
Incomplete information and the idiosyncratic

foundations of aggregate volatility

John Barrdear

27th July 2013

A thesis submitted to the Department of Economics of the London School of

Economics and Political Science for the degree of Doctor of Philosophy

1



Declaration

I certify that the thesis I have presented for examination for the PhD degree of the

London School of Economics and Political Science is solely my own work.

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the

rights of any third party.

I declare that this thesis consists of 69,734 words.1

1Calculated by TexMaker, v3.5.

2



Abstract

This thesis considers two interrelated themes: the emergence of aggregate volatil-

ity from idiosyncratic shocks and optimisation under incomplete information when,

for reasons of strategic complementarity, agents are interested in both simple and

weighted averages of their competitors’ actions.

I first develop a model of Bayesian social learning over a network. Unlike earlier

literature that abandons one of the assumptions that agents (a) act repeatedly; (b)

are rational; and (c) face strategic complementarities, I obtain tractability for arbit-

rarily large networks by also assuming that agents do not know the full structure of

the network, but do know its link distribution. An AR(1) process for the underlying

state induces an ARMA(1,1) process for the hierarchy of expectations, with current

and lagged weighted averages of agents’ idiosyncratic shocks entering at an aggregate

level. For sufficiently irregular networks, these shocks do not wash out, thus causing

persistent aggregate effects.

I next apply this to firms’ price-setting problem, demonstrating that even when

firms possess complete price flexibility, network learning induces considerable per-

sistence in aggregate variables following monetary and real shocks and that network

shocks plausibly represent a source of aggregate economic volatility.

Finally, I explore price setting under monopolistic competition when facing Trans-

Log preferences. I solve explicitly for a firm’s best-response pricing rule under full

information and show that in partial equilibrium under incomplete information, lar-

ger firms will focus on their marginal costs while smaller firms will place more weight

on changes in consumer preferences and competitors’ prices. In general equilibrium,

I estimate the effect of two distinct sources of real rigidity that emerge from Trans-

Log preferences: the well-known curvature in demand and the dramatic increase

in complexity of firms’ signal-extraction problems. With non-uniform preferences,

the model represents another channel through which idiosyncratic shocks can cause

aggregate volatility.
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Chapter 1

Introduction and common definitions

1.1 Introduction

This thesis is interested in two fundamental questions of macroeconomics. First,

what are the underlying causes of observed volatility in aggregate variables? From

where do the shocks arise and of what are they comprised? Second, what explains the

magnitude and persistence of the effects of aggregate shocks on the macroeconomy?

Is it possible for those effects to persist beyond the shock itself, or beyond the time

when agents in the economy successfully identify it?

These are by no means new questions – macroeconomists have been grappling

with them for decades – but they remain open questions of active research and recent

work has brought each of them (and previous attempts at answering them) into a

new light.

The first question may to some extent strike readers as odd, as it is natural

to suppose that aggregate volatility must be caused by aggregate shocks, at least

when considering a linear model. However, recent work by Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Saleh (2012) and Gabaix (2011) has raised the possibility of

idiosyncratic shocks having aggregate effects when their economic relevance emerges

through distributions that are fat tailed (i.e. when certain agents’ shocks or actions

play a disproportionately important role in aggregation, while the majority of agents

receive a disproportionately low weight). A central contribution of this thesis is to

add to this burgeoning literature by outlining and characterising two new settings

in which this result applies. In both cases, the result relies on the presence of a

distribution that is asymptotically non-uniform, in that it remains sufficiently far

from uniform even as the number of agents over which it applies grows arbitrarily

12



1.1. Introduction

large. Section 1.3 below offers a formal definition of such a distribution, demonstrates

why it allows for idiosyncratic shocks to have aggregate effects and discusses the class

of distributions that meet such a characteristic.

The second question is of particular importance to a policy maker seeking to

dampen aggregate volatility in an economy. Statistical analyses, relying only minim-

ally, if at all, on economic theory, have suggested that the effects on real GDP and

aggregate prices from identified aggregate shocks, both real and nominal, are signi-

ficant and quite persistent. Understanding why this is so, particularly for nominal

shocks, is therefore of critical importance.

The most obvious way to model rigidity in aggregate prices is naturally to suppose

that individual prices are themselves in some way “sticky.” This approach was

supported by early quantitative evidence, which suggested that prices, once set,

generally remained fixed for 12 months (Taylor, 1999). With this in mind, the

canonical New Keynesian model was developed by assuming that firms follow simple

time-based pricing rules. That is, that firms choose only the magnitude of any price

changes, while the timing of those changes is determined exogenously. Standard

approaches here are the staggered pricing rule of Taylor (1980), in which firms’

prices remain fixed for n periods and a fraction 1/n of firms update their prices each

period, and the model of Calvo (1983), in which a random fraction of firms are able

to update in each period. Since simple models of state-based pricing, such as those

proposed by Rotemberg (1982), imply similar Phillips curves under linearisation, it

was generally held that the analytically simple time-based rules were sufficient.

However, a variety of challenges to simple time-based pricing rules have arisen

in recent years. From a theoretical perspective, models that exogenously impose

the timing of price changes would appear to fail the Lucas Critique by assuming,

rather than deriving, policy invariance in agents’ actions (e.g. Plosser, 2012). In-

deed, modern models of state-based pricing (i.e. that look both at the magnitude of

price changes and whether and when to change) have consistently shown that selec-

tion effects work against any persistence of aggregate effects on real variables, with

the firms that elect to adjust their prices following a monetary policy shock being

precisely those that make the largest adjustment (e.g. Gertler and Leahy, 2008).

13



1.1. Introduction

Empirically, a variety of modern studies of microeconomic price changes have

demonstrated that a great many prices are remarkably short lived. The seminal work

of Bils and Klenow (2004), for example, found that the median duration of prices

in CPI data in the United States was 4.3 months, an update frequency almost three

times higher than previously thought. More recent work by Klenow and Kryvtsov

(2008) found a median duration of only 3.7 months and highlighted that a significant

fraction of goods’ prices are changed on a weekly basis.

With prices apparently quite flexible and selection effects ensuring minimal real

effects via what individual price stickiness remains, it is therefore conceptually ne-

cessary to develop models of real rigidity – a “contract multiplier,” in the words of

Taylor (1980) – to explain the sluggish responses observed in aggregate price indicies

following monetary shocks.

One key approach to achieving real rigidities in firms’ pricing is to suppose that

they have imperfect access to information, an idea that dates to Lucas (1972) and

Phelps (1984). Modern models in this field fall broadly into three categories:

1. Sticky Information. First, as argued by Mankiw and Reis (2002), firms may

have access to information only infrequently, so that in aggregate, they only

respond to a policy change gradually. Reis (2006) provides a microfoundation

for this idea, arguing that information processing costs (as distinct from classic

menu costs) make it optimal for firms to delay their updates.

2. Rational Inattention. Second, as suggested by Sims (2003), firms may be

subject to an information processing constraint, whereby there is a limit to the

amount of information they can accommodate, irrespective of the cost of doing

so. In such a case, it is rational for firms to access information in every period,

but to select which signals to observe.

3. Incomplete Information. Finally, as proposed by Woodford (2003), even

if firms are free to update their information sets every period and face no

constraints in doing so, they may be subject to structural imperfections in

their signals. When noisy signals of hidden aggregate states are combined with

strategic complementarity, this gives rise to what Woodford termed “Imperfect

14



1.1. Introduction

Common Knowledge,” with firms needing to consider the higher-order beliefs

of their competitors.

The work of this thesis fits squarely in the latter of these categories, extending the

problem to scenarios where firms must consider not just the simple average of other

firms’ expectations, but weighted averages as well. The sizes of firms’ state vectors

become much larger in these settings and their signal extraction problems become

correspondingly more difficult, thus leading to more sluggish responses in prices

following aggregate shocks, even when firms are free to update their information sets

and their prices every period.

Section 1.2 below offers some necessary definitions relating to higher-order expect-

ations when there are multiple expectations of interest and illustrates the explosion

in the size of the state vector that they can imply.
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1.2. Higher-order expectations

1.2 Higher-order expectations

The near-ubiquitous treatment of higher-order expectations in the macroeconomic

literature to date1 has been to consider only the hierarchy of simple average ex-

pectations. That is, to consider settings in which agents are interested only in the

sequence of objects
{
xt, Et [xt] , Et

[
Et [xt]

]
, · · ·

}
where Et [·] ≡

∫ 1

0
Et (i) [·] di.

It is important to realise that this is a modelling choice only, made for analytical

convenience. It is easy to envisage scenarios where other, more complex hierarchies of

beliefs are relevant and this thesis occupies itself with two such examples. The first,

dealt with in chapters 2 and 3, involves rational learning over a network, in which

economic agents must (in principle, at least) form opinions regarding the beliefs of

every other agent in the network and know that they will each, in turn, do the

same. The second, addressed in chapter 4, examines firms’ price-setting problem

when household preferences are non-uniform, so that every firm must consider two

separate aggregations of belief, one of which is firm-specific.

To model these fully, we therefore first provide a generalised definition of a hier-

archy of expectations.

Definition 1. A compound expectation is a weighted sum of all agents’ expect-

ations. Let xt be an (m× 1) vector of random variables, E [xt|It (i)] be the ex-

pectation of xt conditioned on the period t information set of agent i and Et [xt] ≡[
E [xt|It (1)] · · · E [xt|It (N)]

]
be the (m×N) matrix containing all agents’ ex-

pectations of the same. Let w be an (N × 1) vector of weights across all agents such

that wi ∈ [0, 1] and
∑N

i=1wi = 1. The compound expectation, Ew,t [xt], is given by:

Ew,t [xt] ≡ Et [xt]w (1.1)

Note that this nests both simple, or unweighted, average expectations (e.g. wA =[
1
N
· · · 1

N

]′
) and individual expectations (e.g. wB =

[
0′ 1 0′

]′
).

Definition 2. Let W ≡
[
wA wB · · ·

]
be the (N × p) matrix formed of all weights

of interest in a given problem and p be the number of those weights (i.e. the number
1Modern macroeconomic literature on higher-order expectations dates to Townsend (1983),

although the general idea has been known since, at least, the famous “beauty contest” argument
of Keynes (1936).
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1.2. Higher-order expectations

of columns in W ). We then define higher-order expectations as follows, using a

blackboard-bold E(k) to denote the vector containing all expectations of the k-th order:

E(0)
t [xt] ≡ xt

E(k)
t [xt] ≡


EwA,t

[
E(k−1)
t [xt]

]
EwB ,t

[
E(k−1)
t [xt]

]
...

 = vec
(
Et
[
E(k−1)
t [xt]

]
W
)
∀k ≥ 1 (1.2)

Note that if we are interested in p different compound expectations, there are pk

different permutations of k-th order expectations. For example, if xt is scalar and

p = 2, then the vector describing the set of second-order expectations will be of size

(4× 1) and arranged in the following way:

E(2)
t [xt] =

EwA,t [E(1)
t [xt]

]
EwB ,t

[
E(1)
t [xt]

] =


EwA,t

[
EwA,t [xt]

EwB ,t [xt]

]

EwB ,t

[
EwA,t [xt]

EwB ,t [xt]

]


Definition 3. A hierarchy of expectations, from order 0 to k, is defined recurs-

ively as:

E(0:k)
t [xt] =


xt

EwA,t

[
E(0:k−1)
t [xt]

]
EwB ,t

[
E(0:k−1)
t [xt]

]
...

 (1.3)

Note that this is not simply the stacking of each order of expectations on top of

each other. For example, if xt is scalar and p = 2, the hierarchies (0 : 1) and (0 : 2)

are given by:
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1.2. Higher-order expectations

E(0:1)
t [xt] =

 xt

EwA,t [xt]

EwB ,t [xt]

 E(0:2)
t [xt] =



xt

EwA,t

 xt

EwA,t [xt]

EwB ,t [xt]


EwB ,t

 xt

EwA,t [xt]

EwB ,t [xt]




The benefit of depicting hierarchies in this recursive manner is that it becomes simple

to extract sub-hierarchies comprised of a single compound expectation. For example,

if wA =
[

1
N
· · · 1

N

]′
so that EwA,t [xt] = Et [xt] is the average expectation, the sub-

hierarchy of x
(0:k)
t ≡

[
x′t, Et [x′t] , Et

[
Et [x′t]

]
, · · ·

]′
may be extracted as:

x
(0:k)
t =

[
I 0

]
E(0:k)
t [xt]

In all of the models in this thesis, the expectation hierarchy E(0:∞)
t [xt] will represent

the unknown state vector about which agents attempt to learn.

1.2.1 Size of the expectation hierarchy

Although not of particular importance in theory, the size of the state vector of in-

terest is of crucial importance if any model is to be simulated. It is clear that if xt

contains m elements, then E(k)
t [xt] – the set of k-th order expectations – will contain

mpk distinct elements. However, it is worth emphasising that it does not in gen-

eral follow that the hierarchy E(0:k∗)
t [xt] will contain m

(∑k∗

k=0 p
k
)

unique elements.

This is because if one of the compound expectations, say EwB [·], is formed from a

single information set – i.e. a single agent’s expectation – then the law of iterated

expectations implies that EwB ,t [EwB ,t [xt]] = EwB ,t [xt].

In general, when q (≤ p) is the number of individual expectations in W , the
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1.2. Higher-order expectations

number of unique elements in the hierarchy E(0:k∗)
t [xt] will be given by:2

N (m, p, q, k∗) = m

(
pk
∗

+
k∗−1∑
k=0

(
pk − q

k∑
s=0

ps

))
(1.4)

with N (m, p, 0, k∗) = m
(∑k∗

k=0 p
k
)

. Nevertheless, even when q = p, it should be

readily apparent that size of an expectation hierarchy explodes in both p (the number

of compound expectations) and k∗ (the highest order in expectations). Figure 1.1

illustrates this point, plotting the size of the hierarchy when q = 0 and m = 1.

A state vector of infinite dimension need not be a problem, per se, provided

that the researcher is able to make a reasonable approximation of agents’ actions

by restricting attention to a finite subset of the state. In most models – including

those of this thesis – imposing a finite upper limit, k∗, on the number of orders

of expectation will be acceptable as in order to ensure stability in agent actions,

decreasing weight is placed on higher order expectations.

On the other hand, allowing the number of relevant compound expectations to

increase can be more problematic as there is rarely, if ever, an obvious reason for

weighting them differently. Existing work in the macroeconomic literature has gen-

erally avoided this difficulty by limiting attention to problems that implicitly assume

that p = 1 (in particular, that all agents care only about the simple average expect-

ation of their competitors).

This avenue is not available when considering learning via networks, however,

where it is typically the case that p is given by the number of agents in the network,

or in the case of asymmetric preferences examined in the final chapter, where p is

given by the number of firms in the joint demand system.

2

m

 [1]︸︷︷︸
0-th order

+ [p]︸︷︷︸
1-st order

+
[
p2 − q

]︸ ︷︷ ︸
2-nd order

+
[
p ∗
(
p2 − q

)
− q
]︸ ︷︷ ︸

3-rd order

+
[
p ∗
(
p ∗
(
p2 − q

)
− q
)
− q
]︸ ︷︷ ︸

4-th order

+ · · ·


= m

((
k∗∑
k=0

pk

)
− q

(
k∗−1∑
k=0

k∑
s=0

ps

))
, which rearranges to the equation in the text
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Figure 1.1: The number of elements in an expectation hierarchy (q = 0, m = 1)
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1.3. Asymptotically non-uniform distributions

1.3 Asymptotically non-uniform distributions

The second key theme of this thesis is an illustration of how idiosyncratic shocks

need not “wash out” and may, instead, induce aggregate volatility in an economic

context. Fundamentally, this implies an exploration of settings in which the standard

law of large numbers does not apply which, in turn, implies that the models must

consider weighted sums of agents’ idiosyncratic shocks.

Identifying laws of large numbers for weighted sums of i.i.d. random variables

(i.e. the limiting behaviour of
∑N

i=1 aN,iXi when E [X] = 0) remains an area of active

research.3 However, we do not require an exact characterisation of the necessary

conditions for a weighted sum to converge to zero, as there is a broad range of

functions for the weights under which a weighted sum will not converge to zero. In

particular, it is sufficient to suppose that the weights are asymptotically non-uniform:

Definition 4. Let ΦN be a discrete distribution with corresponding p.d.f.4 φN (i).

Let ζ (N) ≡ ∑N
i=1 φN (i)2 be the Herfindahl-Hirschman index for the same. The

distribution ΦN is asymptotically non-uniform if:

• limN→∞ φN (i) = 0 ∀i; and

• limN→∞ ζ (N) = ζ∗ where ζ∗ ∈ (0, 1).

To appreciate how such a distribution is sufficient to ensure that idiosyncratic

shocks do not wash out, suppose that each agent receives an independent, mean zero

shock drawn from a common Gaussian distribution (i.e. one fully characterised by

its first and second moments):

v (i) ∼ N (0,Σvv) ∀i
3See, for example, Wu (1999), Sung (2001) or Cai (2006).
4Strictly, for a discrete distribution, it is a probability mass function. But since we will concern

ourselves only with the limiting case of N → ∞ and assume that they are indexed uniformly
from zero to one so that the distribution becomes continuous, we stick with the conventional
nomenclature.
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1.3. Asymptotically non-uniform distributions

and consider the setting where it is not the simple average of agents’ shocks that

matters, but a weighted average:

ṽN ≡
N∑
i=1

v (i)φN (i) where φN (i) ∈ (0, 1) and
N∑
i=1

φN (i) = 1

Since ṽN is a linear combination of mean-zero Gaussian variables, it must itself have

a Normal distribution with a mean of zero. Its variance will then be given by:

V ar [ṽN ] = V ar

[
N∑
i=1

v (i)φN (i) di

]

=
N∑
i=1

V ar [v (i)φN (i)] di

=
N∑
i=1

ΣvvφN (i)2 di

= ζ (N) Σvv

where in moving to the second line we use the independence of each vector to ignore

the covariance terms. The limiting variance as N →∞ is therefore ζ∗Σvv and, hence,

so long as ζ∗ 6= 0, the law of large numbers does not apply.

The set of asymptotically non-uniform distributions is quite broad, but in par-

ticular it includes the discrete power law distribution (the Zipf distribution)

φN (i) = cN i
−γ; where cN =

(
N∑
i=1

i−γ

)−1
and γ > 1

and its equivalent for infinite N, the Zeta distribution. The shape parameter, γ > 1,

governs the scaling of the distribution’s tail, with larger values of γ corresponding

to greater non-uniformity. Figure 1.2 plots the values of ζ∗ for a range of values of

γ for the Zeta distribution.5

This thesis explores two separate settings in which power law distributions are

of economic importance. The first, studied in chapters 2 and 3 relates to social

5Strictly, these are calculated for Zipf distributions with N = 108.
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Figure 1.2: A plot of ζ∗ for power law distributions with shape parameter γ

networks. A great many observed networks, from links between pages on Wikipe-

dia to established relationships in social networks, have been shown to have degree

distributions6 well approximated by power law distributions (i.e. the networks are

scale free). See, for example, the work of Albert and Barabási (2002), Jackson and

Rogers (2007) or Clauset, Shalizi, and Newman (2009). The second setting, studied

in chapter 4, relates to the distribution of firm sizes, which has also been shown to

follow a power law. See Axtell (2001) or Gabaix (2011).

It is important to appreciate, though, that the models in this thesis do not gen-

erally assume any particular distribution, only that it remains non-uniform (in the

sense of definition 4) as the support of that distribution grows arbitrarily large.

6In network theory, the degree of a node is the number of connections it has to other nodes, so
the degree distribution is the distribution of these degrees over the entire network.
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Chapter 2

Social learning over an opaque

network

Abstract

I present a flexible and readily implemented linear model of rational (i.e.

Bayesian) social learning over a network where agents do not know the full

structure of the network, but do know the link distribution. I assume that

there are several dynamic state variables to be estimated; agents act repeatedly

and simultaneously; and agents’ payoffs depend both on the accuracy of their

beliefs regarding the state and the proximity of their actions to those of their

competitors (i.e. there is strategic interaction). When the network is suffi-

ciently irregular, transitory idiosyncratic shocks will not wash out in aggrega-

tion but will instead have persistent aggregate effects, and an AR(1) process for

the underlying state will induce an ARMA(1,1) law of motion for the hierarchy

of aggregate expectations.

2.1 Introduction

2.1.1 Context

An ideal model of network learning must contain a number of key features. Naturally,

there must exist a hidden state of the world and agents be arranged in some sort

of observation network, whereby they are informed of the actions, if not the actual

beliefs, of a subset of their compatriots. Beyond this, there are arguably three

desirable attributes of a “true” model of network learning:

1. agents act repeatedly;
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2.1. Introduction

2. agents update their beliefs in a Bayesian (i.e. rational) manner; and

3. agents act strategically, with their payoffs a function of other players’ actions.

The complexities involved in solving such a model, let alone simulating it or

nesting it within a broader model of the economy, have typically been thought to

be sufficiently great as to preclude comprehensive analysis in anything other than

trivially small networks. As such, the literature to date has proceeded by avoiding

one or more of the above assumptions.1

Early work in observational learning, for example, focussed on sequential learning,

with each agent making a single, irrevocable decision in an exogenously defined

order, typically after observing the actions of all, or a well-defined subset, of their

predecessors. In such a setting, it is well known that agents can rationally (in the

Bayesian sense) exhibit “herding”, or “information cascades”, whereby their private

signals regarding the unknown state are swamped by the weight of past actions (see,

for example, Banerjee, 1992; Lee, 1993; and Smith and Sørensen, 2000).

More recently, work in sequential learning has examined situations where the

observation neighbourhood of each agent is determined stochastically. Banerjee

and Fudenberg (2004), for example, demonstrate that convergence will occur if the

sampling of earlier players’ beliefs is “unbiased” in the sense that it is representative

of the population as a whole and at least two earlier players are sampled. More gen-

erally, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) characterise the (Bayesian)

equilibrium of a sequential learning model for a general stochastic sampling pro-

cess. They demonstrate that so long as no group of agents is excessively influential,

there will be asymptotic learning of the truth when private beliefs are unbounded2

and characterise some settings under which asymptotic learning still emerges when

private beliefs are bounded.

Although this more recent work carries the flavour of network learning in that

agents observe the actions of only a subset of their competitors,3 they do not meet the

1Acemoglu and Ozdaglar (2011) provide a recent review.
2That is, where agents may receive arbitrarily strong signals so that the support of their pos-

terior belief that the state is equal to a given possibility is [0, 1].
3Indeed, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) refer to their model as one of learning

over a social network.
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2.1. Introduction

popular conception of network learning in which agents undertake repeated, simul-

taneous actions in an environment of strategic interaction. Tackling such a problem,

however, is notoriously difficult. The presence of strategic interaction introduces the

need to consider the infinite hierarchy of higher-order (average) beliefs. When agents

exist in an observation network, it is also necessary for each of them to consider the

specific belief held by their observation target and, in turn, the belief of their target’s

target and so forth. As the number of agents in the network expands, this causes

an explosion in the size of the state vector quite apart from the presence of higher-

order expectations (see section 1.2 in the previous chapter for more detail), thereby

subjecting the problem to the famous curse of dimensionality.

In order to analyse learning in a repeated, simultaneous action environment,

the literature has therefore most commonly chosen to abandon the assumption of

Bayesian updating. Non-Bayesian learning over a network is typically modelled in

the style of DeGroot (1974), with agents applying a constant weight to their observa-

tions of competitors’ actions. For example, DeMarzo, Vayanos, and Zwiebel (2003)

explore situations where agents assume that signals they receive from observing each

other contain entirely new information. In a setting where a finite number of agents

wish to estimate an unknown, but fixed state θ ∈ RL, they suppose that agents

each receive a single, conditionally independent and unbiased signal of the state

and then communicate their beliefs over multiple rounds. Imposing the assumption

that agents update their beliefs via a simple and constant weighted sum greatly

simplifies analysis, but introduces what the authors label “persuasion bias” from

the agents’ failure to properly discount the repetition of information they receive.

Calvó-Armengol and de Mart́ı (2007) extend this setting to provide an assessment

of the welfare losses from “unbalanced,” or irregular4 networks.

Golub and Jackson (2010) likewise study learning in a setting where agents

“näıvely” update their beliefs regarding a fixed state of the world by taking weighted

averages of their neighbour’s opinions. In contrast to earlier work, they are able

demonstrate that with such heuristic learning, individual beliefs converge to the

truth for a broad variety of networks (provided they are sufficiently large) and provide

4A regular network is one in which all nodes have the same number of inbound and outbound
links.
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upper and lower bounds on the rate of convergence.

In the area of what might be called “true” Bayesian network learning (repeated

simultaneous actions with agents engaged in Bayesian updating), there has been

remarkably little work to date. Gale and Kariv (2003) examine Bayesian network

learning in a setting with connected networks5 and in which agents’ payoffs depend

only on the proximity of their expectation to the state (i.e. without any strategic

interaction). They note that the “computational difficulty of solving the model is

massive even in the case of three persons.” Mueller-Frank (2013) details a formal

structure for Bayesian learning over an undirected social network (i.e. with pairwise

sharing), allowing for a choice correspondence from information to actions (and gen-

eral strategies for the selection between indifferent options) as opposed to outright

decision rules, but notes the extreme practical difficulties of actually implementing

such a rule, both for the agents in principle and the researcher more generally.

Furthermore, both Gale and Kariv (2003) and Mueller-Frank (2013) step away

from consideration of strategic interaction in agents’ decision-making, so that when

observing any competitor, every agent knows that their action is driven entirely by

their belief regarding the underlying state.

2.1.2 This paper

In contrast to earlier work, the present paper is able to embrace all three of the

assumptions listed above by combining them with a fourth: network opacity. By

denying agents knowledge of the exact topology of the network (the network is

opaque) and instead supposing that they know only the (i.i.d.) distribution from

which observation targets are drawn and do not learn about the structure of the

network over time, agents’ state vector of interest includes an infinite sequence of

weighted average expectations instead of individual agents’ expectations. Because

of the recursive nature of agents’ learning, this sequence will be of decreasing im-

portance to the hierarchy of simple-average expectations, so an arbitrarily accurate

approximation of the full solution may then be found by selecting a sufficiently high

5In this context, a connected network is one in which information is able to flow from any agent
to any other agent.
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cut-off for the number of weighted-average expectations to include, together with the

standard cut-off for the number of higher-orders of expectation.

The imposition of an opaque network is both intuitive and appealing. It is not

plausible, for example, to suppose that every business knows to whom every other

business speaks, just as nobody knows the identity of all of their friends’ friends.

From the researcher’s perspective, this ignorance of topology makes it particularly

challenging when attempting to consider the aggregate effects of network learning.

But by recognising that not only the researcher but also the economic agents them-

selves are ignorant of the network structure, we are able to identify laws of motion

for the agents’ aggregate beliefs, even if we can never pin down the path of any

individual’s expectation.

The second requirement mentioned above – that agents not learn about the struc-

ture of the network over time – may be thought of in two ways. First, one might

consider a setting in which the network is dynamic, changing every period. In ex-

tremis, this would involve the network being destroyed and redrawn each period and

in such a scenario, agents are not able to learn about the network as it does not

persist over time. The decisions followed by agents will then be fully rational in that

they are entirely model-consistent, but the extent to which it might realistically be

considered a “network” is called into question.6 Second, one might suppose that

the network was drawn once, at time zero, but agents are boundedly rational in

that they do not attempt to learn about it beyond the common knowledge of the

distribution from which it was drawn. In this setting, agents’ decisions are perhaps

best described as conditionally rational, in that conditional on the structure of the

network, they are rational in their processing of the information they gain from it.

With unobserved aggregate variables following an AR(1) process, we demonstrate

that the full hierarchy of agents’ aggregate expectations will follow an ARMA(1,1)

process, with current and lagged weighted sums of agents’ idiosyncratic shocks en-

tering at an aggregate level. For sufficiently irregular networks – i.e. where some

agents’ actions are disproportionately observable – these weighted sums are shown to

6Such a setup, which is indeed deployed in this chapter, might arguably be better thought of
as a search model.
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not converge to zero, thereby adding aggregate volatility to the system. Despite idio-

syncratic shocks being purely transitory, the aggregate volatility they induce through

the network is also shown to exhibit (endogenous) persistence.

Because we examine a setting with a dynamic underlying state and demonstrate

a specific law of motion for the hierarchy of average expectations, the researcher is

able to simulate the aggregate effects of network learning7 without a need to simulate

individual agents’ decisions. This makes the model particularly amenable to nesting

within broad general equilibrium models of the economy.

Methodologically, this chapter expands on the work of Nimark (2008, 2011a,b),

who in turn extended that of Woodford (2003). The latter of these reintroduced the

ideas of Lucas (1972) and Phelps (1984) – that imperfect information could give rise

to nominal shocks having real effects – and demonstrated that with incomplete in-

formation and strategic interaction, firms become interested in higher-order beliefs.

In particular, with firms observing independent, unbiased signals of nominal GDP,

Woodford demonstrated aggregate rigidity broadly equivalent to that produced by

Calvo (1983) pricing. In contrast, Nimark (2008) supposed that firms’ uncertainty

surrounded the supply side of the economy (the average marginal cost) and, in addi-

tion to their private signals, granted firms visibility of the previous period’s aggreg-

ate price level. Because aggregate variables are functions of the entire hierarchy of

average expectations, this addition required the development of a new solution meth-

odology that the present chapter adapts and extends to the idea of agents observing

the previous-period actions of specific competitors.

Although the present chapter borrows from these papers and the next chapter

applies the current model to a setting of firms’ price-setting behaviour, the model

developed here is context free and may be applied to any general setting with strategic

competition and network learning. The conclusion considers a number of examples

of such applications.

The remainder of this chapter is organised as follows. Section 2.2 presents the

model, together with a characterisation of the solution and a methodology for finding

7The model is calibrated by two additional parameters: one specifying the number of other
agents each player observes, and one describing the degree of irregularity in the network.
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it. Section 2.3 provides an illustrative example of the model in action, applying it

to a common scenario in the social learning literature. Section 2.4 considers some

other applications of the model, including the need to consider dynamic actions (i.e.

where agents’ decision making includes consideration of competitors’ future actions).

Section 2.5 concludes.
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2.2 The Model

We here develop a generalised model of Bayesian learning across opaque, stochastic

networks with agents’ optimal decision rule depending on both their expectation

of the underlying state and their expectation of the agents’ average action. The

underlying state is assumed to be subject to persistent AR(1) shocks, while agents’

observations include errors that are entirely transitory Gaussian white noise. It is

demonstrated that for an irregular observation network, the hierarchy of aggregated

expectations regarding the underlying state follows an ARMA(1,1) process, with

weighted sums of agents’ idiosyncratic shocks entering at the aggregate level (i.e.

idiosyncratic shocks do not wash out).

A simple roadmap of how this section will proceed may be of some assistance.

First, in subsection 2.2.1, we will describe the agents’ problem, the information avail-

able to them and how they make their decisions. Subsection 2.2.3 will characterise

agents’ average action and briefly describe the informational assumptions used in

previous research and how they differ to the current paper. Subsection 2.2.4 then

explores the process of observing the actions of individual competitors before sub-

section 2.2.5 presents the main result of this paper.

2.2.1 The general setting

There is a countably infinite number of agents,8 indexed in a continuum between

zero and unity.9 The underlying state follows a vector autoregressive process:

xt = Axt−1 + Put (2.1)

where ut is a vector of shocks with mean zero, while A and P are appropriately

dimensioned matrices of fixed and publicly known parameters. Agents do not observe

the value of xt and must instead form beliefs about it. We define Xt to be the

hierarchy of expectations regarding xt, in the sense of definition 3, and refer to it as

8An infinite number of agents is assumed to allow an appeal to relevant laws of large numbers
when considering simple averages of zero-mean shocks.

9The assumption of indexing agents from zero to one is innocuous and made only to simplify

the calculation of averages (e.g. gt =
∫ 1

0
gt (i) di).
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the state vector of interest.

