets knocked in, as the name suggests, when

either the underlying makes an excursion above the barrier or an excursion below the barrier

of a certain length. Here, we price a min-call-in Parisian call with the same window length

D = 1 above and below the barrier.

Theorem 3.8 The price of a two-sided Parisian-in option on the underlying S with barrier

L and maturity time T > 1, is

∗Cmin
i (x, T ) = xφ(σ +m)−Kφ(m)

+

√
π

2

∫ T

0

fb(t;Tb < 1) (xψ(σ +m,hb, b, ρ, t) + ψ(−(σ +m), hb,−b,−ρ, t)

−K (ψ(−m,h′b,−b,−ρ, t) + ψ(m,h′b, b, ρ, t))) dt (3.11)

where fb(t;Tb < 1) is the density function of the two-sided Parisian stopping time with barrier

b as in Theorem 3.3, and φ(x), ψ(x, y, b, ρ, t), hb, h
′
b and ρ are defined as before.

Proof. We denote by Ft = σ(Zs, s ≤ t) the natural filtration of the Brownian motion

(Zt, t ≥ 0). Then τb is an Ft-stopping time, and by the strong Markov property of Brownian

motion

∗Cmin
i (x, T ) = EP

[
1{τb≤T}E

[
emZT

(
xeσZT −K

)+ |Fτb
]]

= EP

[
1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τb)

e
−

(y−Zτb )
2

2(T−τb) dy

]
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= EP

[
1{Tb>1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τb)

e
−

(y−Zτb )
2

2(T−τb) dy

]

+EP

[
1{Tb≤1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τb)

e
−

(y−Zτb )
2

2(T−τb) dy

]
.

If Tb > 1, τb = 1, so we have

EP

[
1{Tb>1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τb)

e
−

(y−Zτb )
2

2(T−τb) dy

]

= EP

[
1{Tb>1}1{1≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − 1)

e−
(y−Z1)

2

2(T−1) dy

]

=
1√

2π(T − 1)

∫ b

−∞

∫ ∞
k

emy(xeσy −K)e−
(y−z)2
2(T−1)

1√
2π

(
e−

z2

2 − e−
(z−2b)2

2

)
dzdy

= xφ(σ +m)−Kφ(m).

For Tb ≤ 1, Zτb is independent of τb, so we have

EP

[
1{Tb≤1}1{τb≤T}

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − τb)

e
−

(y−Zτb )
2

2(T−τb) dy

]

=

∫ T

0

∫ ∞
−∞

fb(t;Tb < 1)v(dz)

∫ ∞
−∞

emy (xeσy −K)+ 1√
2π(T − t)

e−
(y−z)2
2(T−t)dydt

=

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1√
2π(T − t)

e−
(y−z)2
2(T−t)dydzdt

+

∫ T

0

∫ ∞
b

∫ ∞
k

fb(t;Tb < 1)
z − b

2
e

(z−b)2
2 emy(xeσy −K)

1√
2π(T − t)

e−
(y−z)2
2(T−t)dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e−
(y−z)2
2(T−t)dydzdt

+

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e−
(y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e−
(y−z)2
2(T−t)dydzdt

+

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e−
(y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

fb(t;Tb < 1)(xψ(σ +m,h, b, ρ, t)−Kψ(m,h′, b, ρ, t))dt
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+

√
π

2

∫ T

0

fb(t;Tb < 1)(xψ(−(σ +m), hb, b,−ρ, t)−Kψ(−m,h′b, b,−ρ, t))dt

since we have√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)
b− z

2
e

(b−z)2
2 emy(xeσy −K)

1

2π
√
T − t

e−
(y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k

fb(t;Tb < 1)e2b(σ+m) b− z
2

e
(b−z)2

2 xe(σ+m)(y−2b) 1

2π
√
T − t

e−
(y−2b+z)2

2(T−t) dydzdt

=

√
π

2

∫ T

0

∫ b

−∞

∫ ∞
k−2b

fb(t;Tb < 1)e2b(σ+m) b− z
2

e
(b−z)2

2 xe(σ+m)y 1

2π
√
T − t

e−
(y+z)2

2(T−t)dydzdt

and

1

2π
√
T − t

∫ b

−∞

∫ ∞
k

xe(σ+m)ye−
(y+z)2

2(T−t) (b− z)e−
(z−b)2

2 dzdy (3.12)

= e
(σ+m)2(1+T−t)−2b(σ+m)

2
x

2π
√
T − t

∫ b

−∞

∫ ∞
k−2b

(b− z) exp{−(y + (b− (σ +m)(1 + T − t)))2

2(T − t)
} (3.13)

exp{− (z − (b− (σ +m)))2

2(T − t)/(1 + T − t)
} exp{−2(y + (b− (σ +m)(1 + T − t)))(z − (b− (σ +m)))

2(T − t)
}dydzdt

= xe
(σ+m)2(1+T−t)−2b(σ+m)

2
1

2π
√

1− ρ2

∫ σ+m

−∞

∫ ∞
hb

(−v + (σ +m))e−
u2+2ρuv+v2

2 dudv (3.14)

= xe−2b(σ+m)ψ(−(σ +m), hb, b,−ρ, t)

where expression (3.13) is obtained from (3.12) by a manipulation of the exponents, and

from expression (3.13) to (3.14) we have used the transformation u = y+(b−(σ+m)(1+T−t))√
1+T−t and

v = z − (b− (σ +m)).

3.4.2 Min-call-out Parisian Call

For the knock-out call with the same parameters, we have

Cmin
i (x, T ) = EQ

[
1{τb>t}(ST −K)+e−rT

]
= EQ

[
1{Tb<1}(ST −K)+e−rT

]
− EQ

[
1{Tb<1}1{τb≤T}(ST −K)+e−rT

]
=

∫ 1

0

b√
2πt3

e−
b2

2tCBS(L, T − t)dt−
(
Cmin
i (x, T )− (xφ(σ +m)−Kφ(m))

)
.
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3.4.3 Numerical results

The following table gives the prices of the two-sided Parisian option for different values of

initial asset price S0 and window length D, for parameters K = 95, L = 90, T = 1 year,

r = 0.05 and σ = 0.2.

Table 3.2: Price of Parisian min-in call
S0 D = 1 week D = 2 weeks D = 1 month D = 2 months
80 2.817708 2.809610 2.660829 2.123282
82 3.471103 3.430688 3.145066 2.482966
84 4.203278 4.101558 3.737759 3.096815
86 5.050461 4.978642 4.724678 4.261088
88 6.535228 6.639547 6.589191 6.342500
90 6.897115 6.895460 6.891562 6.872088
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Chapter 4

Double-barrier Parisian options

In this chapter, we look at double-barrier Parisian options, where the option gets knocked in

or knocked out when the stock price goes either above the upper barrier or below the lower

barrier for a certain period of time. This is illustrated below, where the option gets knocked

in at τL2
L1,D

. We define the new stopping time τL2
L1,D

, which is the first time the underlying

process either spends D amount of time consecutively above the barrier L2 or D amount of

time consecutively below the barrier L1, and we have for L1 < L2,

τL2
L1,D

= τ−L1,D
∧ τ+

L2,D
.

The knock in mechanism is illustrated below, where the option gets knocked in at τL2
L1,D

, in

this case having spent D amount of time below the barrier L1.

Figure 4.1: Illustration of a Parisian Double-barrier min-in call
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Taking the window lengths to be equal to 1, we have for b1 < b2,

τ b2b1 = τ−b1 ∧ τ
+
b2
.

4.1 Density of the double-barrier Parisian stopping time

We can also price double barrier Parisian options using the same method as before. We have

the following definition for the double barrier Parisian stopping time. In order to price double-

barrier Parisian options, we first find the density of the double-barrier Parisian stopping time

τ b2b1 . We split into the case when the long excursion occurs above the upper barrier and when

it occurs below the lower barrier. For the first case, we have the following recursion.

Theorem 4.1 Let f b2b1 (t, τ+
b2
< τ−b1) denote the probability density function of τ on the set

τ+
b2
< τ−b1 . Then for b1 ≤ 0 ≤ b2, we have

f b2b1 (t, τ+
b2
< τ−b1) =

n−1∑
k=0

(−1)k
(
Lk(t− 1)− L̃k(t− 1)

)
, for n < t ≤ n+ 1, n = 1, 2, ...

(4.1)

for t > 1, where Lk(t) and L̃k(t) are defined recursively as follows:

L0(t) =
1

4π
√
t
e−

b21
2t +

1

4π
√
t
e−

b22
2t , for t > 0 (4.2)

Lk+1(t) =

∫ t−k

1

Lk(t− s)
(√

s− 1

2πs

(
1 + e−

(b2−b1)
2

2(s−1)

)
− b2 − b2√

2πs3/2
e−

(b1−b2)
2

2s N

(
− b2 − b1√

s(s− 1)

))
ds (4.3)

L̃0(t) =
1

4π
√
t
e−

b21
2t − 1

4π
√
t
e−

b22
2t , for t > 0 (4.4)

L̃k+1(t) =

∫ t−k

1

L̃k(t− s)
(√

s− 1

2πs

(
1− e−

(b2−b1)
2

2(s−1)

)
+
b2 − b2√
2πs3/2

e−
(b1−b2)

2

2s N

(
− b2 − b1√

s(s− 1)

))
ds (4.5)

for t > k + 1.
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Proof. We have the following Laplace transform for τ b2b1 (see Anderluh and Weide [6] Theorem

3.2):

E
(
e−βτ

b2
b1 1{τ+b2<τ

−
b1
}

)
=

e−
√

2βb1Ψ
(√

2β
)
− e

√
2βb1Ψ

(
−
√

2β
)

e
√

2β(b2−b1)Ψ
(√

2β
)2 − e

√
2β(b1−b2)Ψ

(
−
√

2β
)2

=

1
2

(
e
√

2β(b1+b2)/2 + e−
√

2β(b1+b2)/2
)

e
√

2β(b2−b1)/2Ψ
(√

2β
)

+ e
√

2β(b1−b2)/2Ψ
(
−
√

2β
)

−
1
2

(
e
√

2β(b1+b2)/2 − e−
√

2β(b1+b2)/2
)

e
√

2β(b2−b1)/2Ψ
(√

2β
)
− e

√
2β(b1−b2)/2Ψ

(
−
√

2β
) . (4.6)

From the one-sided case, we have the following equalities

e−β
1

β
e
√

2β(b2−b1)/2Ψ
(√

2β
)

= e
√

2β(b2−b1)/2

(
e−β

β
+ 2

√
π

β
N
(√

2β
))

= e
√

2β(b2−b1)/22

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.

Furthermore, we have

e−β
1

β
e
√

2β(b1−b2)/2Ψ
(
−
√

2β
)

= e
√

2β(b1−b2)/2

(
e−β

β
− 2

√
π

β

∫ −√2β

−∞

1√
2π
e−

x2

2 dx

)

= e
√

2β(b1−b2)/2

(
e−β

β
−
√
π

β

(
1− 2

∫ √2β

0

1√
2π
e−

x2

2 dx

))

= e
√

2β(b1−b2)/2

(
−2

√
π

β
+

√
π

β
+
e−β

β
+ 2

√
π

β

∫ √2β

0

1√
2π
e−

x2

2 dx

)

= e
√

2β(b1−b2)/2

(
−2

√
π

β
+ 2

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

))
= e

√
2β(b1−b2)/22

√
π

β

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.

So combining the two, we have for the denominator in the first term of (4.6)

e−β
1

β

(
e
√

2β(b2−b1)/2Ψ
(√

2β
)

+ e
√

2β(b1−b2)/2Ψ
(
−
√

2β
))

= e
√

2β(b2−b1)/22

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
+ e

√
2β(b1−b2)/22

√
π

β

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
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= e
√

2β(b2−b1)/22

√
π

β

(
1 +

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
.

