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Abstract. Multiple, linear regression is employed to attribute variability in the global surface temperature to

various forcing components and prominent internal climatic modes. The purpose of the study is to asses how

sensitive attribution is to long-range memory (LRM) in the model for the temperature response. The model

response to a given forcing component is its fingerprint and is different for a zero response time (ZRT) model

and one with an LRM response. The fingerprints are used as predictors in the regression scheme to express

the response as a linear combination of footprints. For the instrumental period 1880–2010 CE (Common Era)

the LRM response model explains 89 % of the total variance and is also favoured by information-theoretic

model selection criteria. The anthropogenic footprint is relatively insensitive to LRM scaling in the response

and explains almost all global warming after 1970 CE. The solar footprint is weakly enhanced by the LRM

response, while the volcanic footprint is reduced by a factor of 2. The natural climate variability on multidecadal

timescales has no systematic trend and is dominated by the footprint of the Atlantic Multidecadal Oscillation.

The 2000–2010 CE hiatus is explained as a natural variation. A corresponding analysis for the last millennium

is performed, using a Northern Hemisphere temperature reconstruction. The Little Ice Age (LIA) is explained

as mainly due to volcanic cooling or as a long-memory response to a strong radiative disequilibrium during the

Medieval Warm Anomaly, and it is not attributed to the low solar activity during the Maunder Minimum.

1 Introduction

There will always be variability in the Earth’s climate, even

in the absence of external forcing like variation in solar

irradiance, volcanic eruptions, or human-induced changes.

The nature of internal climate variability is analogous to the

change in weather, just extrapolated to longer spatial and

temporal scales. This “song of nature” is comprised of a ca-

cophony of frequencies corresponding to the natural modes

of the climate system and forms a background spectrum with

a pink-noise character. This means that the power spectral

density (PSD) of global temperature to a crude approxima-

tion has the form S(f )∼ 1/f for frequencies f correspond-

ing to periods from months to millennia. The shape of this

spectrum implies that internal variability on low frequencies

(long timescales) is strong, and this constitutes a problem

when we want to detect climate signals and trends with exter-

nal causes. Another complication is that there are also inter-

nal modes that stand out from this noise, and the separation

of these modes from the noise background is not unique and

depends on how the noise is modelled.

Signal detection means establishing the statistical signifi-

cance of a trend, an oscillation, or a spatiotemporal pattern.

This is successfully done if we can establish that it is very

unlikely that the pattern, or fingerprint, has arisen by chance

from the internal background noise. Once fingerprints have

been successfully detected, the next issue is to assess their

relative weights, or footprints, in the total climate signal.

This process is what we call attribution. A particular foot-

print can in some cases be perceived as the result of a partic-

ular cause, such as a well-identified radiative forcing. In that

case the footprint can be thought of as the global tempera-

ture response to this particular forcing. However, attribution

does not have to be causal, which is the case if the footprint

is the global temperature manifestation of an internal climate

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195237571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


720 K. Rypdal: Attribution and long memory

mode. For such a mode, a particular climatic variable or in-

dex can serve as a particularly sensitive gauge for this spe-

cific mode, and its contribution to the variance of the global

temperature signal is the mode’s footprint.

A standard method in attribution studies is that of mul-

tiple linear regression. The idea is to separate the climate

signal into a number of components assumed to represent

the climate response to individual forcings in addition to a

few prominent internal modes. Each of these components

has a certain characteristic fingerprint. In order to determine

these fingerprints we need models of some sort. Full-scale

AOGCMs (atmosphere–ocean general circulation models)

can be used, but often also simpler, conceptual models are

useful. The rationale for attribution studies is that even the

most advanced climate models may estimate wrongly the

magnitude of individual responses, even though they have

got the fingerprints right. Hence, we may write the total cli-

mate signal T (t) as a linear combination of the fingerprints.

The validity of the linear approximation for global climate

variables has been documented in AOGCM studies by Meehl

et al. (2004). Consider, for instance, the global tempera-

ture T (t) and the fingerprints of various forcings and inter-

nal modes. Then we may, for instance, select the following

model for the explained global surface temperature (this is

also called the response variable or the predictand):

Texp(t)= fsunS(t)+ fvolcV (t)+ fanthrH (t)+ fAMOA(t)

+ fENSOE(t), (1)

where S(t), V (t), H (t) are the fingerprints of solar, volcanic,

and human-induced (anthropogenic) forcing, and A(t) and

E(t) are the fingerprints of the Atlantic Multidecadal Oscilla-

tion (AMO) and the El Niño–Southern Oscillation (ENSO),

respectively. In regression theory the fingerprints are also

called predictors. The fitting parameters (or regressors) fsun,

fvolc, . . . represent the weight of each fingerprint in the to-

tal response and can be estimated by minimizing the least-

square error with respect to the observed data. These weights

take into account that we may not have modelled the mag-

nitude of the individual forcings correctly, or that we have

overlooked, or modelled incorrectly, climate feedbacks that

operate differently for each forcing. A third possible cause

of changed weights is incorrect modelling of the temporal

response to the forcing. This will give rise to distorted fin-

gerprints. A measure of how successfully the method at-

tributes variability to the various forcing components is to

compute how much of the observed variance is explained by

the model.

One common problem with this approach is that if there

are many causal factors to consider, and hence many param-

eters to fit, there is a risk of overfitting. This means that a

good fit can be obtained even when the result is unphysical.

Another problem is that the fingerprints of forcing in gen-

eral are distorted and delayed by inertia in the climate re-

sponse caused by slow heat exchange between the ocean sur-

face layer and the deep ocean, sea ice, and ice sheets. This

inertia may, for instance, lead to a small response to the rel-

atively fast solar cycle forcing, while the response to slow

trends in solar irradiance may be stronger but considerably

delayed.