Xt ≡ E(0:∞)
t [xt] (2.2)

At a minimum, Xt contains xt and the hierarchy of at least one compound expecta-

tion. For illustrative purposes, we will assume that agents’ primary concern is with

the the hierarchy of simple-average expectations, so that

x
(0:∞)
t|t ∈ Xt where x

(0:∞)
t|t ≡

[
x′t Et [xt]

′ Et

[
Et [xt]

]′ · · ·]′
but it will be shown below that Xt must include a variety of other compound ex-

pectations as well.

Agents’ decision rule

Agents determine their individual actions simultaneously and according to a common

linear decision rule:10

gt (i) = λ′1Et (i) [Xt] + λ′2xt + λ′3vt (i) (2.3)

where Et (i) [·] ≡ E [·|It (i)] is agent i’s (first-order) expectation of the element within

the square brackets conditional on all information available to her in period t (defined

below); and vt (i) is a transitory, mean zero shock specific to agent i in period t

(defined below).

Non-zero elements in λ1 against higher-order average expectations capture stra-

tegic considerations in agents’ actions. Note that the terms in xt and vt (i) are

included here to make the model as general as possible. They allow for the possib-

ility that components of i’s signal vector may have direct economic significance in

addition to their informational role. Note, too, that although xt may be included in

agents’ decision rule, it is not directly observed.11

10The derivation of the decision rule will invariably be context-specific. For example, in the
context of price-setting to be explored in the next chapter, the underlying state will include aggreg-
ate shocks to marginal cost and demand, while agents’ actions will be the price they choose and
the signal they receive will include their private marginal cost and the previous-period price of a
competitor.

11For example, a firm may privately observe their productivity, which includes both aggregate
and idiosyncratic components, but not their separate values. If their decision rule relies directly
on their productivity, it will include a term in the aggregate productivity even though firms do not
observe it directly.
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Equation (2.3) is a reduced form expression for agents’ actions that nests a wide

array of commonly studied settings. An illustrative example with a univariate state

is considered in depth in section 2.3 below, while other applications and their implied

decision rules are discussed in section 2.4.

Agents’ information

Agents possess common knowledge of joint rationality, in the sense of Nimark (2008),

so that they are aware of the structure and the coefficients of the system. Their

information sets then evolve as:

I0 (i) = {Ω,Φ} It (i) = {It−1 (i) , st (i)} (2.4)

where Ω is the set of all system coefficients, st (i) is the signal vector received each

period and Φ : [0, 1] → [0, 1] is the (cumulative) distribution from which agents’

observation targets in the network are drawn, assumed to be identical and independ-

ent, both across agents and across time. Φ (i) is absolutely continuous over the range

[0, 1] and has p.d.f. φ (i).

Each agent’s signal vector is made up of two, distinct components – a pub-

lic/private signal based on the underlying state and a social signal derived from

observing competitors’ actions with a one-period lag:

st (i) =

[
spt (i)

sst (i)

]
(2.5)

spt (i) = D1xt +D2Xt−1 +R1vt (i) +R2et +R3zt−1

sst (i) = gt−1 (δt−1 (i))

Public/Private signals may include both current and lagged information12 and

are noisy, including three sources of uncertainty:

• vt (i) is a vector of transitory shocks specific to agent i in period t, drawn

from independent and identical Gaussian distributions with mean zero and

variance Σvv. These may simply be noise in agents’ private signals or may

carry economic significance, depending on the context.

12That is, they allow for some signals to only be observable with a one-period lag.
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• zt is a vector of network shocks (see equation 2.12 below), comprised of weighted

sums of all agents’ idiosyncratic shocks.

• et is a vector of transitory “noise” shocks to public signals, drawn from an

independent Gaussian distribution with mean zero and variance Σee.

Note that although agents may observe signals based on the current underlying

state (xt), they do not observe signals based on the current hierarchy of expectations

about the state (Xt). This is because to do so would involve agents observing a signal

based on their beliefs before they have even formed them! However, we include

terms in Xt−1 and zt−1 (instead of just xt−1) to allow agents to observe, with a lag,

aggregate variables and thus the past effect(s) of their network learning.

Social signals are observations of the previous-period actions of specific agents,

with the function δt mapping each agent onto their observation targets:

δt : [0, 1]→ [0, 1]q (2.6)

where q is the number of agents observed. In other words, δt (i) is the result of i’s q

separate draws from Φ for period t. For presentational simplicity, we will typically

assume that q = 1 (i.e. that all agents observe a single other agent) and simply

write j = δt (i) to mean that agent j’s period-t action will be observed by agent i

(in period t + 1). To speak of the observee of an observee, we write δs (δt (i)): the

identity of the agent whose period-s action is observed by the agent whose period-t

action is observed by agent i.

With agent i observing the previous-period action of a single competitor, their

social signal is therefore given by

sst (i) = gt−1 (δt−1 (i))

= λ′1Et−1 (δt−1 (i)) [Xt−1] + λ′2xt−1 + λ′3vt−1 (δt−1 (i)) (2.7)

2.2.2 The observation network

Because agent i’s social signal is based on her observee’s expectation, Bayesian up-

dating then requires that i include Et (δt (i)) [Xt] in her own state vector of interest.

However, knowing that agent δt (i) is himself observing δt (δt (i)) then requires that
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i also maintain an estimate of Et (δt (δt (i))) [Xt], and so forth. This is the explosion

of the state vector in p (the number of compound expectations) described in section

1.2 of the previous chapter. In order to make the problem tractable, we make two

key assumptions:

Assumption 1. The network is stochastic and opaque, in that:

• all agents observe the same number of other agents;

• observees are drawn from identical, fully independent distributions with p.d.f.

φ (i);

• agents know the identities of the other agents they observe;

• agents do not know who they are observed by; and

• agents do not learn about the network topology over time.

To obtain this last point, we suppose that agents make a fresh draw of whom

to observe every period, in which case nothing could be learned about the network

topology (since it changes every period).

Assumption 2. The network is asymptotically irregular, in that its degree distribu-

tion is asymptotically non-uniform (see definition 4).

As shown in the previous chapter and expanded on below, assumption 2 is suf-

ficient to ensure that idiosyncratic shocks do not “wash out” in aggregation and

will, in this context, enter into agents’ aggregate beliefs. Social networks are widely

regarded as having degree distributions well approximated by power law distribu-

tions,13 which satisfy this assumption. It is important to appreciate, though, that

the model here does not require any particular distribution of links in the agents’

network, only that the network remain irregular as it grows arbitrarily large.

13See Albert and Barabási (2002), Jackson and Rogers (2007) or Clauset, Shalizi, and Newman
(2009).
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2.2.3 Agents’ learning and imperfect common knowledge

It will be shown below that the hierarchy of agents’ expectations obeys the following

ARMA(1,1) law of motion:

Xt ≡ E(0:∞)
t [xt] = FXt−1 +G1ut +G2zt +G3et +G4zt−1 (2.8)

where zt is a vector of transitory network shocks, derived as weighted sums of agents’

idiosyncratic shocks. The exact statistical properties of zt are derived below in

proposition 2.

In the macroeconomic literature, this environment – a state space system paired

with strategic complementarity – is typically referred to as a setting of incomplete

common knowledge, a phrase coined by Woodford (2003) in his demonstration of the

potential importance of incomplete information in explaining inflation dynamics.

The system described here is not in the form of a classic state space problem,

however, both because of the presence of the lagged state in agents’ signals (2.5)

and because of the moving average component of the law of motion (2.8). The usual

response to these quirks would be to stack the state vector with both its own lag and

the lag of the shock with the moving average component, thus creating a combined

state that follows an AR(1) process: Xt

zt

Xt−1

 =

F G4 0

0 0 0

I 0 0


Xt−1

zt−1

Xt−2

+

G1 G2 G3

0 I 0

0 0 0


utzt
et


and then to express agents’ signals in terms of this combined state and estimate the

system as a classic filtering problem. This approach more than doubles the size of the

state vector, though, which may present problems when simulating the system with

finite computing resources (and particularly so in the present setting with multiple

compound expectations).

Fortunately, the following lemma grants us that it is not necessary here to include

zt in the state vector of interest.

Lemma 1. Agents’ contemporaneous expectations of the network shocks are zero

Et (i) [zt] = 0 ∀i, t (2.9)
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Proof. Since all shocks are distributed Normally, the ability of an agent to create an

expectation about a variable depends on the covariance between that variable and

the agent’s signal vector. But, by construction, agent i does not observe any signal

that is based on zt. Since zt is transitory and fully independent across time and from

the underlying state, it must be the case that Cov (zt, st (i)) = 0. The only possible

exception to this is to note that zt is comprised of weighted sums of idiosyncratic

shocks and agent i’s signals do include vt (i). However, we have that:

Cov
({1}ṽt,vt (i)

)
= E

[
lim
N→∞

N∑
j=1

φN (j)vt (j)vt (i)

]
= lim

N→∞
φN (i) Σvv

= 0

where the second equality relies on the independence of agents’ idiosyncratic shocks

and the third on assumption 2 (which grants us that limN→∞ φN (i) = 0 ∀i). An

equivalent argument applies to all higher-weighted averages: Cov
({q}ṽt,vt (j)

)
.

Since all agents’ expectations of the network shock are zero, it must be the case

that all average expectations (simple or weighted) of the network shock are also

zero and since agents are jointly rational, this must be common knowledge. There

is therefore no need to include any expectation of zt within the state vector to be

estimated.

Because of the linearity of the system, the best linear estimator in the sense of

minimising the mean squared error14 will be a Kalman filter:15

Et (i) [Xt] = Et−1 (i) [Xt] +K {st (i)− Et−1 (i) [st (i)]} (2.10)

where K is a time-invariant projection matrix (the Kalman gain). As in other models

of imperfect common knowledge, since Xt includes x
(0:∞)
t|t , we have that (a) the state

vector to be estimated is of infinite dimension; and (b) the Kalman filter serves a

dual role, both as estimator and as part of the law of motion for the state vector.

14With all shocks drawn from Gaussian distributions, it will be the best such estimator, linear
or otherwise.

15A derivation of the standard Kalman filter may be found in most texts on dynamic macroeco-
nomics (e.g. Ljungqvist and Sargent (2004)) or time series analysis (e.g. Hamilton (1994)).
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Woodford (2003) supposed that agents (firms) each receive only a private signal

regarding the underlying state (aggregate expenditure) and no social signal from

other agents. In such a setting, where Xt = x
(0:∞)
t|t , Woodford showed that F will

be lower-triangular: each order of average expectations will be a linear combination

of current period shocks and lower order expectations. Consequently, F may be

constructed sequentially, first finding an expression for Et (i) [xt], then averaging it

and repeating the process to find Et (i)
[
Et [xt]

]
and so forth.

By contrast, Nimark (2008) allowed agents to observe an aggregate signal (the

average price) from the previous period in addition to their private signals.16 This

meant that each agent’s signal vector includes a linear combination of the entire

hierarchy of previous-period expectations (since individual actions are based on (ex-

pectations of) the entire hierarchy). As a result, the solution must be found for all

higher-order expectations simultaneously and the state vector of interest expands to

include x
(0:∞)
t−1|t−1 so that Xt =

[
x
(0:∞)′
t|t x

(0:∞)′
t−1|t−1

]′
.

An alternative to including x
(0:∞)
t−1|t−1 in the state vector of interest is to retain the

current signal vector and instead to modify the Kalman filter:

Et (i)
[
x
(0:∞)
t|t

]
= Kst (i) + (F −K (D1F +D2))Et−1 (i)

[
x
(0:∞)
t−1|t−1

]
This approach was first developed by Nimark (2011b) and is also used in the current

paper to avoid the need to stack the state vectors of interest.

It is perhaps worth emphasising that the signal structures assumed by Woodford

(2003) and Nimark (2008) both result in agents only being concerned with the simple

average expectation of their peers (or higher-order versions of the same). In the

language of chapter 1, they have chosen signal structures that explicitly set p = 1,

thereby having the infinite dimensionality of the state vector arising only from the

presence of higher-order expectations.

16The hidden aggregate state in Woodford (2003) was on the demand side of the economy, while
that in Nimark (2008) was on the supply side. Woodford also limited attention to static pricing by
firms, while Nimark made use of Calvo-style dynamic pricing.
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2.2.4 Observing individual competitors’ actions

In implementing the Kalman filter (2.10), agent i needs to create a prior expectation

of the signal they will receive in the next period. From equation (2.7), we see that

it is therefore necessary for agent i to construct Et (i) [gt (δt (i))] as part of her prior

for period t+ 1, which includes Et (i) [Et (δt (i)) [Xt]]:

Et (i)
[
sst+1 (i)

]
= Et (i) [gt (δt (i))]

= Et (i) [λ′1Et (δt (i)) [Xt] + λ′2xt + λ′3vt (δt (i))]

Constructing Et (i) [Et (δt (i)) [Xt]] requires, in turn, that agent i take a view regard-

ing who δt (i) is observing: that is, the action of δt−1 (δt (i)).

Proposition 1. Given assumption 1 and common knowledge of rationality, agents’

use of a linear estimator implies that all agents treat all other agents as though they

observe a common, weighted average of previous-period actions, with the weights

given by the distribution φ.

Proof. The proof may be found in appendix 2.A.

We see from equation (2.3) that the weighted-average action, g̃t, is given by:

g̃t = λ′1Ẽt [Xt] + λ′2xt + λ′3ṽt (2.11)

where Ẽt [·] ≡
∫ 1

0
Et (j) [·]φ (j) dj is the (first-order) weighted-average expectation,

which we will more fully denote {1}Ẽt [·] (see proposition 2 below).

We cannot, in general, make use of some law of large numbers to disregard the

effect of idiosyncratic shocks in the weighted-average action – that is, we cannot

assume that ṽt ≡
∫ 1

0
vt (j)φ (j) dj will be equal to zero – because the weights applied

to each agent may not be sufficiently close to equal. As an extreme example, if all

agents were to observe agent 1 and nobody else (i.e. φ (1) = 1 and φ (i) = 0 ∀i 6= 1),

we would then have that ṽt = vt (1) which in any given period will be non-zero,

almost surely.

In this regard, assumptions 1 and 2 are sufficient to allow us to assert the following

proposition regarding the limiting properties of aggregate (random) variables derived

from agents’ idiosyncratic shocks:
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Proposition 2. Suppose that vt (i) ∼ i.i.d. N (0,Σvv) ∀i, t. For a finite number of

agents (N), define the aggregate statistics

{1}ṽN,t ≡
1

N

N∑
i=1

vt (δt (i)) {1}v̈N,t ≡
N∑
i=1

vt (i)φN (i)

{2}ṽN,t ≡
1

N

N∑
i=1

vt (δt (δt (i))) {2}v̈N,t ≡
N∑
i=1

vt (δt (i))φN (i)

{3}ṽN,t ≡
1

N

N∑
i=1

vt (δt (δt (δt (i)))) {3}v̈N,t ≡
N∑
i=1

vt (δt (δt (i)))φN (i)

...
...

Given assumptions 1 and 2, we have the following results in the limit (as N →∞):

1. {q}ṽN,t
d−→ {q}ṽt ∀q where ṽt ∼ N

(
0,Σ

{q}
ṽṽ

)
Σ
{q}
ṽṽ = (1− (1− ζ∗)q) Σvv

2. {q}v̈N,t
L2−→ {q}ṽt ∀q

3. Cov
({p}ṽt, {q}ṽt) = Σ

{p}
ṽṽ ∀p < q

Proof. The proof may be found in appendix 2.B.

Given proposition 2, we refer to {q}ṽt as the q-th weighted average of agents’

idiosyncratic shocks and define the vector of network shocks, zt, as that containing

the full sequence of these weighted sums:

zt ≡



{1}ṽt
{2}ṽt
{3}ṽt
{4}ṽt

...


∼ N (0,Σzz) Σzz =



Σ
{1}
ṽṽ Σ

{1}
ṽṽ Σ

{1}
ṽṽ Σ

{1}
ṽṽ · · ·

Σ
{1}
ṽṽ Σ

{2}
ṽṽ Σ

{2}
ṽṽ Σ

{2}
ṽṽ · · ·

Σ
{1}
ṽṽ Σ

{2}
ṽṽ Σ

{3}
ṽṽ Σ

{3}
ṽṽ · · ·

Σ
{1}
ṽṽ Σ

{2}
ṽṽ Σ

{3}
ṽṽ Σ

{4}
ṽṽ · · ·

...
...

...
...

. . .


(2.12)

Including these higher weighted averages is necessary because of the recursive

nature of agents’ learning through the Kalman filter. It will be shown below that

the aggregate expectation {1}Ẽt [Xt] will be a function of {1}ṽt and {2}Ẽt−1 [Xt−1], the

latter of which will be a function of {2}ṽt−1 and {3}Ẽt−2 [Xt−2], etc.

Note that the following two corollaries immediately follow from proposition 2:
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Corollary 1. Σvv ≥ · · · ≥ Σ
{3}
ṽṽ ≥ Σ

{2}
ṽṽ ≥ Σ

{1}
ṽṽ where ≥ is in the sense that the

difference between the two is a positive-definite matrix.

Proof. Trivial, since ζ∗ ∈ (0, 1).

Corollary 2. E
[{q}ṽt | {1}ṽt = a

]
= a ∀q ≥ 2

Proof. Follows immediately from item 3 in the proposition.

The first of these is a necessary component of approximating the full solution

with a finite state vector (see section 2.2.6 below), while the latter is used when

simulating the aggregate effects of network learning.

2.2.5 Social learning over an opaque, irregular network

We are now in a position to present the main result of this chapter.

Theorem 1. Given the broad setting described above and assumptions 1 and 2, the

hierarchy of agents’ aggregate expectations will obey the following ARMA(1,1) law of

motion:

Xt ≡



xt

Et [Xt]
{1}Ẽt [Xt]
{2}Ẽt [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1

where

Et [·] =

∫ 1

0

Et (i) [·] di

{1}Ẽt [·] =

∫ 1

0

Et (δt (i)) [·] di

{2}Ẽt [·] =

∫ 1

0

Et (δt (δt (i))) [·] di
...
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Proof. The proof may be found in appendix 2.C

Although the complete derivation is provided in the appendix, an outline of the

agents’ learning process may be of interest. To begin, we define the matrices Sx, Ts

and Twq as the matrices that select xt, Et [Xt] and {q}Ẽt [Xt] respectively from Xt

(e.g., Tw2Xt = {2}Ẽt [Xt]). We also define the general notation that θt|q (i) represents

the error in agent i’s period-q expectation regarding θt. In particular, we will use

the following:

st|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] : signal innovation

Xt|t−1 (i) ≡ Xt − Et−1 (i) [Xt] : prior expectation error

Xt|t (i) ≡ Xt − Et (i) [Xt] : contemporaneous expectation error

The filter

As with a standard Kalman filter, the Kalman gain (equation 2.30) is calculated as:

Kt = Cov(Xt, st|t−1 (i))
[
V ar

(
st|t−1 (i)

)]−1
where st|t−1 (i) is the agent’s signal innovation (the portion of their signal that was

not forecastable). With agents observing the previous-period actions of specific com-

petitors, the signal innovation is then able to be expressed (equation 2.36) as:

st|t−1 (i) = M1Xt−1|t−1 (i) +M2Xt−1|t−1 (δt−1 (i)) +M3Xt−1

+N1ut +N2vt (i) +N3et +N4vt−1 (δt−1 (i)) +N5zt−1

Note that innovation in i’s signal includes not only a term in their own previous

period expectation error but also a term in their observee’s error. As such, both the

covariance and variance terms in the Kalman gain will therefore include terms in both

the variance of i’s expectation error, Vt−1|t−1 ≡ E
[
Xt−1|t−1 (i)Xt−1|t−1 (i)′

]
, and the

covariance between any two agents’ errors, Wt−1|t−1 ≡ E
[
Xt−1|t−1 (i)Xt−1|t−1 (j)′

]
.

The variance in agents’ expectation errors then updates in the usual way via

an interim prior variance, but a corresponding expression must also be found for

updating the covariance between agents’ errors.
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Defining M ≡
[
M1 M2 M3

]
, the full set of equations for updating the filter for

one period is given by:

E
[
st|t−1 (i) st|t−1 (i)′

]
= M

 Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 (2.13a)

E
[
st|t−1 (i) st|t−1 (j)′

]
= M

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

+N1ΣuuN
′
1 (2.13b)

E
[
Xtst|t−1 (i)′

]
= F

[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5 (2.13c)

E
[
Xt|t−1 (i) st|t−1 (j)′

]
= F

[
Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5 (2.13d)
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Kt = E
[
Xtst|t−1 (i)′

] (
E
[
st|t−1 (i) st|t−1 (i)′

])−1
(2.13e)

Ut = FUt−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.13f)

Vt|t−1 = FVt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.13g)

Wt|t−1 = FWt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.13h)

Vt|t = Vt|t−1 −KtE
[
st|t−1 (i) st|t−1 (i)′

]
K ′t (2.13i)

Wt|t = Wt|t−1 +KtE
[
st|t−1 (i) st|t−1 (j)′

]
K ′t

− E
[
Xt|t−1 (i) st|t−1 (j)′

]
K ′t

−KtE
[
st|t−1 (i)Xt|t−1 (j)′

]
(2.13j)

Provided that all eigenvalues of F are within the unit circle, there will exist a

steady state (i.e. time-invariant) filter, found by iterating these equations forward

until convergence is achieved.

The law of motion

Starting from the basic form of the Kalman filter:

Et (i) [Xt] = FEt−1 (i) [Xt−1] +Ktst|t−1 (i)

we substitute in the above expression for st|t−1 (i) and take a simple average to

obtain Et [Xt]. Since the signal innovation includes a term in Et−1 (δt−1 (i)) [Xt−1]

(from the observee’s expectation error), taking the simple average over i turns this

into a term in {1}Ẽt−1 [Xt−1], thereby introducing the need to also determine the

(first) weighted-average expectation.
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Taking the weighted average of the filter to obtain {1}Ẽt [Xt] then produces a

term in {2}Ẽt−1 [Xt−1], thus requiring that we include the second weighted average

expectation. The second weighted average expectation subsequently produces a term

in the third weighted average expectation, and so forth.

The coefficients for the full-state law of motion are given by:

F =



[
A 0m×∞

]
K (M1 +M2 +M3) + (F −KM1)Ts −KM2Tw1

K (M1 +M2 +M3) + (F −KM1)Tw1 −KM2Tw2

K (M1 +M2 +M3) + (F −KM1)Tw2 −KM2Tw3

...


(2.14a)

G1 =



P

KN1

KN1

KN1

...


G2 =



0m×∞

0∞×∞

K
[
N2 01×r 01×r 01×∞

]
K
[
01×r N2 01×r 01×∞

]
...


(2.14b)

G3 =



0m×n

KN3

KN3

KN3

...


G4 =



0m×∞

K
([
N4 01×r 01×r 01×∞

]
+N5

)
K
([

01×r N4 01×r 01×∞

]
+N5

)
K
([

01×r 01×r N4 01×∞

]
+N5

)
...


(2.14c)

where m is the number of elements in the underlying state (xt); n is the number of

elements in the vector of public signal noise (et); and r is the number of elements in

each agents’ vector of idiosyncratic shocks (vt (i)).

Since these matrices are defined recursively, finding the solution involves finding

the fixed point of the system for a given Kalman gain (K).

2.2.6 Working with a finite approximation

The full state vector of interest and, hence, the transition matrices in the law of

motion and the filter variances in the Kalman filter are all of infinite dimension, so
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the full solution cannot be found in practice.

For standard problems with imperfect common knowledge, where only the hier-

archy of simple-average expectations is needed,17 an arbitrarily accurate approxim-

ation of the full solution can be achieved by selecting a cut-off, k∗, and including all

orders of expectation from zero to that cut-off, provided that

1. the importance attached by agents to higher-order average expectations is de-

creasing in the order of expectation; and

2. the unconditional variance of higher-order average expectations are bounded

from above.

The first of these is imposed by assumption. In the context of the model presented

here, this amounts to a restriction on the coefficients in λ1.
18 The second is assured

by the fact that agents are rational (Bayesian) and this is common knowledge. A

proof of this is provided by Nimark (2011a), although it requires one minor extension

here. Since we can write Xt = Et (j) [Xt] +Xt|t (j) and the variance of the two sides

must be equal, we have

V ar (Xt) = V ar (Et (j) [Xt]) + V ar
(
Xt|t (j)

)
where we can ignore the covariance term on the right hand side because j’s rationality

implies that her expectation must be orthogonal to her expectation error. This

demonstrates that

V ar (Et (j) [Xt]) ≤ V ar (Xt)

The Kalman filter ensures that j’s expectation must have a Moving Average repres-

entation incorporating linear combinations of the complete history of all shocks that

enter her signals. For a simple average of this (lemma 2 in the Nimark paper), any

idiosyncratic shocks will necessarily sum to zero, ensuring that the simple-average

expectation must have lower variance than that of any individual agent. For weighted

averages of this, the idiosyncratic shocks will not sum to zero, but the variance of

17That is, where there is only one compound expectation of interest (p = 1).
18See section 2.3 for a typical example.
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the weighted-average of those shocks will be less the variance of an individual shock

as shown above in corollary 1 to proposition 2. We therefore have that

V ar
(
Et [Xt]

)
≤ {1}Ẽt [Xt] ≤ {2}Ẽt [Xt] ≤ · · · ≤ V ar (Et (j) [Xt]) ≤ V ar (Xt)

The recursive structure of Xt then establishes the result.

With network learning over an opaque network, however, it is also necessary to

define a cut-off in the number of compound expectations to include (p∗). Analogously

to the cut-off in higher orders of average expectation, the researcher’s ability to

deliver an arbitrarily accurate approximation requires that

1. the importance attached by agents to higher-weighted average expectations is

decreasing in the weighting; and

2. the unconditional variance of higher-weighted average expectations are bounded

from above.

The first of these is implied by the fact that each (next) higher weighted average

expectation enters with a (further) lag and the underlying autoregressive process

ensures that agents assign decreasing importance to older signals when considering

their current expectation. The second was described above and is implied directly

by corollary 1 to proposition 2.

2.2.7 Finding the solution

The solution is defined implicitly in two respects (the filter and the law of motion),

both of which require iterating through a series of update rules while taking the other

as given.

Note that the size of the state vector can still be very large even when operating

with few state variables (m) and quite low choices of k∗ and p∗. Table 2.1 lists the

sizes that emerge for a variety of parameters.

Given the size of the matrices involved, problems of numerical instability must be

considered. Numerical instability arises as a consequence of the round-off errors that

necessarily occur with floating-point operations on computers. When iterating a large
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m k∗ No network (standard ICK) With network learning (p∗ = 3)
1 4 5× 5 : 200 Bytes 121× 121 : 114.4 KB
1 6 7× 7 : 392 Bytes 1093× 1093 : 9.1 MB
4 4 16× 16 : 2.0 KB 484× 484 : 1.8 MB
4 6 28× 28 : 6.1 KB 4372× 4372 : 145.8 MB

Table 2.1: Size (each) of F , U , V and W , assuming use of double-precision.

system over many steps, these errors can accumulate and magnify to the extent that

the system does not converge.19 Such a problem is, regrettably, relatively common

in the implementation of larger Kalman filters and typically first appears as a failure

of symmetry or positive definiteness in the variance matrices of the Ricatti equation.

A variety of approaches can be undertaken to combat numerical instability. We

list the major ones here, together with a description of how (if possible) each has

been incorporated into the attached Matlab code.

Minimise the size of the state vector

The primary approach to avoiding numerical stability issues is, where possible, to

reduce the size of the system being estimated. It is for this reason that the solution

developed here makes use of Nimark (2011b) in avoiding the need to double the state

vector (which would multiply the number of operations in a matrix multiplication

by eight) when including lagged signals.

Factor the variance and covariance matrices

Arguably the most robust (to roundoff error) implementations of Kalman filters

are those that factor the relevant variance-covariance matrices. In particular, since

the variance matrices are by definition symmetric and positive (semi) definite, a

Cholesky decomposition of them (i.e. the decomposition of V into LL′ with L lower

triangular) can be deployed. By operating on the L matrices directly, the implied

variance matrices remain well defined.

19The number of arithmetic operations involved in matrix multiplication or inversion typically
increases with the cube of the matrix’s dimension, with roundoff errors able to enter in every
operation
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In practice, a modified Cholesky decomposition, sometimes referred to as a “UD

decomposition”, that breaks V into UDU ′ with U unit upper triangular (i.e. with

ones on the leading diagonal) and D diagonal is typically used,20 as this avoids the

need to find any square roots. Using this technique for a regular Kalman filter, the

algorithm for implementing the temporal update of the filter (from Vt−1|t−1 to Vt|t−1)

was developed by Thornton (1976) and that for the observational update (from Vt|t−1

to Vt|t) by Bierman (1977).

Unfortunately, although the model developed here is amenable to use of the

Thornton temporal update, the Bierman observational update algorithm is not ap-

plicable. This is because the inclusion of social signals introduces the need to consider

the covariance of agents’ expectation errors so that, when calculating the Kalman

gain, the covariance between the state (Xt) and the signal innovation (st|t−1 (i)) can

no longer be expressed in the form

Cov
(
Xt, st|t−1 (i)

)
= Vt|t−1H

which is required for Bierman’s factorisation. A successful UD implementation of

the current model would therefore require the derivation of a new algorithm in the

style of Bierman which accounted for the more complex structure of the Kalman

gain found here. Such an investigation is left for future research.

Avoid unnecessary iteration

As mentioned above, the network learning problem involves finding convergent solu-

tions to the filter and the law of motion, each taking the other as given. In principle,

the fixed point may therefore be found by finding the convergent result of one within

each iteration of the other (e.g., we might nest the finding of a time-invariant fil-

ter within each iteration of updating the law of motion), but such an algorithm is

needlessly complex and in practice is more likely to suffer from numerical stability

issues.

Instead, for a given set of signals, we find the fixed point by updating the filter

and the law of motion incrementally within the same loop:

20Of course, an equivalent expression of L∗DL∗′ may be found, with L∗ unit lower triangular.
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repeat

Update the filter by one step using equation (2.13)

Update the law of motion by one step using equation (2.14)

until both the filter and the law of motion converge

Avoid temporary creation of unnecessarily large matrices

The solution as presented in the text (see equations 2.13a and 2.13b) involves the

temporary creation (and multiplication) of matrices that are (2 + q) × N square,

where N is the size of Xt and q is the number of other agents observed.

The implementation presented in the attached Matlab code keeps the public/private

signals and the social signals separate (i.e. it breaks the M∗ and N∗ matrices into

their constituent components) to avoid this and to exploit the fact that each social

signal will be treated identically.

Pay close attention to operation order

Because matrix addition and subtraction are of order O (n2) while matrix multiplic-

ation and inversion are of order O (n3), the order in which expressions are calculated

can affect the number of operations required.

For example, although mathematically equivalent, the computational complexity

of calculating (A+B)×C is less than that of (A× C)+(B × C) because the former

involves only a single multiplication.

Optimise the selection of initial conditions

Choosing initial values for F , U , V and W that are in some sense close to their final

values has three benefits:

1. By lowering the number of iterations required, it reduces the time taken to

converge to the final result;

2. Lowering the number of iterations (quite dramatically) lowers the number of

calculations required, thereby reducing the opportunity for roundoff errors to

affect the result; and
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3. Starting closer to the final result reduces the chance of the agents’ error variance

needing to “pass through infinity” en route to the solution.

The latter point derives from the fact that sufficiently low initial variance will

cause the system to diverge, while arbitrarily large initial variance will, in principle,

converge asymptotically to the final result (see section 4.8.4.4 of Grewel and Andrews,

2008). Given this, a common practice is to impose exceptionally high initial variances

in the hope of avoiding divergence. However, such a practice is also fraught in that

too large an initial variance can be a particular source of numerical roundoff if it is

sufficiently large relative to Cov
(
Xt, st|t−1 (i)

)
.