The first term can thus be written as an infinite series summation as below:

1
2

(
e
√

2β(b1+b2)/2 + e−
√

2β(b1+b2)/2
)

e
√

2β(b2−b1)/2Ψ
(√

2β
)

+ e
√

2β(b1−b2)/2Ψ
(
−
√

2β
)

=
e−β 1

2

(
e
√

2β(b1+b2)/2 + e−
√

2β(b1+b2)/2
)

2
√
πβe

√
2β(b2−b1)/2

×
∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
= e−β

e
√

2βb1 + e−
√

2βb2

4
√
πβ

∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

We note again that the series summation is valid because the term in the brackets is a contin-

uous and decreasing function of β, hence there exists a β∗ such that the series is convergent

for all β > β∗. Similarly, the second term in equation (4.6) can be written as an infinite series

summation

1
2

(
e
√

2β(b1+b2)/2 − e−
√

2β(b1+b2)/2
)

e
√

2β(b2−b1)/2Ψ
(√

2β
)
− e

√
2β(b1−b2)/2Ψ

(
−
√

2β
)

=
e−β 1

2

(
e
√

2β(b1+b2)/2 − e−
√

2β(b1+b2)/2
)

2
√
πβe

√
2β(b2−b1)/2

×
∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
= e−β

e
√

2βb1 − e−
√

2βb2

4
√
πβ

∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

To show that the series expansion is valid, we have that

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds ≤ 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds
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and the right hand side is continuous and decreasing in β, so there exists a β∗ such that the

expansion is valid for all β > β∗. We also have the following explicit Laplace inversions:

L−1

(
1

2
√
πβ

∫ ∞
1

e−βs

2s3/2

)
=

√
t− 1

2πt
1{t>1} (4.7)

L−1

(
e
√

2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
=

(√
t− 1

2πt
e−

(b2−b1)
2

2(t−1)

+
b2 − b1√

2πt
N
(
− b2 − b1√

t− 1

))
1{t>1} (4.8)

L−1

(
e
√

2βb1

4
√
πβ

)
=

1

4π
√
t
e−

b21
2t (4.9)

L−1

(
e−
√

2βb2

4
√
πβ

)
=

1

4π
√
t
e−

b22
2t (4.10)

where (4.7) has been proved before and (4.8) can be derived as follows. It is the convolution

of the following two functions

L−1

(
e
√

2β(b1−b2) 1

2
√
πβ

)
=

1

2π
√
t
e−

(b1−b2)
2

2t

L−1

(∫ ∞
1

e−βs

2s3/2
ds

)
=

1

2t3/2
.

So we can work out

L−1

(
e
√

2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)
= 1{t>1}

∫ t

1

1

2π
√
t− s

e−
(b1−b2)

2

2(t−s)
1

2s3/2
ds

= 1{t>1}

∫ t−1

0

1

2π
√
s

1

2(t− s)3/2
e−

(b1−b2)
2

2s ds

= 1{t>1}

∫ b1−b2√
t−1

−∞

−x(b2 − b1)

2π (tx2 − (b1 − b2)2)3/2
e−

x2

2 dx

= 1{t>1}

[ b2 − b1

2πt (tx2 − (b1 − b2)2)1/2 e−
x2

2

] b1−b2√
t−1

−∞

−
∫ b1−b2√

t−1

−∞

−x(b2 − b1)

2πt
√
tx2 − (b1 − b2)2

dx


= 1{t>1}

(√
t− 1

2πt
e−

(b1−b2)
2

2(t−1) −
∫ ∞

(b1−b2)2
t−1

b2 − b1

2πt

1

2
√
ty − (b1 − b2)2

e−
y
2 dy

)
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= 1{t>1}

√t− 1

2πt
e−

(b1−b2)
2

2(t−1) − b2 − b1√
2πt3/2

e−
(b1−b2)

2

2t

∫ ∞
b2−b1√
t(t−1)

e−
y2

2 dy


= 1{t>1}

(√
t− 1

2πt
e−

(b1−b2)
2

2(t−1) − b2 − b1√
2πt3/2

e−
(b1−b2)

2

2t N

(
− b2 − b1√

t(t− 1)

))
.

Inverting the two terms in (4.6) and writing them as convolutions, we get the result.

Remark 4.2 We can check that when b1 = b2, we get the same result as for the two-sided

case for b = b1 = b2.

We have a similar result for when the long excursion below the lower barrier is reached first,

and we state here without proof.

Theorem 4.3 Let f b2b1 (t, τ−b1 < τ+
b2

) denote the probability density function of τ b2b1 on the set

τ−b1 < τ+
b2

. Then

f b2b1 (t, τ−b1 < τ+
b2

) =
n−1∑
k=0

(−1)k
(
Lk(t− 1) + L̃k(t− 1)

)
, for n < t ≤ n+ 1, n = 1, 2, ...

(4.11)

for t > 1, where Lk(t) and L̃k(t) are defined as above.

Theorem 4.4 For b1 < b2 < 0, we have for Tb2 < 1,

f b2b1 (t, τ+
b2
< τ−b1 , Tb2 < 1) =

n−1∑
k=0

(−1)k
(
Lk(t− 1)− L̃k(t− 1)

)
, for n < t ≤ n+ 1, n = 1, 2, ...

(4.12)

for t > 1, where Lk(t) and L̃k(t) are defined recursively as before, but L0(t) and L̃0(t) are now

different:

L0(t) = 1{0≤t≤1}

(
1

4π
√
t
e−

b21
2t +

1

4π
√
t
e−

b22
2t

)
+1{t>1}

(
1

4π
√
t
e−

b21
2tN

(
b2

√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
+

1

4π
√
t
e−

(2b2−b1)
2

2t N
(
b2

√
t− 1√
t
− b2 − b1√

t
√
t− 1

)
+

1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

))
(4.13)

52



Lk+1(t) =

∫ t−k

1

Lk(t− s)
(√

s− 1

2πs

(
1 + e−

(b2−b1)
2

2(s−1)

)
− b2 − b2√

2πs3/2
e−

(b1−b2)
2

2s N

(
− b2 − b1√

s(s− 1)

))
ds (4.14)

L̃0(t) = 1{0≤t≤1}

(
1

4π
√
t
e−

b21
2t − 1

4π
√
t
e−

b22
2t

)
+1{t>1}

(
1

4π
√
t
e−

b21
2tN

(
b2

√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
+

1

4π
√
t
e−

(2b2−b1)
2

2t N
(
b2

√
t− 1√
t
− b2 − b1√

t
√
t− 1

)
− 1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

))
(4.15)

L̃k+1(t) =

∫ t−k

1

L̃k(t− s)
(√

s− 1

2πs

(
1− e−

(b2−b1)
2

2(s−1)

)
+
b2 − b2√
2πs3/2

e−
(b1−b2)

2

2s N

(
− b2 − b1√

s(s− 1)

))
ds (4.16)

for t > k + 1. And for τ−b1 < τ+
b2

, we have

f b2b1 (t, τ−b1 < τ+
b2
, Tb2 < 1) =

n−1∑
k=0

(−1)k
(
Lk(t− 1) + L̃k(t− 1)

)
, for n < t ≤ n+ 1,n = 1, 2, ....

(4.17)

Proof. For b1 < b2 < 0, the Laplace transform of the stopping time on the set τ+
b2
< τ−b1 and

Tb2 < 1 is

E
(
e−βτ

b2
b1 1{τ+b2<τ

−
b1
}1{Tb2<1}

)
= E

(
e−β(Tb2+τ0b1−b2

)1{τ+0 <τ
−
b1−b2

}1{Tb2<1}

)
= E

(
e−βTb21{Tb2<1}

)
E
(
e−βτ

0
b1−b21{τ+0 <τ

−
b1−b2

}

)
and
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E
(
e−βτ

0
b1−b21{τ+0 <τ

−
b1−b2

}

)
= e−β

e
√

2β(b1−b2) + 1

4
√
πβ

∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds+ e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
+e−β

e
√

2β(b1−b2) − 1

4
√
πβ

∞∑
k=0

(−1)k
(

1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds− e

√
2β(b1−b2) 1

2
√
πβ

∫ ∞
1

e−βs

2s3/2
ds

)k
.

Hence,

L0(t) = L−1

(
E
(
e−βTb21{Tb2<1}

) e√2β(b1−b2) + 1

4
√
πβ

)

L̃0(t) = L−1

(
E
(
e−βTb21{Tb2<1}

) e√2β(b1−b2) − 1

4
√
πβ

)
.

Now, we have the following Laplace inversions.

L−1

(
E
(
e−βTb21{Tb2<1}

) e√2β(b1−b2)

4
√
πβ

)

= 1{0≤t<1}

∫ t

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)

2

2(t−s) ds+ 1{t>1}

∫ 1

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)

2

2(t−s) ds

where the integrals can be evaluated as below.

1{0≤t<1}

∫ t

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)

2

2(t−s) ds

= 1{0≤t<1}

∫ b2√
t

−∞

1

2π
√

2π

−x√
x2t− b2

2

e−
x2

2 e
− (b2−b1)

2x2

2(tx2−b22) dx

= 1{0≤t<1}

∫ ∞
b22
t

1

4π
√

2π
√
yt− b2

2

e−
y
2 e
− (b2−b1)

2y

2(ty−b22) dy

= 1{0≤t<1}

∫ ∞
0

1

2π
√

2πt
e−

1
2t

(x2+b22)e
− (b2−b1)

2

2t

(
x2+b22
x2

)
dx

= 1{0≤t<1}e
− b

2
2
2t e−

(b2−b1)
2

2t

∫ ∞
0

1

2π
√

2πt
e
− 1

2t

(
x2+

(b2−b1)
2b22

x2

)
dx
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= 1{0≤t<1}
1

2
e−

b22
2t e−

(b2−b1)
2

2t

(∫ ∞
0

1 + (b2−b1)b2
x2

2π
√

2πt
e
− 1

2t

(
x− (b2−b1)b2

x

)2
e−

1
2t

(2(b2−b1)b2)dx

+

∫ ∞
0

1− (b2−b1)b2
x2

2π
√

2πt
e
− 1

2t

(
x− (b2−b1)b2

x

)2
e

1
2t

(2(b2−b1)b2)dx

)

= 1{0≤t<1}
1

2
e−

b22
2t e−

(b2−b1)
2

2t

(
0 +

∫ ∞
−∞

1

2π
√

2πt
e−

y2

2 e
1
2t

(2(b2−b1)b2)dy

)
= 1{0≤t<1}

1

4π
√
t
e−

b21
2t .

Similarly, we compute the integral for t > 1

1{t>1}

∫ 1

0

−b2√
2πs3

e−
b22
2s

1

4π
√
t− s

e−
(b2−b1)

2

2(t−s) ds

= 1{t>1}

(
e−

b21
2t

1

4π
√
t
N
(
b2

√
t− 1√
t

+
b2 − b1√
t
√
t− 1

)
+ e−

(2b2−b1)
2

2t
1

4π
√
t
N
(
b2

√
t− 1√
t
− b2 − b1√

t
√
t− 1

))
.

From the previous section, we also have that

L−1

(
E
(
e−βTb21{Tb2<1}

) 1

4
√
πβ

)
= 1{0≤t≤1}

1

4π
√
t
e−

b22
2t + 1{t>1}

1

2π
√
t
e−

b22
2tN

(
−b2

√
t− 1

t

)
.

Combining all the above, we get the result.

Theorem 4.5 Using the symmetry of Brownian motion, we have for 0 < b1 < b2,

f b2b1 (t, τ+
b2
< τ−b1 , Tb1 < 1) = f−b1−b2 (t, τ−−b2 < τ+

−b1 , T−b1 < 1) (4.18)

f b2b1 (t, τ−b1 < τ+
b2
, Tb1 < 1) = f−b1−b2 (t, τ+

−b1 < τ−−b2 , T−b1 < 1). (4.19)

Proof. The results are due to the symmetry of Brownian motion. The positive barriers can

be reflected to give the same result as in the case with negative barriers.

4.2 Pricing a double barrier Parisian in call

A double barrier Parisian in call is a call option that gets knocked in at τ b2b1 if τ b2b1 ≤ T . For

such an option with the same parameters as above, lower barrier L1, upper barrier L2 with

L1 < S0 < L2, i.e. b1 < 0 < b2, we have the following pricing formula:
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Theorem 4.6 The price of a double barrier Parisian in call with barriers L1 < S0 < L2 is

∗Cdouble
i (x, T ) =

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2

)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt (4.20)

+

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1)(xψ(−(σ +m), hb2 , b2,−ρ, t)−Kψ(−m,h′b2 , b2,−ρ, t))dt,

where ψ(x, y, b, ρ, t), hb, h
′
b and ρ are defined as before.

Proof. As above, the price under the measure P is

∗Cdouble
i (x, T )

= EP
[
1{τ≤T}e

mZT (xeσZT −K)+
]

= EP
[
1{τ≤T}EP

[
emZT (xeσZT −K)+|Fτ

]]
= EP

[
1{τ≤T}1{τ+b2<τ

−
b1
}EP

[
emZT (xeσZT −K)+|Fτ

]]
+EP

[
1{τ≤T}1{τ−b1<τ

+
b2
}EP

[
emZT (xeσZT −K)+|Fτ

]]
=

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1)

1

2π
√
T − t

∫ ∞
b2

∫ ∞
k

z − b2

2
(xeσy −K)emye−

(y−z)2
2(T−t) e−

(z−b)2
2 dydzdt

+

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2

)
1

2π
√
T − t

∫ b1

−∞

∫ ∞
k

b1 − z
2

(xeσy −K)emye−
(y−z)2
2(T−t) e−

(z−b)2
2 dydzdt

=

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1)

1

2π
√
T − t

∫ b2

−∞

∫ ∞
k

b2 − z
2

(xeσy −K)emye−
(y−2b2+z)

2

2(T−t) e−
(z−b)2

2 dydzdt

+

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2

)
1

2π
√
T − t

∫ b1

−∞

∫ ∞
k

b1 − z
2

(xeσy −K)emye−
(y−z)2
2(T−t) e−

(z−b)2
2 dydzdt

=

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1)(xψ(−(σ +m), hb2 , b2,−ρ, t)−Kψ(−m,h′b2 , b2,−ρ, t))dt

+

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2

)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt,

where we have made use of the calculations in Theorem 2.3.