Delay effects are generally not accounted for in the re-

gression model Eq. (1) if the model defining the fingerprint

does not involve a dynamic response to forcing. Some au-

thors include delays by introducing a fixed time shift which

is different for each fingerprint (Lean and Rind, 2008, 2009;

Foster and Rahmstorf, 2011). In these papers delays are in-

troduced for the sole purpose of improving the fit, and they

increase the number free parameters in the regression model.

Under any circumstance, the delay introduced for volcanic,

solar, and ENSO fingerprints is a few months and hence is

not detectable in the present analysis, which deals with an-

nual data. However, a decadal delay of the anthropogenic

fingerprint found by Lean and Rind (2008, 2009) was explic-

itly represented as a result of ocean heat uptake by Canty

et al. (2013). In the present paper this delay due to heat

exchange with the deep ocean is represented by the long-

memory response. The response function to all forcing com-

ponents is assumed to have the same shape and involves dis-

tortion, not just shifts, of the forcing signals. A conceptual

stochastic–dynamic model of such a long-memory dynamic

response is described in Rypdal and Rypdal (2014), where

it is shown that for the global temperature, this model pro-

vides results that are essentially indistinguishable from those

obtained from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) ensemble of general circulation models for

the industrial period with historical forcing.

In its most simple form the stochastic–dynamic model is a

zero-dimensional energy-balance model (EBM) of the form

dT

dt
=−

1

τ
T +Fdet(t)+ σw(t), (2)

where T (t) is a perturbation of the surface temperature from

an equilibrium state, Fdet(t) is the total deterministic forcing,

σw(t) is a white-noise stochastic forcing, and −(1/τ )T (t)

the radiation imbalance at the top of the atmosphere. The so-

lution if T (0)= 0 is

T (t)=

t∫
0

G(t − t ′)Fdet(t
′) dt ′

︸ ︷︷ ︸
Tdet(t)

+ σ

t∫
0

G(t − t ′)w(t ′) dt ′

︸ ︷︷ ︸
Tstoch(t)

, (3)

where the response function G(t)= cexp(−t/τ ) represents

the impulse response to a delta-function forcing, and hence

τ is the characteristic damping time (time constant). It de-

pends on the effective heat capacity Ceff of the combined

land and ocean surface layer and the climate sensitivity S as

τ = CeffS. The first term Tdet(t) on the right-hand side is the

temperature response to the known (deterministic) forcing.

The second term Tstoch(t) is the Ornstein–Uhlenbeck (OU)
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stochastic process, which in discrete time reduces to the first-

order autoregressive (AR(1)) process. This process is station-

ary and has an autocorrelation function (ACF) of the form

C(t)∼ exp(−t/τ ). The PSD of this process has the shape of

a Lorentzian distribution; it is flat (S(f )∼ f 0) for f � τ−1

and decays as S(f )∼ f−2 for f � τ−1. If Eq. (3) were a

good model for the global surface temperature, the resid-

ual Tobs(t)− Tdet(t) should correspond to Tstoch and hence

be successfully modelled as an OU process. In Rypdal and

Rypdal (2014), however, it was shown that this residual does

not have a Lorentzian PSD but rather exhibits the power-law

form S(f )∼ f−β , with β ≈ 0.75. This is a persistent process

that exhibits long-range memory and is called a fractional

Gaussian noise (fGn). These features are also found in con-

trol runs in the CMIP5 models (Østvand et al., 2014a) and in

CMIP5 simulations with discontinuous jumps in atmospheric

CO2 concentration, one observes relaxation to equilibrium

where a fast response with a time constant of 1–2 years is

followed by a slow decay that lasts for centuries (Geoffroy et

al., 2013). Rypdal and Rypdal (2014) demonstrated that all

this can be modelled by replacing the exponential response

function by a power law G(t)= ctβ/2−1 in Eq. (3). It can be

shown that this corresponds to replacing the time derivative

in Eq. (2) with a fractional derivative; hence we name it the

fractional EBM.

Equation (3) suggests that the standard, as well as the frac-

tional, EBM can be viewed as a linear filter that transforms

the forcing signal into temperature signal. In the Fourier

domain, the equation takes the form T̃ (f )= G̃(f ) [F̃ (f )+

σw̃(t)], and for the PSD we get

S(f )= |T (f )|2 = |G(f )|2
[
|F̃ (f )|2+ σ 2

]
. (4)

In the absence of deterministic forcing (F̃ (f )= 0), we have

S(f )∼ |G(f )|2. If G(t) is exponential then S(f )= |G(f )|2

will be a Lorentzian distribution, and the resulting stochas-

tic process is the OU process. If G(t) is the power law

G(t)∼ tβ/2−1, then S(f )= |G(f )|2 ∼ f−β , and the process

is an fGn. In the absence of stochastic forcing, the filter

represented by |G(f )|2 will suppress only fluctuations on

timescales smaller than τ if G(t) is exponential, while the

power-law filter will systematically suppress small scales

and enhance large scales. Examples were shown by Rypdal

and Rypdal (2014) where a time series for the total forcing

throughout the last 130 years is run through an exponential

filter with τ = 4.3 years and a power-law filter with β = 0.75

(long-memory response). One observes that only the latter is

able to reproduce a realistic response to the negative forcing

due to volcanic eruptions (the negative spikes in the forcing

signal). It also provides a better (although not perfect) fit to

the large-scale trends in the observed temperature signal.

The long-memory response has important implications for

the prediction of future global temperature on a century

timescale. In Fig. 1 it is shown that in a moderately pes-

simistic forcing scenario for the next 100 years, the frac-

tional, long-memory model predicts a temperature almost

1 ◦C than the zero response time model. The latter projec-

tion does not change much with an exponential response as

long as τ is less than 1 decade.