Instead, we make use of our assumption that agents’ problems place decreasing

weight against higher-order expectations to note that the natural set of initial con-

ditions to choose when considering a problem with k∗ orders of expectation is the

solution to the problem with (k∗ − 1) orders.

We therefore use the following process to find the solution:

1. Starting at time t = 0 with k∗ = 2,21 suppose that agents observe no signals

at all. This implies that the variance (Vt|t) and covariance (Wt|t) of agents’

expectation errors will be equal to the unconditional variance of the full state

(Ut).

2. Starting at the convergent result from step one, suppose that agents now ob-

serve their public and private signals. The no-network solution (for k∗ = 2) is

found via the algorithm listed above by imposing that q = 0.

3. Starting at the convergent result from step two, suppose that agents now ob-

serve all of their signals. The network learning solution for k∗ = 2 is found via

the algorithm listed above.

4. Starting at the convergent result from the previous step, increase k∗ and solve

the problem with agents observing both public/private and social signals.

21Note that solving the network learning model requires that k∗ ≥ 2, as the law of motion gives
us that each of the compound expectations of order k relies on expectations of order k − 2.
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The final step is repeated for higher and higher values of k∗ until the researcher

is satisfied that the results are a sufficiently accurate approximation of the k∗ →∞
solution.

2.2.8 A special case

Recall that agents’ decision rule is assumed to be given by

gt (i) = λ′1Et (i) [Xt] + λ′2xt + λ′3vt (i)

and their signal vector by

st (i) =

[
spt (i)

sst (i)

]
spt (i) = D1xt +D2Xt−1 +R1vt (i) +R2et +R3zt−1

sst (i) = gt−1 (δt−1 (i))

A special case emerges when agents’ actions only depend on their beliefs regard-

ing the hierarchy of simple-average expectations (so coefficients in λ1 against other

compound expectations are all zero) and agents’ signals from the previous period

are based only on the hierarchy of simple-average expectations (so coefficients in

D2 against other compound expectations are all zero). In this case, we posit the

following conjecture:

Conjecture 1. When agents observe each others’ individual actions in an opaque

network and therefore attempt to estimate higher weighted average expectations, but

this is done solely as part of estimating x
(0:∞)
t|t (i.e. individual agents’ estimates of

{q}Ẽt [Xt] are of no direct economic significance to them) and agents observe lagged

signals that are based only on x
(0:∞)
t−1|t−1, then the impulse responses of x

(0:∞)
t|t following

any aggregate or network shock are the same for any p∗ ≥ 2.

In other words, for the purposes of simulating the effects of network learning,

it is only necessary to include the primary compound expectation (here the simple

average) and the first weighted average expectation from the network. We have

not yet been able to prove this conjecture, but have confirmed that it holds for

p∗ ∈ {2, 3, 4} with k∗ = 6 and m = 1. Its proof clearly calls for future work.
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2.3 An illustrative example

We here present a simplified example to illustrate some of the results that emerge

from adding network learning to a setting of strategic complementarity. A more

extensive model in the context of firms’ price-setting decisions is presented in the

next chapter.

2.3.1 The simplified model

There exists only a single hidden state that follows an AR(1) process

xt = ρxt−1 + ut ut ∼ N
(
0, σ2

u

)
(2.15)

Agents each receive a single, unbiased private signal about the state

spt (i) = xt + vt (i) vt (i) ∼ N
(
0, σ2

v

)
(2.16)

with ut and vt (i) being fully independent for all i and t.

Agents face quadratic losses from mismatch between their action, a single hidden

state and the average action of others:22

ui (gt, xt) = − (1− β)
[
(gt (i)− xt)2

]
− β

[
(gt (i)− gt)2

]
β ∈ (0, 1)

With agents maximising their expected payoff without explicitly knowing the state

or the average action that other agents will take, their optimal action is given by

gt (i) = (1− β)Et (i) [xt] + βEt (i) [gt]

Taking the average of this expression and repeated substituting it back in then

eventually yields

gt (i) = (1− β)
[
1 β β2 · · ·

]
Et (i)

[
x
(0:∞)
t

]
(2.17)

22This utility function is quite common in the network literature. See, for example, Calvó-
Armengol and de Mart́ı (2007). An alternative utility function described by Morris and Shin
(2002) presents the strategic complementarity as being a zero-sum game, but produces the same
optimal decision rule for individual agents (although not for a social planner).
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In the framework presented above, this would be captured by

λ0 = λ2 = λ3 = 0

λ1 = (1− β)
[
1 β β2 · · ·

]
(Sx + Ts)

Note that equations (2.16) and (2.17) satisfy the conditions for the special case laid

out above in section 2.2.8. As a baseline, we suppose the following parameters:

Parameter Value Description
β 0.5 The relative importance of strategic complementarity
ρ 0.6 The persistence of shocks to the hidden state

σ2
v/σ

2
u 5.0 The relative innovation variance

ζ∗ 0.1 The degree of irregularity in the network

Table 2.2: Baseline parameterisation

2.3.2 Aggregate beliefs following a shock to the underlying

state
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Figure 2.1: The hierarchy of simple-average expectations (x
(0:k∗)
t|t ) following a one

standard deviation shock to the underlying state with no network (q = 0)

Figure 2.1 plots a standard scenario in the incomplete common knowledge liter-

ature, showing impulse responses for the resultant hierarchy of simple-average ex-

pectations23 following a one standard deviation shock to the hidden state when there

23So k = 0 denotes the time path of xt, k = 1 the time path of Et [xt], k = 2 the time path of
Et
[
Et [xt]

]
and so on.
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is no network learning, so agents only have access to their private signals. Although

all agents’ signals are unbiased, the presence of noise ensures that they attribute

some of their signal to idiosyncratic factors, so the average expectation responds by

less than the truth. Since each agent knows this (common knowledge of rational-

ity), each successive order of expectation responds by less than its predecessor. Note

that all orders of expectation remain below the the underlying state, so the average

expectation error (xt − Et [xt]) remains strictly positive. The hierarchy of beliefs

subsequently decays back to zero with the underlying shock.
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Figure 2.2: The hierarchy of simple-average expectations (x
(0:k∗)
t|t ) following a one

standard deviation shock to the underlying state with agents each observing one
competitor (q = 1).

Figure 2.2 next plots the same hierarchy when, in addition to observing their

private signals, each agent observes the previous-period action of one competitor.

On impact, there is very little difference because social signals are received with a

lag (the observation of competitors’ actions having been zero in the pre-impact period

lowers the beliefs fractionally). In the near term, agents’ average expectations are

improved relative to the no-network case, with observations of their peers’ actions

reinforcing their own private signals that an aggregate shock has occurred.

In the longer term, however, as the underlying state decays back to zero, the

presence of network learning introduces a degree of persistence in agents’ aggregate

beliefs beyond that embodied in the underlying state so that agents’ average expect-

ations are above the truth (the average expectation error (xt −Et [xt]) becomes and

remains strictly negative).
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This is herding in the broad sense of Banerjee (1992), but with an amplification

from Morris and Shin (2002)-style strategic complementarity. First and most simply,

by observing that their competitors’ actions were high yesterday, agents infer that

the state may be high today. As a result, they partially attribute their low private

signals to idiosyncratic noise, consequently choosing a high action themselves. How-

ever, although there is no public signal available, by effectively assuming that their

competitors all observe the same weighted average action, agents’ social observations

act as private signals about a public signal that they themselves cannot observe but

which they assume is seen by everybody else.24 For any given agent, their social

observation therefore acts as a coordination device for addressing their strategic

complementarity concerns. When the underlying state is falling, this therefore acts

as a kind of upward bias in social signals for signal extraction purposes.
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(a) Simple-average expectations

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.1

0

0.1

0.2

0.3

0.4

Period

 

 

xt − Et[xt], q = 0

xt − Et[xt], q = 1
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(b) Average expectation errors

Figure 2.3: Varying the number of other agents observed (q)

Figure 2.3 illustrates the responses for different numbers of other agents observed.

Although the addition of social signals lessens the average expectation error in the

near term, in the longer term expectations overshoot so that, on average, errors

become negative. The absolute value of the long-term average error is increasing in

the number of competitors observed.

24Strictly speaking, agents do not assume that their competitors observe a public signal. Rather,
their Bayes-rational signal extraction problem is mathematically equivalent to making the assump-
tion.
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(a) Simple-average expectations

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.1

0

0.1

0.2

0.3

0.4

Period

 

 

xt − Et[xt], ρ = 0.5

xt − Et[xt], ρ = 0.6

xt − Et[xt], ρ = 0.7

(b) Average expectation errors

Figure 2.4: Varying underlying persistence (ρ)

Figure 2.4 shows the impulse responses of first-order simple-average expectations

and the corresponding average expectation errors for different values of ρ. Larger

values of ρ cause not only larger movements in average expectations, but renders

the errors in those expectations larger for longer. In other words, the presence of

network learning introduces a persistence multiplier effect so that the persistence of

average beliefs increases by more than that of the state.
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Figure 2.5: Varying the relative innovation variance (σ2
v/σ

2
u)
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Figure 2.5 then presents equivalent plots for a variety of values for σ2
v/σ

2
u. Lower-

ing the signal-to-noise ratio of agents private signals,25 worsens the value of agents’

private signals, causing them to rely more heavily on the social signals and so causing

marginally worse performance in the longer term.

2.3.3 Aggregate beliefs following a network shock

In addition to shocks to the underlying state, the irregularity of the observation net-

work gives rise to the possibility of aggregate network shocks : a suite of idiosyncratic

shocks in a period for which more prominent agents happen to draw innovations

in one direction (say, positive) while more obscure agents draw innovations in the

opposite direction. Overall, with a continuum of agents, the law of large numbers

ensures that the simple average innovation is zero, but an average weighted by the

agents’ probability of being observed will be non-zero.

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.01

0.01

0.03

0.05

0.07

0.09

Period

 

 

k = 0

k = 1

k = 2

k = 3

k = 4

Figure 2.6: The hierarchy of simple-average expectations (x
(0:k∗)
t|t ) following a one

standard deviation network shock (a one standard deviation shock to ṽt and the
corresponding conditional expected value for higher-weighted averages) with agents
each observing one competitor (q = 1).

Figure 2.6 plots the hierarchy of simple-average expectations regarding the hid-

den state following a one standard deviation network shock – strictly, a one standard

deviation shock to ṽt plus the corresponding (conditionally) expected value for higher

weighted averages – when agents each observe one competitor (q = 1). Note that the

25That is, raising the relative variance of idiosyncratic shocks.
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underlying state remains at zero throughout. Unlike with a shock to the state, there

is no movement in aggregate beliefs on impact because the law of large numbers

does apply: all agents receive the same social signal from the pre-impact period and

movements in the expectations of prominent and obscure agents balance out. In the

second period, the average expectation rises as people observe the positive movement

in prominent agents’ actions from period one and largely ignore the opposite move-

ments by obscure agents. Consequently in period two, despite the average private

signal being zero, not just prominent agents but all agents, on average, choose pos-

itive actions. Aggregate beliefs then gradually decay back to zero as agents continue

to receive average private signals of zero but continue to place weight on the previous

actions of others.

Overall, the scale of movements in average beliefs is roughly one order of mag-

nitude smaller than those following a true shock to the underlying state. This scale is

controlled by the relative variance of the network shocks. Recall that for a univariate

private signal, V ar (ṽt) = ζ∗σ2
v , where ζ∗ ∈ (0, 1) indicates the degree of irregularity

in the network. Increasing the irregularity of the network (i.e. making the distribu-

tion of inbound observation links less uniform) therefore increases the scale of typical

network shocks.
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Figure 2.7: Varying the degree of network irregularity (ζ∗)

Figure 2.7 illustrates this, plotting the first-order simple-average expectations

and average expectation errors for a variety of values for ζ∗ following a one standard
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deviation network shock when agents each observe a single competitor.

At one extreme, the network is regular (ζ∗ → 0), so the distribution of links

is uniform and the law of large numbers therefore applies, meaning that network

shocks have no effect. At the other extreme, as the probability of being observed

approaches unity for a single agent and zero for everybody else (ζ∗ → 1), that sole

agent’s idiosyncratic shocks come to play a significant role in shaping average beliefs.

For the baseline scenario listed above, a one standard deviation network shock when

ζ∗ = 1 produces a peak average expectation of 0.13, compared to the 0.31 obtained

from a one standard deviation shock to the underlying state.

Note, too, that although varying ζ∗ changes the magnitude of the movement in

agents’ average expectations, the persistence of that movement is unchanged across

different values of ζ∗.
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Figure 2.8: Varying the relative innovation variance (σ2
v/σ

2
u)

Figure 2.8 next shows the effect on network shocks from varying the relative

variance of agents’ idiosyncratic shocks. As with increasing ζ∗, an increase in σ2
v/σ

2
u

increases the magnitude of the average expectation’s response, but in addition, as

seen for shocks to the underlying state above, the increased uncertainty also increases

the persistence of the shock’s effects.

Finally, figure 2.9 shows that both the magnitude and the persistence of deviations

in average expectations following a network shock increase with the persistence of

60



2.3. An illustrative example

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.01

0.01

0.03

0.05

0.07

0.09

Period

 

 

k = 0

k = 1, ρ = 0.5

k = 1, ρ = 0.6

k = 1, ρ = 0.7

(a) Simple-average expectations

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.1

0

0.1

0.2

0.3

0.4

Period

 

 

xt − Et[xt], ρ = 0.5

xt − Et[xt], ρ = 0.6

xt − Et[xt], ρ = 0.7

(b) Average expectation errors

Figure 2.9: Varying underlying persistence (ρ)

underlying system.
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2.4 Other examples

The model developed here is arguably applicable to a number of areas of ongoing

macroeconomic research. Possible applications may include

1. In a setting of monopolistic competition with firms’ facing demand curves that

are functions of their relative prices, price-setting firms may inform their de-

cisions by observing the prices of individual competitors. Coordination con-

cerns and network learning will then induce notably different dynamics for

aggregate inflation. This setting is explored in detail in chapter 3 of this thesis.

2. When posting vacancies in a labour search model in the style of Mortensen and

Pissarides (1994), firms’ probability of finding a successful match is dependent

on the number of vacancies that other firms post. When firms’ productivity

includes both aggregate and idiosyncratic components, observing the number

of vacancies posted by their competitors allows firms to predict both the com-

ponent of their productivity that is common to all and their expected gain

from posting an additional vacancy themselves.

3. In the asset pricing model of Singleton (1987), traders’ individual demand

for a risky asset is dependent on their expectation of the next-period price,

itself a function of all traders’ actions and (unobserved in advance) shocks to

the supply of the asset. Observing the actions of (some of) their competitors

would allow traders to learn about the (higher-order) expectations of other

traders and adjust their responses accordingly.

Three features arguably common to all of these possible applications are that (a)

agents’ actions are affected directly by their private signals in addition to indirectly

through their expectations; (b) agents may need to consider the actions of other

agents not just in the current period but also into the future; and (c) agents may

receive public signals about aggregate statistics.

The broad model of this chapter readily nests all of these features. For example,

suppose that agents’ private signals are given by:

spt (i) = Bxt +Qvt (i)
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and that the linearised first-order conditions of agents’ optimisation problems are

given by:

gt (i) = α′spt (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)
[
gt+1

]
We show in appendix 2.D that this may be expressed as

gt (i) = (η′x + ηya
′ + ηza

′F )︸ ︷︷ ︸
λ′1

Et (i) [Xt] +α′B︸︷︷︸
λ′2

xt + α′Q︸︷︷︸
λ′3

vt (i)

where

a′ ≡ (α′BS + η′xTs) (I − ηyTs)−1
(
I − ηzFTs (I − ηyTs)−1

)−1
which is clearly in the form of equation (2.3).

This is by no means the only dynamic setting that may be modelled here. The

dynamic price-setting model explored in chapter 3, for example, considers an en-

vironment with an infinite sum of forward-looking variables in the individual firm’s

decision rule and the addition of a lagged public signal (the previous period’s ag-

gregate price).
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2.5 Conclusion

This chapter has introduced and solved a model of social learning with a continuum

of agents that satisfies the three requirements that (a) agents observe individual com-

petitors’ actions through an observation network; (b) agents act simultaneously and

repeatedly over many periods; and (c) agents’ optimal decisions include consideration

of strategic complementarity. To avoid the curse of dimensionality that ordinarily

prevents analysis of large networks, we introduce the idea of network opacity – that

agents know who they observe, but not who anybody else observes. Instead, we sup-

pose that agents know only the (common) distribution from which those observees

are drawn.

This assumption grants an arbitrarily accurate simulation and may therefore be

performed by selecting a cut-off, k∗, on the number of higher-order expectations and

a cut-off, p∗, on the number of compound expectations to consider. The first of these

arises from the standard assumption that agents place decreasing weight on higher-

order expectations. The second emerges from the opacity of the network (so that

agents are interested in a sequence of weighted average expectations), the recursive

nature of the Kalman filter (so that each weighted-average expectation depends on

the next-higher weighted average from the previous period) and the AR process of

the underlying state (so that older shocks are of decreasing importance to the current

state).

Theorem 1 demonstrates that when the underlying state follows an AR(1) pro-

cess, the full hierarchy of relevant aggregate expectations will follow an ARMA(1,1)

process with network shocks – weighted sums of agents’ idiosyncratic shocks – enter-

ing both contemporaneously and with a lag.

A number of broad consequences of the model emerge directly from theorem 1.

First, it is possible to simulate the effects of network learning without having to

simulate the network explicitly: the network shocks together represent a sufficient

statistic for the effect of the network on agents’ aggregate beliefs. This makes the

model particularly amenable to nesting within broad General Equilibrium models of

the economy.
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Second, impulse responses of average expectations following shocks to the un-

derlying state will exhibit greater persistence than the state itself, increasing in the

number of agents observed. This is a form of rational herding behaviour that com-

bines the herding exhibited in both Banerjee (1992), where agents observe others’

actions, but have no strategic motive; and Morris and Shin (2002), where agents

have a strategic motive, but do not observe others’ actions.

Third, when the network is asymptotically irregular (i.e. has a distribution of

links that is sufficiently far from uniform), mean zero idiosyncratic shocks do not

wash out in aggregation, thereby leading to a network-based source of aggregate

volatility, independent of “true” aggregate shocks to the hidden state. The scale of

this additional volatility depends on the degree of irregularity in the network, which

is captured simply in a single parameter: ζ∗.

Finally, because of the herding behaviour of agents’ actions, the aggregate effects

of idiosyncratic shocks are persistent, even though the shocks themselves are entirely

transitory.

The model would appear to be applicable to a variety of problems in macroeco-

nomic research, including firms’ price-setting decisions, labour search-and-matching

models and asset pricing problems. A particular application to firms’ price-setting

decisions in a classic dynamic pricing environment is examined in depth in the next

chapter.
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Appendix 2.A Proof of proposition 1.

The Kalman filter (2.10) requires that each agent construct a prior expectation of

the signal she will receive and then update her beliefs on the basis of the extent

to which the signal she actually receives is a surprise. Using the equation for each

agent’s decision rule (2.3), we have that when preparing for period t+ 1, agent i will

construct her prior expectation of her social signal as follows:

Et (i) [gt (δt (i))] = Et (i) [λ′1Et (δt (i)) [Xt] + λ′2xt + λ′3vt (δt (i))]

Common knowledge of rationality then allows agent i to substitute in the Kalman

filter for agent δt (i)’s expectation:

Et (i) [Et (δt (i)) [Xt]] = Et (i)


Et−1 (δt (i)) [Xt]

+Kp {spt (δt (i))− Et−1 (δt (i)) [spt (δt (i))]}

+Ks

{
gt−1 (δt−1 (δt (i)))

−Et−1 (δt (i)) [gt−1 (δt−1 (δt (i)))]

}


The final term shows if agent i is going to observe the period-t action of agent

δt (i), then in order to form her prior, she must also consider whomever agent δt (i)

observed from period-(t− 1). This recursion of expectations (and expectations of

expectations) across agents and backwards through time leads to an explosion in the

dimensionality (this is the explosion of p) and typically prevents closed-form analysis

in anything other than trivially small networks.

However, by denying agents knowledge of the full network and, instead, granting

them knowledge of the distribution from which observation links are drawn (Φ) and

using the assumption that this distribution is independent of other shocks, we can

note that:

Et (i) [gt−1 (δt−1 (δt (i)))] =

∫ 1

0

Et (i) [gt−1 (j)]φ (j) dj

= Et (i)

[∫ 1

0

gt−1 (j)φ (j) dj

]
= Et (i) [g̃t−1]

where the second equality exploits the linearity of the expectation operator. The

object g̃t ≡
∫ 1

0
gt (j)φ (j) dj is a weighted average of all agents’ actions in period t
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2.A. Proof of proposition 1.

using the observation p.d.f. as the weights. Note, too, that by identical logic we also

have that when considering their observee’s observee, agent i will expect that:

Et (i) [Et−1 (δt (i)) [gt−1 (δt−1 (δt (i)))]] = Et (i) [Et−1 (δt (i)) [g̃t−2]]

That is, common knowledge of rationality and the symmetry of agents’ problems

leads agent i to expect that agent δt (i) makes the same assumption about their own

observee. The ongoing recursion backwards through time should be clear. Substi-

tuting this all back in above gives:

Et (i) [Et (δt (i)) [Xt]] = Et (i)

 Et−1 (δt (i)) [Xt]

+Kp {spt (δt (i))− Et−1 (δt (i)) [spt (δt (i))]}
+Ks {g̃t−1 − Et−1 (δt (i)) [g̃t−1]}


In effect, this is agent i treating agent δt (i) as though (a) they receive a weighted

average of everybody’s period-(t− 1) action and (b) they act in the same manner

towards their own observee(s).

So long as the weights used (the observation p.d.f.) are common across agents and

constant over time – that is, so long as agents do not learn about the topology of the

network – then we have that agent i’s problem may be summarised as follows: observe

the action of agent δt (i), but treat them as though they, and and all information

obtained through them, come from a setting in which all agents observe the weighted

average action.
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Appendix 2.B Proof of proposition 2.

Denoting ζ (N) ≡ ∑N
i=1 φN (i)2 and assuming that limN→∞ ζ (N) = ζ∗ ∈ (0, 1)

(assumption 2), we here demonstrate the following results regarding agents’ idiosyn-

cratic shocks:

1. {q}ṽN,t
d−→ {q}ṽt ∀q where ṽt ∼ N

(
0,Σ

{q}
ṽṽ

)
Σ
{q}
ṽṽ = (1− (1− ζ∗)q) Σvv

2. {q}v̈N,t
L2−→ {q}ṽt ∀q

3. Cov
({p}ṽt, {q}ṽt) = Σ

{p}
ṽṽ ∀p < q

where the weighted sums are defined as:

{1}ṽN,t ≡
1

N

N∑
i=1

vt (δt (i)) {1}v̈N,t ≡
N∑
i=1

vt (i)φN (i)

{2}ṽN,t ≡
1

N

N∑
i=1

vt (δt (δt (i))) {2}v̈N,t ≡
N∑
i=1

vt (δt (i))φN (i)

{3}ṽN,t ≡
1

N

N∑
i=1

vt (δt (δt (δt (i)))) {3}v̈N,t ≡
N∑
i=1

vt (δt (δt (i)))φN (i)

...
...

First, note that since the vector vt (i) is drawn from independent and identical Gaus-

sian distributions with mean zero for each i and t, all of the weighted sums must

also be distributed Normally with mean zero. We now consider each of the results

in turn.

1. {q}ṽN,t
d−→ {q}ṽt ∀q ṽt ∼ N

(
0,Σ

{q}
ṽṽ

)
Σ
{q}
ṽṽ = (1− (1− ζ∗)q) Σvv

Since it is clear that {q}ṽN,t must converge to a Normal distribution with mean zero,

all that remains is to determine its variance-covariance matrix (note that the law of

large numbers will apply here when the variance-covariance matrix is zero).

We will begin by considering each weighted-sum in turn.
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• {1}ṽN,t d−→ {1}ṽt

The variance of {1}ṽN,t is given by:

V ar
[{1}ṽN,t] =

1

N2
V ar [vt (δt (1)) + vt (δt (2)) + · · ·+ vt (δt (N))]

=
1

N2

N∑
i=1

N∑
j=1

E [vt (δt (i))vt (δt (j))]

=
1

N2

(
NΣvv +

N∑
i=1

N∑
j 6=i

E [vt (δt (i))vt (δt (j))]

)

However, when i 6= j, given the full independence of the distributions of agents’

observees, it must be that

E [vt (δt (i))vt (δt (j))] =
N∑
k=1

φN (k)E [vt (k)vt (δt (j))]

=
N∑
k=1

φN (k)

(
N∑
l=1

φN (l)E [vt (k)vt (l)]

)

=
N∑
k=1

φN (k)2E [vt (k)vt (k)]

= ζ (N) Σvv (2.18)

where in moving from the second line to the third we have made use of the inde-

pendence of agents’ idiosyncratic shocks. We therefore have that

V ar
[{1}ṽN,t] =

1

N2

(
NΣvv +

N∑
i=1

N∑
j 6=i

ζ (N) Σvv

)

=
1

N2

(
NΣvv +

(
N2 −N

)
ζ (N) Σvv

)
=

1

N
Σvv +

(
N − 1

N

)
ζ (N) Σvv

and thus, in the limit, it must be that

Σ
{1}
ṽṽ ≡ lim

N→∞
V ar

[{1}ṽN,t] = ζ∗Σvv (2.19)
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• {2}ṽN,t d−→ {2}ṽt

The variance of {2}ṽN,t is given by:

V ar
[{2}ṽN,t] =

1

N2

N∑
i=1

N∑
j=1

E [vt (δt (δt (i)))vt (δt (δt (j)))]

=
1

N2

(
NΣvv +

N∑
i=1

N∑
j 6=i

E [vt (δt (δt (i)))vt (δt (δt (j)))]

)

Focussing on the latter term, we have that when i 6= j, it must be that

E [vt (δt (δt (i)))vt (δt (δt (j)))] =
N∑
k=1

φN (k)E [vt (δt (k))vt (δt (δt (j)))]

=
N∑
k=1

φN (k)

(
N∑
l=1

φN (l)E [vt (δt (k))vt (δt (l))]

)

=
N∑
k=1

φN (k)2 Σvv

+
N∑
k=1

N∑
l 6=k

φN (k)φN (l)E [vt (δt (k))vt (δt (l))]

It was shown above in equation (2.18) that

E [vt (δt (k))vt (δt (l))] = ζ (N) Σvv ∀k 6= l

so it follows that

E [vt (δt (δt (i)))vt (δt (δt (j)))] = ζ (N) Σvv + ζ (N) Σvv

N∑
k=1

N∑
l 6=k

φN (k)φN (l)

Next, consider that since φN (k) and φN (l) are p.d.fs, it must be that

N∑
k=1

N∑
l=1

φN (i)φN (j) =
N∑
k=1

φN (k)

(
N∑
l=1

φN (l)

)

=
N∑
k=1

φN (k)

= 1
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We must therefore have that

N∑
k=1

N∑
l 6=k

φN (k)φN (l) = 1−
N∑
k=1

φN (k)2 = 1− ζ (N) (2.20)

Thus, when i 6= j, we have

E [vt (δt (δt (i)))vt (δt (δt (j)))] = ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv (2.21)

Substituting this back in, we arrive at

V ar
[{2}ṽN,t] =

1

N
Σvv +

1

N2

N∑
i=1

N∑
j 6=i

(ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv)

=
1

N
Σvv +

N (N − 1)

N2
(ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv)

and thus, in the limit, it must be that

Σ
{2}
ṽṽ ≡ lim

N→∞
V ar

[{2}ṽN,t] = ζ∗Σvv + (1− ζ∗) ζ∗Σvv (2.22)

• {3}ṽN,t d−→ {3}ṽt

The variance of {3}ṽN,t is given by:

V ar
[{3}ṽN,t] =

1

N2

N∑
i=1

N∑
j=1

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

=
1

N2

(
NΣvv +

N∑
i=1

N∑
j 6=i

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

)

Focussing on the latter term, we have that when i 6= j, it must be that

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

=
N∑
k=1

φN (k)

(
N∑
l=1

φN (l)E [vt (δt (δt (k)))vt (δt (δt (l)))]

)

=
N∑
k=1

φN (k)2 Σvv +
N∑
k=1

N∑
l 6=k

φN (k)φN (l)E [vt (δt (δt (k)))vt (δt (δt (l)))]
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It was shown above in equation (2.21) that

E [vt (δt (δt (k)))vt (δt (δt (l)))] = ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv

Combined with equation (2.20), this then implies that when i 6= j,

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

= ζ (N) Σvv + (1− ζ (N)) (ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv) (2.23)

Substituting this back in, we arrive at

V ar
[{3}ṽN,t] =

1

N
Σvv

+
1

N2

N∑
i=1

N∑
j 6=i

(ζ (N) Σvv + (1− ζ (N)) (ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv))

=
1

N
Σvv

+
N (N − 1)

N2
(ζ (N) Σvv + (1− ζ (N)) (ζ (N) Σvv + (1− ζ (N)) ζ (N) Σvv))

and thus, in the limit, it must be that

Σ
{3}
ṽṽ ≡ lim

N→∞
V ar

[{3}ṽN,t] = ζ∗Σvv + (1− ζ∗) (ζ∗Σvv + (1− ζ∗) ζ∗Σvv) (2.24)

• The general case

By this stage, it should be clear that the variance-covariance matricies of higher

weighted averages of agents’ idiosyncratic shocks are able to be expressed in a re-

cursive form:

Σ
{q}
ṽṽ = ζ∗Σvv + (1− ζ∗) Σ

{q−1}
ṽṽ

This may be simplified by first expanding it as

Σ
{q}
ṽṽ =

(
q−1∑
p=0

(1− ζ∗)p
)
ζ∗Σvv

=

(
1− (1− ζ∗)q
1− (1− ζ∗)

)
ζ∗Σvv

= (1− (1− ζ∗)q) Σvv (2.25)

which completes the proof of the first result.
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2. {q}v̈N,t
L2

−→ {q}ṽt ∀q
We next demonstrate that {q}v̈N,t converges to {q}ṽt in mean square error.26 That

is, we show that limN→∞E
[({q}v̈N,t − {q}ṽt)2] = 0. First, see that:

E
[({q}v̈N,t − {2}ṽt)2] = E

[({q}v̈N,t)2 − 2{q}v̈N,tṽt +
({2}ṽt)2]

= V ar
[{q}v̈N,t]− 2Cov

[{q}v̈N,t, {q}ṽt]+ V ar
[{q}ṽt]

The third term is just Σ
{q}
ṽṽ from the first result above. We now consider the first

and second terms in turn. The variance of {q}v̈N,t is given by:

V ar
[{q}v̈N,t] = V ar

 N∑
i=1

φN (i)vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(i)))


= E

 N∑
i=1

N∑
j=1

φN (i)φN (j)vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(j)))


=

N∑
i=1

N∑
j=1

φN (i)φN (j)E

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(j)))


=

N∑
i=1

φN (i)2 Σvv

+
N∑
i=1

N∑
j 6=i

φN (i)φN (j)E

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(j)))


But we know from the first result above that when i 6= j,

E

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(j)))


= ζ (N) Σvv + (1− ζ (N))E

vt
δt(· · · (δt︸ ︷︷ ︸

q−2

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q−2

(j)))


26Recall that convergence in mean square error is a stronger form of convergence than conver-

gence in probability.
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Noting the recursive structure and making use of equation (2.20) then gives us

V ar
[{q}v̈N,t] = ζ (N) Σvv + (1− ζ (N))V ar

[{q−1}v̈N,t]
which, in the limit, becomes

lim
N→∞

V ar
[{q}v̈N,t] = ζ∗Σvv + (1− ζ∗) lim

N→∞
V ar

[{q−1}v̈N,t]
which is the same rule for V ar

[{q}ṽN,t], which implies that

lim
N→∞

V ar
[{q}v̈N,t] = lim

N→∞
V ar

[{3}ṽN,t] = Σ
{q}
ṽṽ

Turning next to the covariance between {q}v̈N,t and {q}ṽt, we note that

Cov
[{q}v̈N,t, {q}ṽN,t] = E



∑N
i=1 φN (i)vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(i)))


×

 1
N

∑N
j=1 vt

δt(· · · (δt︸ ︷︷ ︸
q

(j)))




=

1

N

N∑
i=1

N∑
j=1

φN (i)E

vt
δt(· · · (δt︸ ︷︷ ︸

q−1

(i)))

vt
δt(· · · (δt︸ ︷︷ ︸

q

(j)))



=
1

N

N∑
i=1

N∑
j=1

N∑
k=1

φN (i)φN (k)E


vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(i)))


×vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(k)))




where moving from the second line to the third makes use of the independence of

agents’ draws from ΦN and the linearity of the expectation operator. This, in turn,

may be rewritten as

Cov
[{q}v̈N,t, {q}ṽN,t] =

N

N



∑N
i=1 φN (i)2 Σvv

+
∑N

i=1

∑N
k 6=i φN (i)φN (k)E


vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(i)))


×vt

δt(· · · (δt︸ ︷︷ ︸
q−1

(k)))






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Since this is the same expression as that for V ar
[{q}v̈N,t] above, we therefore have

lim
N→∞

Cov
[{q}v̈N,t, {q}ṽN,t] = Σ

{q}
ṽṽ

and, hence, that

lim
N→∞

E
[({q}v̈N,t − {2}ṽt)2] = Σ

{q}
ṽṽ − 2Σ

{q}
ṽṽ + Σ

{q}
ṽṽ

= 0

as required.