Theorem 4.7 The price of a double barrier Parisian in call with barriers L1 < L2 < S0 is

∗Cdouble
i (x, T )

= xφ′(σ +m)−Kφ′(m)

+

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1 , Tb2 < 1)(xψ(−(σ +m), hb2 , b2,−ρ, t)−Kψ(−m,h′b2 , b2,−ρ, t))dt
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+

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2
, Tb2 < 1)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt. (4.21)

For barriers S0 < L1 < L2, the price is

∗Cdouble
i (x, T )

= xφ(σ +m)−Kφ(m)

+

∫ T

0

f b2b1 (t, τ+
b2
< τ−b1 , Tb2 < 1)(xψ(−(σ +m), hb2 , b2,−ρ, t)−Kψ(−m,h′b2 , b2,−ρ, t))dt

+

∫ T

0

f b2b1 (t, τ−b1 < τ+
b2
, Tb2 < 1)(xψ(σ +m,hb1 , b1, ρ, t)−Kψ(m,h′b1 , b1, ρ, t))dt (4.22)

where ψ(x, y, b, ρ, t), φ′(x), φ(x), hb, ρ are all defined as before.

4.3 Double barrier Parisian out call

The price of the double barrier Parisian out call with the underlying price starting in between

the two barriers L1 < S0 < L2 is

Cdouble
o (x, T ) = CBS(x, T )− Cdouble

i (x, T ).

For L1 < L2 < S0, the price of the double barrier Parisian out call is

Cdouble
o (x, T ) =

∫ 1

0

−b2√
2πt3

e−
b22
2tCBS(L2, T − t)dt−

(
Cdouble
i (x, T )− (xφ′(σ +m)−Kφ′(m))

)
and for S0 < L1 < L2,

Cdouble
o (x, T ) =

∫ 1

0

b1√
2πt3

e−
b21
2tCBS(L1, T − t)dt−

(
Cdouble
i (x, T )− (xφ(σ +m)−Kφ(m))

)
.
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Chapter 5

Length and height of excursions

In this chapter, we are interested in finding the Laplace transform of the Parisian stopping

time conditioned on a certain height. In particular, we define a new one-sided stopping time,

which is the first time the Brownian motion makes an excursion of length at least D above

zero, and during this excursion also hits a second barrier L > 0. This means that the last

excursion is of length D if the Brownian motion has already hit L during the excursion, or

the excursion is longer than length D and the stopping time is achieved when the Brownian

motion hits L. This can be applied to Parisian options where the option gets knocked in or

out after the underlying stays above the barrier for a period of time and also hits a second

barrier above the first. The motivation for this is to ensure that the underlying does not only

stay around the barrier throughout the excursion, hence is less easily manipulated. This is the

same as the stopping time which is the first time the Brownian motion makes an excursion of

length at least D below zero, and during this excursion also hits a second barrier below the

first. This can be applied to calculating default probabilities, and it gives the company some

capital allowance on top of a grace period. It is closely related to the concept of bankruptcy

introduced in Albrecher and Lautscham [4], where the probability of bankruptcy increases the

more negative the surplus becomes. Here, we define a new stopping time, which is the first

time the Brownian motion makes an excursion of length at least D below zero, and during

this excursion also reaches a second barrier L < 0. We use the perturbed Brownian motion

in [21] to find the Laplace transform of this stopping time.
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5.1 Definitions

Let W = (Wt)t≥0 be a standard Brownian motion starting at 0 and L be the level of the

second barrier (the first barrier is set to 0 without loss of generality). The excursions are

defined as in Section 2.1:

gWL,t = sup{s ≤ t|Ws = L}, dWL,t = inf{s ≥ t|Ws = L}

gW0,t = sup{s ≤ t|Ws = 0}, dW0,t = inf{s ≥ t|Ws = 0}

gWt = max (gWL,t, g
W
0,t)

with the usual convention that sup ∅ = 0 and inf ∅ = ∞. The trajectory of W between gWt

and dWt is the excursion which straddles time t. We are interested here in t−gWt , which is the

age of the excursion at time t, as well as W t and W t, the maximum and minimum heights

achieved during the excursion at time t,

W t = max
gWt ≤u≤t

Wu

W t = min
gWt ≤u≤t

Wu.

For D > 0 and L > 0, we now define the stopping times

τLD(W ) = inf{t ≥ 0|1{Wt>0,W t>L}(t− g
W
t ) ≥ D}

τ−LD (W ) = inf{t ≥ 0|1{Wt<0,W t<−L}(t− g
W
t ) ≥ D}.

Hence, τLD(W ) is the first time that the age of the excursion of the Brownian motion W

above zero reaches level D and W hits L in the current excursion, while τ−LD (W ) is the first

time that the age of the excursion of W below zero reaches level D and W hits −L in the

current excursion. We introduce the perturbed Brownian motion, a new process X
(ε)
t , ε > 0.

This process was used in Dassios and Wu [21] to find the Laplace transform of the Parisian

stopping time. Define a sequence of stopping times

δ0 = 0

σn = inf {t > δn|Wt = −ε}

δn+1 = inf {t > σn|Wt = 0}
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where n = 0, 1, .... Now define X
(ε)
t as

X
(ε)
t = Wt + ε if δn ≤ t < σn

X
(ε)
t = Wt if σn ≤ t < δn+1.

We can see that X
(ε)
t is a process which starts from ε but has the same behaviour as the

related Brownian motion and each time it hits the barrier 0 it will have a jump towards the

opposite side of the barrier with size ε.

5.2 Semi-Markov model

We follow the notation as in [21]. We define the three-state semi-Markov process Z
(ε)
t by

Z
(ε)
t =


1 if X

(ε)
t > L

2 if 0 ≤ X
(ε)
t ≤ L, gL,t > g0,t

3 if 0 ≤ X
(ε)
t ≤ L, g0,t > gL,t

4 if X
(ε)
t < 0.

We also define V
(ε)
t = t−gt, the time spent in the current state. Then (Z

(ε)
t , V

(ε)
t ) is a Markov

process, and Z
(ε)
t is a semi-Markov process with state space {1, 2, 3, 4}, where 1 stands for

the state when the process X
(ε)
t is above the barrier L, 4 corresponds to the state below the

barrier 0, and 2 and 3 represent the states when X
(ε)
t is in between 0 and L, given it comes

in through L or 0 respectively. The transition probabilities λij(u) for Z
(ε)
t satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

P (Z
(ε)
t+∆t = i|Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 2, 3, 4. Define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).
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In particular, we have the transition densities (see Karatzas and Shreve [32] pp. 99-100):

pε12(t) =
ε√

2πt3
e−

ε2

2t

pε21(t) = PL−ε(TL < T0;TL ∈ dt) = Pε(T0 < TL;T0 ∈ dt)

=
∞∑

n=−∞

2nL+ ε√
2πt3

e−
(2nL+ε)2

2t

pε24(t) = PL−ε(T0 < TL;T0 ∈ dt) = Pε(TL < T0;TL ∈ dt)

=
∞∑

n=−∞

2nL+ L− ε√
2πt3

e−
(2nL+L−ε)2

2t

pε31(t) = Pε(TL < T0;TL ∈ dt) = PL−ε(T0 < TL;T0 ∈ dt)

=
∞∑

n=−∞

2nL+ L− ε√
2πt3

e−
(2nL+L−ε)2

2t

pε34(t) = Pε(T0 < TL;T0 ∈ dt) = PL−ε(TL < T0;TL ∈ dt)

=
∞∑

n=−∞

2nL+ ε√
2πt3

e−
(2nL+ε)2

2t

pε43(t) =
ε√

2πt3
e−

ε2

2t

where Pε denotes the probability measure corresponding to a Brownian motion starting at ε.

We also define the probabilities p∗εij (t) as the probability of starting in state i and going to

state j at time t for the first time, but regardless of whether it has been to any other states.

We have

p∗ε21(t) = p∗ε34(t) =
ε√

2πt3
e−

ε2

2t

p∗ε31(t) = p∗ε24(t) =
L− ε√

2πt3
e−

(L−ε)2
2t .

We denote by P
ε(k)
ij (t) the probability of starting in state i, and having been to state j but

not to state k at time t. We have

P
ε(4)
31 (t) = Pε(T0 > t, TL < t) = Pε(T0 > t)− Pε(T0 > t, TL > t)

=

(
2N

(
ε√
t

)
− 1

)
−

∞∑
n=−∞

(
2N

(
2nL+ ε√

t

)
− 1 + 2N

(
2nL+ L− ε√

t

)
− 1

)
.
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5.3 Laplace transform of the Parisian stopping time

conditioned on a given height

In this section, we proceed to find the Laplace transform of the Parisian stopping time condi-

tioned on a given height, as described above. We only look at the case above the barrier, but

the stopping time for the case below the barrier follows by symmetry. We have τLD = τ−LD .

Theorem 5.1 For D > 0, L > 0, we have the following Laplace transform for τLD.

E(e−βτ
L
D) =

1 +
∑∞

n=−∞

(
2
√
πβDeβDe−

√
2β(2n+1)LN

(
(2n+1)L√

D
−
√

2βD
)
− e−

((2n+1)L)2

2D

)
Ψ(
√

2βD) +
∑∞

n=−∞

(
2
√
πβDeβDe−

√
2β2nLN

(
2nL√
D
−
√

2βD
)
− e−

(2nL)2

2D

) .
(5.1)

Proof. First, we let Ak denote the event that the first time the excursion above 0 reaches

length D and achieves a maximum of L during the excursion happens during the kth excursion.

Given Ak, τ
L
D is made up of k − 1 excursions above 0 either with length less than D or with

length greater than D but does not hit the barrier L, and k excursions below 0 of any length,

plus the last excursion with length at least D, and hits the barrier L. Denoting each of these

excursions above 0 by U+
i and below 0 by U−i , i = 1, ..., k, we have

E(e−βτ
L
D(X(ε))) =

∞∑
k=1

E(e−βτ
L
D(X(ε));Ak)

=
∞∑
k=1

E(e−β(U+
1 +...+U+

k−1+U+
k +U−1 +...+U−k );Ak).

Furthermore, on the event Ak, the U+
i for i = 1, ..., k − 1 have distribution p∗ε34(t) for t < D

and pε34(t) for t ≥ D. U−i for i = 1, ..., k have distribution pε43(t), and they are all independent

of each other. So we have

E(e−βτ
L
D(X(ε))) =

∞∑
k=1

(∫ D

0

e−βtp∗ε34(t)dt+

∫ ∞
D

e−βtpε34(t)dt

)k−1(∫ ∞
0

e−βtpε43(t)dt

)k
(
e−βDP

ε(4)
31 (D) +

∫ ∞
D

e−βtpε31(t)dt

)

=

∫∞
0
e−βtpε43(t)dt

(
e−βDP

ε(4)
31 (D) +

∫∞
D
e−βtpε31(t)dt

)
1−

(∫ D
0
e−βtp∗ε34(t)dt+

∫∞
D
e−βtpε34(t)dt

) ∫∞
0
e−βtpε43(t)dt

,
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and the following calculations∫ ∞
0

e−βtpε43(t)dt = e−
√

2βε (5.2)∫ D

0

e−βtp∗ε34(t)dt =

∫ D

0

e−βt
ε√

2πt3
e−

ε2

2t dt

=
1

2
e
√

2βε

∫ D

0

ε−
√

2βt√
2πt3

e−
(ε+
√
2βt)2

2t dt+
1

2
e−
√

2βε

∫ D

0

ε+
√

2βt√
2πt3

e−
(ε−
√
2βt)2

2t dt

=
1

2
e
√

2βε

∫ ∞
ε√
D

+
√

2βD

√
2

π
e−

x2

2 dx+
1

2
e−
√

2βε

∫ ∞
ε√
D
−
√

2βD

√
2

π
e−

x2

2 dx

= e−
√

2βεN
(√

2βD − ε√
D

)
+ e

√
2βεN

(
−
√

2βD − ε√
D

)
(5.3)∫ ∞

D

e−βtpε31(t)dt =
∞∑

n=−∞

(
e−
√

2β(2nL+L−ε)N
(

2nL+ L− ε√
D

−
√

2βD

)
−e
√

2β(2nL+L−ε)N
(
−2nL+ L− ε√

D
−
√

2βD

))
(5.4)∫ ∞

D

e−βtpε34(t)dt =
∞∑

n=−∞

(
e−
√

2β(2nL+ε)N
(

2nL+ ε√
D
−
√

2βD

)
−e
√

2β(2nL+ε)N
(
−2nL+ ε√

D
−
√

2βD

))
(5.5)

e−βDP
ε(4)
31 (D) = e−βD

(
2N

(
ε√
D

)
− 1

−
∞∑

n=−∞

(
2N

(
2nL+ ε√

D

)
− 1 + 2N

(
2nL+ L− ε√

D

)
− 1

))
. (5.6)

By construction,

X
(ε)
t

a.s.−−→ Wt for all t.