The purpose of this paper is to assess the sensitivity of the

attribution to the assumption of long, versus short, memory

in the computation of the fingerprints associated with vol-

canic, solar, and anthropogenic forcing. Section 2 describes

briefly the multiple-regression method and the regression di-

agnostics used, although these are very standard. Section 3.1

presents results based on instrumental surface temperature

data and forcing reconstruction for the period 1880–2010 CE

(Common Era), and Sect. 3.2 presents the same analysis us-

ing a millennium-long multi-proxy reconstruction of North-

ern Hemisphere temperature and radiative forcing. Section 4

presents the paper’s conclusions and discusses their implica-

tions.

2 Data and methods

The forcing data in this paper are given as the annual and

global mean of the radiative forcing measured in Wm−2.

The data from the instrumental period 1880–2010 CE are

those used by Hansen et al. (2005, 2011) and those for

the reconstruction period 1000–1979 CE are from Crowley

(2000). The instrumental temperature data are given as an-

nual and global mean surface temperature anomalies relative

to 1880 CE (the HadCRUT3 data set; Brohan et al., 2006)

and the reconstructed temperature data as Northern Hemi-

sphere annual means relative to 1000 CE (Moberg et al.,

2005). The forcing data are split up in solar, volcanic, and an-

thropogenic components. There are more recent instrumen-

tal data sets, but for the analysis in the present paper they

will only provide unimportant corrections. The reason for

employing these older data sets is that it allows the use of

the parameters estimated, and comparison to the results ob-

tained, in a recent paper (Rypdal and Rypdal, 2014).

In this paper we shall compare the effects of two different

response filters: the zero response time filter FZRT and the

long-range memory filter FLRM. Mathematically they rep-

resent two extremes, although we shall see that the LRM

(long-range memory) filter is quite an accurate representa-

tion of the actual response. If the total forcing is written as

F (t)= Fsun(t)+Fvolc(t)+Fanthr(t), and F is the filter oper-

ator, then we construct the response function (predictand),

Q(t)= c0+ c1FF (t), (5)

and determine the regression coefficients c0, c1 by a simple

least-square fit. The response function Q(t) is the fitted, fil-

tered response to the total forcing F (t) and can be considered

as the best model we can make for the temperature signal

with the filter F , without allowing for different weights of

the individual fingerprints. These fingerprints are defined as

www.earth-syst-dynam.net/6/719/2015/ Earth Syst. Dynam., 6, 719–730, 2015
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Figure 1. The light blue curves in both panels are observed global temperature in the period 1880–2010 CE. The orange curve on the left is

the historic anthropogenic forcing extended with an exponential growth in atmospheric CO2 concentration, ending at around 700 ppm 100

years from now. The red curve on the right shows the projected temperature from a standard EBM with τ = 0, and the blue curve shows this

from a fractional EBM with β = 0.75. The difference between the two projections in the year 2100 CE is almost 1 ◦C.

1880 1900 1920 1940 1960 1980 2000

-1.5

-1.0

-0.5

0.0

0.5

year

te
m
pe
ra
tu
re

(K
)

ZRT and GMST

1880 1900 1920 1940 1960 1980 2000

-0.2

0.0

0.2

0.4

0.6

0.8

year

te
m
pe
ra
tu
re

(K
)

ZRT 3P and GMST

1880 1900 1920 1940 1960 1980 2000
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

year

te
m
pe
ra
tu
re

(K
)

LRM and GMST

1880 1900 1920 1940 1960 1980 2000

-0.2

0.0

0.2

0.4

0.6

0.8

year

te
m
pe
ra
tu
re

(K
)

LRM 3P and GMST

AIC=-‐186	  
BIC=-‐178	  

AIC=-‐196	  
BIC-‐181	  

(a)	  

(c)	  

(b)	  

(d)	  

AIC=-‐64	  
BIC=-‐55	  

AIC=-‐169	  
BIC=-‐154	  

R2=0.53	   R2=0.80	  

R2=0.81	   R2=0.83	  

Figure 2. Blue curve in all panels is the instrumental GMST (global mean surface temperature) recorded in the period 1880–2010 CE. Panel

(a): the ZRT (zero response time) regressed signal Q(t) defined in Eq. (5), with F being the ZRT (identity) filter and F (t) the total forcing.

Panel (b): the ZRT 3P regressed signal according to Eq. (1) without AMO and ENSO as predictors. Panel (c): the LRM (long-range memory)

regressed signal Q(t) defined in Eq. (5), with F being the LRM filter. Panel (d): the LRM 3P regressed signal according to Eq. (1) without

AMO and ENSO as predictors.

follows:S(t)

V (t)

H (t)

= c1F

 Fsun(t)

Fvolc(t)

Fanthr(t)

 . (6)

The responses Q(t) are plotted for the two filter models in

Figs. 2a, c and 6a, c to provide an indication of what the fil-

tered response will be like if we do not allow for individual

feedbacks to the different forcing components. The next step

is to allow for such individual weights and determine them

by the construction of the linear predictand shown in Eq. (1).

Our first choice is to leave out the AMO and ENSO predic-

tors, leaving us with solar, volcanic, and anthropogenic forc-

ing as predictors. With zero response time filter and these

three predictors we have the ZRT 3P (zero response time

with three predictors) regression model. The corresponding

case with an LRM filter is the LRM 3P model. Including

AMO and ENSO (five predictors) gives us the ZRT 5P and

LRM 5P models. The weighted responses is our best esti-

mate of climate footprints imposed by the forcing or internal

modes characterized by the corresponding fingerprints.