3. Cov
[{p}ṽt, {q}ṽt] = Σ

{p}
ṽṽ ∀p < q

To prove this, we will first consider Cov
[{p}ṽt, {p+1}ṽt

]
and later consider q ≥ p+ 2.

Cov
[{p}ṽN,t, {p+1}ṽN,t

]
= E



 1
N

∑N
i=1 vt

δt · · · δt︸ ︷︷ ︸
p

(i)


×

 1
N

∑N
j=1 vt

δt · · · δt︸ ︷︷ ︸
p+1

(j)




=

1

N2

N∑
i=1

N∑
j=1

E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p+1

(j)


Focussing on the final term, note that

E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p+1

(j)


=

N∑
k=1

φN (k)E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p

(k)


= φN (i) Σvv +

N∑
k 6=i

φN (k)E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p

(k)


= φN (i) Σvv + (1− φN (i)) Σp

ṽṽ (N)
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Substituting this back into the above then gives

Cov
[{p}ṽt, {p+1}ṽt

]
=

1

N2

N∑
i=1

N∑
j=1

(φN (i) Σvv + (1− φN (i)) Σp
ṽṽ (N))

=
1

N

N∑
i=1

(φN (i) Σvv + (1− φN (i)) Σp
ṽṽ (N))

=
1

N
Σvv +

1

N

N∑
i=1

(1− φN (i)) Σp
ṽṽ (N)

In the limit, this becomes

lim
N→∞

Cov
[{p}ṽN,t, {p+1}ṽN,t

]
= Σp

ṽṽ

which establishes the result for q = p+ 1. For q = p+ 2, note that

E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p+2

(j)


=

N∑
k=1

φN (k)E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p+1

(k)


=

N∑
k=1

N∑
l=1

φN (k)φN (l)E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p

(l)


=

N∑
l=1

φN (l)E

vt
δt · · · δt︸ ︷︷ ︸

p

(i)

vt
δt · · · δt︸ ︷︷ ︸

p

(l)


which is the same as for q = p + 1. It should be clear that this same process would

apply for all q ≥ p+ 2, which establishes the result.
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Appendix 2.C Proof of theorem 1.

The state vector of interest and its law of motion are conjectured to be:

Xt ≡



xt

Et [Xt]
{1}Ẽt [Xt]
{2}Ẽt [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1 (2.26)

while agents’ private/public and social signals are given by:

spt (i) = D1xt +D2Xt−1 +R1vt (i) +R2et +R3zt−1 (2.27a)

sst (i) = λ′1Et−1 (δt−1 (i)) [Xt−1] + λ′2xt−1 + λ′3vt−1 (δt−1 (i)) (2.27b)

Together, these describe a linear state space system to which a Kalman filter provides

the optimal linear estimator (in the sense of minimising mean squared error).

As discussed in the main text, the system described here is not in the form of

a classic state space problem, both because of the presence of the lagged state in

agents’ signals and because of the moving average component of the law of motion.

Lemma 1 demonstrated that we do not need to include zt in the agents’ state vector

of interest. To deal with the lagged observations, we follow Nimark (2011b) in

developing a modified Kalman filter that does not require the stacking of the state

vectors of interest.

To begin, we define the matrices Sx, Ts and Twq as the matrices that select xt,

Et [Xt] and {q}Ẽt [Xt] respectively from Xt (e.g., Tw2Xt = {2}Ẽt [Xt]).

We also define the general notation that θt|q (i) represents the error in agent i’s

period-q expectation regarding θt. In particular, we will use the following:

st|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] : signal innovation

Xt|t−1 (i) ≡ Xt − Et−1 (i) [Xt] : prior error

Xt|t (i) ≡ Xt − Et (i) [Xt] : contemporaneous error
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2.C. Proof of theorem 1.

2.C.1 The filter

We proceed by deploying a Gram-Schmidt orthogonalisation of agents’ signals. That

is, noting that the signal innovation

st|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] (2.28)

contains only new information available to i in period t, we conclude that it must

be orthogonal to any of j’s estimates based on information from earlier periods. We

can therefore use the standard result that E [x|y, z] = E [x|y] + E [x|z] when y⊥z,

so that

Et (i) [Xt] = E [Xt|It−1 (i)] + E
[
Xt|st|t−1 (i)

]
= Et−1 (i) [Xt] +Ktst|t−1 (i) (2.29)

for some projection matrix, Kt (the Kalman gain). Note that Kt does not require

an agent subscript as the problem is symmetric for all agents.

Optimality then requires that the projection matrix, Kt, be such that the signal

innovation, st|t−1 (i), is orthogonal to the projection error, Xt−Ktst|t−1 (i). That is,

we require that

E
[(
Xt −Ktst|t−1 (i)

)
st|t−1 (i)′

]
= 0

Rearranging then gives an expression for the optimal Kalman gain:

Kt = E
[
Xtst|t−1 (i)′

] (
E
[
st|t−1 (i) st|t−1 (i)′

])−1 ∀i (2.30)

which, since the unconditional expectations of Xt and all signal innovations are zero,

is simply

Kt = Cov(Xt, st|t−1 (i))
[
V ar

(
st|t−1 (i)

)]−1
In order to evaluate this, it is necessary to construct expressions for the innovation

in agents’ private and social signals. We consider each in turn.
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2.C. Proof of theorem 1.

Agents’ private signals

To begin, we substitute the conjectured state law of motion into the private signal

equation to get:

spt (j) = (D1SxF +D2)Xt−1 +D1SxG1ut

+R1vt (j) +R2et +R3zt−1 (2.31)

where we have used the fact that xt is independent of network shocks to ignore the

G2zt and G4zt−1 components of Xt. From this, we see that i’s prior expectation of

her private signal will be given by

Et−1 (i) [spt (i)] = (D1SxF +D2)Et−1 (i) [Xt−1] (2.32)

where we have made use of lemma 1 to drop the term in Et−1 (i) [zt−1]. Subtracting

equation (2.32) from (2.31) then gives the innovation in agents’ private signals as

spt|t−1 (i) = (D1SxF +D2)Xt−1|t−1 (i) +D1SxG1ut

+R1vt (j) +R2et +R3zt−1 (2.33)

where Xt|t (i) is i’s contemporaneous error in estimating Xt.

Agents’ social signals

For the social signal, and assuming temporarily that agents observe the actions of

only one competitor, we make use of proposition 1 to write the prior expectation as

Et−1 (i) [sst (i)] = λ′1Et−1 (i)
[
Ẽt−1 [Xt−1]

]
+ λ′2Et−1 (i) [xt−1] + λ′3Et−1 (i) [ṽt−1]

Given that Et (i) [zt] = 0, SxXt = xt and Tw1Xt = {1}Ẽt [Xt], we can write this as

Et−1 (i) [sst (i)] = (λ′2Sx + λ′1Tw)Et−1 (i) [Xt−1] (2.34)

Subtracting (2.34) from (2.27b), we then have that the innovation in the agent’s

social signal is given by:

sst|t−1 (i) = λ′2SxXt−1|t−1 (i)

+ λ′1Et−1 (δt−1 (i)) [Xt−1]− λ′1TwEt−1 (i) [Xt−1]

+ λ′3vt−1 (δt−1 (i))
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2.C. Proof of theorem 1.

Adding and subtracting λ′1TwXt−1 on the right-hand side then gives

sst|t−1 (i) = (λ′2Sx + λ′1Tw)Xt−1|t−1 (i)

− λ′1 (TwXt−1 − Et−1 (δt−1 (i)) [Xt−1])

+ λ′3vt−1 (δt−1 (i))

and finally now adding and subtracting λ′1Xt−1 on the right-hand side gives

sst|t−1 (i) = (λ′2Sx + λ′1Tw)Xt−1|t−1 (i)− λ′1Xt−1|t−1 (δt−1 (i))

+ λ′1 (I − Tw)Xt−1

+ λ′3vt−1 (δt−1 (i))

Crucially, we have that the innovation in i’s social signal includes not only a term in

their own contemporaneous error from the previous period but also a term in their

observee’s error.

The combined signal innovation

Stacking the private, public and social signal innovations, we then obtain

st|t−1 (i) = M1Xt−1|t−1 (i) +M2Xt−1|t−1 (δt−1 (i)) +M3Xt−1 (2.35a)

+N1ut +N2vt (i) +N3et +N4vt−1 (δt−1 (i)) +N5zt−1

where

M1 =

[
D1SxF +D2

λ′2Sx + λ′1Tw

]
M2 =

[
0

−λ′1

]
M3 =

[
0

λ′1 (I − Tw)

]
(2.35b)

N1 =

[
D1SxG1

0

]
N2 =

[
R1

0

]
N3 =

[
R2

0

]
N4 =

[
0

λ′3

]
N5 =

[
R3

0

]
(2.35c)

Considering two or more observees is then obtained by further stacking the signals

st|t−1 (i) = M1Xt−1|t−1 (i) +M2

[
Xt−1|t−1 (δt−1 (i, 1))

Xt−1|t−1 (δt−1 (i, 2))

]
+M3Xt−1 (2.36a)

+N1ut +N2vt (i) +N3et +N4

[
vt−1 (δt−1 (i, 1))

vt−1 (δt−1 (i, 2))

]
+N5zt−1

80



2.C. Proof of theorem 1.

where

M1 =

D1SxF +D2

λ′2Sx + λ′1Tw

λ′2Sx + λ′1Tw

 M2 =

 0 0

−λ′1 0

0 −λ′1

 M3 =

 0

λ′1 (I − Tw)

λ′1 (I − Tw)

 (2.36b)

N1 =

D1SxG1

0

0

 N2 =

R1

0

0

 N3 =

R2

0

0

 N4 =

 0 0

λ′3 0

0 λ′3

 N5 =

R3

0

0


(2.36c)

For the remainder of this appendix, we shall use the notation of a single observee on

the understanding that the signal innovation may be replace as above for an arbitrary

number of competitors observed.

Deriving the Kalman gain

We first expand the first term in equation (2.30) as

E
[
Xtst|t−1 (i)′

]
= E



(FXt−1 +G1ut +G2zt +G4zt−1 +G3et)

×


M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i) +N3et

+N4vt−1 (δt−1 (i)) +N5zt−1



′



= E



(FXt−1)
(
M1Xt−1|t−1 (i)

)′
+ (FXt−1)

(
M2Xt−1|t−1 (δt−1 (i))

)′
+ (FXt−1) (M3Xt−1)

′

+ (FXt−1) (N5zt−1)
′

+ (G1ut) (N1ut)
′

+ (G3et) (N3et)
′

+ (G4zt−1)
(
M1Xt−1|t−1 (i)

)′
+ (G4zt−1)

(
M2Xt−1|t−1 (δt−1 (i))

)′
+ (G4zt−1) (M3Xt−1)

′

+ (G4zt−1) (N5zt−1)
′



(2.37)
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where we use the fact that period-t shocks are orthogonal to period-(t− 1) objects

and make use of assumption 2 (which grants us that limN→∞ φN (i) = 0 ∀i) to note

that there is no covariance between period-(t− 1) objects and vt−1 (i) ∀i.

Next, we note that for any j and any t, we may write

E
[
XtXt|t (j)′

]
= E

[(
Xt|t (j) + Et (j) [Xt]

)
Xt|t (j)′

]
= E

[
Xt|t (j)Xt|t (j)′

]
= Vt|t

where the second equality makes use of the fact that since Et (j) [Xt] is spanned by

the set of orthogonal signal innovations
{
st|t−1 (j) , st−1|t−2 (j) , · · ·

}
and these are

orthogonal to Xt|t (j) by construction, then it must be that Et (j) [Xt] and Xt|t (j)

are orthogonal for all j and t. Note that Vt|t ≡ E
[
Xt|t (j)Xt|t (j)′

]
∀j is the variance

of each agent’s contemporaneous error (common to all agents as their problems are

symmetric).

Using this, we may rewrite (2.37) as

E
[
Xtst|t−1 (i)′

]
= FVt−1|t−1M

′
1

+ FVt−1|t−1M
′
2

+ FUt−1M
′
3

+ FG2ΣzzN
′
5

+G1ΣuuN
′
1

+G3ΣeeN
′
3

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5
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or, defining M ≡
[
M1 M2 M3

]
, as simply

E
[
Xtst|t−1 (i)′

]
= F

[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G3ΣeeN
′
3

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5 (2.38)

Turning to the second term in equation (2.30), we have that

E
[
st|t−1 (i) st|t−1 (i)′

]
= E




M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)

+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



×


M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)

+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



′



= E




M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1



×


M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1


′


+M2E

[
Xt−1|t−1 (δt−1 (i))vt−1 (δt−1 (i))′

]
N ′4

+N4E
[
vt−1 (δt−1 (i))Xt−1|t−1 (δt−1 (i))′

]
M ′

2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 +N3ΣeeN

′
3
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2.C. Proof of theorem 1.

Expanding out the various cross-products then gives us

E
[
st|t−1 (i) st|t−1 (i)′

]
= M1Vt−1|t−1M

′
1 +M1Wt−1|t−1M

′
2 +M1Vt−1|t−1M

′
3

+M2Wt−1|t−1M
′
1 +M2Vt−1|t−1M

′
2 +M2Vt−1|t−1M

′
3

+M3Vt−1|t−1M
′
1 +M3Vt−1|t−1M

′
2 +M3Ut−1M

′
3

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

+N3ΣeeN
′
3

where Wt|t ≡ E
[
Xt|t (i)Xt|t (j)′

]
∀i 6= j is the covariance between any two agents’

contemporaneous errors (common to all agent-pairs as their problems are symmetric

and the network is opaque so they each have the same probability of observing the

same target). Similarly to the covariance term, this may be written simply as

E
[
st|t−1 (i) st|t−1 (i)′

]
= M

 Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

+N3ΣeeN
′
3 (2.39)
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2.C. Proof of theorem 1.

Substituting (2.38) and (2.39) into (2.30) and gathering like terms, we arrive at:

Kt =



F
[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5

+G3ΣeeN
′
3



×



M

 Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 +N3ΣeeN

′
3



−1

(2.40)

2.C.2 Evolution of the variance-covariance matricies

Unconditional variance of the state vector of interest

From the conjectured law of motion, we can read immediately that the variance of

the state vector of interest evolves as:

Ut = FUt−1F
′ (2.41)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′

Variance of agents’ expectation errors

First, subtracting Et−1 (i) [Xt] from each side of the state equation, we have:

Xt − Et−1 (i) [Xt] = F (Xt−1 − Et−1 (i) [Xt−1]) (2.42)

+G1ut +G2zt +G3et +G4zt−1

85



2.C. Proof of theorem 1.

Taking the variance of each side, we have that the prior variance will be given by:

Vt|t−1 = FVt−1|t−1F
′ (2.43)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′

Next, we subtract each side of equation (2.29) from Xt and rearrange to obtain

(Xt − Et (i) [Xt]) +Ktst|t−1 (i) = (Xt − Et−1 (i) [Xt]) (2.44)

Since the signal innovation is orthogonal to the contemporaneous error, Xt−Et (i) [Xt]

by construction, the variance of the right-hand side must equal the sum of the vari-

ances on the left-hand side, thereby giving:

Vt|t +Kt V ar
(
st|t−1 (i)

)
K ′t = Vt|t−1

or

Vt|t = Vt|t−1 −Kt



M

 Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N3ΣeeN

′
3 +N4ΣvvN

′
4


K ′t

(2.45)

Covariance between agents’ expectation errors

First, from (2.42), we have that the prior covariance between two agents’ errors is

given by:

Wt|t−1 ≡ E
[
Xt|t−1 (i)Xt|t−1 (j)′

]
= FWt−1|t−1F

′ (2.46)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′
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2.C. Proof of theorem 1.

Next, returning to equation (2.44)

(Xt − Et (i) [Xt]) = (Xt − Et−1 (i) [Xt])−Ktst|t−1 (i) (2.47)

note that agent i’s signal innovation will not necessarily be orthogonal to either of

j’s expectation errors, so we expand this fully to obtain

Wt|t = Wt|t−1

+KtCov
(
st|t−1 (i) , st|t−1 (j)

)
K ′t

− Cov
(
Xt|t−1 (i) , st|t−1 (j)

)
K ′t

−KtCov
(
st|t−1 (i) , Xt|t−1 (j)

)
(2.48)

For the second term on the right-hand side, we have

E
[
st|t−1 (i) st|t−1 (j)′

]
= E




M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)

+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



×


M1Xt−1|t−1 (j)

+M2Xt−1|t−1 (δt−1 (j))

+M3Xt−1

+N1ut +N2vt (j)

+N4vt−1 (δt−1 (j)) +N5zt−1 +N3et



′



= E




M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1



×


M1Xt−1|t−1 (j)

+M2Xt−1|t−1 (δt−1 (j))

+M3Xt−1

+N5zt−1


′


+N1ΣuuN

′
1

+N3ΣeeN
′
3
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2.C. Proof of theorem 1.

Given i 6= j and assumption 2, it must be the case that i, j, δt−1 (i) and δt−1 (j) are

four different agents, almost surely. We therefore have

E
[
st|t−1 (i) st|t−1 (j)′

]
= M

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

+N1ΣuuN
′
1

+N3ΣeeN
′
3 (2.49)

For the third term, we have

Cov
(
Xt|t−1 (i) , st|t−1 (j)

)
= E




FXt−1|t−1 (j)

+G1ut

+G2zt

+G4zt−1

+G3et



×


M1Xt−1|t−1 (i)

+M2Xt−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)

+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



′


= F

[
Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5

+G3ΣzzN
′
3 (2.50)

while the fourth term is the transpose of the same.
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2.C. Proof of theorem 1.

Filter summary

In summary, the filter evolves through the following system of equations:

E
[
st|t−1 (i) st|t−1 (i)′

]
= M

 Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 (2.51a)

E
[
st|t−1 (i) st|t−1 (j)′

]
= M

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)

′

+N1ΣuuN
′
1 (2.51b)

E
[
Xtst|t−1 (i)′

]
= F

[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5 (2.51c)

E
[
Xt|t−1 (i) st|t−1 (j)′

]
= F

[
Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)

′

+G4ΣzzN
′
5 (2.51d)
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Kt = E
[
Xtst|t−1 (i)′

] (
E
[
st|t−1 (i) st|t−1 (i)′

])−1
(2.51e)

Ut = FUt−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.51f)

Vt|t−1 = FVt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.51g)

Wt|t−1 = FWt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (2.51h)

Vt|t = Vt|t−1 −KtE
[
st|t−1 (i) st|t−1 (i)′

]
K ′t (2.51i)

Wt|t = Wt|t−1 +KtE
[
st|t−1 (i) st|t−1 (j)′

]
K ′t

− E
[
Xt|t−1 (i) st|t−1 (j)′

]
K ′t

−KtE
[
st|t−1 (i)Xt|t−1 (j)′

]
(2.51j)

Provided has all eigenvalues of F are within the unit circle, then there will exist a

steady state (i.e. time-invariant) filter, found by iterating these equations forward

until convergence is achieved.
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2.C. Proof of theorem 1.

2.C.3 Confirming the conjectured law of motion

The state vector of interest and its law of motion are conjectured to be:

Xt ≡



xt

Et [Xt]
{1}Ẽt [Xt]
{2}Ẽt [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1 (2.52)

To confirm this law of motion, we first combining equations (2.29) and (2.36) to

write the agents’ filter as:

Et (i) [Xt] = FEt−1 (i) [Xt−1]

+K


M1 (Xt−1 − Et−1 (i) [Xt−1])

+M2 (Xt−1 − Et−1 (δt−1 (i)) [Xt−1])

+M3Xt−1

+N1ut +N2vt (i) +N3et

+N4vt−1 (δt−1 (i)) +N5zt−1


Gathering like terms gives

Et (i) [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)Et−1 (i) [Xt−1]

−KM2Et−1 (δt−1 (i)) [Xt−1]

+KN1ut

+KN2vt (i)

+KN3et

+KN4vt−1 (δt−1 (i))

+KN5zt−1 (2.53)

91



2.C. Proof of theorem 1.

Taking the simple average of equation (2.53) gives

Et [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)Et−1 [Xt−1]

−KM2
{1}Ẽt−1 [Xt−1]

+KN1ut

+KN3et

+KN4
{1}ṽt−1

+KN5zt−1

where I have used proposition 2 to replace
∫ 1

0
vt−1 (δt−1 (i)) di with {1}ṽt−1. But since

{1}ṽt−1 is part of zt−1, while Et−1 [Xt−1] and {1}Ẽt−1 [Xt−1] are part of Xt−1, we can

simplify this down to:

Et [Xt] = {K (M1 +M2 +M3) + (F −KM1)Ts −KM2Tw1}Xt−1

+KN1ut

+KN3et

+K
([
N4 01×∞

]
+N5

)
zt−1 (2.54)

Next, taking the q-th weighted average of equation (2.53) gives

{q}Ẽt [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)
{q}Ẽt−1 [Xt−1]

−KM2
{q+1}Ẽt−1 [Xt−1]

+KN1ut

+KN2
{q}ṽt

+KN3et

+KN4
{q+1}ṽt−1

+KN5zt−1
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where the last two terms have again made use of proposition 2. From this, we can

read immediately that

{q}Ẽt [Xt] =
{
K (M1 +M2 +M3) + (F −KM1)Twq −KM2Twq+1

}
Xt−1

+KN1ut

+K
[
01×r(q−1) N2 01×∞

]
zt

+KN3et

+K
([

01×rq N4 01×∞

]
+N5

)
zt−1 (2.55)

where r is the number of elements in each agents’ vector of idiosyncratic shocks, vt (i).

Putting it all together, we substitute equations (2.54) and (2.55) into equation (2.52)

to arrive at

F =



[
A 0m×∞

]
K (M1 +M2 +M3) + (F −KM1)Ts −KM2Tw1

K (M1 +M2 +M3) + (F −KM1)Tw1 −KM2Tw2

K (M1 +M2 +M3) + (F −KM1)Tw2 −KM2Tw3

...


(2.56a)

G1 =



P

KN1

KN1

KN1

...


G2 =



0m×∞

0∞×∞

K
[
N2 01×r 01×r 01×∞

]
K
[
01×r N2 01×r 01×∞

]
...


(2.56b)

G3 =



0m×n

KN3

KN3

KN3

...


G4 =



0m×∞

K
([
N4 01×p 01×r 01×∞

]
+N5

)
K
([

01×p N4 01×r 01×∞

]
+N5

)
K
([

01×r 01×r N4 01×∞

]
+N5

)
...


(2.56c)

where m is the number of elements in the underlying state (xt) and n is the number

of elements in the vector of public signal noise (et). This confirms the conjectured

structure to the law of motion and implicitly defines the coefficient matricies. Note
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2.C. Proof of theorem 1.

that since the matricies in (2.56) are recursive, finding the solution involves finding

the fixed point of the system for a given Kalman gain (K) and pre-chosen upper

limit (k∗) on the number of orders of expectations to include.
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2.D. Extending the model to dynamic actions

Appendix 2.D Extending the model to dynamic

actions

We here consider an illustrative example of extending the model of this chapter to

consideration of dynamic actions. In particular, we allow agents’ decision rules to

be slightly more general, with an inclusion of agents’ expectations regarding the

next-period average action. That is, we suppose that individual decisions are made

according to the following rule:

gt (i) = α′spt (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)
[
gt+1

]
(2.57)

where agents’ private signals are formed as

spt (i) = Bxt +Qvt (i)

We retain the assumption that the underlying state follows an AR(1) process:

xt = Axt−1 + Put

and still suppose that the full hierarchy of expectations regarding the underlying

state is given by:

Xt = E(0:∞)
t [xt]

Our goal is to show that gt (i) may be expressed in the general form

gt (i) = λ′0wt−1 + λ′2Xt + λ′1Et (i) [Xt] + λ′3vt (i)

To do this, we start by taking the simple average of equation (2.57) to give:

gt = α′Bxt + η′xEt [Xt] + ηyEt [gt] + ηzEt

[
gt+1

]
To keep the notation clean, define θt ≡ α′Bxt + η′xEt [Xt] so that

gt = θt + ηyEt [gt] + ηzEt

[
gt+1

]
We now substitute this equation back into itself in the second element (ηyEt [gt]):

gt = θt + ηyEt [θt] + η2yE
(2)

t [gt] + ηzEt

[
gt+1

]
+ ηyηzE

(2)

t

[
gt+1

]
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Repeating this process, in the limit (and using the fact that ηy ∈ (0, 1) and assuming

that average expectations don’t explode), this becomes:

gt =

(
∞∑
k=0

ηkyE
(k)

t [θt]

)
+

(
ηz

∞∑
k=1

ηk−1y E
(k)

t

[
gt+1

])

Now briefly consider θt and simple-average expectations of θt. We can write that:

θt = α′Bxt + η′xE
(1)

t [Xt]

E
(1)

t [θt] = α′BE
(1)

t [xt] + η′xE
(2)

t [Xt]

E
(2)

t [θt] = α′BE
(2)

t [xt] + η′xE
(3)

t [Xt]

· · ·

Next, suppose that the matrix Ts selects the simple-average expectation of Xt from

Xt:

E
(1)

t [Xt] = TsXt

and that the matrix S selects xt from Xt (obviously S =
[
Il 0l×∞

]
where l is the

number of elements in xt):

xt = SXt

Then we can write:

θt = (α′BS + η′xTs)Xt

E
(1)

t [θt] = (α′BS + η′xTs)TsXt

E
(2)

t [θt] = (α′BS + η′xTs)T
2
sXt

· · ·

or, in general,

E
(k)

t [θt] = (α′BS + η′xTs)T
k
sXt
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2.D. Extending the model to dynamic actions

The average period-t action can therefore be written as

gt = (α′BS + η′xTs)

(
∞∑
k=0

(ηyTs)
k

)
Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
gt+1

]
= (α′BS + η′xTs) (I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
gt+1

]
= β′Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
gt+1

]
where β′ ≡ (α′BS + η′xTs) (I − ηyTs)−1. Next, substitute this back into itself for

the next-period average action:

gt = β′Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
β′Xt+1 + ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
gt+2

]]

= β′Xt + ηz

∞∑
k=1

ηk−1y β′E
(k)

t [Xt+1] + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
gt+2

]]

Next, we use the following conjectured aspect of the law of motion for Xt:

Et (i) [Xt+1] = Et (i) [FXt]

for some matrix of parameters F . This implies that

E
(k)

t [Xt+1] = FE
(k)

t [Xt]

and hence that

gt = β′Xt + ηzβ
′F

∞∑
k=1

ηk−1y E
(k)

t [Xt] + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
gt+2

]]

= β′Xt + ηzβ
′F

(
∞∑
k=1

ηk−1y T ks

)
Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
gt+2

]]

= β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
gt+2

]]
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Next, expand the gt+2 term to give

gt = β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt

+ ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
β′Xt+2 + ηz

∞∑
m=1

ηm−1y E
(m)

t+2

[
gt+3

]]]
= β′Xt

+ ηzβ
′FTs (I − ηyTs)−1Xt

+ β′
(
ηzFTs (I − ηyTs)−1

)2
Xt

+ ηz

∞∑
k=1

ηk−1y E
(k)

t

[
ηz

∞∑
l=1

ηl−1y E
(l)

t+1

[
ηz

∞∑
m=1

ηm−1y E
(m)

t+2

[
gt+3

]]]
Continued substitution then arrives at:

gt = β′
∞∑
j=0

(
ηzFTs (I − ηyTs)−1

)j
Xt

which, in turn, becomes

gt = (α′BS + η′xTs) (I − ηyTs)−1
(
I − ηzFTs (I − ηyTs)−1

)−1︸ ︷︷ ︸
≡a′

Xt

Using this simple expression of gt = a′Xt, we can substitute it back into the agents’

individual decision rule to obtain

gt (i) = α′ (Bxt +Qvt (i)) + (η′x + ηya
′ + ηza

′F )Et (i) [Xt]

= α′B︸︷︷︸
λ′2

xt + (η′x + ηya
′ + ηza

′F )︸ ︷︷ ︸
γ′3

Et (i) [Xt] + α′Q︸︷︷︸
γ′4

vt (i)

which is now in the necessary form. As an aside, taking a simple average of this

gives

gt = α′BSXt + (η′x + ηya
′ + ηza

′F )Et [Xt]

which implies the following constraint on the coefficients of the decision rule (α, ηx,

ηy, ηz) and the expectation transition matrix (F ):

a′ = α′BS + (η′x + ηya
′ + ηza

′F )Ts
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Chapter 3

Networks and Inflation

Abstract

This paper presents a model of price setting wherein firms partially inform

their decisions by watching price changes by other firms across an observation

network. Within a context of imperfect common knowledge and for a wide

range of plausible and commonly observed network structures, idiosyncratic

shocks are shown to not “wash out” in aggregate prices. These aggregate

effects are also shown to be persistent despite the underlying idiosyncratic

shocks being entirely transitory and firms having complete flexibility in their

price-setting. The model is therefore able to explain a variety of recently

documented stylised facts regarding price setting, including the observation

that short-lived price changes appear to contain macroeconomic content.

3.1 Introduction

This paper develops a network learning-based microfoundation for cost-push shocks,

with the aggregate price level able to persistently deviate from it’s long-run trend

despite (a) the absence of any aggregate shocks to the economy; (b) firms being free

to adjust their prices every period; and (c) network shocks (comprised of weighted

sums of idiosyncratic shocks) being purely transitory.

That idiosyncratic shocks are an important aspect of firms’ price-setting decisions

is now universally accepted. However, it remains commonly assumed that since the

shocks themselves must cancel out,1 the effects of those shocks on firms’ decisions

1Over a continuum of agents, that mean-zero idiosyncratic shocks must sum to zero is true by
definition; if they did not, they would necessarily include an aggregate component.
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3.1. Introduction

must also wash out in aggregation. In such a setting, firm-specific shocks can only

contribute to aggregate dynamics by causing sluggish responses to aggregate shocks,

because firms take time to be sure that a given shock is truly common to all firms.

In contrast to this, recently documented evidence from studies of micro-level price

changes suggests that those price changes most likely to have been driven by idiosyn-

cratic factors do not cancel out and therefore do indeed appear to contain content

of macroeconomic importance.