As we saw in [21], since X
(ε)
t → Wt almost surely for all t, by taking the limit ε → 0, the

quantities defined based on X(ε) converge to those based on W . Furthermore, e−βτ
L
D < 1

almost surely, thus dominated convergence theorem applies to get the result for W ,

E
(
e−βτ

L
D(W )

)
= lim

ε→0
E
(
e−βτ

L
D(X(ε))

)
= lim

ε→0

∫∞
0
e−βtpε43(t)dt

(
e−βDP

ε(4)
31 (D) +

∫∞
D
e−βtpε31(t)dt

)
1−

(∫ D
0
e−βtp∗ε34(t)dt+

∫∞
D
e−βtpε34(t)dt

) ∫∞
0
e−βtpε43(t)dt

(5.7)
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Therefore, plugging in the above calculations in equations (5.2) - (5.6) into equation (5.7) and

applying L’Hopital’s rule, we obtain the result in equation (5.1).
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Chapter 6

The counting process of Parisian

excursions

In this chapter, we study the distribution of the number of excursions away from 0 made

by the Brownian motion. As 0 is a regular point of the Brownian motion (see Bertoin [10],

Karatzas and Shreve [32]), the process makes infinitely many excursions away from 0. How-

ever, it can only make finitely many excursions whose length exceeds D in a finite time.

Hence, it is only meaningful to study the number of excursions of duration greater than D.

The counting process of excursions is related to the Brownian local time, and this gives us

some motivation for studying them.

Here, we study the number of excursions indexed by an exponential time, and obtain some

common distributions. We also find some connections with the Brownian local time. We

modify slightly the Parisian stopping time. The new stopping time is defined as the first time

the Brownian motion returns to the origin after having completed an excursion in excess of

length D. This is different from the previously defined Parisian stopping time, which is the

first time the length of an excursion reaches length D. We use the strong Markov property

of Brownian motion to obtain the distribution of the number of excursions.

6.1 Definition

Let W = (Wt)t≥0 be a standard Brownian motion starting at 0 as before, and we define gWt

and dWt as in Section 2.1. The intervals (gWt , d
W
t ) are the excursion intervals of W which
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straddles time t, each of length (dWt − gWt ). Taking all excursion intervals before time t, they

form a countable union of disjoint open sets,

I =
⋃
α∈A

(gWtα , d
W
tα )

and each of these intervals contains a number tα(w). For D1, D2 > 0, define the stopping

times

τ̃+
D1

(W ) = inf{dWt > 0 | 1{Wt>0}(d
W
t − gWt ) ≥ D1}

τ̃−D2
(W ) = inf{dWt > 0 | 1{Wt<0}(d

W
t − gWt ) ≥ D2}

τ̃+
(D1,D2)(W ) = inf{dWt > 0 | D1 ≤ 1{Wt>0}(d

W
t − gWt ) ≤ D2}

τ̃−(D1,D2)(W ) = inf{dWt > 0 | D1 ≤ 1{Wt<0}(d
W
t − gWt ) ≤ D2}.

So we have the following interpretations: τ̃+
D1

(W ) is the first time W completes an excursion

of duration greater than D1 above 0, τ̃−D2
(W ) is the first time W completes an excursion of

duration greater than D2 below 0, for D1 < D2, τ̃+
(D1,D2)(W ) is the first time W completes

an excursion of duration between D1 and D2 above 0, and τ̃−(D1,D2)(W ) is the first time W

completes an excursion of duration between D1 and D2 below 0.

We are interested in the number of excursions made by St before time t, so we define the

following

N
D1

t (W ) = #{(gWu , dWu ) ∈ I | 0 ≤ dWu ≤ t, Su > 0, dWu − gWu ≥ D1}

ND2
t (W ) = #{(gWu , dWu ) ∈ I | 0 ≤ dWu ≤ t, Su < 0, dWu − gWu ≥ D2}

ND1,D2
t (W ) = N

D1

t (W ) +ND2
t (W ).

Hence, N
D1

t (W ) is the number of excursions made by the process W above 0 of length D1,

ND2
t (W ) is the number of excursions made by the process W below 0 of length D2, and

ND1,D2
t (W ) is the total number of excursions above 0 of length D1 and below 0 of length D2.

We also define the stopping times

τ̃n+
D1

(W ) = inf{t > 0 | ND1

t (W ) = n}
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τ̃n−D2
(W ) = inf{t > 0 | ND2

t (W ) = n}

where τ̃ 0+
D1

(W ) = 0. By the strong Markov property of Brownian motion, τ̃n+
D1

(W ) is the sum

of n independent τ̃D1(W )’s.

6.2 The modified Parisian stopping time

Here, we look at the stopping time which is the first time the Brownian motion completes

an excursion of length D1 above or below zero. This is different from that in the literature,

which looks at the first time the length of the excursion reaches D1. Here we only look at the

excursions above zero but we have the same result for excursions below zero by symmetry.

Theorem 6.1 For a standard Brownian motion Wt with W0 = 0, we have the following

result:

E(e−βτ̃
+
D1

(W )) =
e−βD1Ψ

(√
2βD1

)
− 2
√
πβD1

e−βD1Ψ
(√

2βD1

) (6.1)

and τ̃n+
D1

is the sum of n independent τ̃D1’s, so

E(e−βτ̃
n+
D1

(W )) =

(
e−βD1Ψ

(√
2βD1

)
− 2
√
πβD1

e−βD1Ψ
(√

2βD1

) )n

. (6.2)

We also have

E
(
e−βτ̃

+
D1

(W )1{τ̃+D1
(W )<τ̃−D2

(W )}

)
=

√
D2e

−βD1Ψ
(√

2βD1

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

)
+
√
D1e−βD2Ψ

(√
2βD2

)
− 2
√
πβD1D2

(6.3)

E(e−βτ̃
−
D2

(W )1{τ̃−D2
(W )<τ̃+D1

(W )})

=

√
D1e

−βD2Ψ
(√

2βD2

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

)
+
√
D1e−βD2Ψ

(√
2βD2

)
− 2
√
πβD1D2

, (6.4)

and

E(e
−βτ̃+

(D1,D2)
(W )

1{τ̃+
(D1,D2)

(W )<τ̃+D2
(W )})

=

√
D2e

−βD1Ψ
(√

2βD1

)
−
√
D1e

−βD2Ψ
(√

2βD2

)
√
D2e−βD1Ψ

(√
2βD1

) (6.5)
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E(e−βτ̃
+
D2

(W )1{τ̃+D2
(W )<τ̃+

(D1,D2)
(W )})

=

√
D2e

−βD1Ψ
(√

2βD1

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

) . (6.6)

Proof. These results are obtained using the same method as that in Dassios and Wu [21].

The difference is that in [21], the stopping time is the time when the length of the excursion

first reached D1, but here, it is the time when the Brownian motion first makes an excursion

above zero of length D1, and comes back down to 0. We proceed as in [21]. Here, we denote by

τ̃+
D1

(X(ε)) the stopping time as above, but defined based on the perturbed Brownian motion

X(ε).

We define the two-state semi-Markov process Z
(ε)
t by

Z
(ε)
t =

{
1 if X

(ε)
t > 0

2 if X
(ε)
t < 0,

.

We also define V
(ε)
t = t−gt, the time spent in the current state. Then (Z

(ε)
t , V

(ε)
t ) is a Markov

process, and Z
(ε)
t is a semi-Markov process with state space 1, 2, where 1 stands for the state

when the process X
(ε)
t is above 0, and 2 is the state when the process is below 0. The transition

probabilities λij(u) for Z
(ε)
t satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

P (Z
(ε)
t+∆t = i, |Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 2, 3, 4. Define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).

In particular, we have the following transition probabilities:

pε12(t) = pε21(t) =
ε√

2πt3
e−

ε2

2t
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P ε
12(t) = P ε

21(t) =

∫ t

0

pε12(s)ds = 1− P̄ ε
12.

Now, we let Aij denote the event that the first excursion above 0 longer than D1 occurs during

the ith excursion above 0, and the first excursion below 0 longer than D2 occurs during the

jth excursion below 0. Then we have

E(e−α1τ̃
+
D1

(X(ε))−α2τ̃
−
D2

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))})

=
∞∑
i=1

∞∑
j=i

E(e−α1τ̃
+
D1

(X(ε))−α2τ̃
−
D2

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))}|A
i
j)P (Aij).

Next, we observe that τ̃+
D1

comprises of i− 1 full excursions above 0 with length less than D1,

i − 1 full excursions below 0 with length less than D2 and one last excursion above 0 with

length at least D1. Similarly, τ̃−D2
comprises of and additional j − i full excursions above 0 of

any length, j − i full excursions below 0 of length less than D2, and one last excursion below

0 of length at least D2. We denote by U1,k as the length of the kth excursion above 0, and

U2,k as the length of the kth excursion below 0. Ui,k satisfies the conditions: U1,k < D1 for

k = 1, ..., i− 1, U2,k < D2 for k = 1, ..., j − 1, U1,i ≥ D1 and U2,j ≥ D2. So we have

E(e−α1τ̃
+
D1

(X(ε))−α2τ̃
−
D2

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))}|C)

= E(e−α1(
∑i−1
k=1(U1,k+U2,k)+U1,i)−α2

∑j
k=1(U1,k+U2,k)|C)

=

(∫ D1

0

e−(α1+α2)s pε12(s)

P ε
12(D1)

)i−1(∫ ∞
D1

e−(α1+α2)s pε12(s)

P̄ ε
12(D1)

ds

)
(∫ D2

0

e−(α1+α2)s pε21(s)

P ε
21(D2)

)i−1(∫ ∞
0

e−α2spε12(s)ds

)j−i
(∫ D2

0

e−α2s
pε21(s)

P ε
21(D2)

ds

)j−i(∫ ∞
D2

e−α2s
pε21(s)

P̄ ε
21(D2)

ds

)
and

P (Aij) = P ε
12(D1)i−1P ε

21(D2)j−1P̄ ε
12(D1)P̄ ε

21(D2).

Hence we have

E(e−α1τ̃
+
D1

(X(ε))−α2τ̃
−
D2

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))})

69



=
∞∑
i=1

∞∑
j=i

(∫ D1

0

e−(α1+α2)spε12(s)ds

)i−1(∫ ∞
D1

e−(α1+α2)spε12(s)ds

)
(∫ D2

0

e−(α1+α2)spε21(s)ds

)i−1(∫ ∞
0

e−α2spε12(s)ds

)j−i
(∫ D2

0

e−α2spε21(s)ds

)j−i(∫ ∞
D2

e−α2spε21(s)ds

)
.

Taking α2 = 0 and α1 = β, we have

E(e−βτ̃
+
D1

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))}) =

∫∞
D1
e−βspε12(s)ds

1−
∫ D1

0
e−βspε12(s)ds

∫ D2

0
e−βspε21(s)ds

. (6.7)

We also have∫ ∞
D1

e−βspε12(s)ds = e−
√

2βεN
(

ε√
D1

−
√

2βD1

)
− e

√
2βεN

(
− ε√

D1

−
√

2βD1

)
(6.8)∫ D1

0

e−βspε12(s)ds = e−
√

2βεN
(√

2βD1 −
ε√
D1

)
+ e

√
2βεN

(
−
√

2βD1 −
ε√
D1

)
(6.9)∫ D2

0

e−βspε21(s)ds = e−
√

2βεN
(√

2βD2 −
ε√
D2

)
+ e

√
2βεN

(
−
√

2βD2 −
ε√
D2

)
.(6.10)

We let ε→ 0. By construction,

X
(ε)
t

a.s.−−→ Wt for all t.

The stopping time defined based on X(ε) converge to those based on W (see [21]). Further-

more, since e−βτ̃
+
D1

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))} < 1 almost surely, dominated convergence theorem

applies and we have

E
(
e−βτ̃

+
D1

(W )1{τ̃+D1
(W )<τ̃−D2

(W )}

)
= lim

ε→0
E
(
e−βτ̃

+
D1

(X(ε))1{τ̃+D1
(X(ε))<τ̃−D2

(X(ε))}

)
= lim

ε→0

∫∞
D1
e−βspε12(s)ds

1−
∫ D1

0
e−βspε12(s)ds

∫ D2

0
e−βspε21(s)ds

.

Now, substituting the above calculations (6.8) - (6.10) into equation (6.7) and using L’Hopital’s

rule, we obtain the result (6.3). (6.1) can be obtained by taking D2 →∞, and the other three

results can be derived in the same way.
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6.3 Laplace transform of the number of Parisian excur-

sions

In this section, we present some probability results on the number of Parisian excursions

above and below zero.