The estimation of the regression coefficients and some di-

agnostics are done by the command “LinearModelFit” in

“Mathematica”. For each predictand Q(t) we provide the

R2 diagnostic (coefficient of determination), which measures

the fraction of the total variance in the observed record that

is explained by the predictand. As we move from one to

Earth Syst. Dynam., 6, 719–730, 2015 www.earth-syst-dynam.net/6/719/2015/
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three, and then to five, predictors (and the same number of

fitting parameters), we increase model complexity and will

increase the explained variance. In model selection assess-

ments we have model selection criteria based on information

theory where the likelihood function is used as a measure

of the goodness of the fit, which is subject to a penalty for

model complexity. The most commonly used of these are the

Akaike information criterion (AIC) and the Bayesian infor-

mation criterion (BIC) (for an introduction to the concepts,

see Burnham and Anderson, 2004). Each of these criteria

produces a real number that can be positive or negative, and

the model giving the smaller number is preferable in this

information-theoretic sense.

3 Results

3.1 Attribution from instrumental data

In this section we use the same instrumental global tempera-

ture data and the forcing data as employed by Hansen et al.

(2011). The analysis is based on the annual mean time series.

3.1.1 Zero response time model

Figure 2a (red curve) shows the predicted signal obtained by

fitting the unfiltered forcing (more precisely, by fitting Q(t)

given by Eq. (5) subjected to the zero response time filter

FZRT) to the instrumental GMST (global mean surface tem-

perature; blue curve). The fit is quite poor (R2
≈ 0.53), and

the response to the volcanic eruptions are obviously much

stronger than observed. If we include an exponentially de-

caying response exp(−t/τ ), we will need a time constant τ

larger than 1 decade in order to obtain realistic short-time re-

sponses to these eruptions (see Rypdal, 2012), provided we

do not reduce the weight of the volcanic forcing. Another

way of obtaining a better fit is to employ a multiple regres-

sion by using Eqs. (1) and (6). The result is shown in Fig. 2b.

The fit is much better (R2
≈ 0.80), but there is a rather strong

decadal oscillation attributable to the solar cycle. The redis-

tribution of weights is apparent from Fig. 3a and b. The three

fingerprints given in Fig. 3a are just a rescaling of the three

forcing components by the same factor c1 given by Eq. (6)

with F = FZRT, and the red curve in Fig. 2a is just the un-

weighted superposition of these fingerprints plus the addi-

tive constant a0. The multiple three-component regression

ZRT 3P is the superposition of the weighted fingerprints (i.e.,

the footprints) shown in Fig. 3b. The regression amplifies the

solar fingerprint S(t) by a factor fsun ≈ 2.10 and the anthro-

pogenic fingerprint by fanthr ≈ 1.58, while the volcanic fin-

gerprint is strongly attenuated, with fvolc ≈ 0.22. This strong

attenuation is provoked by the unrealistically large short-time

responses enforced by the zero response time model, and the

suppression of the volcanic cooling is what has to be com-

pensated for by amplified solar and anthropogenic warm-

ing. Thus, for the ZRT response model the strongly altered

weights are most probably caused by an incorrect (too spiky)

representation of the volcanic fingerprint.

3.1.2 The long-range memory response model

The ZRT response model is given by the delta function

G(t)= cδ(t) and is obviously unrealistic. Next, we explore

the effect of an LRM response function of the form G(t)=

(t/µ)β/2−1. In Rypdal and Rypdal (2014) a maximum-

likelihood approach was applied to estimate µ= 0.84×

10−2 years and β = 0.75 from the same instrumental tem-

perature data and forcing data as used in the present paper.

Figure 2c shows the response variable given by Eq. (5), with

FT (t) representing the LRM filter,

FLRMT (t)=

t∫
0

[
(t − t ′)/µ

]β/2−1
F (t ′) dt ′, (7)

and c0 = 0.15× 10−2 K and c1 = 0.92 determined by fitting

Eq. (5) to the instrumental observation data. The fact that

c0 is close to zero and c1 is close to unity shows that the

least-square fit for these data gives results compatible with

the more general maximum-likelihood approach employed

in Rypdal and Rypdal (2014). Compared to the ZRT-filtered

response the explained variance R2 is increased from 0.53 to

0.81. This is partly due to a better representation of the large-

scale variability and a smaller immediate response to the vol-

canic eruptions due to the memory effects. The explained

variance is only slightly increased by introducing variable

weights on the solar, volcanic, and anthropogenic finger-

prints (R2
≈ 0.83), and the improvement is mostly caused

by a suppression of the volcanic response. Compared to the

fingerprints shown in Fig. 3c, the volcanic footprint shown

in Fig. 3d is reduced by a factor fvolc ≈ 0.53, while the solar

footprint is only slightly amplified by fsun ≈ 1.18 and the hu-

man footprint slightly attenuated by fanthr ≈ 0.90. The AIC

and BIC are somewhat reduced, so this model is preferable

compared to the unweighted LRM model, but the difference

is not very large. With respect to explained variance and the

information-theoretic selection criteria, the ZRT 3P, LRM,

and LRM 3P models are quite similar. However, visual in-

spection of the shape of the responses and footprints suggests

that the ZRT 3P model results in the suppression of volcanic

footprint and in an amplification of the solar footprint that is

unrealistically large. Similarly, the reduction in the volcanic

footprint in the LRM 3P model by a factor of approximately

0.5 seems to give a much better fit to the short-time temper-

ature around the large volcanic eruptions and suggests that

the volcanic forcing signal in the forcing data may have been

exaggerated.