To achieve the emergence of aggregate effects from idiosyncratic shocks, this

chapter makes applied use of the model developed in the previous chapter: we sup-

pose that firms with complete price-setting flexibility learn about the state of the

economy by observing each other’s prices in a directed network and set their own

prices on the basis of their marginal costs and, for reasons of strategic complement-

arity, their beliefs regarding the average price.

With unobserved aggregate variables following an AR(1) process, we show that

the full hierarchy of firms’ expectations will follow an ARMA(1,1) process, with

current and lagged weighted averages of firms’ idiosyncratic shocks entering at an

aggregate level. For sufficiently irregular networks (i.e. when the link distribution

is sufficiently non-uniform) these weighted sums are shown to not converge to zero,

thereby adding aggregate volatility to the system. Despite idiosyncratic shocks being

purely transitory, the aggregate volatility they induce through the network is also

shown to exhibit (endogenous) persistence.

This chapter therefore adds to the burgeoning literature on deriving aggregate

volatility from agents’ idiosyncratic shocks. Key in this field to date includes the

work by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Saleh (2012).2 Examining the

idea of firms operating within an inter-sectoral supply network, they demonstrate

idiosyncratic productivity shocks leading to volatility in aggregate output and, for

finite networks, derive an upper limit for the rate at which aggregate volatility de-

clines as the number of firms increases. For sufficiently asymmetric trading networks,

they show that aggregate volatility need not vanish at all. In another vein, Gabaix

(2011) demonstrates how aggregate volatility can emerge from idiosyncratic shocks

2The work of this paper was first developed independently by Carvalho (2010) and Acemoglu,
Ozdaglar, and Tahbaz-Saleh (2010) and later combined to the paper referenced in the text.
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when the distribution of firm sizes exhibits fat tails, even when those firms do not

trade directly with each other. Each of these share with the current chapter an

emphasis on unequal, or fat-tailed, distributions. In the model of Gabaix (2011),

aggregate volatility arises because the largest firms contribute disproportionately to

aggregate production, while in that by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-

Saleh (2012), it emerges through those firms whose output is most extensively used

as an intermediate good by other firms. In the current paper, with network-based

learning, it derives from firms whose price changes are most readily observed.

It may be noted that because firms may choose to observe the prices of other firms

with whom they do not trade and are not competitors (a perfectly reasonable action

provided that their marginal costs are correlated), this model also represents a novel

transmission mechanism for inflation across industries or geographies independent

of it’s path along production chains. However, the origin of an observation network

remains largely outside the scope of the current paper, which takes the network as

exogenously given.

When firms exist in an observation network that includes (a) repeated actions;

(b) Bayesian updating; and (c) strategic interaction, it becomes necessary for them

to estimate not only the simple average of all firms’ expectations (for reasons of

strategic interaction), but also the expectations of their individual observees and, in

turn, their observees’ expectations of others again. As the number of agents in the

network expands, this causes an explosion in the size of the state vector quite apart

from the presence of higher-order expectations (see section 1.2 in the first chapter

for more detail) and has typically been thought to prevent closed-form analysis in

anything other than trivially small networks.

To date, research in network learning has therefore abandoned one of these three

assumptions in order to achieve tractability. For example, in abandoning the assump-

tion of repeated actions, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) characterise

the (Bayesian) equilibrium of a sequential learning model for a general stochastic

sampling process and demonstrate that so long as no group of agents is excessively

influential, there will be asymptotic learning of the truth when private beliefs are

unbounded. In giving up on rational (Bayesian) learning, Golub and Jackson (2010)

study learning in a setting where agents “näıvely” update their beliefs regarding a
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fixed state of the world by taking weighted averages of their neighbour’s opinions.

In contrast to earlier work in this sub-field, they are able to demonstrate that with

such heuristic learning, individual beliefs converge to the truth for a broad variety of

networks (provided they are sufficiently large) and provide upper and lower bounds

on the rate of convergence. Finally, Mueller-Frank (2013) details a formal structure

for Bayesian learning over an undirected social network (i.e. with pairwise sharing)

in the absence of strategic concerns by agents. He notes the extreme practical diffi-

culties of actually implementing such a rule, both for the agents in principle and the

researcher more generally.

In contrast to these, this paper makes use of results presented in the previous

chapter that permit the inclusion of all three assumptions regarding network learning

by combining them with a fourth: network opacity. By denying agents knowledge

of the exact topology of the network and instead supposing that they know only

the (i.i.d.) distribution from which observation targets are drawn and do not learn

about the structure of the network over time, firms’ state vector of interest includes

an infinite sequence of weighted average expectations instead of individual agents’

expectations. Because of the recursive nature of firms’ learning, this sequence will

be of decreasing importance to the hierarchy of simple-average expectations, so an

arbitrarily accurate approximation of the full solution may then be found by selecting

a sufficiently high cut-off for the number of weighted-average expectations to include,

together with the standard cut-off for the number of higher-orders of expectation.

This paper falls broadly within and was initially inspired by the literature on

imperfect common knowledge (where firms possess incomplete information about

aggregate state variables because of imperfect signals). The idea that real effects

may arise from nominal disturbances through imperfect information dates to Lucas

(1972) and, more recently, Woodford (2003). The solution method developed by

this paper builds upon that put forward by Nimark (2008, 2011a), who introduced

dynamic pricing and idiosyncratic shocks in marginal costs to the Woodford (2003)

paper. Other recent work in this area includes Adam (2007), who looked at optimal

monetary policy in the Woodford setting and Melosi (2012), who uses the Survey of

Professonal Forecasters to estimate a DSGE model with price setters experiencing

imperfect common knowledge.
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Of course, firms existing within observation networks need not only feed into

a setting of imperfect common knowledge. It might also, for example, be readily

applied to the rational inattention work of Sims (2003) or the “sticky information”

literature of Mankiw and Reis (2002) and Reis (2006). In this latter case, if we sup-

pose that a full information update is costly and observing the price of a competitor

less so, it is easy to see that a natural incentive emerges for a firm to delay a full

update and instead “free ride” on the price changes of their competitors. Explora-

tion of network learning in these other settings would be a fruitful area of research.

However, as shown below, evidence from a variety of surveys of firms’ price-setting

behaviour suggests that the imperfect common knowledge setting may be the more

likely reason for firms’ observation of each others’ prices.

The remainder of this paper is organised as follows. Section 3.2 provides evidence

of the key assumptions of this paper. Section 3.3 then presents a DSGE model in

which firms are free to adjust their prices every period, but suffer from incomplete

information and seek to remedy this by observing each others’ prices in a network.

Section 3.4 presents simulation results, while section 3.5 concludes.
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3.2 Evidence

In this section we gather evidence in support of the key assumptions of this chapter’s

model. In particular, we argue here that (a) firms set their prices, in part, on the

basis of observed prices posted by individual competitors; and (b) this is done within

a context of imperfect common knowledge, in the sense of Woodford (2003).

That firms operate within not just transactional but also observational networks

is to some extent intuitive, or even self evident. An independent coffee shop will

obviously take note of the prices offered by their competitors, including both other

independent outlets nearby and larger chains such as Starbucks. The model presented

here goes further than this, however, because firms might also observe the price

movements of businesses that are not direct competitors or suppliers in order to

learn about factors common to all firms. When the manager of a book shop observes

a price change at a Thai restaurant next door, for example, or even a car mechanic

around the corner, they obtain information about movements in average marginal

costs and local demand, thereby improving their ability to ascertain that portion of

their own cost or demand changes that are idiosyncratic.

We here first describe evidence from a number of price-setting surveys conducted

(typically by or on behalf of central banks) in the 1990s and 2000s and then explore

what evidence may be garnered from recent studies of directly observed price changes.

3.2.1 Price-setting surveys

Starting with the work of Blinder (1991) and Blinder, Canetti, Lebow, and Rudd

(1998) in the United States and continuing through to the first half of the 2000s,

a variety of surveys were conducted in an attempt to shed light on precisely how

firms set prices. These include work in the UK (Hall, Walsh, and Yates, 1997);

Sweden (Apel, Friberg, and Hallsten, 2005); Japan (Nakagawa, Hattori, and Tak-

agawa, 2000); Canada (Amirault, Kwan, and Wilkinson, 2006); and nine euro-zone

countries (Fabiani, Druant, Hernando, Kwapil, Landau, Loupias, Martins, Mathä,

Sabbatini, Stahl, and Stokman, 2005).3

3Countries included were: Austria (Kwapil, Baumgartner, and Scharler, 2005); Belgium (Aucre-
manne and Druant, 2005); France (Loupias and Ricart, 2004); Germany (Stahl, 2005); Luxembourg
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When looking at those firms following partially or completely state-based pricing,4

Canadian firms listed price changes by competitors as the most important cause in

triggering an adjustment, as did those in Sweden. In Spain, 53% of firms reported

that competitors’ price movements were important factors in triggering their own

price changes. In considering the magnitude of price changes, 25% of surveyed UK

firms reported basing their prices on those of their competitors. This figure agreed

with the 27% of surveyed eurozone firms reporting the same, although this ranged

from 13% in Portugal to 38% in France. In the Netherlands, where the survey was

unique in including very small firms among those polled, this figure was 21.6% overall

but rose sharply to 34.1% for firms employing only one worker.

These responses are strongly supportive of the idea that firms observe each others’

prices, and we can only assume that they do so as a result of some form of imperfect

information; that they learn something from their observations.

However, that firms observe each others’ prices does not, in itself, speak to why

they might do so. If, for example, firms experience significant costs in gathering in-

formation and developing optimal price plans in the style of the “sticky information”

models of Mankiw and Reis (2002, 2006, 2007) and Reis (2006), then mimicking the

price changes of one’s competitors may be a useful short-cut. A fair approximation of

the firm’s optimal price could then be achieved by observing the prices of competitors

with similar production technologies and who face similar demand. Alternatively, if

firms face strategic complementarity in their price-setting and there are unobserv-

able aggregate state variables in the style of Woodford (2003) and Nimark (2008),

observing other firms’ decisions may be used to inform businesses of the average

actions or beliefs of their competitors.

Fortunately, the surveys also queried firms as to their opinions regarding the

reasons for price stickiness, from which four theories stand out as being significant:

implicit contracts, explicit contracts, cost-based pricing and coordination failure. All

of these were among the top five recognised reasons in all 14 surveys when they were

(Lünnemann and Mathä, 2006); the Netherlands (Hoeberichts and Stokman, 2010); Portugal (Mar-
tins, 2005); and Spain (Alvarez and Hernando, 2005).

4The alternative being to use entirely time-based pricing, whereby firms adjust their prices at
a set (average) frequency irrespective of economic conditions.
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included in the options put to surveyed firms. In stark contrast, menu costs and

its more recent variant, information costs, were among the least supported ideas,

being in the bottom three reasons for most European surveys and Canada. Only in

America and Austria were these costs placed in the middle of the group, menu costs

being cited as the sixth most proximate cause of price rigidity in the United States

and seventh in Austria and information costs coming sixth in Austria.

The low importance attached to information costs suggests that while there may

be imperfect information, it does not manifest in the form of infrequently updated

information sets. On the contrary, the strong recognition of coordination concerns

and cost-based pricing are supportive of this paper’s underlying model: the former

suggests that businesses are concerned with their strategic complementarity in price-

setting and the latter that (presumably marginal) costs drive movements in prices.

3.2.2 Stylised facts from observed price changes

Although early work suggested that most prices change around once per year,5 the

seminal work by Bils and Klenow (2004) observed that the median duration of prices

in CPI data from the U.S. Bureau of Labor Statistics (BLS) was 4.3 months, a

frequency almost three times higher than previously thought. This triggered a rush

of further work exploring and broadly characterising microeconomic price changes.

Klenow and Malin (2010) provide an excellent survey of this literature and provide

a summary in the form of ten stylised facts. Among these are that:

1. prices change at least once a year, twice in America;

2. temporary price changes – both reductions and increases – around more rigid

“reference prices” are common and do not cancel out in aggregation, suggesting

that some macroeconomic content is present in the more frequent updates;

3. price changes are typically larger than those needed to keep up with infla-

tion, suggesting that idiosyncratic factors weigh more heavily on a firm’s price-

setting decision than aggregate factors;

4. changes in relative prices tend to be short lived, suggesting that idiosyncratic

shocks are less persistent than aggregate disturbances; and
5See, for example, Taylor (1999).
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5. price changes are generally linked to changes in marginal costs, particularly

wages.

The first of these dictates that we require some form of structural, or real rigidity

in addition to firms’ nominal rigidities – a “contract multiplier,” in the words of

Taylor (1980) – to explain the sluggish responses observed in aggregate price indicies.6

The second and third points suggest that even if firms’ idiosyncratic shocks have zero

mean and “cancel out” when averaged, average temporary price changes (that are

presumably based upon them) do not cancel out. Finally, the fourth and fifth points

are suggestive of a model in which firms’ marginal costs are subject to persistent

aggregate shocks and only transitory idiosyncratic shocks.

The model presented in this paper is consistent with all of the above stylised

facts and with observations of rigidity in aggregate prices. Because firms are able to

observe the prices of any other firm, it also represents a framework for the transmis-

sion of inflation (and hence, its persistence) across industries or geographies and not

simply along production chains.

6See, for example, Christiano, Eichenbaum, and Evans (1999) or Romer and Romer (2004) for
the USA, or Peersman and Smets (2003) for the Euro area.
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3.3 The Model

In this section we construct and analyse a dynamic, stochastic, general equilibrium

(DSGE) model in which firms make use of network learning in their pricing decisions.

The real economy is presented here in a standard model with no capital. A repres-

entative household purchases differentiated goods via a Dixit and Stiglitz (1977)

aggregator and supplies labour to firms. Monopolistic firms produce the goods and

sell them to the household, with prices able to be adjusted costlessly every period.

Persistent aggregate shocks occur within the household’s preferences, the central

bank’s interest rate policy and economy-wide TFP, while firms also face idiosyn-

cratic, transitory shocks to their demand, nominal wages and productivity. Only the

main results are presented here; readers interested in the full derivation are referred

to appendix 3.A.

In what follows, unless otherwise indicated, lower-case letters are used to denote

(natural) log deviations from the long-run steady state values of the corresponding

upper-case variables (e.g. yt ≡ ln (Yt)− ln (Y ss)).

3.3.1 The household

Each period, a representative household maximises

EHH
t

 ∞∑
s=0

βs

eεCt+sC
1− 1

σ
t+s − 1

1− 1
σ

− eεHt+sH
1+ 1

ψ

t+s

1 + 1
ψ


 (3.1)

subject to a standard budget constraint and where EHH
t [·] is the mathematical ex-

pectation conditional on the household’s information set in period t (defined below);

Ct is aggregate consumption; Ht is the aggregate labour supply; σ is the elasticity of

intertemporal substitution; ψ is the Frisch elasticity of labour supply; and εCt and

εHt are persistent, mean zero shocks (specified below) to the utility of consumption

and the disutility of labour respectively. The shock to the disutility of labour may

be considered a reduced-form way of capturing broad shocks to the labour supply,

such as a temporary impairment to labour mobility.

Aggregate consumption is given by the Dixit-Stiglitz aggregator over individual
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consumption goods:

Ct =

(∫ (
e−vy,t(j)Ct (j)

) ε−1
ε dj

) ε
ε−1

(3.2)

where ε is the elasticity of substitution and vy,t (j) is a transitory, mean zero, idiosyn-

cratic shock to the household’s demand for good j (defined below). The household’s

subsequent first-order conditions are:

Wt

Pt
eεCtC

− 1
σ

t = eεHtH
1
ψ

t (3.3)

eεCtC
− 1
σ

t = β (1 + it)E
HH
t

[
eεCt+1C

− 1
σ

t+1

1

Πt+1

]
(3.4)

where Wt/Pt is the real wage; it is the net nominal interest rate; and Πt ≡ Pt/Pt−1

is the gross rate of inflation. It can also be shown that household demand for good

j is given by:

Ct (j) =

(
Pt (j)

Pt

)−ε
Cte

vy,t(j) (3.5)

and the aggregate price level by:

Pt =

(∫
Pt (j)1−ε dj

) 1
1−ε

(3.6)

3.3.2 Firms

Each good is produced by a single firm according to a common production function

that deploys labour with decreasing marginal productivity:

Yt (j) = At (j)Ht (j)1−α (3.7)

with each firm’s productivity, At (j), given by:

ln (At (j)) = εAt + va,t (j) (3.8)

where εAt is a persistent, mean zero, aggregate shock and va,t (j) is a transitory, mean

zero, idiosyncratic shock (each specified below) to the firm’s productivity, broadly

defined. Firm j’s real marginal cost is then:

MCt (j) = (1 + η)
Wt (j)

Pt

1

At (j)

(
Yt (j)

At (j)

)η
(3.9)
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where η ≡ α
1−α is the elasticity of marginal cost w.r.t. output and Wt (j) is the

nominal wage paid by the firm, defined as:

Wt (j) ≡ Wte
vw,t(j) (3.10)

where vw,t (j) is a transitory, mean zero shock to the firm’s wage bargaining. Shocks

to At (j) should therefore be broadly interpreted as a reduced-form means of captur-

ing shocks to firms’ marginal costs other than those that act through demand or the

(real) wage.7

Firms engage in static pricing – i.e. they are free to costlessly update their prices

in every period – so that results presented here represent real rigidity, not nominal.

Given the results of Bils and Klenow (2004) and subsequent research, it is arguably

best to assume that there exists no nominal rigidity in at least some industries.

In this case, firm j’s optimal price in each period will be a simple markup over

that period’s nominal marginal cost, subject to the limits of j’s information set:

Pt (j) =

(
ε

ε− 1

)
Et (j) [PtMCt (j)] (3.11)

3.3.3 Market clearing

All markets clear each period, so that:

Yt (j) = Ct (j)∀t, j (3.12a)

Ht =

∫
Ht (j) dj ∀t (3.12b)

which implies that aggregate output is given by:

Yt = ZtH
1−α
t (3.13)

where aggregate TFP, Zt, combines individual firm productivities and distortions

from relative prices and transitory shocks to relative demand:

Zt ≡
(∫

At (j)−(1+η)
(
Pt (j)

Pt

)−ε(1+η)
e−(1+η)vy,t(j)dj

)− 1
1+η

(3.14)

7This obviously includes productivity shocks, but may be considered to also include shocks to
the firm’s marginal costs from other factors of production.
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3.3.4 The central bank

To close the model, we assume that the central bank sets nominal interest rates

according to the Taylor-like policy function:

it = κyE
CB
t [yt] + κπE

CB
t [πt+1] + εMt (3.15)

where ECB
t [·] is the mathematical expectation conditional on the central bank’s

information set in period t (defined below) and εMt is a persistent, mean zero shock

to monetary policy (specified below). Note that the component against inflation is

against expected future inflation rather than current inflation, to provide a more

accurate characterisation of modern central banking practice.

3.3.5 Stochastic processes

The underlying state of the economy, xt, therefore contains four aggregate shocks:

xt ≡
[
εAt εCt εHt εMt

]′
(3.16)

Of these, the shocks to productivity (εAt) and the disutility of labour (εHt) are pure

supply shocks as they enter the model only through firms’ marginal costs (although

note that the latter acts via higher real wages); the shock to monetary policy (εMt)

is a pure demand shock as it only enters through the IS (Eular) relation; and the

shock to the utility of consumption (εCt) has both supply and demand aspects in

that it affects both the spending/saving decision and the labour supply.

The underlying state is assumed to follow an AR(1) process:

xt = Axt−1 + ut (3.17)

where ut is a vector of period-t innovations identically and independently distributed

as N (0, I) and A is a matrix of fixed and commonly known parameters.

Idiosyncratic shocks to firms’ productivity (va,t (j)), wages (vw,t (j)) and demand

(vy,t (j)) are gathered together as

vt (j) ≡

va,t (j)

vw,t (j)

vy,t (j)

 (3.18)
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The vector vt (j) is entirely transitory, fully independent and jointly distributed as

N (0, σ2
vI).

3.3.6 Firms’ (linearised) marginal costs

We show in the appendix that firms’ (linearised) real marginal costs are given by

mct (j) =

(
η +

1

σ
+

1 + η

ψ

)
yt + ηvy,t (j)− ηε (pt (j)− pt) + ωt (j) (3.19)

where ωt (j) is the combined supply shock for firm j in period t:

ωt (j) ≡ Bxt +Qvt (j) (3.20a)

B =
[
− (1 + η)

(
1 + 1

ψ

)
−1 1 0

]
(3.20b)

Q =
[
− (1 + η) 1 0

]
(3.20c)

From this, we define
....
mct (j) to be a partial average of the firm’s real marginal cost:

the real marginal cost that firm j would incur without idiosyncratic demand shocks

and if called upon to produce the average quantity (i.e. if vy,t (j) = 0 and yt (j) = yt),

but still with idiosyncratic supply shocks:

....
mct (j) ≡

(
η +

1

σ
+

1 + η

ψ

)
yt + ωt (j) (3.21)

Finally, we define mct as the (true) average real marginal cost. That is, the real

marginal cost a firm would incur if facing the average demand and experiencing

the average supply shock (i.e. if producing the average quantity of output and

experiencing no idiosyncratic shocks):

mct ≡
(
η +

1

σ
+

1 + η

ψ

)
yt +Bxt (3.22)

3.3.7 Information and the network structure

Households and the central bank are assumed to possess complete information,8 so

that:

ECB
t [Xt−s] = EHH

t [Xt−s] = Xt−s ∀s ≥ 0
8An arguably more plausible (and certainly more interesting) scenario would be to restrict the

household and central bank to less than complete information so that dynamics might arise from
their higher-order expectations of each others’ and firms’ beliefs. Exploration of such a setting is
held for future research.

112



3.3. The Model

for any variable Xt, and to update their beliefs rationally, so that:

ECB
t [Xt+s] = EHH

t [Xt+s] = E [Xt+s|Ωt] ∀s ≥ 1

where Ωt is the set of all possible information available in period t.

Firms possess only incomplete information. We make an assumption of joint

rationality, in the sense of Nimark (2008), so that all firms know the structure and the

coefficients of the solution presented in section 3.3.9 below and firm j’s information

set evolves as:

I0 (j) =
{
F,G1, G2, G3,γp,γy, δy, σ

2
v/σ

2
u,Φ

}
(3.23a)

It (j) = {It−1 (j) , st (j)} (3.23b)

with st (j) being their set of public, private and social signals in period t.

For private signals, we will always maintain that firms observe their current-

period supply shock (ωt (j)) and the quantity of goods they produced and sold in

the previous period (yt−1 (j)). For public signals, we will variously suppose that all

firms receive common, but imperfect, signals of the previous period’s price level and

real GDP.

In addition to these, we suppose that firms receive social signals by observing the

previous-period prices set by individual competitors across an observation network

characterised by link distribution Φ. That is, st (j) includes the set gt−1 (δt−1 (j)),

where δt−1 (j) is firm j’s period-t draw from Φ, mapping them onto the index of a

subset of firms that reset their price in period t− 1.

For simplicity, the network is assumed to be effectively destroyed and redrawn

each period. It therefore satisfies assumption 1 of chapter 2: that the network is

opaque. The network is further assumed to be asymptotically irregular, in that the

distribution Φ satisfies assumption 2 of chapter 2 so that, by proposition 2, we can

define a vector of network shocks as:

zt ≡


{1}ṽt
{2}ṽt
{3}ṽt

...

 ∼ N (0,Σzz) Σzz =


Σ
{1}
ṽṽ Σ

{1}
ṽṽ Σ

{1}
ṽṽ · · ·

Σ
{1}
ṽṽ Σ

{2}
ṽṽ Σ

{2}
ṽṽ · · ·

Σ
{1}
ṽṽ Σ

{2}
ṽṽ Σ

{3}
ṽṽ · · ·

...
...

...
. . .

 (3.24a)
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where

{q}ṽt = lim
N→∞

1

N

N∑
i=1

vt

δt(· · · (δt︸ ︷︷ ︸
q

(i)))

 (3.24b)

Σ
{q}
ṽṽ = (1− (1− ζ∗)q) Σvv (3.24c)

and where ζ∗ ≡ limN→∞
∑N

i=1 φN (i)2 is the degree of irregularity in the network, with

ζ∗ = 0 indicating an asymptotically uniform link distribution and ζ∗ = 1 indicating

a degenerate distribution.

The precise origin of the network (in this case, the origin of Φ) is largely left

for future research and is here assumed to be exogenous. However, we do make two

points of note in this regard.

First, we observe that social optimality dictates that there be at least some de-

gree of irregularity in the network. When firms have incomplete information and

face strategic complementarities, there is an incentive for them to overcome the co-

ordination problem by all observing the same signal (i.e. have the distribution be

degenerate, with everybody observing the price of one particular firm with prob-

ability 1). However, doing so would maximise the variance of the network shocks

(which, recall, are aggregated idiosyncratic shocks). A social planner constrained to

only choosing the distribution Φ would therefore face a trade-off.9 A uniform dis-

tribution would minimise aggregate volatility and so raise welfare, but a degenerate

distribution would solve the price-coordination problem. Exactly how non-uniform

a distribution (i.e. how irregular a network) would be optimal would therefore be

determined by the strength of the strategic complementarity. A higher coefficient

against the average price in the individual firm’s optimal decision rule would make

the coordination problem more important and so result in a more asymmetric op-

timal distribution.

Second, we conjecture that the constrained social planner’s optimal distribution

will be a stable equilibrium. That is, conditional on all other firms drawing the iden-

tity of their observees from the distribution Φ, it will be optimal for any individual

9Of course, an unconstrained social planner would not face the informational or coordination
problems in the first place.
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firm to do the same. In appendix 3.B we provide a proof that this is true for a simple

setting where a continuum of firms set static (i.e. one-period) prices and decide on

the probabilities to assign to each of two potential observees.

3.3.8 Timing

Each period is divided into two phases, with the full gamut of innovations for the

period occurring as the period begins.

1. In phase one, firms observe their public and private signals and the previous-

period prices of a number of their competitors. Using this information, they

set their prices for the current period.

2. In phase two, the central bank and the representative household, both of whom

have full information, set the market-clearing interest rate and average nominal

wage. The household reveals the quantity demanded from each firm at the

given prices, firms discover their current-period marginal cost and produce the

goods. The household consumes the goods entirely.

The key point of this timing arrangement is to ensure that while firms receive

signals and know in advance that markets will clear, they cannot know exactly what

their marginal cost will be, even in the current period (because they do not know

what demand will be), when setting their prices.

3.3.9 Characterising the model solution

As per theorem 1 from chapter 2, the opaque nature of firms’ observation network im-

plies that their network learning problem will involve the simple-average expectation

(because of firms’ concern with the simple-average price) and a sequence of weighted

average expectations because of the irregularity and opacity of the network. The full

hierarchy of firms’ expectations regarding xt will therefore be defined recursively as:
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Xt ≡



xt

Et [Xt]
{1}Ẽt [Xt]
{2}Ẽt [Xt]

...


(3.25)

and will follow an ARMA(1,1) process given by:

Xt = FXt−1 +G1ut +G2zt +G3et +G4zt−1 (3.26)

On the demand side of the economy, we have the familiar linearised household Eular

equation (3.4) and the central bank’s policy function (3.15):

yt = Et [yt+1]− σEt [it − πt+1] + σ (εCt − Et [εCt+1])

it = κyyt + κπEt [πt+1] + εMt

where Et [·] is the full-information expectation formed by the representative house-

hold and the central bank. We combine these two to write simply

yt =
1

1 + σκy
Et [yt+1 − σ (κπ − 1) (pt+1 − pt)] + µ′yxt (3.27a)

where µy is given by

µ′y =
σ

1 + σκy

([
0 1 0 −1

]
−
[
0 1 0 0

]
A
)

(3.27b)

On the supply side of the economy, with firms free to adjust their prices in every

period, the linearised expression for their decision rule will be

pt (j) = Et (j)

[
pt +

1

1 + εη

....
mct (j)

]
(3.28)

where
....
mct (j) is the real marginal cost faced by a firm with an idiosyncratic demand

shock of zero that is called upon to produce the average quantity of goods.

With firms observing ωt (j) directly and defining χ ≡
(

1
1+εη

)(
η + 1

σ
+ 1+η

ψ

)
, we

show in the appendix that the aggregate price level may then be written as

pt =

(
1

1 + εη

)
Bxt +

∞∑
k=0

ξkE
(k+1)

t

 (χµ′y + ξ
(

1
1+εη

)
B
)
xt

+χ
(

1
1+σκy

)
(yt+1 + σ (1− κπ) pt+1)


(3.29a)
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where

ξ ≡ 1−
(

1

1 + εη

)(
η +

1

σ
+

1 + η

ψ

)(
σ

1 + σκy

)
(1− κπ) (3.29b)

which is to say that the aggregate price level is a function of the current period

average supply shock and the full hierarchy of average expectations regarding (a)

the current period average supply shock; (b) the next period’s aggregate demand;

and (c) the next period’s price level. Note that in order for the aggregate price to

be well defined, we require ξ ∈ (0, 1) and that this requires κπ < 1.10

The reduced-form solution

The solution may then be found by the method of undetermined coefficients. That

is, in addition to the law of motion for firms’ beliefs (3.26), we next posit (and verify)

reduced-form solutions of the following form:

pt = γ ′pXt (3.30a)

yt = γ ′yXt + δ′yzt (3.30b)

and similarly suppose expressions for the real wage and hours worked as:

wt − pt = γ ′$Xt + δ′$zt (3.30c)

ht = γ ′hXt + δ′hzt (3.30d)

Note that current-period network shocks do not appear in the reduced-form expres-

sion for the price level because firms do not contemporaneously observe any signals

that rely upon them. Network shocks do appear in the expressions for all real vari-

ables, however, because of the assumptions that (a) the representative household and

central bank have full information; and (b) markets clear.

10If the central bank’s reaction function (3.15) were to also include a term in current inflation as
well (for example, it = κyyt+κπ0πt+κπ1Et [πt+1]+ εMt) then the final term in the expression for ξ
would be (1 + κπ0 − κπ1), therefore allowing a stronger response to expected next-period inflation.
We have not done so here in order to ensure that firms’ prices are not backward looking.
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In appendix 3.A.5, we confirm the reduced-form solution and derive the following

conditions under which it holds:

γ ′p =

(
BSx +

( (
χµ′y + ξB

)
Sx

+χ
(

1
1+σκy

)
γ ′yF

)
(I − ξTs)−1 Ts

)
×
(
I − (1− ξ)F (I − ξTs)−1 Ts

)−1
(3.31a)

γ ′y =

(
µ′ySx +

σ

1 + σκy
(1− κπ)γ ′p (F − I)

)(
I − 1

1 + σκy
F

)−1
(3.31b)

δ′y =
1

1 + σκy

(
γ ′y + σ (1− κπ)γ ′p

)
G3 (3.31c)

γ ′$ =

(
1

σ
+

1 + η

ψ

)
γ ′y +

[
−1+η

ψ
−1 1 0

]
Sx (3.31d)

δ′$ =

(
1

σ
+

1 + η

ψ

)
δ′y (3.31e)

γ ′h = (1 + η)γ ′y − (1 + η)
[
1 0 0 0

]
Sx (3.31f)

δ′h = (1 + η) δ′y (3.31g)

In appendix 3.A.6, we characterise firms’ signal vectors in terms of the state

vector of interest and show that theorem 1 from the previous chapter applies, so

that the posited state law of motion (3.26) is indeed correct.

Determinacy of the solution

Given the assumptions that the central bank (a) does not respond to current inflation

and (b) responds to next-period inflations with a coefficient less than one, the reader

may be concerned about the determinacy of the model as, on the face of it, this

violates the Taylor Principle that monetary authorities respond by more than one-

for-one to inflation. However, it should be noted that the Taylor principle relates to

settings where firms have access to full information, which does not apply here.

Instead, uniqueness of the solution is established by, first, the method of undeter-

mined coefficients pinning down expressions for γp, γy and δy (so that pt and yt are
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linear functions of firms’ hierarchy of expectations and network shocks only) and,

second, the recursive projection of firms’ expectations onto the complete history of

their observables via a Kalman filter to pin down the law of motion for Xt under

incomplete information (i.e. to demonstrate that Xt is a function of fundamental

shocks only) in an extension of the methodology of Nimark (2008, 2011a).