Theorem 6.2 Let T̃ be exponentially distributed, with parameter β. For a standard Brownian

motion Wt with W0 = 0, we have the following:

N
D1

T̃ (W ) ∼ Geometric

(
e−βD1Ψ

(√
2βD1

)
− 2
√
πβD1

e−βD1Ψ
(√

2βD1

) )
(6.11)

P (N
D1

T̃ (W ) = n) =

(
e−βD1Ψ

(√
2βD1

)
− 2
√
πβD1

e−βD1Ψ
(√

2βD1

) )n(
1−

e−βD1Ψ
(√

2βD1

)
− 2
√
πβD1

e−βD1Ψ
(√

2βD1

) )
.

(6.12)

Proof. For n = 0, 1, 2, ..., we have:

P (N
D1

T̃ (W ) = n) =

∫ ∞
0

βe−βtP (N
D1

t (W ) = n)dt

=

∫ ∞
0

βe−βt
(
P (τ̃n+

D1
(W ) ≤ t)− P (τ̃

(n+1)+
D1

(W ) ≤ t)
)
dt

= E(e−βτ̃
n+
D1

(W ))− E(e−βτ̃
(n+1)+
D1

(W ))

=
(
E(e−βτ̃

+
D1

(W ))
)n
−
(
E(e−βτ̃

+
D1

(W ))
)n+1

and the result follows from (6.1).

As D → 0, we have the following representation for the Brownian local time.

Theorem 6.3 (P. Lévy (1948)) The local time at the origin of the Brownian motion W

satisfies

lim
D→0

√
πD

2
N
D

t (W )→ Lt(0) a.s.. (6.13)

Proof. See Karatzas and Shreve [32] (Theorem 2.21).

We also have the distribution for LT̃ (0).

LT̃ (0) ∼ Exp(2
√

2β). (6.14)
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It is easy to check that if we take D1 → 0 in equation (6.9), N
D

T̃ (W ) converges in distribution

to LT̃ (0).

Theorem 6.4 We have the following joint probability for the number of excursions above and

below zero. For D1, D2 > 0, we have

P (N
D1

T̃ (W ) = n1, N
D2

T̃
(W ) = n2) =

(
n1 + n2

n2

)
g1(β)n1g2(β)n2 (1− g1(β)− g2(β)) (6.15)

for n1 = 0, 1, 2, ..., n2 = 0, 1, 2, ..., where

g1(β) = E
(
e−βτ̃

+
D1

(W )1{τ̃+D1
(W )<τ̃−D2

(W )}

)
=

√
D2e

−βD1Ψ
(√

2βD1

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

)
+
√
D1e−βD2Ψ

(√
2βD2

)
− 2
√
πβD1D2

(6.16)

g2(β) = E
(
e−βτ̃

−
D2

(W )1{τ̃−D2
(W )<τ̃+D1

(W )}

)
=

√
D1e

−βD2Ψ
(√

2βD2

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

)
+
√
D1e−βD2Ψ

(√
2βD2

)
− 2
√
πβD1D2

. (6.17)

Proof. We denote τ̃n1,n2

D1,D2
(W ) as the first time the process completes n1 excursions above

0 of length greater than D1 and n2 excursions below 0 of length greater than D2, in any

order. Then τ̃n1,n2

D1,D2
(W ) is the sum of n1 independent copies of τ̃+

D1
(W )1{τ̃+D1

(W )<τ̃−D2
(W )} and

n2 independent copies of τ̃−D2
(W )1{τ̃−D2

(W )<τ̃+D1
(W )}.

Since there are
(
n1+n2

n2

)
number of ways to order the excursions, we have that the proba-

bility that there are exactly n1 excursions above 0 of length at least D1 and n2 excursions

below 0 of length at least D2 is the probability that τ̃n1,n2

D1,D2
(W ) happens before time t, minus

the probability that the next time there is an excursion above 0 of length D1 or below 0 of

length D2 happens before time t. Also, because of the strong Markov property, the stopping

times are all independent of each other. So we have

P (N
D1

T̃ (W ) = n1, N
D2

T̃
(W ) = n2)

=

∫ ∞
0

βe−βtP (N
D1

t (W ) = n1, N
D2
t (W ) = n2)dt

=

∫ ∞
0

βe−βt
((

n1 + n2

n2

)
P (τ̃n1,n2

D1,D2
(W ) ≤ t)
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−
(
n1 + n2

n2

)
P (τ̃n1,n2

D1,D2
(W ) + τ̃+

D1
(W )1{τ̃+D1

(W )<τ̃−D2
(W )} ≤ t)

−
(
n1 + n2

n2

)
P (τ̃n1,n2

D1,D2
(W ) + τ̃−D2

(W )1{τ̃−D2
(W )<τ̃+D1

(W )} ≤ t)

)
dt

=

(
n1 + n2

n2

)(
g1(β)n1g2(β)n2 − g1(β)n1+1g2(β)n2 − g1(β)n1g2(β)n2+1

)
=

(
n1 + n2

n2

)
g1(β)n1g2(β)n2(1− g1(β)− g2(β))

for n1 = 0, 1, 2, ... and n2 = 0, 1, 2, ....

Next, we look at the joint probability of excursions above 0, but of different lengths.

Theorem 6.5 For D1 < D2, the joint probability of the number of excursions above 0 longer

than D1 and the number of excursions above 0 longer than D2 is

P (N
D1

T̃ (W ) = n1, N
D2

T̃ (W ) = n2) =

(
n1

n2

)
h1(β)n1−n2h2(β)n2 (1− h1(β)− h2(β)) (6.18)

for n1 = 0, 1, 2, ..., n2 = 0, 1, 2, ..., n1, where

h1(β) = E(e
−βτ̃+

(D1,D2)
(W )

1{τ̃+
(D1,D2)

(W )<τ̃+D2
(W )})

=

√
D2e

−βD1Ψ
(√

2βD1

)
−
√
D1e

−βD2Ψ
(√

2βD2

)
√
D2e−βD1Ψ

(√
2βD1

) (6.19)

h2(β) = E(e−βτ̃
+
D2

(W )1{τ̃+D2
(W )<τ̃+

(D1,D2)
(W )})

=

√
D2e

−βD1Ψ
(√

2βD1

)
− 2
√
πβD1D2√

D2e−βD1Ψ
(√

2βD1

) . (6.20)

Proof. We first note that

P (N
D1

T̃ (W ) = n1, N
D2

T̃ (W ) = n2) = P (N
(D1,D2)

T̃ (W ) = n1 − n2, N
D2

T̃ (W ) = n2).

Then we proceed in the same way as above, with the two stopping times of interest now

being τ̃+
(D1,D2)(W ) and τ̃+

D2
(W ). We want the probability of having n1 excursions above 0

of length at least D1, and out of these n1 excursions, n2 of them being longer than D2.

Hence, this is the probability of having n2 of τ̃+
D2

(W )1{τ̃+D2
(W )<τ̃+

(D1,D2)
(W )} and n1 − n2 of

τ̃+
(D1,D2)(W )1{τ̃+

(D1,D2)
(W )<τ̃+D2

(W )} occurring before time t, minus off the probability that the

next time an excursion above 0 of length at least D2 or between D1 and D2 will happen
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before time t. Furthermore, there are
(
n1

n2

)
number of ways to order the excursions, and by

the strong Markov property, the stopping times are all independent. Hence, we derive the

result.
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Chapter 7

Counting the excursions using a

piecewise deterministic model

In this chapter, we look again at the counting process introduced in the previous chapter,

this time from another point of view. Here, we define a piecewise deterministic semi-Markov

process with a special state once the excursion reaches a certain length, and use the infinites-

imal generator to find the Laplace transform of the first time the process makes n excursions

above or below zero. We also obtain the joint distribution of TL and N
∗D
TL

(W ), which we will

define later, is the number of excursions made by the Brownian motion above 0 longer than

length D before it hits level L.

7.1 Laplace transform of the first time there are n ex-

cursions above 0

Here, we find the Laplace transform of the first time the Brownian motion makes n excursions

above 0 of length D. This is however different from the previous section as we now stop when

we reach length D in the nth excursion.

7.1.1 Definitions

We denote N
∗D
t (W ) and N∗Dt (W ) as the number of excursions above and below 0 up to time

t respectively, similar to above, but each excursion is counted once it reaches length D. We
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have the following definitions:

N
∗D1

t (W ) = #{(gWs , dWs ) ∈ I | 0 ≤ gWs ≤ t−D1,Ws > 0, dWs − gWs ≥ D1}

N∗D2
t (W ) = #{(gWs , dWs ) ∈ I | 0 ≤ gWs ≤ t−D2,Ws < 0, dWs − gWs ≥ D2}

N∗D1,D2
t (W ) = N

D1

t (W ) +ND2
t (W )

where I is the union of open sets of excursion intervals as defined in Section 6.1. We also

define the stopping times

τn+
D1

(W ) = inf{t > 0 | N∗D1

t (W ) = n}

τn−D2
(W ) = inf{t > 0 | N∗D2

t (W ) = n}

for n = 1, 2, ... and τ 0+
D1

= 0. We are interested in this section to compute the Laplace

transform of τn+
D (W ).

7.1.2 Semi-Markov model

We again use the perturbed Brownian motion defined in Chapter 5, which is a Brownian

motion which makes a jump of size ε towards the opposite side of the barrier every time it

hits 0, and denote this new process by X(ε) = (X
(ε)
t )t≥0. We now introduce the piecewise

deterministic semi-Markov process Zt, this time with an additional state 1∗ for the case when

the process has spent more than D amount of time above 0,

Z
(ε)
t =


1 if X

(ε)
t > 0, t− gt < D

1∗ if X
(ε)
t > 0, t− gt ≥ D

2 if X
(ε)
t < 0

.

Whenever the Brownian motion is below 0, Z
(ε)
t is in state 2, and when the Brownian motion

is above 0, Z
(ε)
t is either in state 1 or 1∗ when the Brownian motion is above 0, depending on

whether the current excursion has exceeded length D. We also define V
(ε)
t = t− gt, the time

spent by X
(ε)
t in the current state. Then (Z

(ε)
t , V

(ε)
t ) is a Markov process and Z

(ε)
t is thus a

3-state semi-Markov process. The transition probabilities λij(u) for Z
(ε)
t satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

76



P (Z
(ε)
t+∆t = i|Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 2, 3, 4. Define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).

In particular, transition from state 1 to 2 is the first hitting time of ε for the Brownian motion

and occurs up to time D. If the Brownian motion stays in state 1 up to time D, then transition

occurs from state 1 to 1∗ at time D. The transition probability from state 1∗ to 2 is the first

hitting time of ε given that it does not occur before time D. Hence, we have the following

expressions for the transition probabilities:

pε12(t) =

{
ε√

2πt3
e−

ε2

2t if 0 < t < D

0 t > D

pε11∗(t) =

{
P̄ ε

12(D) = 2N
(

ε√
D

)
− 1 if t = D

0 otherwise

pε1∗2(t) =


ε√

2πt3
e−

ε2

2t
1

P̄ ε12(D)
= ε√

2πt3
e−

ε2

2t
1

2N
(

ε√
D

)
−1

if t > D

0 otherwise

pε21(t) =
ε√

2πt3
e−

ε2

2t .

Furthermore, pε1∗1 = pε21∗ = 0. The transition intensities λij are

P̄ ε
i (t) = e−

∫ t
0

∑
j 6=i λij(v)dv

λεij(t) =
pεij(t)

P̄ ε
i (t)

.

We also define P̂ ε
ij(β) and P̃ ε

ij(β) in order to simplify notation.