3.1.3 Inclusion of internal modes

So far we have used only external forcing as predictors in

our regression model. This means that all internal variabil-

www.earth-syst-dynam.net/6/719/2015/ Earth Syst. Dynam., 6, 719–730, 2015
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Figure 3. Fingerprints and footprints for the instrumental temperature 1880–2010 CE. Panel (a): the application of Eq. (6) with F being

the ZRT filter for the individual forcing components (Fsun(t) (yellow), Fvolc(t) (magenta), Fanthr(t) (green)) to produce the fingerprints

S(t), V (t), and H (t) for the ZRT filter. Panel (b): the footprints fsunS(t) (yellow), fvolcV (t) (magenta), and fanthrH (t) (green) of ZRT 3P

regressed signal. Panel (c): the same as in (a) but with the LRM filter. Panel (d): the same as in (b) but with the LRM filter.

ity is interpreted as residual noise. However, some variabil-

ity manifest in the global temperature is not adequately de-

scribed as long-memory or short-memory noise. The ENSO

signal is easily detected in the global temperature records,

and even though El Niño or La Niña events are unpredictable,

the PSD of ENSO indices peaks in the frequency range cor-

responding to periods of between 2 and 7 years. It is there-

fore common to include ENSO in attribution analyses (Lean

and Rind, 2008, 2009; Foster and Rahmstorf, 2011). Another

feature that appears impossible to explain with only forcing

predictors is the low temperatures in the first decades of the

nineteenth century and the high temperatures in the decades

after World War II. These anomalies may be compatible with

an oscillation with a period of 60–70 years, as discussed ex-

tensively by Canty et al. (2013). The statistical significance

of this oscillation with respect to a long-memory null hypoth-

esis for the noise background was discussed by Østvand et al.

(2014b) but has also been studied extensively by a number of

authors with short-memory null models (Ghil and Vautard,

1991; Schlesinger and Ramankutty, 1994; Plaut et al., 1995;

Polonski, 2008). The mode has the same period and phase

as the most prominent period in the AMO index, and thus

it seems reasonable to introduce the AMO index as a pre-

dictor variable in addition to the Niño3 index if one wants

to increase the explained variance. One could object that the

inclusion of temperature observations as predictor variables

looks like circular reasoning. However, as mentioned in the

introduction, regression is not really about attributing ob-

served variance to external causes but rather about attributing

global temperature variability to a set of signatures (finger-

prints). These may signify responses to forcing (causation)

but also the footprint in the global temperature of observed

climate signals like the North Atlantic sea surface tempera-

ture or pressure differences across the tropical Pacific.

However, one should also bear in mind that climate forc-

ing is a problematic concept, since the separation of forced

from internal dynamics depends on what one defines as the

“system” that is subject to external forcing. The reasoning

above was based on thinking about ENSO and AMO as in-

ternal modes and not as forcing. However, one can also define

the Earth surface–ocean mixed layer as the system, and this

system can be forced by modes involving energy exchange

between the surface–mixed layer and atmospheric systems

(ENSO) and between the surface–mixed layer and the deep

ocean. AMO is an example of the latter and can be consid-

ered as the fingerprint of the forcing exerted on the ocean

mixed layer from the Atlantic Meridional Overturning Circu-

lation (AMOC) (DelSole et al., 2013; Medhaug and Furevik,

2004; Canty et al., 2013).

The AMO index and an index for ENSO (Niño 3.4) are

shown in Fig. 4. Using the LRM fingerprints for S(t), V (t),

and H (t), and the AMO index for A(t) in Eq. (1) (omitting

the ENSO fingerprint), we find the response function shown

in Fig 5a. It shows an improved fit with R2
≈ 0.86, and the

AIC and BIC are lower, suggesting that this LRM 4PA model

is preferable to the LRM P3 model, which does not include

AMO as a predictor. The four footprints are shown in Fig. 5b,

and the figure does not show very large changes in the foot-
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Figure 4. Left panel: the AMO index with annual resolution 1880–2010 CE. Right panel: the Niño 3.4 index.
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(d)	  (c)	   fsun	  	  	  	  	  	  	  =	  1.23	  
fvolc	  	  	  	  	  =	  0.41	  
fanthr	  	  	  =	  0.77	  

R2=0.86	  

AIC=-‐219	  
BIC=-‐202	  

fsun	  	  	  	  	  	  	  =	  1.48	  
fvolc	  	  	  	  	  =	  0.32	  
fanthr	  	  	  =	  0.78	  

R2=0.89	  

Figure 5. Panel (a): the LRM 4PA signal, i.e., the regressed signal according to Eq. (1) including the three forcings and AMO (but not ENSO)

as predictors. Panel (b): the footprints fsunS(t) (yellow), fvolcV (t) (magenta), fanthrH (t) (green), and fAMOA(t) of LRM 4PA regressed

signal. Panel (c): the LRM 5P signal, i.e., the same as in (a), but with the ENSO signal added in the regression. Panel (d): the LRM 5P

footprints, i.e., the same as in (b), but with the ENSO signal added in the regression. The ENSO footprint is the orange dotted curve.

prints relative to the LRM3 model shown in Fig. 3d, apart

from a notable reduction in the volcanic footprint. A simi-

lar effect of using AMO as a predictor was found by Canty

et al. (2013). Hence, the effect of including AMO as a pre-

dictor is mainly to increase the explained variance, but we

also note a hiatus in the first decade of the twenty-first cen-

tury. In Fig. 5c and d we show the effect of adding the Niño3

index as a predictor, in addition to AMO. The explained vari-

ance is raised to R2
≈ 0.89, and the AIC and BIC are further

reduced, suggesting that both AMO and ENSO are relevant

explanatory variables and that including both contributes to

a better statistical model. The hiatus post 2000 CE is even

more pronounced when ENSO is included, due to the strong

1998 El Niño.

The total natural footprint (the sum of solar, volcanic,

AMO, and ENSO footprints) is dominated by the multi-

decadal oscillation with a weak growing trend caused by the

growing trend in solar activity in the period 1880–1960 CE.