Unlike the matrix decomposition methods of Blanchard and Kahn (1980) or Klein

(2000), the solution methodology here does not identify the range of parameters for

which a unique solution exists. In particular, the assumption that κπ ∈ (0, 1) is

not a requirement for determinacy. It is instead a necessary condition for firms to

place decreasing weight on higher-order expectations so that the full solution may be

well approximated by simulating only a finite subset of Xt. Indeed, for the baseline

parameterisation outlined below, convergence to a stable solution appears to require

values of κπ ≥ 0.5.

3.3.10 Finding the solution

Finding the true solution to the model requires working with expectations of infinite

order, which cannot be handled in practice. However, so long as ξ (3.29b) lies between

zero and unity, the model places decreasing weight on higher order expectations

(a weight of ξk is applied to the average k-th order expectation), an arbitrarily

accurate approximation of the solution may be found by truncating firms’ expectation

hierarchy at an upper limit, k∗, of the number of orders to include. Recall, from the

previous chapter, that the recursive nature of agents’ (here firms’) learning and the

AR process for the underlying state ensures that decreasing weight is also applied

to higher weighted average expectations, thus allowing us to also impose an upper

limit, p∗, on the number of compound expectations to include.

For a given set of parameters and chosen values for k∗ and p∗, the solution is

obtained by finding the fixed point of the system (3.26), (3.30) and (3.31).

In practice, given the size of state vector, Xt, care must be taken to avoid the

numerical instability issues described in the previous chapter. Since the solution

here involves finding the simultaneous fixed points of three systems of equations –

the Kalman filter and the state law of motion from the previous chapter; and the
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macroeconomic coefficients detailed above – the root loop of the solution algorithm

must be expanded to:

repeat

Update the filter by one step, using equation (2.13)

Update the law of motion by one step, using equation (2.14)

Update the macroeconomic coefficients by one step, using equation (3.31)

until all three converge
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3.4 Simulation

Table 3.1 lists baseline parameters for the simulation presented below. Most values

should be uncontroversial, but a number of points bear highlighting. First, note

that each aggregate state variable (i.e. each element of xt) is assumed to follow an

independent AR(1) process, with interaction between them occurring only within

the broader model. Given the simplicity of the model, this is arguably too restrictive

an assumption – for example, a monetary policy shock (εMt) could plausibly affect

commodity prices which in the current model would appear as an aggregate shock

to marginal costs (εAt), implying that a realistic simulation should permit the two to

covary – but is nevertheless made in order to ensure that the firms’ learning problem

is as easy as possible and thus to avoid any bias to the strength of our results.

Parameter Value Description
A 0.6I4 The AR(1) transition matrix for the underlying state
P I4 The map from true aggregate shocks to the underlying state

Σuu I4 The variance-covariance matrix for true aggregate shocks
Σvv 5I3 The variance of idiosyncratic shocks

κy 0.5 The CB’s coefficient against current real GDP
κπ 0.5 The CB’s coefficient against expected next-period inflation

ε 3 The own-price elasticity of demand
σ 1/3 The elasticity of intertemporal substitution
ψ 1.5 The Frisch elasticity of labour supply

η 0.5 The elasticity of marginal cost (≡ α
1−α , α = 0.333)

q 2 The number of competitors observed by each firm
ζ∗ 0.2 The degree of irregularity in firms’ observation network

(0 = uniform, 1 = degenerate)

ξ 0.743 The relative importance of higher-order expectations
(implied by parameters above)

Table 3.1: Baseline parameterisation

Next, because we wish to focus on the relative effect of idiosyncratic shocks, we

normalise the variance of all true aggregate shocks to 1 and vary only the idiosyncratic

shock variance (with a baseline value of 5). The degree of irregularity in the firms’
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observation network, ζ∗, represents a new concept in this paper and cannot be known

with any certainty. For our baseline, we set it to 0.2, which is the value that would

emerge from a power-law distribution with a shape parameter of γ = 1.5. Note that

with these values, the implied variance of the aggregated idiosyncratic shocks, {1}ṽt

and {2}ṽt, are 1.0 and 1.8 respectively.

Finally, as a baseline, we suppose that firms observe their private signals (i.e. their

current-period supply shock and their previous-period quantity demanded) and the

previous-period prices of two competitors, but no public signals.

In everything that follows, period 0 denotes the period immediately prior to any

shock occurring (the economy is invariably assumed to be in steady-state in period

0) and period 1 denotes the “on impact” period.

3.4.1 Responses to aggregate shocks

Baseline responses

Figures 3.1 to 3.4 plot impulse responses following shocks of one standard deviation

to each of the four underlying state variables under the baseline parameterisation.
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Figure 3.1: IRFs following a one s.d. shock to firms’ aggregate productivity

In each case, firms cannot be certain about the origin of the shock and sub-

sequently believe that a combination of all four aggregate shocks (and idiosyncratic
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shocks) have occurred. The impulse responses of macroeconomic variables are gener-

ally of the expected sign, although for the price level following a shock to the utility

of consumption, the supply-side effect (through the labour supply) dominates the

demand side effect (through the Eular equation), leading to a price decline.
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Figure 3.2: IRFs following a one s.d. shock to the utility of consumption

Note, too that firms’ beliefs respond on impact for the first three shocks, but with

a one period lag for the monetary policy shock. This is because the three shocks

with supply-side effects are observable immediately through firms’ marginal costs,

but the latter affects only demand, which firms do not observe at the time of setting

their prices.

The lag in observability of demand also explains why the magnitude of the re-

sponse of real GDP is so much larger than that for the price level following a monetary

policy shock. In contrast, for shocks to the three variables with supply-side effects,

the magnitude of price changes is greater than that for real GDP, reflecting the

immediacy of firms’ signals and their freedom to adjust their prices every period.

Varying the standard parameters of the system induces expected changes in the

impulse responses. Instead, we next focus on varying the three parameters that affect

firms’ network learning.
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Figure 3.3: IRFs following a one s.d. shock to the disutility of labour
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Figure 3.4: IRFs following a one s.d. monetary policy shock
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Figure 3.5: IRFs for various numbers of competitors observed
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Varying the number of competitors observed

Figure 3.5 shows impulse responses for real GDP and the price level following shocks

to aggregate productivity or monetary policy for a variety of numbers of competitors

observed. The addition of extra observees tightens all impulse responses for all

shocks, but has a marked effect in reducing the magnitude (but not the persistence)

of deviations of the price level from trend as individual firms are better able to form

estimates of the average price.

Varying the network irregularity
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Figure 3.6: IRFs for various degrees of network irregularity

Figure 3.6 plots the same impulse responses for a variety of values of ζ∗. As with

increasing the number of competitors observed, making the observation network more

irregular tightens the IRFs slightly for the supply-side shock, but has its largest effect

in the IRF for the price level following a monetary policy shock. Differently to the

previous case, however, increasing ζ∗ not only lowers the magnitude of the deviation,

but lowers its persistence as well. This is because of the subsequent increased ability

of observations of competitors’ prices to act as a common signal, thereby representing

a herding device.

Varying the relative signal variance

Figure 3.7 plots the same impulse responses for different levels of variance in firms’

idiosyncratic shocks.
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Figure 3.7: IRFs for different levels of relative signal variance

3.4.2 Responses to network shocks

To say that the economy experiences a network shock, we mean that a full suite of

idiosyncratic shocks occur whose combined effect does not “wash out” in aggregate.

In the context of the current model, this means that the more prominent firms happen

to experience shocks in one direction (say, for example, a cost increase causing their

prices to go up) while more obscure firms experience shocks in the opposite direction.

On average across all firms, these shocks cancel out almost surely, but because the

firms note each others’ prices in an observation network that is irregular, a typical

firm is more likely to observe a competitor’s price rise than fall. From this, they

may conclude (a) that average costs have indeed gone up; or (b) that, at the least,

other businesses will believe that they have gone up. In either event, it becomes

rational for the typical firm to increase their own price too, even in the absence of

other signals suggesting such an action.

Baseline responses

Figures 3.8 to 3.10 plot impulse responses following shocks of one standard deviation

to each of the three innovations in {1}ṽt and the corresponding conditionally expected

value in the other network shocks under the baseline parameterisation.11

In general, despite network shocks having the same variance as underlying state

shocks under the baseline parameterisation, their effects are roughly one order of

magnitude smaller and, while persistent, less so than for aggregate shocks. This

11Recall that corollary 2 following proposition 2 in the previous chapter gives us that
E
[{q}ṽt | {1}ṽt = a

]
= a ∀q ≥ 2.
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latter point is not surprising given that idiosyncratic shocks are purely transitory, so

that all persistence demonstrated here derives from real rigidities evoked from firms’

learning and herding behaviour.
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Figure 3.8: IRFs following a one s.d. shock to ṽA,t

For idiosyncratic shocks to prominent firms’ productivity, the direction of devi-

ations for real GDP and the price level are the same as for an aggregate productiv-

ity shock, but since aggregate productivity does not actually increase, this is only

achieved through a temporary boost in the demand for labour by firms. This is

because the average firm does not experience any change in their productivity, but

having seen price falls at their competitors, believes that average productivity has

increased. Concluding that average prices will fall with the productivity rise, firms

then lower their individual prices (making their beliefs self-fulfilling). The lower

price level prompts greater demand and, without any actual increase in average

productivity, this is met through an increased demand for labour.

Idiosyncratic shocks to prominent firms’ wage bargaining have almost identical,

but inverse, effects as for idiosyncratic productivity shocks, as because both are

visible to firms only through their observation of the combined supply-side shock.

Firms’ inability to fully differentiate between the two explains why expectations of

both aggregate productivity and aggregate labour-supply shocks move in response.
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Figure 3.9: IRFs following a one s.d. shock to ṽW,t

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.006 

−0.004 

−0.002 

0.000 

0.002 
Real GDP

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.015 

0.000 

0.015 

0.030 

0.045 
Price Level

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.008 

−0.005 

−0.003 

−0.001 

0.002 
Hours

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.016 

−0.011 

−0.006 

−0.001 

0.004 

Period

Real Wage

(a) Aggregate variables

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.030 

−0.020 

−0.010 

0.000 

0.010 
E

(k)
[εA]

 

 
k = 0
k = 1
k = 2
k = 3
k = 4

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.030 

−0.020 

−0.010 

0.000 

0.010 
E

(k)
[εC ]

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.010 

0.000 

0.010 

0.020 

0.030 
E

(k)
[εH ]

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.010 

0.000 

0.010 

0.020 

0.030 

Period

E
(k)
[εM ]

(b) Hierarchies of simple-average
expectations

Figure 3.10: IRFs following a one s.d. shock to ṽY,t
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Interestingly, real GDP falls following a positive demand shock among more vis-

ible firms. The mistaken perception of extra aggregate demand causes firms to raise

their prices in anticipation and this actually causes demand to fall.

Varying the number of competitors observed
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Figure 3.11: IRFs for various numbers of competitors observed

Figure 3.11 shows impulse responses for real GDP and the price level following

shocks to prominent firms’ productivity and demand for a variety of numbers of

competitors observed. When firms observe no competitors’ prices, there is no effect

on aggregate variables, but as the number of observed competitors increases, the

magnitude of the aggregate response correspondingly rises.

Varying the network irregularity
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Figure 3.12: IRFs for various degrees of network irregularity

Figure 3.12 shows impulse responses for real GDP and the price level following

shocks to prominent firms’ productivity and demand for a variety of values of ζ∗.

For more irregular networks, observed prices are more concentrated among the more

prominent firms, meaning that they serve as a better coordination device for herding.
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This leads to a subsequent increase in the magnitude of aggregate deviations from

trend following a network shock.

Varying the relative signal variance
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Figure 3.13: IRFs for different levels of relative signal variance

Figure 3.13 shows impulse responses for real GDP and the price level following

shocks to prominent firms’ productivity and demand for different levels of variance

in firms’ idiosyncratic shocks. Although the variance of network shocks is increasing

in the variance of firms’ idiosyncratic shocks, the increase in aggregate response is

much more muted than for increases in network irregularity. This is because as firms’

idiosyncratic variance increases, the informational value of individual firms’ prices

decreases, creating an offsetting effect.

3.4.3 Trade-offs in volatility

Figures 3.5 and 3.11 make clear that under the baseline parameterisation, there is a

trade-off in aggregate volatility involved in firms increasing the number of competit-

ors they observe. With no competitors observed, there are no network shocks and so

no volatility from this source, but the magnitude of deviations following aggregate

shocks – particularly monetary shocks – is correspondingly higher. To illustrate this

trade-off, figure 3.14 plots the distribution of impulse responses that would occur

following each of the four aggregate shocks for various numbers of competitors ob-

served if network shocks are free to occur while aggregate shocks are held to their

expected paths. Dotted lines represent 2 s.d. bands for the distribution of impulse

responses that would occur, conditional on the given path for the four aggregate
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Figure 3.14: IRFs for aggregate shocks with indicative bands for network shocks
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shocks.12 Increasing the number of competitors observed leads to a clear increase

in volatility attributable to network shocks. In some cases, this may be enough to

swamp the aggregate effects of the shock to the underlying state (although note that

the IRFs shown here are for 1 s.d. shocks to underlying state variables, while the

dashed lines represent 2 s.d. bands for the effects of network shocks).

Another way of exploring this is to perform a variance decomposition. Table 3.2

shows the share of unconditional variance in Real GDP and the Price Level that can

be attributed to network shocks under the baseline parameterisation for different

numbers of competitors observed and different degrees of asymmetry in the network.

Although the share is quite low for real GDP, between 1% and 2% of unconditional

q \ζ∗ 0 0.1 0.2 0.3 0.4
0 0 0 0 0 0
1 0 0.01 0.01 0.02 0.03
2 0 0.03 0.06 0.10 0.14
3 0 0.06 0.15 0.24 0.32
4 0 0.12 0.30 0.46 0.61

(a) Real GDP

q \ζ∗ 0 0.1 0.2 0.3 0.4
0 0 0 0 0 0
1 0 0.02 0.05 0.08 0.11
2 0 0.08 0.21 0.35 0.51
3 0 0.19 0.50 0.85 1.22
4 0 0.37 0.99 1.67 2.36

(b) Price Level

Table 3.2: Share of unconditional variance attributable to network shocks (%)

volatility in the aggregate price level may be attributable to network shocks under

the baseline parameterisation, even for quite low numbers of competitors observed.

This is still relatively low, and so indicates that network shocks may be best described

as explaining noise around deviations due to aggregate shocks. However, the share

of volatility attributable to network shocks does increase notably as the number of

observees or the degree of network irregularity increases. For q = 4 and ζ∗ = 0.5,

network shocks contribute 3% of unconditional volatility in the price level.

12That is, were a researcher to simulate the economy described here by giving a persistent shock
to one of the underlying aggregate state variables, holding all other aggregate state variables to
zero and having a full gamut of idiosyncratic shocks occur in every period, the subsequent impulse
responses would fall within the dashed lines 95% of the time.
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3.5 Conclusion

This chapter has argued that firms set their prices while operating in an observation

network, making use of competitors’ prices to learn about the aggregate state of

the economy. That firms operate in a network and that they do so in a model of

imperfect common knowledge is motivated by the observation that when surveyed,

a large fraction of firms across North America and Europe admit to looking to other

firms in deciding both the timing and the magnitude of price changes and do so out

of a desire to coordinate pricing changes with competitors.

When the observation network between firms is asymptotically irregular and the

network is opaque, the results of chapter 2 apply, so that the effects of firms’ mean

zero idiosyncratic shocks do not “wash out” with aggregation. Instead, firms’ hier-

archy of average expectations will follow an ARMA(1,1) process with current and

lagged network shocks (weighted sums of firms’ idiosyncratic shocks) entering at

an aggregate level. The recursive nature of agents’ learning then implies that the

aggregate effects of idiosyncratic shocks will be persistent, despite the individual

agents’ shocks being entirely transitory, with this persistence increasing in the de-

gree of strategic complementarity, the asymmetry of the network and the persistence

of any aggregate shocks.

These persistent aggregate effects therefore represent a network learning-based

microfoundation for cost-push shocks, with the aggregate price level able to persist-

ently deviate from it’s long-run trend despite (a) the absence of any aggregate shocks

to the economy; (b) firms being free to adjust their prices every period; and (c) net-

work (i.e. idiosyncratic) shocks being purely transitory. Because firms may choose

to observe the prices of other firms with whom they are are not direct competitors,

this also represents a novel transmission mechanism for inflation across industries or

geographies independent of it’s path along production chains.

In contrast to the common assumption that idiosyncratic shocks cancel out in

aggregation, the emergence of aggregate-level price changes based on short-lived

idiosyncratic shocks is consistent with evidence garnered from a variety of observed

panels of micro price changes. The level of aggregate volatility induced through

network learning is increasing in the number of competitors observed, the asymmetry
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of the network and the relative variance of idiosyncratic shocks.

This model clearly calls for future work to estimate the parameters of the model

– particularly q, ζ∗ and σ2
v/σ

2
u. While the obvious choice in this would be to pursue

data on a panel of firms, the differential responses of aggregate variables predicted

here following aggregate and idiosyncratic shocks may permit such an estimation

even in the absence of individual firm data. The implications for optimal monetary

policy are a second area of research that warrants further work. Just as previous

work has suggested that monetary authorities focus their attention on the “stickiest”

prices, it may also be necessary to focus on the most visible prices in the economy.

Finally, further research into the origins of firms’ observation networks would seem

a fruitful area for exploration.
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Appendix 3.A Derivation

This appendix provides a full derivation of the model of dynamic price setting with

network learning presented in the text. We suppose that in steady state there are no

shocks; technology and real output are constant; prices are constant; and all firms

make the same decisions:

Yt (j) = Y ss

At (j) = Ass

Πt = Πss = 1

Wt (j) = W ss
t+s = W ss

Gt (j) = Gss = P ss

MCt (j) = MCss

Qt+s|t = Qss = 1

We normalise P ss = 1 and denote lower-case letters as log-deviations from the steady-

state (e.g. xt ≡ ln (Xt)− ln (Xss)).

3.A.1 The household and central bank

The derivation of the representative household’s optimality conditions is entirely

standard and therefore omitted.

Substituting the market-clearing requirements (3.12) into the household’s Euler

equation gives:

eεCtY
− 1
σ

t = β (1 + it)E
HH
t

[
eεCt+1Y

− 1
σ

t+1

1

Πt+1

]
and linearising this gives:

yt = EHH
t [yt+1]− σEHH

t [it − πt+1] + σ
(
εCt − EHH

t [εCt+1]
)

Noting that the household and the central bank both have full information, we can

therefore write:

yt = Et [yt+1]− σ (it − Et [πt+1]) + σ (εCt − Et [εCt+1])

it = κyyt + κπEt [πt+1] + εMt
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3.A. Derivation

Combining these two then gives a linearised expression for aggregate demand in the

economy:

yt =
1

1 + σκy
Et [yt+1 + σ (κπ − 1) (pt+1 − pt)] + µ′yxt

with µy given by

µ′y =
σ

1 + σκy

([
0 1 0 −1

]
−
[
0 1 0 0

]
A
)

which is equation (3.27) in the main text.

3.A.2 The market-clearing (average) wage

The idiosyncratic nominal wage faced by firm j in period t is given by:

wt (j) = wt + vw,t (j) (3.32)

where vw,t (j) is a transitory, mean zero shock and wt is the market-clearing nominal

wage. To find this, we will substitute the aggregate demand for labour into the

household’s labour supply curve. We start by substituting the individual firm’s

production function (3.7) into the labour market clearing condition (3.12) to obtain:

Ht =

∫ (
Yt (j)

At (j)

)1+η

dj

Further substituting in the firm’s demand function (3.5) gives:

Ht =

∫ 
(
Pt(j)
Pt

)−ε
Yte

vy,t(j)

At (j)


1+η

dj

= Y 1+η
t

∫
At (j)−(1+η)

(
Pt (j)

Pt

)−ε(1+η)
e−(1+η)vy,t(j)dj︸ ︷︷ ︸

≡Z−(1+η)
t

Rearranging (recall that 1 + η = 1
1−α), we arrive at:

Yt = ZtH
1−α
t
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which is equation (3.13) in the text. Substituting this into the household’s labour

supply FOC gives:

Wt

Pt
= eεHt−εCtY

1
σ
+ 1+η

ψ

t Z
− 1+η

ψ

t

Linearising this gives:

wt − pt =

(
1

σ
+

1 + η

ψ

)
yt −

1 + η

ψ
zt − εCt + εHt

While the aggregate TFP (3.14) linearises as:

− (1 + η) zt =

∫
− (1 + η) (at (j) + vy,t (j))− ε (1 + η) (pt (j)− pt) dj

But since pt =
∫
pt (j) dj in a linear approximation and

∫
vy,t (j) dj = 0 by definition,

this is just:

zt =

∫
at (j) dj = εAt

so that the equilibrium real wage in period t is given by:

wt − pt =

(
1

σ
+

1 + η

ψ

)
yt −

1 + η

ψ
εAt − εCt + εHt (3.33)

For reference, recall that σ is the elasticity of intertemporal substitution, ψ is the

Frisch elasticity of labour supply and η is the elasticity of marginal cost.

3.A.3 Firms’ marginal costs

Linearising the firm’s marginal cost (3.9) and demand (3.5) gives:

mct (j) = wt (j)− pt + ηyt (j)− (1 + η) at (j) (3.34)

yt (j) = yt + vy,t (j)− ε (pt (j)− pt) (3.35)

Substituting the latter of these into the former gives:

mct (j) = (wt (j)− pt) + ηyt + ηvy,t (j)− ηε (pt (j)− pt)− (1 + η) at (j)

Substituting in (3.32) and (3.33) for j’s real wage, we then obtain:

mct (j) =

(
η +

1

σ
+

1 + η

ψ

)
yt + ηvy,t (j)− ηε (pt (j)− pt) + ωt (j) (3.36)
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where ωt (j) is the combined supply shock for firm j in period t, defined as:

ωt (j) ≡ Bxt +Qvt (j) (3.37a)

B =
[
− (1 + η)

(
1 + 1

ψ

)
−1 1 0

]
(3.37b)

Q =
[
− (1 + η) 1 0

]
(3.37c)

Next, we define
....
mct (j) to be a partial average of the firm’s real marginal cost:

the real marginal cost that firm j would incur without idiosyncratic demand shocks

and if called upon to produce the average quantity (i.e. if vy,t (j) = 0 and yt (j) = yt),

but still with idiosyncratic supply shocks:

....
mct (j) ≡ (wt (j)− pt) + ηyt − (1 + η) at (j)

=

(
η +

1

σ
+

1 + η

ψ

)
yt + ωt (j) (3.38)

Finally, we define mct as the (true) average real marginal cost. That is, the

real marginal cost a firm would incur if facing the average demand and experiencing

the average supply shock (i.e. if producing the average quantity of output and

experiencing no idiosyncratic shocks):

mct ≡ (wt − pt) + ηyt − (1 + η) εAt

=

(
η +

1

σ
+

1 + η

ψ

)
yt +Bxt (3.39)
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3.A.4 Firms’ price-setting under static pricing

When all firms are free to adjust their prices every period, prices will be expressed

as a simple markup over their expected nominal marginal costs:

Pt (j) =

(
ε

ε− 1

)
Et (j) [PtMCt (j)]

Linearising this then gives the simple:

pt (j) = Et (j) [pt +mct (j)]

Substituting in equation (3.36) and gathering like terms then gives:

pt (j) = Et (j)

[
pt +

1

1 + ηε
(
....
mct (j) + ηvy,t (j))

]
= Et (j)

[
pt +

1

1 + εη

....
mct (j)

]
(3.40)

where
....
mct (j) is defined in equation (3.38) above and the second equality makes use

of the fact that vy,t (j) is an entirely transitory shock and firms do not discover their

demand until after setting their prices.

We next define χ ≡
(

1
1+εη

)(
η + 1

σ
+ 1+η

ψ

)
and obtain the aggregate price level

by taking the simple average of (3.40):

pt = Et [pt + χyt] +

(
1

1 + εη

)∫ 1

0

Et (j) [ωt (j)]

With our assumption that firms always observe ωt (j) directly, this becomes:

pt = Et

[
pt + χ

(
1

1 + σκy
Et [yt+1 + σ (1− κπ) (pt+1 − pt)] + µ′yxt

)]
+

(
1

1 + εη

)
Bxt

= Et

[
χ

(
1

1 + σκy
(yt+1 + σ (1− κπ) pt+1) + µ′yxt

)]
+

(
1

1 + εη

)
Bxt + ξEt [pt]

where

ξ ≡ 1−
(

1

1 + εη

)(
η +

1

σ
+

1 + η

ψ

)(
1

1 + σκy

)
σ (κπ − 1)
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Substituting this back into itself then eventually yields:

pt =
∞∑
k=0

ξkE
(k)

t

[(
1

1 + εη

)
Bxt + Et

[
χ

(
1

1 + σκy
(yt+1 + σ (1− κπ) pt+1) + µ′yxt

)]]

=

(
1

1 + εη

)
Bxt +

∞∑
k=0

ξkE
(k+1)

t

 (χµ′y + ξ
(

1
1+εη

)
B
)
xt

+χ
(

1
1+σκy

)
(yt+1 + σ (1− κπ) pt+1)


which is equation (3.29a) in the main text.
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3.A.5 Solving the model under static pricing, part 1:

Coefficients for aggregate variables

We have the following conjectured solution to the model:

Xt = FXt−1 +G1ut +G2zt +G3zt−1 +G4et

pt = γ ′pXt

yt = γ ′yXt + δ′yzt

wt − pt = γ ′$Xt + δ′$zt

ht = γ ′hXt + δ′hzt

and here confirm this structure by deriving expressions for the γ∗ and δ∗ coefficients.

Firms’ signal extraction problem and the law of motion for Xt are addressed below

in section 3.A.6.

Real GDP

Starting with the linearised expression for aggregate demand (3.27) and making use

of the conjectured solution, we have:

yt =
1

1 + σκy
Et [yt+1 + σ (1− κπ) (pt+1 − pt)] + µ′yxt

=
1

1 + σκy
Et
[
γ′yXt+1 + σ (1− κπ)

(
γ′pXt+1 − γ′pXt

)]
+ µ′yxt

We next note that since the household and central bank have full information, their

expectation of the next-period state will be given by:

Et [Xt+1] = FXt +G3zt

Making use of this, we can then write:

yt =
1

1 + σκy

(
γ′y (FXt +G3zt) + σ (1− κπ)

(
γ′p (FXt +G3zt)− γ′pXt

))
+ µ′yxt

=

{
µ′ySx +

1

1 + σκy

(
γ′yF + σ (1− κπ) γ′p (F − I)

)}
Xt

+

{
1

1 + σκy

(
γ′y + σ (1− κπ) γ′p

)
G3

}
zt
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which is to say that

γ ′y = µ′ySx +
1

1 + σκy

(
γ ′yF + σ (1− κπ)γ ′p (F − I)

)
δ′y =

1

1 + σκy

(
γ ′y + σ (1− κπ)γ ′p

)
G3

Gathering the terms in γy then gives

γ ′y =

(
µ′ySx +

σ

1 + σκy
(1− κπ)γ ′p (F − I)

)(
I − 1

1 + σκy
F

)−1
Hours and the real wage

Starting with the expression for the equilibrium real wage (3.33) and substituting in

the conjectured solution, we have

wt − pt =

(
1

σ
+

1 + η

ψ

)(
γ ′yXt + δ′yzt

)
+
[
−1+η

ψ
−1 1 0

]
xt

or, gathering terms,

wt − pt =

{(
1

σ
+

1 + η

ψ

)
γ ′y +

[
−1+η

ψ
−1 1 0

]
Sx

}
Xt

+

(
1

σ
+

1 + η

ψ

)
δ′yzt

from which we can immediately read that

γ ′$ =

(
1

σ
+

1 + η

ψ

)
γ ′y +

[
−1+η

ψ
−1 1 0

]
Sx

δ′$ =

(
1

σ
+

1 + η

ψ

)
δ′y

Linearising the aggregate production function (3.13) and making use of the fact that

zt = εAt (shown above) then gives us

ht = (1 + η) (yt − εAt)
= (1 + η)

(
γ ′yXt + δ′yzt

)
− (1 + η)

[
1 0 0 0

]
xt

so that

γ ′h = (1 + η)γ ′y − (1 + η)
[
1 0 0 0

]
Sx

δ′h = (1 + η) δ′y
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The aggregate price level

Substituting the conjectured solution into the expression for the aggregate price level

(3.29a), we obtain

pt = BSxXt +
∞∑
k=0

ξkE
(k+1)

t


(
χµ′y + ξB

)
SxXt

+χ
(

1
1+σκy

)
(γyXt+1 + δyzt+1)

+χ
(

1
1+σκy

)
σ (1− κπ)γ ′pXt+1


Next, noting that firms have no knowledge of the current-period or future network

shocks

Et (j) [zt+s] = 0 ∀s ≥ 0

we consequently have that

Et (j) [Xt+1] = FEt (j) [Xt] ∀j

and, as such, the aggregate price level is given by

pt = BSxXt +
∞∑
k=0

ξkE
(k+1)

t


(
χµ′y + ξB

)
SxXt

+χ
(

1
1+σκy

)
γ ′yFXt

+χ
(

1
1+σκy

)
σ (1− κπ)γ ′pFXt



= BSxXt +


(
χµ′y + ξB

)
Sx

+χ
(

1
1+σκy

)
γ ′yF

+χ
(

1
1+σκy

)
σ (1− κπ)γ ′pF

 ∞∑
k=0

ξkE
(k+1)

t [Xt]

Noting that E
(k)

[Xt] = T ksXt, this becomes

pt =

BSx +


(
χµ′y + ξB

)
Sx

+χ
(

1
1+σκy

)
γ ′yF

+χ
(

1
1+σκy

)
σ (1− κπ)γ ′pF

 (I − ξTs)−1 Ts

Xt

from which we can immediately read that

γ ′p = BSx +


(
χµ′y + ξB

)
Sx

+χ
(

1
1+σκy

)
γ ′yF

+χ
(

1
1+σκy

)
σ (1− κπ)γ ′pF

 (I − ξTs)−1 Ts
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Finally, we gather the terms in γ ′p to arrive at

γ ′p =

(
BSx +

( (
χµ′y + ξB

)
Sx

+χ
(

1
1+σκy

)
γ ′yF

)
(I − ξTs)−1 Ts

)
×
(
I − (1− ξ)F (I − ξTs)−1 Ts

)−1
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3.A.6 Solving the model under static pricing, part 2:

Firms’ learning and the evolution of Xt

In order to characterise the law of motion for the hierarchy of firms’ expectations,

we need to first derive expressions for the signals they receive. We here step through

these in order before moving onto the firms’ signal extraction problem.

The (current period) combined supply shock

From equation (3.37), firm j’s combined supply shock is given by:

ωt (j) ≡ Bxt +Qvt (j)

B =
[
− (1 + η)

(
1 + 1

ψ

)
−1 1 0

]
Q =

[
− (1 + η) 1 0

]
where

vt (j) =

va,t (j)

vw,t (j)

vy,t (j)


The (previous period) quantity demanded

Recall that firm j’s linearised demand function (3.35) is given by:

yt (j) = yt + vy,t (j)− ε (pt (j)− pt)

Since firm j must have known their own price with certainty, news from the previous

period’s quantity demanded must come in the form:

yt−1 (j) + ε pt−1 (j) = yt−1 + vy,t−1 (j) + ε pt−1

Making use of the posited solution and gathering like terms then gives:

yt−1 (j) + ε pt−1 (j) =
(
γ ′y + εγ ′p

)
Xt−1 + δ′yzt−1 +

[
0 0 1

]
vt−1 (j)
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The (previous period) prices set by individual competitors

From equation (3.40), note that firm j’s pricing decision is given by:

pt (j) = Et (j)

[
pt +

1

1 + εη

....
mct (j)

]
and their partial average marginal cost (3.38) by:

....
mct (j) =

(
η +

1

σ
+

1 + η

ψ

)
yt + ωt (j)

Making use of the posited solution and gathering like terms, we can therefore write

the pricing rule as:

pt (j) = λ′1xt + λ′2Et (j) [Xt] + λ′3vt−1 (j) (3.41)

where

λ1 =
1

1 + εη
B′ (3.42a)

λ2 = γp + χγy (3.42b)

λ3 =
1

1 + εη
Q′ (3.42c)

Recall that it will be necessary to step this back one period in order to consider firm

i in period t observing gt−1 (j) where j = δt−1 (i).