P̃ ε
ij(β) =

∫ ∞
0

e−βspεij(s)ds

P̂ ε
ij(β) =

∫ d

0

e−βspεij(s)ds.
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7.1.3 Results

Theorem 7.1 We have the following Laplace transform for the stopping time τn+
D1

:

E(e−βτ
n+
D1 ) =

1

Ψ(
√

2βD)

(
Ψ(
√

2βD)− 2
√
πβD

Ψ(
√

2βD)

)n−1

. (7.1)

Proof. To simplify notation, we denote N
ε

t = N
∗D1

t (X(ε)) the counting process as defined

above but this time based on the process X(ε) rather than W . We consider the infinitesimal

generator for the process (Z
(ε)
t , N

ε

t, V
(ε)
t ). Consider a function which is smooth enough and of

the form

f(N
ε

t, V
(ε)
t , Z

(ε)
t , t) = f

Z
(ε)
t

(N
ε

t, V
(ε)
t , t)

where fi, i = 1, 2, 3, 4 are functions from R2 to R. The generator A is defined as the operator

such that

f(N
ε

t, V
(ε)
t , Z

(ε)
t , t)−

∫ t

0

Af(N
ε

s, V
(ε)
s , Z(ε)

s , s)ds

is a martingale. Hence we solve Af = 0 subject to certain conditions to obtain martingales

of the form f(N
ε

t, V
(ε)
t , Z

(ε)
t , t) to which we can apply the optional stopping theorem to obtain

the Laplace transform we are interested in. More precisely, we have

Af1(n, u, t) =
∂f1

∂t
+
∂f1

∂u
+ λ12(u)(f2(n, 0, t)− f1(n, u, t))

+λ11∗(u)(f1∗(n+ 1, d, t)− f1(n, d, t)) = 0 (7.2)

Af2(n, u, t) =
∂f2

∂t
+
∂f2

∂u
+ λ21(u)(f1(n, 0, t)− f2(n, u, t)) = 0 (7.3)

Af1∗(n, u, t) =
∂f1∗

∂t
+
∂f1∗

∂u
+ λ1∗2(u)(f2(n, 0, t)− f1∗(n, u, t)) = 0. (7.4)

We assume fi has the form

fi(n, u, t) = θngi(u)e−βt

where 0 < θ ≤ 1, β > 0 are constants. Since we are only interested in the excursion in state 1

for 0 ≤ V
(ε)
t < D, and in state 1∗ for V

(ε)
t > D, so we solve (7.2) for 0 < u < D and (7.4) for

u > D subject to the conditions g1(D) = g1∗(D) and limu→∞ gi(u) = 0 for i = 1∗, 2. We get

g1(u) =

∫ D

u

e−
∫ s
u (β+λ12(v))dv(λ12(s)g2(0) + θλ11∗(s)g1∗(D)− λ11∗(s)g1(D))ds

+e−
∫D
u (β+λ12(s))dsg1(D), 0 < u < D (7.5)
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g2(u) =

∫ ∞
u

e−
∫ s
u (β+λ21(v))dvλ21(s)dsg1(0) (7.6)

g1∗(u) =

∫ ∞
u

e−
∫ s
u (β+λ1∗2(v))dvλ1∗2(s)dsg2(0), u > D. (7.7)

Taking u = D in (7.7) and u = 0 in (7.5) and (7.6), we have

g1(0) = e−βDP̄ ε
12(D)g1(D) + P̂ ε

12g2(0) + θe−βDP̄ ε
12(D)g1∗(D)− e−βDP̄ ε

12(D)g1(D)

g2(0) = P̃ ε
21g1(0)

g1(D) = g1∗(D) = P̃ ε
1∗2g2(0).

Solving for θ, we have

θ =
1− P̂ ε

21P̃
ε
21

e−βDP̄ ε
12(D)P̃ ε

1∗2P̃
ε
21

.

Hence, we obtain the martingale

Mt = θN
ε
tgi(V

(ε)
t )e−βt

for i = 1, 1∗, 2. We apply the optional stopping theorem to Mt with the stopping time

τn+
D1

(X(ε)) ∧ t to get

E(Mτn+D1
(X(ε))∧t) = E(M0). (7.8)

Since the function g1(u) is continuous, it is bounded on [0, D], and so g1(V
(ε)
t ) is bounded

by a constant K on [0, D] for all ω. Furthermore, g2(u) and g1∗(u) are both continuous and

decreasing in u, so g2(V
(ε)
t ) is bounded by some constant for all u and g1∗(V

(ε)
t ) is bounded

by some constant for u > D, for all ω. Hence dominated convergence applies and we have

lim
t→∞

E(Mτn+D (Xε)∧t) = E(Mτn+D (Xε))

= E(θne−βτ
n+
D (Xε)g1∗(D))

=

(
1− P̂ ε

21P̃
ε
21

e−βDP̄ ε
12(D)P̃ ε

1∗2P̃
ε
21

)n

P̃ ε
1∗2P̃

ε
21g1(0)E(e−βτ

n+
D (X(ε))).

Since

E(M0) = g1(0),
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we have

E(e−βτ
n+
D (Xε)) =

1

P̃ ε
1∗2P̃

ε
21

(
e−βDP̄ ε

12(D)P̃ ε
1∗2P̃

ε
21

1− P̂ ε
21P̃

ε
21

)n

.

We let ε→ 0. By construction,

X
(ε)
t

a.s.−−→ Wt for all t.

The stopping time defined based on X
(ε)
t also converge to those of the Brownian motion

Wt almost surely (see [21]). Furthermore, e−βτ < 1 almost surely, and thus dominated

convergence theorem applies to get the result for Wt

E(e−βτ
n+
D (W )) = lim

ε→0
E(e−βτ

n+
D (X

(ε)
t ))

= lim
ε→0

1

P̃ ε
1∗2P̃

ε
21

(
e−βDP̄ ε

12(D)P̃ ε
1∗2P̃

ε
21

1− P̂ ε
21P̃

ε
21

)n

=
1

Ψ(
√

2βD)

(
Ψ(
√

2βD)− 2
√
πβD

Ψ(
√

2βD)

)n−1

,

where we have used the calculations in (6.8) - (6.10), and this completes the proof.

Remark 7.2 We can check that when n = 1, we get the result for the one-sided Parisian

stopping time as obtained in [14] and [21].

7.2 Number of excursions before hitting L

In this section, we are interested to count the number of excursions above zero that are of

length at least D, before the process hits level L. We denote by TL(W ) the first hitting time

of the Brownian motion of level L

TL(W ) = inf {t > 0|Wt = L}.
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7.2.1 Semi-Markov model

We use the same perturbed Brownian motion X
(ε)
t and for the piecewise deterministic Markov

process Zt, we have one more state for when the process is above L.

Zε
t =


1 if X

(ε)
t > L

2 if 0 < X
(ε)
t < L, t− gt < D

2∗ if 0 < X
(ε)
t < L, t− gt ≥ D

3 if X
(ε)
t < 0

.

Then Z
(ε)
t is in state 3 whenever the Brownian motion is below 0, and in state 1 when it is

above L. It is either in state 2 or 2∗ depending on whether the current excursion has exceeded

length D. We define V
(ε)
t = t − gt to be the time spent in the current state. (Z

(ε)
t , V

(ε)
t ) is a

Markov process, and Z
(ε)
t is thus a 4-state semi-Markov process. The transition probabilities

λij(u) for Z
(ε)
t satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

P (Z
(ε)
t = i|Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 2, 2∗, 3. We define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).

In particular, we have that pε21(t) is the probability of hitting L at time t < D before hitting 0,

pε23(t) is the probability of hitting 0 at time t < D before hitting L, and pε22∗ is the probability

of the process staying between 0 and L up to time D. pε2∗1(t) is the probability of hitting L

at time t > D and pε2∗3(t) is the probability of hitting 0 at time t > D, given the process

stays between 0 and L up to time D. These probabilities are (see Karatzas and Shreve [32]

(Chapter 2)):

pε21(t) =

{
Pε(TL ∈ dt, TL < T0) =

∑∞
n=−∞

2nL+L−ε√
2πt3

e−
(2nL+L−ε)2

2t if 0 < t < D

0 otherwise
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pε23(t) =

{
Pε(T0 ∈ dt, T0 < TL) =

∑∞
n=−∞

2nL+ε√
2πt3

e−
(2nL+ε)2

2t if 0 < t < D

0 otherwise

pε22∗(t) =

{
Pε(T0 > t, TL > t) =

∑∞
n=−∞

(
2N

(
2nL+ε√

t

)
− 1 + 2N

(
2nL+L−ε√

t

)
− 1
)

if t > D

0 otherwise

pε2∗3(t) =

{
Pε(T0∈dt,T0<TL)

P̄ ε2 (D)
=
∑∞

n=−∞
2nL+ε√

2πt3
e−

(2nL+ε)2

2t
1

P̄2(D)
if t > D

0 otherwise

pε2∗1(t) =

{
Pε(TL∈dt,TL<T0)

P̄ ε2 (D)
=
∑∞

n=−∞
2nL+L−ε√

2πt3
e−

(2nL+L−ε)2
2t

1
P̄2(D)

if t > D

0 otherwise

pε32(t) =
ε√

2πt3
e−

ε2

2t .

The transition intensities λij are

P̄ ε
i (t) = e−

∫ t
0

∑
j 6=i λij(v)dv

λij(t) =
pεij(t)

P̄ ε
i (t)

.

We also define P̂ ε
ij(β) and P̃ ε

ij(β) in order to simplify notation.

P̃ ε
ij(β) =

∫ ∞
0

e−βspεij(s)ds

P̂ ε
ij(β) =

∫ D

0

e−βspεij(s)ds.

7.2.2 Results

We have the following theorem for the joint Laplace transform of the number of excursions

of length D and the first hitting time of level L.

Theorem 7.3 For 0 < θ ≤ 1, β > 0, we have

E
(
θN
∗D
TL

(W )e−βTL(W )
)

=

∑
n>0,odd

(
(1− θ)f(

√
2βD, nL√

D
) + 2θ

√
πβDe−

√
2βnL

)
∑

n>0,even

(
(1− θ)f(

√
2βD, nL√

D
) + 2θ

√
πβDe−

√
2βnL

)
+ 2θ
√
πβD

(7.9)
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where

f(x, y) = e−xyΦ(x, y) + exyΦ(−x, y) (7.10)

and Φ(x, y) is

Φ(x, y) =
√

2πxN (x− y) + e−
x2

2 . (7.11)

Proof. We consider the infinitesimal generator for the process (Z
(ε)
t , V

(ε)
t ). Consider a function

which is smooth enough and of the form

f(N̄ ε
t , V

(ε)
t , Z

(ε)
t , t) = f

Z
(ε)
t

(N̄ ε
t , V

(ε)
t , t)

where fi, i = 1, 2, 3, 4 are functions from R2 to R. The generator A is defined as the operation

such that

f(N
ε

t, V
(ε)
t , Z

(ε)
t , t)−

∫ t

0

Af(N
ε

s, V
(ε)
s , Z(ε)

s , s)ds

is a martingale. Hence we solve Af = 0 subject to certain conditions to obtain martingales

of the form f(N
ε

t, V
(ε)
t , Z

(ε)
t , t). We have

Af1(n, u, t) =
∂f1

∂t
+
∂f1

∂u
+ λ12(u)(f2(n, 0, t)− f1(n, u, t)) = 0 (7.12)

Af2(n, u, t) =
∂f2

∂t
+
∂f2

∂u
+ λ21(u)(f1(n, 0, t)− f2(n, u, t))

+λ23(u)(f3(n, 0, t)− f2(n, u, t))

+λ22∗(u)(f2∗(n+ 1, D, t)− f2(n,D, t)) = 0 (7.13)

Af2∗(n, u, t) =
∂f2∗

∂t
+
∂f2∗

∂u
+ λ2∗1(u)(f1(n, 0, t)− f2∗(n, u, t))

+λ2∗3(u)(f3(n, 0, t)− f2∗(n, u, t)) = 0 (7.14)

Af3(n, u, t) =
∂f3

∂t
+
∂f3

∂u
+ λ32(u)(f2(n, 0, t)− f3(n, u, t)) = 0. (7.15)

We assume fi has the form

fi(n, u, t) = θngi(u)e−βt

where 0 < θ ≤ 1, β > 0 are constants. Since we are only interested in the length of the

excursion in state 2, we solve (7.13) for 0 < u < D and (7.14) for u > D subject to the

conditions g2(D) = g2∗(D) and limu→∞ gi(u) = 0 for i = 1, 2∗, 3. We are not interested in
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what happens in state 1, so we can ignore the first equation. We get

g2(u) = g2(D)e−
∫D
u (β+λ21(v)+λ23(v))dv +

∫ D

u

e−
∫ s
u (β+λ21(v)+λ23(v))dv (λ21(s)g1(0)

+λ23(s)g3(0) + λ22∗(s)θg2∗(D)− λ22∗(s)g2(D)) ds, 0 < u < D (7.16)

g2∗(u) =

∫ ∞
u

e−
∫ s
u (β+λ2∗1(v)+λ2∗3(v))dv(λ2∗1(s)g1(0) + λ2∗3g3(0))ds, u > D (7.17)

g3(u) =

∫ ∞
u

e−
∫ s
u (β+λ32(v))dvλ32(s)g2(0)ds. (7.18)

Taking u = D in (7.17) and u = 0 in (7.16) and (7.18), we have

g2(0) = P̂ ε
21g1(0) + P̂ ε

24g4(0) + θP̄ ε
2(D)g2∗(D)

g2∗(D) = P̃ ε
2∗1g1(0) + P̃ ε

2∗3g3(0)

g3(0) = P̃ ε
43g2(0).

Solving the three equations with g2(D) = g2∗(D), we get

(1− P̃ ε
32P̂

ε
23 − θP̄ ε

2(D)P̃ ε
32P̃

ε
2∗3)g3(0) = (P̃ ε

32P̂
ε
21 + P̃ ε

32P̄
ε
2(D)θP̃ ε

2∗1)g1(0).