From Fig. 5d we observe that this trend in the solar footprint

is very close to the trend in the anthropogenic footprint up to

t ≈ 90 (1970 CE), but after this time the solar footprint has no

significant trend, while the trend in the anthropogenic foot-

print is approximately 0.13 K per decade. The anthropogenic

footprint turns out to be very robust and quite insensitive to

the inclusion of natural modes in the regression analysis.

3.2 Attribution from multiproxy data

A similar analysis is made using the Northern Hemisphere

multiproxy temperature reconstruction of Moberg et al.

(2005) and the forcing reconstruction of Crowley (2000)

for the period 1000–1979 CE. The data are given with an-

nual resolution, but since the temperature data are effectively

smoothed on timescales shorter than 5 years, it seems unrea-
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Figure 6. Blue curve in all panels is the Moberg reconstructed temperature for the Northern Hemisphere plotted for the interval 1000–

1979 CE. Panel (a): the SRM regressed signal Q(t) defined in Eq. (5), with F being the SRM filter and F (t) the total forcing. Panel (b): the

SRM 3P regressed signal according to Eq. (1) without AMO and ENSO as predictors. Panel (c): the LRM regressed signal Q(t) defined in

Eq. (5), with F being the LRM filter. Panel (d): the LRM 3P regressed signal according to Eq. (1) without AMO and ENSO as predictors.

sonable to use a zero response time model. Instead a short-

range memory (SRM) response model with an exponential

response function G(t)= cexp(−t/τ ) is employed. The pa-

rameters c = 0.37 Kyr−1 and τ = 4.3 years were estimated

by Rypdal and Rypdal (2014) using the instrumental data

over the period 1880–2010 CE. As for the instrumental data

we will also use the LRM model with parameters estimated

from the instrumental data. By employing the models with

these parameters we can examine how well the SRM model

works versus the LRM model for a longer data set. This is of

interest because the SRM model employed with the instru-

mental data explains almost as large a fraction of the vari-

ance as the LRM model; hence, from these data the LRM is

not strongly preferable to the SRM model based on the R2

and AIC and BIC criteria only.

The SRM response is shown in Fig. 6a and the correspond-

ing fingerprints in Fig. 7a. The response function does not

show a good fit (R2
≈ 0.17) and AIC and BIC are large. The

introduction of weighted fingerprints increases the explained

variance (R2
≈ 0.26) and lowers AIC and BIC as shown in

Fig. 6b. As shown in Fig. 3a and b, this improvement comes

about by a considerable reduction in the volcanic footprint

(fvolc ≈ 0.45) and from a very strong amplification of the

solar footprint (fsun ≈ 2.32). The volcanic footprint is re-

duced to lower the variance due to the sharp spikes in the

SRM response to the volcanic forcing, and the solar foot-

print is amplified to reduce the unexplained variance from

the cooling between the Medieval Warm Anomaly (MWA)

and the Little Ice Age (LIA). The anthropogenic footprint is

also amplified (fanthr ≈ 1.48). However, the LRM model in-

creases the explained variance to R2
≈ 0.39 and drastically

reduces AIC and BIC, even without introducing weighted

fingerprints. This is shown in Fig. 6c and demonstrates that

the LRM model is strongly preferable to the SRM model

when we consider timescales up to 1 millennium. The consis-

tency of the LRM model is supported by the observation that

the introduction of weighted fingerprints introduces weights

moderately different from unity. The main change is an en-

hancement of the solar footprint (fsun ≈ 1.44) at the expense

of the volcanic one (fvolc ≈ 0.78). The anthropogenic foot-

print is virtually unchanged (fanthr ≈ 0.99). This tendency to

an enhanced solar, reduced volcanic, and only slightly af-

fected anthropogenic footprints is consistent with what was

observed when the LRM model was applied to the instru-

mental data.

Figure 7d suggests that the temperature difference be-

tween the maximum of the MWA (1000 CE) and the mini-

mum of the LIA (1700 CE) can be mainly attributed to vol-

canic cooling, while the warming from the LIA until 1970 CE

is attributed to solar and anthropogenic influence. The latter

is also consistent with what we observe from Fig. 7c.

For all response models the explained variance is consider-

ably lower for the reconstruction data than for the instrumen-

tal data. This is mainly due to the strong anthropogenic trend

in the instrumental period. This trend dominates the variance

and is very well predicted; hence, it increases the predicted

variance.
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Figure 7. Fingerprints and footprints for the Northern Hemisphere temperature for 1000–1979 CE. Panel (a): the application of Eq. (6),

with F being the SRM filter to the individual forcing components (Fsun(t) (yellow), Fvolc(t) (magenta), Fanthr(t) (green)) to produce the

fingerprints S(t), V (t), and H (t) for the SRM filter. Panel (b): the footprints fsunS(t) (yellow), fvolcV (t) (magenta), and fanthrH (t) (green)

of SRM 3P regressed signal. Panel (c): the same as in (a) but with the LRM filter. Panel (d): the same as in (b) but with the LRM filter.