If we take the simple average of equation (3.41), we get:

pt = (λ′1Sx + λ′2Ts)︸ ︷︷ ︸
=γ′p

Xt

This represents an alternative way of deriving the γp vector and so is a handy way

of confirming the logic of the previous section.

Firms’ signal extraction problem

Given the posited solution, we therefore have that agents observe the following

private signal:

spt (i) =

[
ωt (i)

yt−1 (i) + ε pt−1 (i)

]
= D1xt +D2Xt−1 +R1vt (i) +R2zt−1
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where

D1 =

[
B

0

]
D2 =

[
0

γ ′y + εγ ′p

]
R1 =

[
Q[

0 0 1
]] R2 =

[
0

δ′y

]

These, and the expression for individual firms’ prices (3.41), are in format used in

theorem 1 of chapter 2 and since the model here also satisfies assumptions 1 and

2 of the same chapter, theorem 1 therefore holds. In aggregate, the hierarchy of

expectations will therefore follow the law of motion:

Xt ≡


xt

Et [Xt]

Ẽt [Xt]

Êt [Xt]

 = FXt−1 +G1ut +G2zt +G3zt−1
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Appendix 3.B An irregular network is a stable

equilibrium

In this appendix we demonstrate a first step towards proving the conjecture that

an irregular observation network among price-setting firms is a stable equilibrium.

Looking at a simplified setting where a continuum of firms each decides on an ex-

ante probability with which they will observe each of just two candidates, (A)nne or

(B)ill, we show that symmetric mixed strategies (i.e. everyone assigning the same

probability to A) will be an equilibrium. To begin, we first define

αi ≡ Pr (Agent i observes A)

Given a common payoff function, π (αi, α−i), where α−i represents the α’s of all

agents except agent i, we wish to consider the problem in which agents solve

max
αi

π (αi, α−i) subject to α−i = α

for some value α ∈ (0, 1). It’ll therefore be an equilibrium if

π1 (α, α) = 0

So, what is π (αi, α−i)? We take a very simple example with just static pricing. The

optimal price for firm i is

p∗t (i) = pt + χyt

where p is the average price, y is real GDP and χ is an inverse measure of strategic

complementarity. The economy is cash-in-advance so that

mt = yt + pt

and so

p∗t (i) = (1− χ) pt + χmt

Note that χ = 0 corresponds to complete strategic complementarity, while χ = 1

corresponds to no strategic complementarity at all. Not observing either of the
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elements on the right hand side, agent i instead chooses to minimise the expected

square of their deviation from this optimum

−1

2
Et (i)

[
(pt (i)− p∗t (i))2

]
and so sets

pt (i) = Et (i) [p∗t (i)]

Selecting αi then amounts to choosing what value of αi will provide the best estimate

of p∗t (i) in the sense of minimising the mean (i.e. expected) square error.

π (αi, α) = −1

2
E
[
(Et (i) [p∗t (i)]− p∗t (i))2

]
Substituting in our expression for i’s optimal price gives

π (αi, α) = −1

2
E
[
((1− χ) {Et (i) [pt]− pt}+ χ {Et (i) [mt]−mt})2

]
Since we have a continuum of agents, agent i’s contribution to the average price can

be ignored. Suppose that the price chosen by firm j when observing A is given by

pt (j, A) = δpt (A) + et (j)

where p (A) is the price set by firm A and E [et (j)] = 0 ∀j, t. This last requirement

will hold when both firm j and firm A receive unbiased and independent signals

regarding mt and mt has an unconditional expectation of zero. The equivalent setting

applies for when j observes B. Then the average price will be given by

pt = αδpt (A) + (1− α) δpt (B)

Now consider agent i’s expectation conditional on observing A:

E [pt|pt (A)] = αδpt (A) + (1− α) δE [pt (B) |pt (A)]

= αδpt (A) + (1− α) δpt (A)

= δpt (A)

where the second equality assumes that the prices of A and B are unbiased signals

of each other. Agent i’s payoff is then

π (αi, α) = −1

2
E


 (1− χ)

{
[αi (δpt (A) + et (i)) + (1− αi) (δpt (B) + et (i))]

−δ [αpt (A) + (1− α) pt (B)]

}
+χ {Et (i) [mt]−mt}


2

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Supposing still further that an observation of A and an observation of B are equally

useful in improving agent i’s estimate of mt, we can then see that agent i’s first order

condition in their selection of αi is given by

−E

 (1− χ)

{
[αi (δpt (A) + et (i)) + (1− αi) (δpt (B) + et (i))]

−δ [αpt (A) + (1− α) pt (B)]

}
+χ {Et (i) [mt]−mt}

 (δpt (A)− δpt (B)) = 0

which simplifies down to

E

 (1− χ)

{
αi (δpt (A) + et (i))

+ (1− αi) (δpt (B) + et (i))− αδpt (A)− (1− α) δpt (B)

}
+χ {Et (i) [mt]−mt}

 = 0

On average, agent i’s expectation of mt will be correct (E [Et (i) [mt]] = mt) so this

just becomes

E [{αi (δpt (A) + et (i)) + (1− αi) (δpt (B) + et (i))− αpt (A)− (1− α) pt (B)}] = 0

Since the unconditional expectation of et (i) is zero, this collapses to

αi = α

as required!
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Chapter 4

Price-setting under asymmetric

TransLog preferences and incomplete

information

Abstract

I explore firms’ optimal price-setting behaviour when facing TransLog house-

hold preferences. I first solve explicitly for a firm’s best-response pricing rule

under full information, including an endogenous market-exit condition, and

next show that in partial equilibrium under incomplete information, larger

firms will focus more on movements in marginal cost while smaller firms will

place more weight on changes in consumer preferences and competitors’ prices.

In general equilibrium, I characterise and estimate the effect of two distinct

sources of real rigidity that emerge from TransLog preferences: first, the well-

known curvature in demand and, second, the dramatic increase in complexity

of firms’ signal-extraction problems. Because household preferences are not

fully uniform, the model also represents a channel through which firms’ trans-

itory idiosyncratic shocks can result in persistent aggregate volatility.

4.1 Introduction

Many – indeed, the vast majority of – macroeconomic models that employ monopol-

istic competition make use of the Dixit and Stiglitz (1977) aggregator for a repres-

entative household’s preferences across individual consumption goods. This choice

is motivated by both the analytical ease with which it is deployed and the paucity

151



4.1. Introduction

of controlling parameters, which aids in estimation. However, the Dixit-Stiglitz ag-

gregator produces demand functions with constant (and, for the simplest and most

common case, common) elasticities of demand for every good and, consequently,

constant optimal mark-ups over marginal costs in firms’ price-setting decisions.

This then imposes that each firm’s consideration of other firms’ prices comes

only through consideration of its own nominal marginal costs. Strategic comple-

mentarity is therefore limited to only emerging through nominal input prices (such

as wages) and the effect of aggregate demand on real marginal costs. True Bertrand

competition is effectively assumed away.

That firms’ mark-ups vary over time is a well-established fact, however. Standard

practice in the literature has therefore been to suppose that mark-ups are subject

to exogenous and persistent shocks,1 an approach that seems odd given the explicit

assumption (via the choice of the Dixit-Stiglitz aggregator) that they are constant.

This paper illustrates that by adopting a more realistic model of household de-

mand, two important sources of real rigidity in price adjustment emerge, even when

firms possess full and costless flexibility in their price setting. First, as initially ex-

plored by Kimball (1995), allowing firms’ demand schedules to be curved (in log-log

space) ensures that even when firms possess full information, an increase in their

marginal costs will not be fully passed through to their prices because of considera-

tion for the concomitant loss of demand. In other words, each firm’s price setting rule

involves taking an opinion on both its likely marginal cost and its optimal mark-up.

Second, the inclusion of strategic complementarity through true price competition

(i.e. the need to select its mark-up) poses each firm a dramatically more complex

signal extraction problem when operating under incomplete information.

In particular, we here look at optimal price-setting for monopolistically compet-

itive firms facing non-uniform TransLog preferences (a special case of the Almost

Ideal Demand setting of Deaton and Muellbauer, 1980). Work by Bergin and Feen-

stra (2000) has previously looked at TransLog preferences as a means of achieving

endogenous persistence following aggregate shocks. By working with a specific, para-

meterised model, they are able to avoid the Chari, Kehoe, and McGrattan (2000)

1See, for example, Smets and Wouters (2003).
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criticism that the generalised Kimball (1995) aggregator permits arbitrarily strong

curvature in demand. However, Bergin and Feenstra limit their attention to full

uniformity in household preferences across goods and still require nominal rigidity2

to achieve any persistence following a monetary shock. Given the recent challenges

to nominal rigidity in individual prices, both from theoretical and empirical grounds

(see chapter 1 for more detail), there is a need to explore sources of real rigidity that

do not rely on individual price stickiness.

In contrast, the current chapter permits non-uniformity in household preferences

across goods. We first consider firms’ price-setting problem under full information.

We derive an explicit, non-linear expression for each firm’s price as a function of its

marginal cost and the prices of its competitors3 and demonstrate the existence of a

unique Nash equilibrium in prices and an endogenous market exit condition.

In a linearised, partial equilibrium setting under uncertainty, we demonstrate

(a) that in addition to needing to form an expectation of the aggregate price level

in order to estimate its marginal cost, each firm must also estimate a firm-specific

weighted-average of its competitors’ prices in order to account for price competition;

and (b) that larger firms will place relatively more weight on their marginal cost,

while smaller firms will focus primarily on their competitors’ prices and transitory

shifts in the distribution of consumer demand.

In general equilibrium under uncertainty, full non-uniformity in preferences is un-

fortunately intractable, so we instead impose a setting of near-uniformity in steady-

state preferences, wherein firms’ steady-state mark-ups and shares of household ex-

penditure are the same, but their prices and marginal costs are not. In other words,

we allow for the existence of low-price, high-volume businesses alongside high-price,

low-volume businesses in steady state.

In this setting, despite firms having full price-setting flexibility and access to

public signals of aggregate variables, significant persistence in aggregate variables

2They suppose that firms operate under staggered contracts, with each firm’s price fixed for
two periods and half of all firms able to adjust in each period.

3Note that while a firm’s price still equals a mark-up over its marginal cost, this only implicitly
identifies its price under systems with curved demand since a price change will also affect its market
share and, hence, its optimal mark-up.
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emerges following shocks to both productivity and monetary policy. Finally, be-

cause of the non-uniformity in household preferences, the model presents a mech-

anism through which transitory idiosyncratic shocks cause persistent movements in

aggregate variables. Using a parameterisation based on the distribution of firm sizes

in the United States, we tentatively estimate that as much as 5% of observed volat-

ility in the aggregate price level may be attributable to idiosyncratic factors.

This work therefore adds to existing literature of Gabaix (2011), Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Saleh (2012) and chapter 3 of this thesis in identi-

fying an idiosyncratic source of aggregate volatility.

Methodologically, this chapter (like chapter 2) adapts and extends the techniques

developed by Nimark (2008, 2011b) for finding the solution of incomplete information

problems with strategic interaction when agents observe lagged signals of aggregate

variables. As with chapter 2, the model here requires that agents consider multiple

compound expectations (a simple-average and a weighted-average), but unlike that

chapter, there is no requirement here to truncate the number of expectations in the

agents’ state vector of interest. That is, we here emerge with exactly two aggregated

expectations of interest.

The remainder of this chapter is structured as follows. Section 4.2 provides a brief

overview of TransLog preferences and the Almost Ideal Demand System. Section

4.3 next outlines the broader model of household and central bank behaviour and

discusses the information available to each agent. Section 4.4 solves the price-setting

problem under full information and illustrates the magnitude by which curvature

of the demand curve can affect price changes. Section 4.5 then considers the firms’

problem under incomplete information, both in general for partial equilibrium and

with near-uniformity in preferences for general equilibrium. Section 4.6 illustrates

these general equilibrium results by presenting a series of simulations following both

aggregate and idiosyncratic shocks before section 4.7 concludes.
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4.2 TransLog preferences and the Almost Ideal

Demand System

This section presents a brief overview of TransLog preferences and the Almost Ideal

Demand System (AIDS). Readers already familiar with these systems of demand

may skip immediately to the model in section 4.3 below.

The Almost Ideal Demand System was originally devised by Deaton and Muell-

bauer (1980) as an empirical tool to permit the estimation of a generalised system

of demand. It is consistent with standard theory of consumer optimisation and, by

satisfying the conditions laid out by Muellbauer (1975, 1976), it aggregates exactly

and so admits a representative consumer. Transcendental Logarithm (TransLog)

preferences were developed earlier by Christensen, Jorgenson, and Tau (1975) and

are nested entirely within the Almost Ideal setting. We shall therefore present a brief

overview of the Almost Ideal framework first before then discussing the additional

restrictions required to obtain TransLog preferences.

4.2.1 The Almost Ideal Demand System

The Almost Ideal Demand System is itself based on the PIGLOG (price-independent,

generalised, linear-in-logarithms) model of consumer preferences, in which individual

preferences are described via the expenditure function:

ln [e (u,P )] = (1− u) ln [a (P )] + u ln [b (P )] (4.1)

where P is a vector of all prices and, with some exceptions,4 u varies from 0 (sub-

sistence) to 1 (bliss). The AIDS model then proposes particular functional forms for

ln [a (P )] and ln [b (P )], namely:

ln [a (P )] = α0 +
∑
i

α (i) ln (P (i)) +
1

2

∑
i

∑
j

γ∗ij ln (P (i)) ln (P (j)) (4.2a)

ln [b (P )] = ln [a (P )] + β0
∏
i

P (i)βi (4.2b)

4See the appendix of Deaton and Muellbauer (1980) for more detail.
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4.2. TransLog preferences and the Almost Ideal Demand System

so that the expenditure function (4.1) becomes:

ln [e (u,P )] = α0 +
∑
i

α (i) ln (P (i))

+
1

2

∑
i

∑
j

γ∗ij ln (P (i)) ln (P (j)) + uβ0
∏
i

P (i)βi (4.3)

Under this specification, the Marshallian (i.e. uncompensated) demand function

for good i, expressed as a share of total nominal expenditure, is:

P (i)Q (i)

N
≡ s (i) = α (i) +

∑
j

γij ln (P (j)) + βi ln

(
N

P

)
(4.4)

where γik ≡ 1
2

(γ∗ik + γ∗ki), N is income (and total nominal expenditure) and P is the

aggregate price index, defined as:

ln (P) ≡ α0 +
∑
i

α (i) ln (P (i)) +
1

2

∑
i

∑
j

γij ln (P (i)) ln (P (j)) (4.5)

The following restrictions are then added for the system to comply with standard

consumer theory:

J∑
i=1

α (i) = 1,
J∑
i=1

γij = 0 ∀j and
J∑
i=1

βi = 0 (4.6)

for adding up (i.e. to ensure that
∑
s (i) = 1);

J∑
j=1

γij = 0 ∀i (4.7)

to ensure that demand functions are homogeneous of degree zero (and the expendit-

ure function homogenous of degree one); and

γ∗ij = γ∗ji ∀i, j (4.8)

to ensure the symmetry of the substitution matrix.

The following set of elasticities of demand may then be derived from equation

(4.4). Assuming that total nominal expenditure (i.e. income) does not change with
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movements in individual prices and conditional on the prices of all other goods, the

(positive) own-price elasticity of demand for good i is:

εii =

∣∣∣∣∂ lnQ (i)

∂ lnP (i)

∣∣∣∣
= 1− ∂ ln s (i)

∂ lnP (i)

= 1− 1

s (i)

[
γii − βi

(
α (i) +

∑
k

γki ln (P (k))

)]
, (4.9)

the cross-price elasticity of demand for good i following a change in the price of good

j is:

εij =
1

s (i)

[
γij − βi

(
α (j) +

∑
k

γkj ln (P (k))

)]
; and (4.10)

the income elasticity of demand for good i is:

ηi = 1 +
βi
s (i)

(4.11)

It is immediately apparent that this framework possesses the potential for consid-

erably richer dynamics following an aggregate shock than might be expected with the

Dixit-Stiglitz or Kimball aggregators. With each firm’s elasticity being dependent on

a weighted sum of all other firms’ prices, optimal mark-ups will be both time-varying

and different for every firm. Indeed, the super-elasticity of demand – the elasticity of

the own-price elasticity, sometimes called the curvature of demand – can be shown

(a derivation is provided in appendix 4.A.1) to be:

ξii ≡
∂ ln εii
∂ lnP (i)

=
1

εii

[
(εii − 1)2 +

βiγii
s (i)

]
(4.12)

4.2.2 TransLog preferences

TransLog preferences are nested within the Almost Ideal system. They are obtained

by supposing that the income elasticity of demand is unitary for all goods (i.e. there

are no luxury or necessary goods).

βi = 0⇔ ηi = 1 ∀i (4.13)
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In other words, TransLog preferences are the AIDS model with the further imposition

that preferences be homothetic.5 This then reduces the expression for i’s share of

expenditure to

s (i) = α (i) +
∑
j

γij ln (P (j)) (4.14)

and the expressions for cross-price elasticity, own-price elasticity and own-price

super-elasticity of demand to

εij =
γij
s (i)

; (4.15)

εii = 1− γii
s (i)

; and (4.16)

ξii =
(εii − 1)2

εii
(4.17)

respectively. Note that in this setting, each good’s super-elasticity is unambiguously

positive and increasing in the own-price elasticity.

Supposing that good i is produced by a monopolist, the optimal mark-up over

marginal costs for that good will be given by

µi =
εii

εii − 1
= 1− s (i)

γii
(4.18)

so that we can rewrite the super-elasticity as

ξii =
εii − 1

µi
=
εii
µ2
i

(4.19)

4.2.3 An initial comparison to other demand systems

In the near-ubiquitous CES demand system of Dixit and Stiglitz, where the own-price

and cross-price elasticities of demand are common and constant, each firm will have

a common and constant optimal mark-up over its (potentially different) marginal

costs. In contrast, in the TransLog and Almost Ideal settings, when a firm raises its

price in such a way as to lower its share of aggregate spending (i.e. in the absence

5Recall that a preference relation over bundles within R+ is homothetic if, when x ∼ y, we also
have that αx ∼ αy for any α ≥ 0.
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of sufficient price increases from its competitors), its own-price elasticity of demand

will rise, causing its optimal mark-up to fall and so partially offset the increase in

price.

Furthermore, since the super-elasticity is strictly positive and increasing under

TransLog preferences and generally so under AIDS,6 this dampening effect becomes

convexly stronger for larger price increases, thereby creating a strong incentive for

firms to avoid lifting their prices above their aggregate reference prices.

In this respect, the AIDS framework is quite similar to the demand system implied

by the Kimball (1995) aggregator. As with Kimball’s preferences, aggregate price

rigidity here will be highly sensitive to anything that impedes price coordination.

In the absence of concrete knowledge that their competitors are also raising their

prices, firms will temper any increases of their own, thereby increasing the persistence

of the effects of any nominal shock to the economy. However, there are two key

differences between the Kimball and Almost Ideal demand frameworks. First, where

Kimball preferences allow for arbitrarily strong curvature in demand (a fact criticised

as unrealistic by Chari, Kehoe, and McGrattan, 2000), the Almost Ideal system

exhibits well-defined and moderate curvature in demand. Next, unlike the Kimball

demand system, the Almost Ideal setting explicitly models asymmetries in household

preferences across goods, both in their base market shares and their sensitivity to

movements to other firms’ prices. Because of the latter, each firm needs to consider a

firm-specific reference price, formed as a weighted average of its competitors’ prices,

in addition to the aggregate price level.

It is, of course, possible to model unequal preferences across goods within the

Dixit-Stiglitz setting by use of nested Constant Elasticity of Substitution (CES)

functions. However, this approach is not readily able to be extended to unequal

preferences over a continuum of goods and, in any event, will still produce constant

elasticities of demand and so is unable to speak to the real rigidities embodied in

time-varying mark-ups.

6Technically, the super-elasticity can be negative under AIDS for sufficiently large values of βi,
but empirical estimates of βi are typically quite low. See also the discussion of Dossche, Heylen,
and Van den Poel (2010) regarding the number of goods with positive super-elasticities.
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While the assumption that firms’ own-price elasticity can vary is a clear gen-

eralisation from the CES framework of Dixit-Stiglitz, the assumption here that the

super-elasticity of demand is strictly positive is arguably still too restrictive. Dossche,

Heylen, and Van den Poel (2010) examine scanner data for a large euro area retailer

using a modified version of the Almost Ideal framework7 and find that as many as

42% of goods have a negative super-elasticity (denoted “curvature” in their paper).

However, the median super-elasticity across all items is positive (0.8) and higher still

across non-food items (1.14). When limiting attention to items with an estimated

(absolute value of) elasticity of unity or greater (ε ≥ 1), only 26% of items have

a negative super-elasticity and the median super-elasticity is 1.7. Elasticity and

super-elasticity were found to be strongly positively correlated, with a correlation

coefficient of 0.53.

7The authors add a behavioural extension to the AIDS model of Deaton and Muellbauer (1980),
justified by an appeal to loss aversion, that permits them to freely estimate demand super-elasticities
which would otherwise be fully determined by own-price elasticities.
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4.3 The model

The model considered here is standard in its treatment of households’ intertemporal

decision making and labour supply; the central bank’s monetary policy; and firms’

production technologies. It differs principally from the basic New Keynesian model

in three aspects: first, that TransLog preferences are used to capture differentiation

across consumption goods; second, that those preferences are not assumed to be

symmetric over goods; and third, that firms operate under incomplete information.

In order to emphasise the real rigidity invoked by the model, prices are assumed to

be perfectly flexible.

Each of these innovations has been separately explored in the literature. Bergin

and Feenstra (2000) demonstrated endogenous persistence following monetary shocks

with TransLog preferences, staggered pricing and a production structure that used

the final good as an intermediate good, but also made the simplifying assumption of

full uniformity in preferences. Woodford (2003) examined the persistence obtained

from firms’ possessing incomplete information regarding shocks to nominal GDP

under Dixit-Stiglitz preferences and static (i.e. flexible) price setting. Nimark (2008)

later extended this to include idiosyncratic shocks to marginal costs and dynamic

pricing in the style of Calvo (1983). However, to our knowledge, these ideas have

not previously been brought together in a single model.

Uncertainty will enter the model on both the supply and demand sides of the

economy. On the supply side, firms will experience both aggregate and idiosyn-

cratic shocks to their marginal costs in the form of movements in their productivity.

On the demand side, aggregate shocks will be delivered by monetary policy, while

idiosyncratic shocks will apply to households’ relative preferences across goods.

Notation

We generally make use of the notation that an uppercase letter denotes the variable

itself; a lowercase letter is the (natural) log of that variable; a variable with an asterisk

denotes the value of that variable in steady-state (defined below); and a variable with
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a hat represent the deviation of that variable from its value in steady-state.8

xt ≡ ln (Xt) x̂t ≡ xt − x∗

The two exceptions to this rule will be firms’ share of household expenditure (st (i))

and the interest rate (it). In both these cases, the lowercase letter denotes the

variable itself. It remains the case that ŝt (i) = st (i)− s (i)∗ and ît = it − i∗.

4.3.1 The household

Each period, the representative household maximises9

EHH
t

 ∞∑
s=0

βs

C
1− 1

σ
t+s − 1

1− 1
σ

− H
1+ 1

ψ

t+s

1 + 1
ψ


 (4.20)

subject to the budget constraint

WtHt + (1 + it−1)Bt−1 + Tt = PtCt +Bt (4.21)

where EHH
t [·] is the mathematical expectation conditional on the household’s in-

formation set in period t (defined below); Ct is aggregate (real) consumption; Ht is

the aggregate labour supply; σ is the elasticity of intertemporal substitution; ψ is the

Frisch elasticity of labour supply; Wt is the nominal wage rate; Bt denotes holdings

of one-period risk-free bonds; it is the nominal interest rate; and Tt combines firm

profits and nominal lump sum transfers. The aggregate first-order conditions for the

household’s problem are therefore standard:

H
1
ψ

t =
Wt

Pt

C
− 1
σ

t (4.22)

C
− 1
σ

t = β (1 + it)E
HH
t

[
C
− 1
σ

t+1

1

Πt+1

]
(4.23)

where Πt ≡ Pt/Pt−1 is the gross rate of inflation.

8It should be noted that this notation differs slightly to that of the preceding chapters. This is
necessary because the previous two chapters had no need to refer to the log of variables, only their
log deviation, while this chapter refers to both.

9Note that β here is the household’s discount factor, as distinct from the coefficient governing
the income elasticity of demand used above.

162



4.3. The model

Household preferences over differentiated consumption goods for a given amount

of nominal expenditure (Nt = PtCt) are represented in TransLog form, as described

in section 4.2.2 above. We therefore have the following expression for household

demand for good i:

Ct (i) =
st (i)PtCt
Pt (i)

(4.24)

In addition to those outlined earlier, we make two further assumptions regarding

household preferences:

αt (i) =
1

J
[ζi + vαt (i)] (4.25a)

γij > 0 ∀j 6= i (4.25b)

The first of these (4.25a) declares αt (i), which we refer to as the firm’s base market

share,10 to be the sum of an underlying, fundamental preference (α (i)∗ ≡ 1
J
ζi) and

a time-varying, stochastic component (vαt (i) is a mean zero shock, defined below).

Recall that we must have
∑

i αt (i) = 1 in every period.

The second assumption (4.25b) states that all goods are gross substitutes for each

other. This ensures that cross-price elasticities of demand are all strictly positive

(εij > 0 ∀i 6= j); that the absolute values of all own-price elasticities of demand are

strictly greater than one (εii > 1 ∀i);11; and that the vector of equilibrium prices

under full information is unique (see section 4.4).

By comparison, existing literature on the use of TransLog preferences in macroe-

conomic models (see, for example, Bergin and Feenstra, 2000) has tended to suppose

complete uniformity in preferences across goods by imposing the following restric-

tions on α and Γ:

αt (i) =
1

J
∀i, t (4.26a)

γii = −γ
J
∀i ; γij =

γ

J (J − 1)
∀j 6= i (4.26b)

10Named such because, if all firms were to charge the same price, it would be their share of
household expenditure

11Combined with the homogeneity restriction (4.7), (4.25b) ensures that that γii < 0 ∀i and,
hence, that εii > 1.
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While easier to work with, these assumptions have shielded from view some important

aspects of firms’ price-setting behaviour and their informational requirements, as will

be shown below in a partial equilibrium setting.

However, when moving to a general equilibrium setting, it will still be necessary

to impose what we call near-uniformity in steady-state preferences in order to achieve

tractability. This will include uniformity in Γ (the matrix of γij, equation 4.26b) and

uniformity in steady-state expenditure shares, but will retain the asymmetry in base

market shares. Some of the dynamics implied by our partial equilibrium results will

therefore not be present in our simulations. Section 4.3.7 covers this in more detail.

4.3.2 The firm

Production

Each good is produced by a single firm according to a common production function

that deploys labour with decreasing marginal productivity:

Yt (i) = At (i)Ht (i)
1

1+η (4.27)

where η > 0. Each firm’s productivity, At (i), is given by

ln (At (i)) = ln (A (i)∗) + εAt + vAt (i) (4.28)

where A (i)∗ is firm i’s intrinsic productivity, while εAt and vAt (i) are mean zero

aggregate and idiosyncratic shocks (each specified below) to the firm’s productivity,

broadly defined. Firm i’s nominal marginal cost is then

MCt (i) = (1 + η)
Wt

At (i)1+η
Yt (i)η (4.29)

so that η is the elasticity of marginal cost with respect to output. Shocks to At (i) may

therefore be considered a reduced-form means of capturing shocks to firms’ marginal

costs other than those that act through demand or the wage. When combined with

market clearing (see below), we can replace Yt (i) with the household’s quantity

demanded (4.24) to give

MCt (i) = (1 + η)
Wt

At (i)1+η

(
st (i)PtYt
Pt (i)

)η
(4.30)
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Price setting

Although it remains our opinion that nominal rigidities represent the basis of some

aggregate persistence, we here suppose that all firms are free to costlessly adjust their

prices at the start of every period in order to highlight the real rigidities embodied

in the current model. Firms’ optimal price-setting rules under TransLog preferences

will be examined in detail in sections 4.4 and 4.5 below.

4.3.3 Market clearing

All markets clear each period, so that:

Yt (i) = Ct (i) ∀t, i
Ht =

∫
Ht (i) di ∀t

(4.31)

This implies that aggregate output is given by:

Ct = Yt = ZtH
1

1+η

t (4.32)

where aggregate TFP, Zt, combines individual firm productivities, household prefer-

ences and a distortion from relative prices

Zt ≡
(∫ (

At (i)

st (i)

Pt (i)

Pt

)−(1+η)
di

)− 1
1+η

(4.33)

4.3.4 The central bank

To close the model, we assume that the central bank sets nominal interest rates

according to the Taylor-like policy function

ît = κyE
CB
t [ŷt] + κπE

CB
t [π̂t+1] + εMt (4.34)

where variables with a hat are deviations from steady-state, ECB
t [·] is the mathemat-

ical expectation conditional on the central bank’s information set in period t (defined

below) and εMt is a persistent, mean zero shock to monetary policy (specified below).

Note that the component against inflation is against expected future inflation rather

than current inflation, to provide a more accurate characterisation of modern central

banking practice.
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4.3. The model

4.3.5 Information and timing

The representative household and the central bank are assumed to possess full in-

formation at all times, so that

EHH
t [·] = ECB

t [·] = E [·|Ωt] (4.35)

where Ωt is the set of all information that exists in period t. In contrast, firms have

incomplete information, so that

Et (i) [·] = E [·|It (i)] (4.36)

where each period, firm i observes its own output from the previous period; its

own productivity for the current period; and common, but imperfect signals for the

previous period’s aggregate price level and aggregate output:

It (i) = {It−1 (i) , Yt−1 (i) , At (i) ,Pt−1e
ep,t , Yt−1e

ey,t} (4.37)

Timing

Each period obeys the following timing

1. Innovations are drawn.

2. Firms observe It (i) and set their prices simultaneously.

3. The representative household and the central bank observe the full state of the

economy and determine the interest rate, the real wage and the quantities of

goods demanded for the given prices.

4. Firms produce the goods and the representative household consumes them.

Note, in particular, that firms do not observe any changes in households’ relative

preferences or the composition of their productivity shock before setting their prices.

4.3.6 Stochastic processes

The model contains uncertainty in the form of aggregate and idiosyncratic shocks

on both the supply and demand sides of the economy, plus measurement error in
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4.3. The model

aggregate statistics. We suppose that underlying aggregate shocks are persistent

and follow AR(1) processes with Gaussian innovations.

εAt = ρAε ε
A
t−1 + uAt where uAt ∼ N

(
0, σ2

εA

)
(4.38a)

εMt = ρMε ε
M
t−1 + uMt uMt ∼ N

(
0, σ2

εM

)
(4.38b)

Measurement errors are transitory and Gaussian.

ep,t ∼ N
(
0, σ2

ve

)
(4.38c)

ey,t ∼ N
(
0, σ2

ve

)
(4.38d)

Idiosyncratic shocks are assumed to be transitory. Those to productivity are assumed

to be Gaussian

vAt (i) ∼ N
(
0, σ2

vA

)
(4.38e)

while those to demand are left unspecified, except to note that they must satisfy

E [vαt (i)] = 0 ∀i, t (4.38f)

V ar (vαt (i)) = σ2
vα ∀i, t

αt (i) ∈ (0, 1) ∀i, t∑
i
αt (i) = 1 ∀t

All innovations are assumed to be fully independent from each other, both contem-

poraneously and across time.