We apply the optional stopping theorem to the martingale

Mt = θN
ε
tgi(V

(ε)
t )e−βt

for i = 1, 2, 2∗, 3 and the stopping time TL(X(ε)). Since TL(X(ε)) is finite almost surely, we

have

E(MTL(X(ε))∧t) = E(M0). (7.19)

Since g2(u) is continuous on the closed set [0, D], we have g2(V
(ε)
t ) is bounded by a constant

on [0, D]. Furthermore, g2∗(u) and g3(u) are continuous and decreasing, hence g2∗(V
(ε)
t ) and

g3(V
(ε)
t ) are bounded. So dominated convergence applies and on the left hand side we have

lim
t→∞

E(MTL(X(ε))∧t) = E(MTL(X(ε)))

= E(θN
∗D
TL

(X(ε))e−βTL(X(ε))g1(0)).
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Since

E(M0) = g3(0),

we have

E(θN
∗D
TL

(X(ε))e−βTL(X(ε))) =
P̃ ε

32(P̂ ε
21 + θP̄ ε

2(D)P̃ ε
2∗1)

1− P̃ ε
32P̂

ε
23 − θP̄ ε

2(D)P̃ ε
32P̃

ε
2∗3

. (7.20)

We let ε→ 0. By construction,

X(ε) a.s.−−→ Wt for all t.

The stopping time defined based on X
(ε)
t also converge to those of the Brownian motion Wt

almost surely. Furthermore, e−βTL(X(ε)) < 1 almost surely, and thus dominated convergence

applies to get the result for Wt. We get

E(θN
∗D
TL

(W )e−βTL(W ))

= lim
ε→0

E(θN
∗D
TL

(X(ε))e−βTL(X(ε)))

= lim
ε→0

P̃ ε
32(P̂ ε

21 + θP̄ ε
2(D)P̃ ε

2∗1)

1− P̃ ε
32P̂

ε
23 − θP̄ ε

2(D)P̃ ε
32P̃

ε
2∗3

=

∑
n>0,odd

(
(1− θ)f(

√
2βD, nL√

d
) + 2θ

√
πβDe−

√
2βnL

)
∑

n>0,even

(
(1− θ)f(

√
2βD, nL√

D
) + 2θ

√
πβDe−

√
2βnL

)
+ 2θ
√
πβD

,

where we have used the calculations in (5.2) - (5.6) and (6.8) - (6.10), and this completes the

proof.

Remark 7.4 It is easy to check that when θ = 1, we obtain the Laplace transform of the first

hitting time of the Brownian motion,

E(e−βTL(W )) = e−
√

2βL.
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Chapter 8

Parisian excursions for the Brownian

meander

In this chapter, we are interested to find the Parisian stopping time associated with the

Brownian meander, which is Brownian motion conditioned to be positive. In particular we

want to find the first time the Brownian meander makes an excursion above the level L > 0

and spends at least length D above the level. Some previous studies done on the Brownian

meander include Durrett and Inglehart [23, 24], Imhof [31] and Yor [44].

8.1 Parisian stopping time for Brownian meander

We use the same method as the previous chapter to obtain the Laplace transform of the

Parisian stopping time for the Brownian meander.

8.1.1 Definitions

The excursions are defined as before.

gWL,t = sup{s ≤ t|Ws = L}, dWL,t = inf {s ≥ t|Ws = L}

gW0,t = sup{s ≤ t|Ws = 0}, dW0,t = inf {s ≥ t|Ws = 0}

gWt = max (gWL,t, g
W
0,t)

with the usual convention that sup ∅ = 0 and inf ∅ = ∞. The trajectory of W between gWL,t
and dWL,t is the excursion about L which straddles time t. We are interested in the stopping
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time τ+
L,D as defined in Chapter 2, the first time we have an excursion above L of length

D. However, now the Brownian motion is conditioned to stay positive throughout the whole

excursion. We denote by W ∗ = (W ∗
t )t≥0 this meander process. Then we define the Parisian

stopping time based on this process,

τ+
L,D(W ∗) = inf{t > 0 | W ∗

t > L, t− gt ≤ D}.

8.1.2 Semi-Markov model

Now, we introduce the doubly perturbed Brownian motion Y
(ε)
t , ε > 0, defined as follows.

Define a sequence of stopping times

δ0 = 0

σn = inf {t > δn|Wt = −ε}

δn+1 = inf {t > σn|Wt = 0}

where n = 0, 1, .... Now define the process X
(ε)
t as

X
(ε)
t = Wt + ε if δn ≤ t < σn

X
(ε)
t = Wt if σn ≤ t < δn+1.

This process is the perturbed Brownian motion used in the previous chapters. Now, we define

another sequence of stopping times with respect to the process X
(ε)
t and the barrier L:

ζ0 = 0

ηn = inf {t > ζn|X(ε)
t = L}

ζn+1 = inf {t > ηn|X(ε)
t = L− ε}

where n = 0, 1, .... Then we introduce a new process Y
(ε)
t defined as

Y
(ε)
t = X

(ε)
t + ε ζn ≤ t < ηn

Y
(ε)
t = X

(ε)
t ηn ≤ t < ζn+1.

This is a process which starts at ε and behaves like a Brownian motion except that each time

it hits the barrier 0 or L it will jump towards the opposite side of the barrier with size ε.
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The piecewise deterministic semi-Markov process Z
(ε)
t has three states. We do not take into

account the state when Wt < 0 because we condition Wt to be positive throughout. Z
(ε)
t is

defined as

Z
(ε)
t =


1 if Y

(ε)
t > L

2 if 0 < Y
(ε)
t < L, gLt > g0

t

3 if 0 < Y
(ε)
t < L, gLt < g0

t

.

We define V
(ε)
t = t−gt to be the time spent in the current state. Then (Z

(ε)
t , V

(ε)
t ) is a Markov

process, and Z
(ε)
t is a 3-state semi-Markov process. The transition probabilities λij(u) for Z

(ε)
t

satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

P (Z
(ε)
t = i|Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 2, 3. Define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).

In particular, we have

pε12(t) =
ε√

2πt3
e−

ε2

2t

pε21(t) = PL−ε(TL ∈ dt|TL < T0) =
∞∑

n=−∞

2nL+ ε√
2πt3

e−
(2nL+ε)2

2t
L

L− ε

pε31(t) = Pε(TL ∈ dt|TL < T0) =
∞∑

n=−∞

(2n+ 1)L− ε√
2πt3

e−
((2n+1)L−ε)2

2t
L

ε
.

These transition probabilities are obtained by noting that pε12(t) is the probability of hitting

L at time t from L + ε, pε21(t) is the probability of hitting L at time t starting at ε, without

hitting 0 before, and pε31(t) is the probability of hitting L at time t starting at L− ε, without

hitting 0 before. The transition intensities λij are

P̄ ε
i (t) = e−

∫ t
0

∑
j 6=i λij(v)dv
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λij(t) =
pεij(t)

P̄ ε
i (t)

.

As before, we also define P̂ ε
ij(β) and P̃ ε

ij(β) in order to simplify notation:

P̃ ε
ij(β) =

∫ ∞
0

e−βspεij(s)ds

P̂ ε
ij(β) =

∫ D

0

e−βspεij(s)ds.

8.1.3 Results

We have the following Laplace transform for the Parisian stopping time of the Brownian

meander.

Theorem 8.1 The Laplace transform of the Parisian stopping time for the Brownian mean-

der is

E
(
e−βτ

+
L,D(W ∗)

)
=

2
√

2βLe−
√

2βL 2√
2πD

e−βD

2
√

2βe−2
√

2βL + (1− e−2
√

2βL)(2
√

2βN (
√

2βD) + 2√
2πD

e−βD − 1
L

)
. (8.1)

Proof. We consider a function that is smooth enough and of the form

f(V
(ε)
t , Z

(ε)
t , t) = f

Z
(ε)
t

(V
(ε)
t , t),

where fi, i = 1, 2, 3, 4 are functions from R2 to R. The generator A is defined as the operator

such that

f(V
(ε)
t , Z

(ε)
t , t)−

∫ t

0

Af(V (ε)
s , Z(ε)

s , s)ds

is a martingale. Hence we solve Af = 0 subject to certain conditions to obtain martingales

of the form f(V
(ε)
t , Z

(ε)
t , t). More precisely, we have

Af1(u, t) =
∂f1

∂t
+
∂f1

∂u
+ λ12(u)(f2(0, t)− f1(u, t)) = 0 (8.2)

Af2(u, t) =
∂f2

∂t
+
∂f2

∂u
+ λ21(u)(f1(0, t)− f2(u, t)) = 0 (8.3)

Af3(u, t) =
∂f3

∂t
+
∂f3

∂u
+ λ31(u)(f1(0, t)− f3(u, t)) = 0. (8.4)
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We assume fi(u, t) has the form

fi(u, t) = gi(u)e−βt

where β > 0 is a constant. Since we are only interested in the length of the excursion in state

1, we solve (8.2) for 0 < u < D and (8.3), (8.4) subject to the conditions limu→∞ gi(u) = 0

for i = 2, 3. We get

g1(u) = g1(D)e−
∫D
u (β+λ12(s))ds +

∫ D

u

e−
∫ s
u (β+λ12(v))dvλ12(s)dsg2(0) (8.5)

g2(u) =

∫ ∞
u

e−
∫ s
u (β+λ21(v))dvλ21(s)dsg1(0) (8.6)

g3(u) =

∫ ∞
u

e−
∫ s
u (β+λ31(v))dvλ31(s)dsg1(0). (8.7)

Taking u = 0, we have

g1(0) = g1(D)P̄ ε
1(D)e−βD + P̂ ε

12P̃
ε
21g2(0)

g2(0) = P̃ ε
21g1(0)

g3(0) = P̃ ε
31g1(0).

Solving the three equations, we get

g1(D) =
1− P̂ ε

12P̃
ε
21

P̄ ε
1(D)e−βD

g1(0).

We apply the optional stopping theorem to the martingale

Mt = gi(V
(ε)
t )e−βt

for i = 1, 2, 3 and the stopping time τ+
L,D(Y (ε))):

E(Mτ+L,D(Y (ε))∧t) = E(M0). (8.8)

As before, g1(u) is continuous on the closed set [0, D], hence g1(V
(ε)
t ) is bounded by some

constant for V
(ε)
t ∈ [0, D]. Also, we have that g2(u) and g3(u) are continuous and decreasing,

so g2(V
(ε)
t ) and g3(V

(ε)
t ) are bounded by some constant for all V

(ε)
t . So dominated convergence
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applies and on the left hand side we have

lim
t→∞

E(Mτ+L,D(Y (ε))∧t) = E(Mτ+L,D(Y (ε)))

= E(e−βτ
+
L,D(Y (ε))g1(D))

and since

E(M0) = g3(0),

we have

E(e−βτ
+
L,D(Y (ε))) =

P̃ ε
31P̄

ε
1(D)e−βD

1− P̂ ε
12P̃

ε
21

.

We let ε→ 0. By construction,

Y (ε) a.s.−−→ Wt for all t.

The stopping time defined based on Y
(ε)
t also converge to that of the Brownian motion Wt

almost surely (see [21]). Furthermore, e−βτ
+
L,D(Y (ε)) < 1 almost surely, and thus dominated

convergence applies to get the result for W ∗. We get

E(e−βτ
+
L,D(W ∗)) = lim

ε→0
E(e−βτ

+
L,D(Y (ε)))

= lim
ε→0

P̃ ε
31P̄

ε
1(D)e−βD

1− P̂ ε
12P̃

ε
21

=
2
√

2βLe−
√

2βL 2√
2πD

e−βD

2
√

2βe−2
√

2βL + (1− e−2
√

2βL)(2
√

2βN (
√

2βD) + 2√
2πD

e−βD − 1
L

)
,

where we have used the calculations in equations (5.2) - (5.6) and (6.8) - (6.10), and this

completes the proof.
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Chapter 9

Parisian occupation time - Occupation

time with a qualifying period

An extension of the framework used in the previous two chapters results in formulas for the

joint Laplace transform of the occupation time above and below 0 of a Brownian motion, but

with a qualifying period for each excursion. Here, we compute the occupation time above and

below 0, but we only start the clock after an excursion has reached a certain length. This

result can be used to price bonds where continuous payments are made whenever the price of

the underlying has stayed below a certain level for a period of time.

9.1 The semi-Markov model

As before, we use the semi-perturbed Brownian motion X
(ε)
t and define the piecewise deter-

ministic semi-Markov process Z
(ε)
t by

Z
(ε)
t =


1 if X

(ε)
t > 0, t− gt < D1

1∗ if X
(ε)
t > 0, t− gt ≥ D1

2 if X
(ε)
t < 0, t− gt < D2

2∗ if X
(ε)
t < 0, t− gt ≥ D2

.

We also define V
(ε)
t = t − gt, the time spent by X

(ε)
t in the current state. Then (Z

(ε)
t , V

(ε)
t )

is a Markov process. Z
(ε)
t is thus a semi-Markov process. The process transitions to state 1∗

when it has spent D1 amount of time in state 1, and transitions to state 2∗ when it has spent
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D2 amount of time in state 2. The transition probabilities λij(u) for Z
(ε)
t satisfy:

P (Z
(ε)
t+∆t = j, i 6= j|Z(ε)

t = i, V
(ε)
t = u) = λij(u)∆t+ o(∆t)

P (Z
(ε)
t+∆t = i|Z(ε)

t = i, V
(ε)
t = u) = 1−

∑
i 6=j

λij(u)∆t+ o(∆t)

for i = 1, 1∗, 2, 2∗. Define:

P̄ij(µ) = exp

{
−
∫ µ

0

∑
i 6=j

λij(v)dv

}
pij(µ) = λij(µ)P̄i(µ).