3.3 Effect of initial state and prehistory

By defining the fingerprints as integrals over the time inter-

val (0, t), we implicitly assume that there is no influence of

past forcing from the interval (−∞,0), i.e., we effectively as-

sume zero forcing in pre-history. For the exponential (SRM)

response function this has no consequence because this re-

sponse function corresponds to the simple EBM which is

just a first-order ordinary differential equation whose solu-

tion only depends on the initial temperature (see discussion

in Rypdal and Rypdal, 2014). For the power-law response,

prehistory matters in principle, since the corresponding dif-

ferential equation contains a fractional derivative. However,

even for the simple SRM response, we cannot assume with

certainty that the initial forcing is zero, since this would be

the same as assuming that the climate system is in equilib-

rium at time t = 0. As this may have some surprising im-

plications, some detail may be appropriate. Consider as an

illustration the simple zero-dimensional EBM

C
dT

dt
=−εσST

4
+ I (t), (8)

where T is surface temperature in Kelvin, C is an effective

heat capacity per area of the Earth’s surface, σS is the Stefan–

Boltzmann constant, ε is the effective emissivity of the at-

mosphere, and I (t) is the incoming radiative flux density at

the top of the atmosphere. Let T0 = T (t = 0), I0 = I (t = 0),

T = T0+ T̃ , and I = I0+F . Note that F here is the pertur-

bation of the radiative flux with respect to the initial flux I0

and not with respect to the flux that would be in equilibrium

with the initial temperature T0. The linearized equation for

the temperature change relative to the temperature T0 is

C
dT̃

dt
=−

(
4εσST

3
0

)
T̃ +

(
I0− εσST

4
0

)
+F (t). (9)

The quantity I
(eq)

0 ≡ εσST
4

0 represents the incoming flux re-

quired to balance the outgoing long-wave radiation (OLR)

from the top of the atmosphere when the surface temperature

is T0. This is not necessarily equal to the actual incoming flux

at time t = 0, so the difference F0 = I0−σST
4

0 represents the

initial forcing (or the initial imbalance of radiative flux den-

sity). By definition F (0)= I (0)− I0 = 0 and represents the

sum of various forcing components that we have used to es-

tablish the forcing fingerprints, as they are all defined to be

zero at t = 0. The solution to Eq. (9) takes the form

T̃ = F0

t∫
0

G(t − t ′) dt ′+

t∫
0

G(t − t ′)F (t ′) dt ′. (10)

To understand the implications let us look at the case where

F (t) is a stationary stochastic process, implying that the ex-

pectation value E[F (t)] is independent of t . Eq. (10) then

describes realizations of the response to this forcing under

the condition that the initial radiative imbalance is F0. The

expectation (ensemble average) of this response is then

E
[
T̃
]
= (F0+E[F ])

t∫
0

G(t − t ′) dt ′. (11)
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If we assume that the response is also stationary, this equa-

tion implies that E[F ] = −F0. What this means is that if the

initial imbalance is a fluctuation around a stationary climate

state but everything is measured as perturbations relative to

the initial state, then the mean of the forcing F in the future

will balance the initial forcing F0 to render T̃ finite. On the

other hand, if F and T are not stationary processes, this is

no longer true. Consider for instance that the imbalance F0 is

the result of a step in radiative influx just prior to t = 0. If the

radiative flux is held constant after this step, we would have

that F (t)= 0 for t > 0 and the evolution would be given by

the first integral in Eq. (10).

For an exponential response function, this contribution

converges to a constant for t � τ , but for a power-law re-

sponse, it takes the form T̃ ∼ tβ/2. The divergence as t→∞

is of course unphysical. It reminds us that the power-law re-

sponse is an idealized representation of the response of a sys-

tem with a large range of response times and that it must be

cut-off on some timescale (Rypdal and Rypdal, 2014). How-

ever, it illustrates that if parts of the climate system respond

very slowly, there may be a strong influence of an initial en-

ergy imbalance throughout the entire temperature record un-

der consideration.

The effect of past forcing is a less serious problem. It was

shown in Rypdal and Rypdal (2014) to be negligible over

the instrumental period, using information about forcing and

temperature over the past millennium. We have not carried

out a similar computation for the millennium period, since

reliable global-scale reconstructions for the previous millen-

nia are not available. However, for past forcing to have a

long-term effect, the climate system must have been driven

strongly away from radiative equilibrium over an extended

period. This is the case in the Anthropocene but is not be-

lieved to have occurred throughout earlier millennia in the

Holocene.

We do not have direct physical information about the ra-

diative flux imbalance in the year 1000 CE, but the high tem-

peratures during the MWA might suggest that the OLR was

higher than the incoming flux at the start of the subsequent

cooling. What we can do by means of attribution techniques

is to include TF0
= F0

∫ t
0
G(t − t ′) dt ′ as an extra fingerprint

and estimate F0 along with the other regression coefficients.

The results are shown in Fig. 8. The total response in Fig. 8a

explains more variance than the model that does not include

TF0
, and the AIC and BIC prefer this model. In particu-

lar, the large discrepancy between explained and observed

variability during the first century of the record (during the

MWA, 1000–1100 CE) in the other models has disappeared

in this long-memory four-predictor (LRM 4P) model. Fig-

ure 8b shows a strong reduction in the volcanic footprint be-

cause the long-term trend imposed by F0 provides the cool-

ing previously attributed to volcanic activity. It is quite ap-

parent from Fig. 8a that the estimated response exhibits a

weak short-term response to volcanic eruptions, but the es-

timated fvolc ≈ 0.28 is only 30 % lower than what was esti-

mated from the LRM 5P model applied to the instrumental

data (Fig. 5d). The volcanic footprint may have been some-

what underestimated in Fig. 8a, simply because the short-

term response does not contribute very much to the total

variance. However, recent work on detection and attribution

which compares multiproxy reconstructions with paleocli-

matic simulations to general circulation models show that the

models seem more sensitive on short timescales to volcanic

eruptions than observed in the reconstructions (Schurer et al.,

2013). Many explanations can be offered for this observation,

and one could be that the volcanic forcing used in the models,

or its efficacy, has been systematically overestimated. Hence,

it is difficult to rule out that the tendency shown in Fig. 8

could be more than an analysis artifact.