Now for i = 1, 2, we define the occupation times Zi
t as

Zi
t(X

(ε)) =

∫ t

0

1{Z(ε)
t ∈i∗}

ds.

To simplify notation, we will refer to this as Zi
t and use the notation Zi

t(W ) for the corre-

sponding occupation time of the Brownian motion. First, we find the joint Laplace transform

of Z1
t and Z2

t . As before, the transition probabilities satisfy:

pε12(t) =

{
ε√

2πt3
e−

ε2

2t if 0 < t < D1

0 t > D1

pε11∗(t) =

{
P̄12(D1) = 2N

(
ε√
D1

)
− 1 if t = D1

0 otherwise

pε1∗2(t) =

{
ε√

2πt3
e−

ε2

2t
1

P̄12(D1)
if t > D1

0 otherwise

pε21(t) =

{
ε√

2πt3
e−

ε2

2t if 0 < t < D2

0 t > D2

pε22∗(t) =

{
P̄21(D2) = 2N

(
ε√
D2

)
− 1 if t = D2

0 otherwise

pε2∗1(t) =

{
ε√

2πt3
e−

ε2

2t
1

P̄21(D2)
if t > D2

0 otherwise

93



and we have the transition intensities λij

P̄ ε
ij(t) = e−

∫ t
0 λij(v)dv

P̄ ε
i (t) = e−

∫ t
0

∑
j 6=i λij(v)dv

λij(t) =
pεij(t)

P̄ ε
i (t)

.

We also define P̃ ε
ij(β) and P̂ ε

ij(β) in order to simplify notation:

P̃ ε
ij(β) =

∫ ∞
0

e−βspεij(s)ds

P̂ ε
ij(β) =

∫ Di

0

e−βspεij(s)ds.

9.2 Laplace transform for the joint Parisian occupation

times

Theorem 9.1 We have the following representation for the Laplace transform of the occupa-

tion times Z1
t and Z2

t

E

(∫ ∞
0

e−βte−α1Z1
t (W )e−α2Z2

t (W )dt

)
=
ϕ(α1, α2, β)

ϕ′(α1, α2, β)
, (9.1)

where ϕ and ϕ′ are defined as below.

ϕ(x, y, z) =
1√
z

(
N (
√

2zD2)−N (−
√

2zD1)
)

+
1√
y + z

eyD2N (−
√

2(y + z)D2)

+
1√
x+ z

exD1N (−
√

2(x+ z)D1) (9.2)

ϕ′(x, y, z) =
√
z
(
N (
√

2zD2)−N (−
√

2zD1)
)

+
√
y + zeyD2N (−

√
2(y + z)D2)

+
√
x+ zexD1N (−

√
2(x+ z)D1). (9.3)

Proof. We consider a function of the form

f(t, V
(ε)
t , Z

(ε)
t , Z1

t , Z
2
t ) = f

Z
(ε)
t

(t, V
(ε)
t , Z1

t , Z
2
t )
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where fi, i = 1, 2, 3, 4 are functions from R2 to R. The generator A is defined as the operator

such that

f(t, V
(ε)
t , Z

(ε)
t , Z1

t , Z
2
t )−

∫ t

0

Af(s, V (ε)
s , Z(ε)

s , Z1
s , Z

2
s )ds

is a martingale. In this case, we have

Afi =
∂fi
∂t

+
∂fi
∂u

+
∑
j 6=i

λij(u)(fj(t, 0, z
1, z2)− fi(t, u, z1, z2)) (9.4)

+λii∗(u)(fi∗(t,Di, z
1, z2)− fi(t,Di, z

1, z2)) = 0

Afi∗ =
∂fi∗

∂zi
+
∂fi∗

∂t
+
∂fi∗

∂u
+
∑
j 6=i

λij(u)(fj(t, 0, z
1, z2)− fi(t, u, z1, z2)) = 0. (9.5)

To obtain martingales fZt(t, V
(ε)
t , Z1

t , Z
2
t ), we solve Af = 0 subject to certain conditions. We

assume fi(t, V
(ε)
t , Z1

t , Z
2
t ) takes the form

fi(t, V
(ε)
t , Z1

t , Z
2
t ) =

∫ t

0

e−βse−α1Z1
s e−α2Z2

sds+ e−βte−α1Z1
t e−α2Z2

t gi(V
(ε)
t )

where β, α1 and α2 are positive constants. Substituting this in equations (9.4) and (9.5) and

then equating to 0, we have

g′i(u)− (β +
∑
j 6=i

λij(u))gi(u) = 1 +
∑
j 6=i

λij(u)gj(0) + λii∗(u)(gi∗(Di)− gi(Di)) (9.6)

and

g′i∗(u)− (β + αi +
∑
j 6=i∗

λi∗j(u))gi∗(u) = 1 +
∑
j 6=i∗

λi∗j(u)gj(0). (9.7)

We solve (9.6) for 0 < u < Di and (9.7) for u > Di subject to the conditions gi(Di) = gi∗(Di)

and limu→∞ gi∗(u) = 0 for i = 1, 2. We get

gi(u) =

∫ Di

u

e−
∫ s
u (β+

∑
j 6=i λij(v))dv

(∑
j 6=i

λij(s)gj(0) + 1

)
ds

+e−
∫Di
u (β+

∑
j 6=i λij(v))dvgi(Di), 0 < u < Di (9.8)

gi∗(u) =

∫ ∞
u

e−
∫ s
u (β+αi+

∑
j 6=i∗ λi∗j(v))dv

(∑
j 6=i∗

λi∗j(s)gj(0) + 1

)
ds, u > Di. (9.9)
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Taking u = 0 in (9.8) and u = Di in (9.9), we get

gi(0) =
∑
j 6=i

gj(0)P̂ ε
ij(β) +

1

β

(
1− e−βDiP̄ ε

i (Di)−
∑
j 6=i

P̂ ε
ij(β)

)
+ e−βDiP̄ ε

i (Di)gi(Di)

gi∗(Di) =
∑
j 6=i

e(β+αi)DiP̃ ε
i∗j(β + αi)gj(0) +

1

β + αi

(
1−

∑
j 6=i

e(β+αi)DiP̃ ε
i∗j(β + αi)

)
.

Solving the two equations, we have

gi(0) =
∑
j 6=i

gj(0)
(
P̂ ε
ij(β) + eαiDiP̄ ε

i (Di)P̃
ε
i∗j(β + αi)

)
+

1

β

(
1− e−βDiP̄ ε

i (Di)−
∑
j 6=i

P̂ ε
ij(β)

)

+
1

β + αi
e−βDiP̄ ε

i (Di)

(
1−

∑
j 6=i

e(β+αi)DiP̃ ε
i∗j(β + αi)

)
.

We then can solve for gi(0). In the two-state case,

g1(0) =
h(β, α1, α2)

1−
(
P̂ ε

12(β) + eα1D1P̄ ε
1(D1)P̃ ε

1∗2(β + α1)
)(

P̂ ε
21(β) + eα2D2P̄ ε

2(D2)P̃ ε
2∗1(β + α2)

)
where

h(β, α1, α2) =
(
P̂ ε

12(β) + eα1D1P̄ ε
1(D1)P̃ ε

1∗2(β + α1)
)( 1

β

(
1− e−βD2P̄ ε

2(D2)− P̂ ε
21(β)

)
+

1

β + α2

e−βD2P̄ ε
2(D2)(1− e(β+α2)D2P̃ ε

2∗1(β + α2))

)
+

1

β

(
1− e−βD1P̄ ε

1(D1)− P̂ ε
12(β)

)
+

1

β + α1

e−βD1P̄ ε
1(D1)(1− e(β+α1)D1P̃ ε

1∗2(β + α1)).

Now, we use the martingale

fi(t, V
(ε)
t , Z1

t , Z
2
t ) =

∫ t

0

e−βse−α1Z1
s e−α2Z2

sds+ e−βte−α1Z1
t e−α2Z2

t gi(V
(ε)
t ) (9.10)
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for i = 1, 2. We also have that

E(fi(t, V
(ε)
t , Z1

t , Z
2
t )) = E(f(0, 0, 0, 0)) = g1(0)

holds for all t > 0. When t→∞, the second term in (9.10) becomes 0 and we have

E

(∫ ∞
0

e−βte−α1Z1
t e−α2Z2

t dt

)
= g1(0).

Now we let ε→ 0. By construction,

X
(ε)
t

a.s.−−→ Wt for all t.

As in [21], since X
(ε)
t converges to Wt almost surely for all t, the quantities defined based

on X(ε) also converge to those of the Brownian motion W almost surely. Furthermore,∫∞
0
e−βte−α1Z1

t e−α2Z2
t dt < 1

β
almost surely, and thus dominated convergence theorem applies

to get the result for Wt,

E

(∫ ∞
0

e−βte−α1Z1
t (W )e−α2Z2

t (W )dt

)
= lim

ε→0
E

(∫ ∞
0

e−βte−α1Z1
t e−α2Z2

t dt

)
= lim

ε→0

h(β, α1, α2)

1−
(
P̂ ε

12(β) + eα1D1P̄ ε
1(D1)P̃ ε

1∗2(β + α1)
)(

P̂ ε
21(β) + eα2D2P̄ ε

2(D2)P̃ ε
2∗1(β + α2)

)
=

ϕ(α1, α2, β)

ϕ′(α1, α2, β)
,

where φ and φ′ are as defined in equations (9.2) and (9.3).

Remark 9.2 When α2 = 0 and D1 = 0, we can simplify to get

E

(∫ ∞
0

e−βte−α1Z1
t (W )dt

)
=

1√
β(β + α1)

,

same as the result for the occupation time above 0 without a qualifying period.
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Chapter 10

Conclusion

In conclusion, there are several main results in this thesis. Firstly, we derive an analytical

formula for the density of the one-sided Parisian stopping time. This is in the form of a

recursion and it provides an alternative way to price Parisian options which is easy to pro-

gram and fast to compute for long window lengths relative to the maturity time. We extend

this result to obtain the density of the two-sided Parisian stopping time and also the double

barrier Parisian stopping time. For the two-sided stopping time, we give an asymptotic result

for the tail of the distribution.

Furthermore, we study the counting process of Parisian excursions, which are excursions

that exceed a certain length. We obtain the Laplace transforms of some distributions re-

lated to the number of excursions. These results can be applied to mathematical finance,

for example we can price an option which pays off an amount proportional to the number

of times the stock price stays above a certain level for a period of time. Finally, we use

the perturbed Brownian motion and the piecewise deterministic semi-Markov framework to

derive several other interesting results. In particular, we obtain the Laplace transform of the

Parisian stopping time conditioned on a given height. This can be used to price options which

get knocked in not only when the share price stays above a barrier for a certain period of

time, but also it must hit another barrier above the first one. We also obtain the Laplace

transform of the Parisian stopping time for a Brownian meander. Finally, we derive the joint

Laplace transform of the occupation times above and below zero, but with a qualifying period.

Further research can be done to find the Parisian stopping time for other kinds of processes,
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such as the Bessel process or the Ornstein Uhlenbeck process. One can also explore further

into stopping times involving both the height and length of the excursion, as some of these

cannot be derived using the current framework. It will also be good to look into applying

some of these results to mathematical finance, such as option pricing or calculating the prob-

ability of default. An example would be a bond which pays off a continuous amount whenever

the price of an underlying asset falls below a certain barrier for a certain period of time, or

the probability of default for a firm that is liable to default only if the price of its share has

dropped below a certain level and stayed below the level for a period of time, during which

it also goes below a second barrier.
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[30] HABER, R.J., SCHÖNBUCHER, P.J., and WILMOTT, P. Pricing Parisian Options. J.

Derivatives, Vol. 6, No. 3, (1999), pp. 71-79.

[31] IMHOF, J.P. Density Factorizations for Brownian motion, meander and the three-

dimensional Bessel process, and applications. J. Appl. Probab., Vol. 21, No. 3, (1984),

pp. 500-510.

[32] KARATZAS, I., SHREVE, S.E., Brownian Motion and Stochastic Calculus. Second Edi-

tion, Springer-Verlag, 1991.

[33] KNIGHT, F.B. On the Excursion Process of Brownian Motion. Trans. Amer. Math. Soc.,

Vol. 258, No. 1, ( 1980), pp. 77-86.

[34] LABART, C. and LELONG, J. Pricing double barrier Parisian Options using Laplace

transforms. Int. J. Theor. Appl. Finance, Vol. 12, (2009), pp. 1944.

[35] LABART, C. and LELONG, J. Pricing Parisian options using Laplace transforms.

Bankers Markets and Investors, Vol. 99, (2009).

102
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