4 Conclusions

Standard linear, multiple regression has been applied to in-

strumental and multiproxy reconstructed global and northern

hemispheric temperatures, using fingerprints derived from

reconstructed forcing and internal mode indices as predic-

tor variables. The fingerprints have been derived from sim-

ple short-memory and long-memory response models. The

regression coefficient for the volcanic fingerprint will be

strongly suppressed by zero response time and short-memory

response models, but the explained variance is still around

80 %. The modelling of Lean and Rind (2008) is similar

to our ZRT 3P but with the inclusion of finite time delays

and ENSO as an additional predictor. Their results shown in

their Fig. 2 are quite similar to the ZRT 3P results shown

in Figs. 2b and 3b in this paper, with an explained variance

of 76 %. Hence, the inclusion of ENSO and finite time de-

lay without the memory smoothing of the response does not

seem to improve the explained variance, while the increased

model complexity necessarily will increase the AIC and BIC

scores and make the model less preferable. The model of

Lean and Rind (2008) suffers from the same problem as the

ZRT 3P model in that it overestimates the 11-year solar cy-

cle response by not taking into account the attenuating effect

of long-memory response to oscillatory forcing on a decadal

timescale. In Rypdal (2012) it was shown that the large so-

lar cycle response of 0.2 K peak to peak detected by Camp

and Tung (2007) in global surface temperatures in the pe-

riod 1959–2004 CE are largely attributable to three volcanic

eruptions taking place incidentally in the descending phase

of solar cycles. By correcting for the responses to these erup-

tions, there will be a considerably weaker response to the

solar cycle in the global temperature series.

Multiple regression based on fingerprints derived from

long-memory response models, and in particular with AMO

and ENSO included as predictors, yields a response vari-

able that explains 89 % of the total variance of the instru-

mental data set for 1880–2010 CE. Relative to the forcing

data set employed for this period, the solar footprint is mod-
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Figure 8. Panel (a): the same as in Fig. 6d but with inclusion of the LRM response TF0
to the initial forcing F0 as a predictor. Panel (b): the

corresponding footprints. The smooth brown curve is TF0
.

ified by a factor fsun ≈ 1.23, the volcanic footprint by a fac-

tor fvolc ≈ 0.41, and the anthropogenic footprint by a factor

fanthr ≈ 0.77. In the instrumental period the natural variabil-

ity is dominated by an internal oscillation with a period of

60–70 years, and this oscillation dominates over the forced

trend up to 1970 CE. The forced trend before 1970 CE is

shared in equal proportion between solar and anthropogenic

footprints. After 1970 CE the trend in the anthropogenic foot-

print is approximately 0.13 K per decade, but the trend in the

total response has been amplified by the upward phase of the

AMO footprint and the strong El Niño in 1998. The com-

bination of these footprints and that of the Mount Pinatubo

eruption in 1991 CE yields a total response function showing

a hiatus in the years 2002–2010 CE. Lean and Rind (2008,

2009) attribute much of this hiatus to the descending solar

cycle, while in the present analysis shown in Fig. 5 the maxi-

mal phase of the AMO in 2010 CE and the 1998 El Niño give

more important contributions. A recent update of the sea sur-

face temperature (SST) has cast doubt on the reality of the

hiatus in global temperature (Karl et al., 2015). This is con-

sistent with the present results, since these corrections to the

SST also pertain to the AMO and ENSO fingerprints. Correc-

tion of these fingerprints will probably eliminate the hiatus in

the LRM 5P response shown in Fig. 5c. The solar-cycle fin-

gerprint, however, is unaffected by these corrections, so in

the model of Lean and Rind (2008, 2009), the hiatus will

persist in their modelled response despite these corrections

of the observed temperature.

By including the AMO as an additional predictor in the

LRM model response (but leaving out ENSO), the volcanic

response is reduced by a factor of 2. This somewhat sur-

prising result is due to the structure of the volcanic forc-

ing over the instrumental period, with a 5-decade-long pe-

riod of low volcanic forcing prior to the Mount Agung erup-

tion in 1963 CE, and a series of major disruptions including

El Chichón (1982 CE) and Pinatubo (1991 CE). Without the

AMO the post World War II cooling will be attributed ex-

clusively to volcanic cooling, while the inclusion of AMO

will lead to about half of this cooling being attributed to the

low phase of the AMO. This finding is in close agreement

with those of Canty et al. (2013), and in our paper it depends

on the LRM character of the response, which we believe is

strongly related to the overturning circulation. Without this

delayed response (as illustrated by the results for the ZRT 3P

model in Fig. 3), the volcanic response would be anoma-

lously low both with and without AMO.

For the millennium reconstruction the short-memory re-

sponse with a time constant of 4.3 years is unable to repro-

duce the reconstructed long timescale variability. The long-

memory response offers two viable models for the large-scale

variability: one where most of the cooling from the MWA to

the LIA is attributed to volcanic activity; the other attributes

more of this cooling to a negative radiative imbalance at the

end of the MWA, represented as a negative initial forcing at

1000 CE, and giving rise to a downward temperature trend

throughout the last millennium. Both explanations require

there to be a significant long-memory impact up to millen-

nium timescales.

The regression examples shown in this paper demonstrate

that the results of attribution studies based on multiple lin-

ear regression depend strongly on the memory properties of

the models employed to define the fingerprints. Models in-

cluding long-term memory in the response tend to explain

more of the observed variance and have better scores on

information-theoretic model selection tests. Results also vary

with the number and nature of the fingerprints used as pre-

dictors. Nevertheless, there are some tendencies that seem to

be robust throughout. The weight of the anthropogenic foot-

print is not systematically changed by treating the individual

forcing components as independent predictors, and almost all

of the global warming since 1970 CE can be attributed to it.

The solar footprint is enhanced by a factor of approximately

2 with a short-memory response but is not changed a lot with

a long-memory response. The volcanic footprint is strongly

suppressed with a short-memory response and is also some-

what weaker with a long-memory response. Even though the

solar footprint is enhanced in all models, none of them at-

tributes the Little Ice Age primarily to solar variability.
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