Aggregated idiosyncratic shocks

As will be shown below, the following two linear aggregations of idiosyncratic shocks

also enter into the model:

ṽAt ≡
∑

i
α (i)∗ vAt (i) (4.39a)

ṽαt ≡
∑

i
α (i)∗ vαt (i) (4.39b)

Since α (i)∗ ∈ (0, 1) ∀i and
∑

i α (i)∗ = 1, these are weighted averages of firms’

idiosyncratic shocks. These statistics will not, in general, converge to zero as J →∞

167



4.3. The model

because of the unequal weights applied across the firms’ shocks. As discussed in

section 1.3 of chapter 1, a power law distribution in the weights is sufficient to

ensure that the Law of Large Numbers will not hold and we do indeed observe a

power law distribution in firm sizes in the data.

4.3.7 Steady-state

With firms already possessing full flexibility in their price setting, we define a steady-

state equilibrium to be that which holds when (a) there are no shocks to the system;

and (b) this fact is common knowledge (i.e. a special case of firms also having full

information).

Although not used in partial equilibrium – i.e. when considering only firms’

prices, taking aggregate demand and wages as given – the following assumptions of

near-uniformity in steady-state preferences will be required when considering general

equilibrium:

γii = −γ
J
∀i ; γij =

γ

J (J − 1)
∀j 6= i (4.40a)

p∗ =
1

J − 1

∑
j 6=i

p (j)∗ = 0 ∀i (4.40b)

s (i)∗ =
1

J
∀i (4.40c)

It is helpful to explicitly enumerate what is and what is not uniform across goods

under these assumptions. Things that are uniform across goods:

• Firms’ consideration of price-competition: Γ

• Steady-state expenditure shares: s (i)∗ = 1
J

• Steady-state mark-ups: µ∗i = 1− s(i)∗

γii
= 1 + 1

γ

Things that are not uniform across goods:

• Steady-state base market shares: α (i)∗

• Steady-state prices: p (i)∗

• Steady-state marginal costs: MC (i)∗
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4.3. The model

In other words, we capture a world in which, even in steady-state, there exist low-

price, high-volume businesses operating next to high-price, low-volume businesses.

Applying (4.40a) - (4.40c) to the definition of expenditure share (4.14) gives a

simple expression for each firm’s steady-state price:

p (i)∗ =
1

γ
(ζi − 1) (4.41)

The RHS expresses, as a percentage, how far firm i’s price is above the simple-average

price when in steady-state. Plugging this into equation (4.5), we see that the log of

the aggregate price level in steady-state is zero (this emerges from the normalisation

that the simple-average price be zero):

p∗ ≡ ln (P∗) = 0 (4.42)

With a constant steady-state mark-up, pinning down a firm’s price must also pin

down its marginal cost. Our assumption of near-uniformity therefore gives a direct

mapping between a firm’s steady-state base market share, ζi, and its steady-state

productivity, A (i)∗:

ln (A (i)∗) =
1

1 + η
ln

[(
1 +

1

γ

)
(1 + η)W ∗

(
1

J
Y ∗
)η]
− 1

γ
(ζi − 1) (4.43)

At first glance, this might appear to suggest that firms with higher base market

share are less productive. However, it should be remembered that At (i) here should

be construed as capturing all factors of production other than labour. A low value

of A (i)∗ in this context is a shorthand means of saying that firm i has a lot of

non-labour costs.
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4.4. Price-setting under full information

4.4 Price-setting under full information

Because firms are free to update their prices in every period, we can limit our atten-

tion to the one-period profit function:

Πt (i) = st (i)Nt − C
(
st (i)Nt

Pt (i)

)
= st (i)Nt

(
1− MCt (i)

Pt (i)

)
(4.44)

When firms have access to full information, there is no need to consider their expect-

ations and the profit function can be maximised directly to give the usual expression

of price as a mark-up over marginal costs:

Pt (i)

MCt (i)
= µi,t =

εii,t
εii,t − 1

(4.45)

However, this only pins down Pt (i) implicitly in this context as the mark-up is

endogenous under TransLog preferences. As the firm’s price rises (Pt (i) ↑), its market

share falls (st (i) ↓), driving its own-price elasticity higher (εii,t ↑) and, hence, their

optimal mark-up lower (µi,t ↓).

Instead, appendix 4.A.2 provides a derivation of the following explicit solution

for price-setting under TransLog preferences.

Proposition 3. When monopolistically competitive firms face a system of demand

characterised by TransLog preferences, conditional on each firm’s share of household

expenditure remaining within st (i) ∈ (0, 1), the optimal one-period, full-information

price is given by

Pt (i)

MCt (i)
= νi,t =W

(
eφt(i)

MCt (i)

)
= ω (φt (i)− ln (MCt (i))) (4.46)

where φt (i) is defined as

φt (i) ≡ 1− 1

γii

(
αt (i) +

∑
j 6=i

γij ln (Pt (j))
)

(4.47)

Furthermore, when all goods are gross substitutes, there exists a unique positive,

globally stable Nash equilibrium in prices, P ∗t = P ∗ (αt,MCt ; Γ), that may be found

by iterating through (4.46) - (4.47) from any non-zero initial price vector.
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4.4. Price-setting under full information

W (·) is the Lambert W function, defined as the inverse of f (W) = WeW ; and

ω (·) is the Wright ω function, defined as ω (x) ≡ W (ex). Section 4.4.1 below provides

brief descriptions of these two functions.

The adjusted mark-up associated with the optimal price is no longer a simple

expression of the firm’s elasticity of demand, but is instead a function of the firm’s

marginal cost (i.e. the mark-up over marginal costs is itself a function of those mar-

ginal costs) and other firms’ prices. In particular, since W (·) is strictly increasing,

(4.46) makes clear that in the absence of concurrent price increases by its competit-

ors, a firm’s optimal mark-up declines as its marginal cost increases. Likewise, φ (i)

and, hence, the adjusted mark-up, is increasing in firm i’s base market share and a

weighted sum of its competitors’ prices.

Note that
∑

j 6=i (−γij/γii) = 1, so that φt (i) contains a firm-specific weighted

average of other firms’ prices. φt (i) is related to the firm’s endogenous mark-up, µi,t,

in the following manner

φt (i) = 1− st (i)

γii︸ ︷︷ ︸
µi,t

+ ln (Pt (i)) (4.48)

Consequently, we can use (4.48) to identify the prices at no-exit boundaries:

Pt (i)|st(i)=1 = e
φt(i)−1+ 1

γii (4.49a)

Pt (i)|st(i)=0 = eφt(i)−1 (4.49b)

If a firm’s price is too high, its share of household expenditure will fall to zero (i.e.

it will exit the market), while if its price is too low, it will capture the entire market

(i.e. force other firms to exit). That TransLog preferences include an endogenous exit

rule is independently interesting, but we rule these possibilities out by assumption.

In essence, this amounts to assuming that shocks are not too large.

4.4.1 The Lambert W and Wright ω functions

Illustrative plots of W (x) and ω (x) are provided in figure 4.1.
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Figure 4.1: The Lambert W and Wright ω functions in the real domain. Both plots
include the 45◦ line for reference.

The Lambert W function

The Lambert W function, sometimes called the Omega function or the product

logarithm, is defined as the inverse function of f (W) = WeW . For all x ∈ R+,

W (x) is continuous, single valued, weakly positive, strictly increasing and concave.

It has key values of W (0) = 0 and W (e) = 1; and its first derivative is given by
dW(x)
dx

= W(x)
x(1+W(x))

for x /∈
{

0,−1
e

}
, with dW(x)

dx

∣∣∣
x=0

= 1.

The Wright ω function

The Wright ω function, defined for x ∈ R as ω (x) ≡ W (ex), was first introduced

and its properties discussed at length by Corless and Jeffrey (2002). For all x ∈ R+,

ω (x) is continuous, single valued, strictly positive, strictly increasing and convex. It

has key values of ω (0) =W (1) ≈ 0.56714 and ω (1) = 1. For x ≥ 1, it lies beneath

the 45◦ line and its first derivative is given by dω(x)
dx

= ω(x)
1+ω(x)

, so that lim
x→∞

ω′ (x) = 1.
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4.4. Price-setting under full information

4.4.2 The optimal price as best response

Equations (4.46) - (4.47) express the optimal money price for firm i as a function

of three objects – its nominal marginal cost, its base market share and a weighted

average of other firms’ prices. Combining these equations, we can rewrite the optimal

price as:

Pt (i)

MCt (i)
= νi,t =W

e1−αt(i)γii

∏
j 6=i

(
Pt (j)

MCt (i)

)−γij
γii

 (4.50)

This formulation of price as a best response function makes clear that firm i’s optimal

mark-up is a function of its competitors’ prices relative to i’s own marginal cost.

It is informative to consider the shape of this decision rule, as it helps understand

firms’ out-of-equilibrium pricing behaviour and so offers a precursor to section 4.5,

where we consider price-setting under uncertainty. First, we have that the optimal

price is strictly increasing in all three inputs:

∂Pt (i)

∂MCt (i)
=

(νi,t)
2

1 + νi,t
> 0

∂Pt (i)

∂Pt (j)
=

(
νi,t

1 + νi,t

)
MC (i)

P (j)

(
−γij
γii

)
> 0

∂Pt (i)

∂αt (i)
=

(
νi,t

1 + νi,t

)
MC (i)

(
− 1

γii

)
> 0

Note that if γii is decreasing in the number of goods, as embodied in the uniformity-

in-Γ restriction of (4.26b), then the sensitivity of price to base market share will be

increasing in the same. When the number of goods is large, small fluctuations in

consumers’ relative preferences can have large effects on optimal prices. Second, we

have that the optimal price is strictly concave in marginal cost and other prices, but

strictly convex in base market share; and that the cross-derivatives are all strictly

positive (full details of these derivatives may be found in appendix 4.A.2):

∂2Pt (i)

∂MCt (i)2
< 0

∂2Pt (i)

∂MCt (i) ∂Pt (j)
> 0

∂2Pt (i)

∂Pt (j)2
< 0

∂2Pt (i)

∂MCt (i) ∂αt (i)
> 0

∂2Pt (i)

∂αt (i)2
> 0

∂2Pt (i)

∂Pt (j) ∂αt (i)
> 0
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4.4. Price-setting under full information

These emphasise the importance of co-ordination in firms’ price-setting decisions. A

firm’s ability to raise its price with its marginal cost is contingent on a concomitant

rise in its competitors’ prices, although this is partially mitigated if the firm com-

mands a larger base market share. This feature of TransLog preferences is further

illustrated in figures 4.2, 4.3 and 4.4.
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(a) Cross-section by other firms’ prices.
α (i) = 0.2, γii = −1
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Figure 4.2: Optimal price under full-information by nominal marginal cost.

Figure 4.2 plots firm i’s full-information price as a function of its nominal mar-

ginal cost, with cross-sections shown by other firms’ prices and base market share.

Segments shown as solid lines are those in which the firm obtains an expenditure

share bounded by 0 and 1, while segments shown as dashed lines fall outside these

bounds (too low a price and the firm captures all household expenditure, too high

a price and its share falls to zero). By way of comparison, the optimal price under

Dixit-Stiglitz preferences is also shown, assuming an elasticity of ε = 3.

The concavity of the price-setting rule implies that the optimal price is some-

times below and sometimes above that suggested by the Dixit-Stigliz framework,

depending on the marginal cost. With a flatter slope than the constant mark-up

setting, this figure provides a simple illustration of the real rigidity embodied in
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4.4. Price-setting under full information

TransLog (and AIDS) preferences. Events that lower a firm’s marginal cost, such

as productivity improvements, will not cause that firm to lower their price so far as

it would under a constant mark-up scheme. Likewise, the best response to inflation

in a firm’s input prices (such as wages) is to raise its output price by less than un-

der a constant mark-up scheme when taking other firms’ prices as given because of

concerns regarding strategic complementarity. Indeed, for firms that receive a very

low fraction of household expenditure, increases in marginal cost in the absence of

increases in competitors’ prices will cause a less than one-for-one increase in prices

( ∂Pt(i)
∂MCt(i)

< 1).
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(a) Cross-section by nominal marginal cost.
α (i) = 0.2, γii = −1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

P (−i)

P (i)

 

 

Dixit-Stiglitz (µ = 1.5, MC (i) = 2)

α (i) = 0.1

α (i) = 0.2

α (i) = 0.3

(b) Cross-section by base market share.
MC (i) = 2, γii = −1

Figure 4.3: Optimal price under full-information by a weighted average of other
firms’ prices.

Next, figure 4.3 shows that optimal prices are concave in other firms’ prices

and quite strongly so when marginal costs are low. Note, for example, that when

MC (i) = 2, a price of 3 (i.e. a mark-up of 1.5) is only achieved when other firms’

prices are roughly 4.

It is worth emphasising again that this strategic complementarity is firm-specific,

with firm i being interested in the weighted-average ln (P (−i)) =
∑

j 6=i (−γij/γii) ln (P (j))
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4.4. Price-setting under full information

of its competitors’ prices.12 This implies a reduced opportunity for policy makers

to assist coordination by publishing aggregate price statistics. With each firm inter-

ested in a different weighted sum, the aggregate price level will, at best, act as an

imperfect signal to each firm’s pricing problem.
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Figure 4.4: Optimal price under full-information by base market share.

Finally, figure 4.4 shows that a firm’s optimal price increases convexly in its base

market share, but only quite weakly so. This convexity is strongest when marginal

costs are high relative to other firms’ prices, but doing so very quickly approaches

the st (i) = 0 boundary. In other words, an increasing base market share allows a

firm to raise its price, but it is generally not enough to offset falls in (or failures to

increase) other firms’ prices or its own marginal cost.

12Recall that the Γ matrix is symmetric and each row sums to zero, but there is no requirement
that off-diagonal elements be equal. Indeed, such a case would be highly unusual.
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4.4. Price-setting under full information

4.4.3 Equilibrium prices under full information

Although each firm’s best response to a common shock to marginal costs is to temper

any price increase by lowering its mark-up, it will typically be the case that the equi-

librium mark-up under full information is independent of the aggregate components

of marginal cost. To see this, rewrite equation (4.50) as

νi,t =W

e1−αt(i)γii

∏
j 6=i

(
MCt (j)

MCt (i)
νj,t

)−γij
γii


Recall that a firm’s nominal marginal cost (4.30) is given by

MCt (i) = (1 + η)
Wt

At (i)1+η

(
st (i)PtYt
Pt (i)

)η
Because it is the ratio of firms’ marginal costs that matter for the equilibrium mark-

up, all of the common components – wages, aggregate productivity and aggregate

demand – will necessarily cancel out so that

MCt (j)

MCt (i)
=

(
At (i)

At (j)

)1+η (
st (j)Pt (i)

st (i)Pt (j)

)η
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4.5. Price-setting under uncertainty

4.5 Price-setting under uncertainty

Under uncertainty, firm i’s problem is to choose Pt (i) to maximise its expected

one-period profit, taking aggregate expenditure and other firms’ prices as given

max
Pt(i)

Et (i)

[
st (i)Nt

(
1− MCt (i)

Pt (i)

)]
(4.51)

where E (i) [·] ≡ E [·|I (i)] is the mathematical expectation conditional on informa-

tion available to firm i at the start of the period, defined in section 4.3.5. Maintaining

the notation that lower-case letters are the natural log of their upper-case counter-

parts, the corresponding first order condition (a derivation of this and the linear

approximation below is provided in appendix 4.A.3) is

Et (i) [γiie
nt ] = Et (i)

[
γiie

nt+mct(i)−pt(i) (φt (i)− pt (i))
]

Denoting variables with an asterisk as being that variable in steady-state and vari-

ables with a hat above them to be that variable’s deviation from steady-state – e.g.,

p̂t (i) ≡ pt (i)− p (i)∗ – we can construct a first-order Taylor series approximation of

firm i’s pricing rule around the no-shock, full-information equilibrium. Unlike the

rule for the canonical Dixit-Stiglitz model – p̂t (i) = Et (i) [m̂ct (i)] – the TransLog

system’s pricing rule is:

p̂t (i) =

(
1− 1

1 + µ∗i

)
Et (i) [m̂ct (i)]

+

(
1

1 + µ∗i

)
Et (i)

[(−1

γii

)
α̂t (i) +

∑
j 6=i

(−γij
γii

)
p̂t (j)

]
︸ ︷︷ ︸

=φ̂t(i)

(4.52)

where µ∗i = 1 − s(i)∗

γii
is the mark-up employed by firm i in steady-state. A number

of interesting results emerge from this pricing rule.

First, and most obviously, a firm’s price is increasing in both its marginal cost

and its mark-up, with the mark-up contribution being a positive combination of its

base market share and its competitors’ prices. That each firm’s price increases in

its base market share is not surprising. An increase in α̂t (i) represents a shift in

households’ relative preferences towards good i, which grants the producer greater
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4.5. Price-setting under uncertainty

pricing power. Note that this variable is scaled by γii, the parameter governing the

price sensitivity of i’s market share. If γii is small, an increase in consumer preference

for good i will have a large effect on its price.

Next, we see that for the purposes of setting its mark-up, firm i is interested in

a firm-specific weighted average of competitors’ prices and not the aggregate price

level.13 This inclusion of competitors’ prices in the pricing equation is in addition

to those brought in via marginal costs as would be typical in the constant-mark-up

setting.

Finally, since each firm’s steady-state mark-up increases with its market share,

we have that larger firms will, ceteris paribus, place relatively more weight on move-

ments in their marginal costs than on movements in their competitors’ prices or

consumer preferences. Similarly, smaller firms will pay more attention to price com-

petition and consumer preferences, relative to their larger counterparts.

Of course, if a firm’s marginal cost is increasing in the quantity of goods it

produces, this acts as a further source of real rigidity no matter what the model

of demand. Linearising and substituting the expression for firms’ nominal marginal

costs (4.30) into (4.52) and exploiting the transitory nature of idiosyncratic shocks

to demand, we obtain:

p̂t (i)TL = Et (i)

[
θi p̂t + (1− θi)

∑
j 6=i

(−γij
γii

)
p̂t (j)

]

+

(
θi

1 + η

)
Et (i) [$̂t − (1 + η) ât (i) + ηŷt] (4.53)

where $̂t is the real wage and η is the elasticity of marginal cost with respect to

output, while θi ≡
(

µ∗i (1+η)

1+µ∗i (1+ηε∗ii)

)
∈ (0, 1). Each firm will estimate three broad

objects: the aggregate price level; a firm-specific weighted average of other firms’

prices; and the real components of its marginal cost.

The nominal considerations include a component from the firm’s marginal cost

and a component from its mark-up, thereby clearly delineating firms’ price concerns

13Recall that γii < 0; γij ≥ 0 ∀i, j; and
∑
j 6=i (−γij/γii) = 1.
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with respect to its cost of doing business and with respect to the strategic comple-

mentarity of price competition. Since θi is increasing in α (i)∗, we have that larger

firms will focus more on the real determinants of marginal cost and the aggregate

price level, while smaller firms will place more weight on price competition.

This pricing rule embodies two distinct sources of real rigidity above the standard

Dixit-Stiglitz framework. First, it accounts for curvature in demand and the corres-

ponding variation in firms’ mark-ups. Second, it requires that firms estimate multiple

aggregated price statistics (because of asymmetries in consumer preferences) in an

environment where only one – the aggregate price level – is published.

It is possible to separate these two effects by examining the pricing rule with

complete uniformity in preferences as a part-way point between Dixit-Stiglitz pricing

and the more realistic TransLog environment. Imposing complete uniformity gives

us that p̂t =
∑
j 6=i

(
−γij
γii

)
p̂t (j) = p̂t ∀i, so that (4.53) may be written as

p̂t (i)UTL = Et (i)
[
p̂t

]
+

(
µ∗

1 + µ∗ (1 + ηε∗)

)
Et (i) [$̂t − (1 + η) ât (i) + ηŷt] (4.54)

where the superscript “UTL” is used to denote “Uniform TransLog.” By contrast,

the linearised pricing rule under Dixit-Stiglitz preferences is

p̂t (i)DS = Et (i)
[
p̂t

]
+

(
1

1 + ηε

)
Et (i) [$̂t − (1 + η) ât (i) + ηŷt] (4.55)

Firms are interested in the same estimating the same objects under both envir-

onments, but attribute less weight to the real components of marginal cost under

TransLog preferences ( µ
1+µ(1+ηε)

< 1
1+ηε

), reflecting the fact that variable mark-ups

reduce any response to changes in marginal cost.

4.5.1 Applying near-uniformity in preferences

The pricing rule of equation (4.53) is, in general, intractable when seeking to in-

clude it in a simulated general equilibrium model. This is because when aggregating
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(substituting 4.53 back into itself), it stipulates that firms consider J + 1 different

compound expectations: one for the aggregate price level plus a different one for

every firm. As shown in chapter 1, the state vector will therefore explode in J (in

addition to in the number of higher-orders).

To progress further, is is therefore necessary now to apply our assumption of near

uniformity in preferences (4.40a) - (4.40c). These simplify the pricing rule (4.53) to

p̂t (i)NUTL = Et (i)
[
θ p̂t + (1− θ) p̂t

]
+

(
µ∗

1 + µ∗ (1 + ηε∗)

)
Et (i) [$̂t − (1 + η) ât (i) + ηŷt] (4.56)

where the superscript “NUTL” is used to denote “Near-Uniform TransLog”; θ =(
µ∗(1+η)

1+µ∗(1+ηε∗)

)
; and 1

J−1
∑
j 6=i

p̂t (j) = p̂t ∀i. In particular, we now have that every

firm is interested in exactly the same two linear combinations of individual firms’

prices. This unfortunately removes the result that large and small firms place differ-

ent weights on supply and demand considerations (equality in steady-state expendit-

ure shares means that the θis must be equal). Even so, it remains the case that since

firms are interested in two different aggregate price statistics but observe only one,

their ability to find the optimal price will be impaired relative to the STL case.

We show in appendix 4.A.4 that under near-uniformity, the linearised aggregate

price level (4.5) is given by

p̂t = ˜̂pt +
1

γ
ṽαt (4.57)

where

˜̂pt ≡∑
i

α (i)∗ p̂t (i) and ṽαt ≡
∑
i

α (i)∗ vαt (i)

which is to say that the aggregate price level is a weighted average of all prices plus

a transitory aggregated preference shock.

We also show in appendix 4.A.4 that linearising the household’s intratemporal

first-order condition (4.22), aggregate production (4.32) and aggregate TFP (4.33),
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and substituting them into (4.56) then gives

p̂t (i)NUTL = θ∗Et (i) [p̂t] + (1− θ∗)Et (i)
[
p̂t

]
(4.58)

+ Et (i)

[
θ

( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt − θ

(
1 +

1

ψ

)
εAt − θvAt (i)

]
where θ∗ = θ

(
1 + 1

ψ

)
. Note that an expectation regarding the idiosyncratic pro-

ductivity shock remains here while that of the demand shock does not because it is

something about which the firm can form an expectation. By observing the com-

bined (aggregate plus idiosyncratic) shock to its costs, a firm can and will form an

opinion on what of that is common to all firms and the remainder must, by definition,

be their idiosyncratic component. By contrast, no information available to the firm

allows them to move away from its a priori expectation of its idiosyncratic demand

shock; namely, that it be zero.

4.5.2 Higher-order expectations

Linearising the household Eular equation (4.23) gives

ŷt = Et [ŷt+1]− σ
(̂
it − Et [p̂t+1 − p̂t]

)
(4.59)

We shown in appendix 4.A.5 that substituting (4.59), the central bank’s policy rule

(4.34), and the linearised aggregate price level (4.57) into (4.58), and recognising

that Et (i) [vαt (j)] = 0 ∀j, gives

p̂t (i)∗ = λ∗1Et (i)
[
p̂t

]
+ λ∗2Et (i)

[ ˜̂pt]
+ λ∗3Et (i) [p̂t+1] + λ∗4Et (i) [ŷt+1]

+ λ∗5Et (i)
[
εAt
]

+ λ∗6Et (i)
[
εMt
]

+ λ∗7 ât (i) (4.60)

for ∗ ∈ {NUTL,UTL,DS}. The λ∗∗ coefficients are described in detail in the ap-

pendix, although we note here that under some mild restrictions on the central bank’s

policy function, we have

λ1 ∈ (0, 1) ; λ2 ∈ (0, 1) ; and λ1 + λ2 ∈ (0, 1)
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4.5. Price-setting under uncertainty

These restrictions are necessary to ensure that decreasing weight is placed against

higher-order expectations and, hence, to ensure that the system is stable.

Equation (4.60) describes each firm’s pricing rule as a linear combination of two

aggregate price statistics: a weighted -average price and a simple-average price.14 We

show in appendix 4.A.5 that if we take the simple average of equation (4.58) and

repeatedly substitute it in for p̂t, we obtain

p̂t (i) = Et (i)

[
∞∑
k=0

λk1E
(k)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]]
+ λ7 ât (i) (4.61)

where E
(k)

t [·] is the k-th order simple-average expectation and we use the standard

notation that the 0-th order expectation of an object is the object itself.

For Uniform TransLog and Dixit-Stiglitz preferences, we note that λ2 = 0 and

that the aggregate price level is just the simple-average price, so that

p̂∗t = λ∗7 ε
A
t (4.62)

+
∞∑
k=0

(λ∗1)
k E

(k+1)

t

[
λ∗3p̂

∗
t+1 + λ∗4ŷt+1 + (λ∗5 + λ∗1λ

∗
7) ε

A
t + λ∗6 ε

M
t

]
for ∗ ∈ {UTL,DS}.

For Near-Uniform TransLog preferences, on the other hand, we now take the

weighted average of (4.61), repeatedly substitute it back in for ˜̂pt and then combine

the result with the expression for the aggregate price level (4.57) to arrive at

p̂∗t = λ∗7
(
εAt + ṽAt

)
+

1

γ
ṽαt (4.63)

+ Ẽt

[
δ′E

(0:∞)
t

[
λ∗3p̂

∗
t+1 + λ4ŷt+1 + (λ∗5 + λ∗1λ

∗
7 + λ∗2λ

∗
7) ε

A
t

+λ∗6ε
M
t + λ∗2λ

∗
7ṽ
A
t

]]

where ∗ = “NUTL”; E
(0:∞)
t [·] is the hierarchy of all permutations of the two com-

pound expectations; and δ assigns geometrically decreasing weights to each, with λ∗1
14For TransLog preferences, the weighted-average price is for the aggregate price level (through

the nominal marginal cost) and the simple-average price for price competition through the mark-up.
For Symmetric TransLog and Dixit-Stiglitz preferences, only the simple-average is required.
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raised to the power of the number of orders of Et [·] and λ∗2 raised to the power of

the number of orders of Ẽt [·].

For example, a weight of (λ∗1) (λ∗2)
2 is applied to bothEt

[
Ẽt

[
Ẽt [·]

]]
and Ẽt

[
Et

[
Ẽt [·]

]]
as there are two orders of weighted-average expectations and one order of simple-

average expectations in each.

4.5.3 Firms’ learning

We define xt to be the vector of aggregate shocks:

xt ≡
[
εAt

εMt

]
(4.64)

and Xt as the full hierarchy of expectations regarding xt formed in period t:

Xt ≡ E(0:∞)
t [xt] =

 xt

Et [Xt]

Ẽt [Xt]

 (4.65)

In the linearised model, firms receive the following vector of signals each period

(see the definition of firms’ information sets (4.37)):

qt (i) =


ŷt−1 + ey,t

p̂t−1 + ep,t

ŷt−1 (i)

ât (i)

 (4.66)

Note that there is no need to include the firm’s previous-period price as it must neces-

sarily have been a function of It−1 (i), meaning that it contains no new information

in period t. The firm’s previous-period quantity is still relevant, though, as firms do

not observe the demand they face each period until after setting their prices. The

period t − 1 individual quantity demanded therefore contains news to a firm when

setting its price in period t.

We show in appendix 4.A.7 that this signal vector may be written as

qt (i) = C1Xt + C2Xt−1 +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+R3et (4.67)
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Because of the linearity of the underlying system, the best linear estimator – in the

sense of minimising the mean squared error – will be a Kalman filter:1516

Et (i) [Xt] = Et−1 (i) [Xt] +K {qt (i)− Et−1 (i) [qt (i)]} (4.68)

In appendix 4.A.6 we derive expressions for the time-invariant Kalman gain mat-

rix (K) and the corresponding variance-covariance matrix (V ), making use of the

techniques developed by Nimark (2011b) to account for firms’ signal vectors (4.67)

including lagged components without the need to stack the current state on the

previous.

Taking simple and weighted averages of (4.68), we then show that the following

law of motion for the hierarchy of firms’ expectations emerges:

Xt = FXt−1 +G1ut +G2ṽt +G3et (4.69)

where

ut =

[
uAt

uMt

]
ṽt =

[
ṽAt

ṽαt

]
et =

[
ep,t

ey,t

]
(4.70)

Note that the Kalman filter is performing two roles here. It both represents the rule

by which firms update their expectations and defines the law of motion for the state

vector of interest.

4.5.4 Solving the model

We now have that in addition to (4.69) describing the law of motion for the hierarchy

of firms’ expectations, the economy is characterised by the following expression for

real GDP:

ŷt =
1

1 + σκy
Et [ŷt+1]−

σ

1 + σκy

(
(κπ − 1)Et [p̂t+1 − p̂t] + εMt

)
15If all shocks were drawn from Gaussian distributions, it would be the best such estimator,

linear or otherwise.
16The derivation of the standard Kalman filter may be found in most texts on dynamic macroe-

conomics (e.g. Ljungqvist and Sargent, 2004) or timeseries analysis (e.g. Hamilton, 1994).
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and one of (4.62) or (4.63) for the price level, depending on which demand system

is being used. We show in appendix 4.A.7 that this system may be written as

ŷ∗t = γ∗′y Xt + δ∗′y ṽt (4.71a)

p̂∗t = γ∗′p Xt + δ∗′p ṽt (4.71b)

p̂
∗
t = γ∗′p Xt (4.71c)

ŵ∗t = γ∗′wXt + δ∗′w ṽt (4.71d)

where ∗ ∈ {DS,UTL,NUTL}. Note that under Dixit-Stiglitz and Uniform Trans-

Log preferences, (a) the law of large number ensures that ṽt = 0 ∀t almost surely,

and (b) the aggregate price level and the simple-average price are the same. The

terms in ṽt and the distinction between the two aggregated prices only matter when

preferences are not fully uniform across goods in steady-state.
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4.6 Simulations

Table 4.1 lists baseline parameters for the simulation presented below. As in chapter

3, the coefficient against expected next-period inflation is less than unity in order to

ensure the existence of a non-explosive solution.

Parameter Value Description
σ 0.5 The elasticity of intertemporal substitution
ψ 1.5 The Frisch elasticity of labour supply
ε∗ii 3.0 The steady-state own-price elasticity of demand
ζ∗ 0.063 The degree of asymmetry in steady-state base market shares

η 0.5 The elasticity of marginal cost (≡ α
1−α , α = 0.333)

κy 0.5 The CB’s coefficient against current real GDP
κπ 0.5 The CB’s coefficient against expected next-period inflation

ρA 0.6 AR(1) coefficient for aggregate TFP shocks
ρM 0.6 AR(1) coefficient for monetary shocks
σ2
v

σ2
u

5 Relative volatility of idiosyncratic shocks

Table 4.1: Baseline parameterisation

For the two TransLog demand systems, the steady-state own-price elasticity of

demand ties down the deep parameter γ that controls cross-price elasticity (ε∗ii = 1+

γ). For Near-Uniform TransLog preferences, ζ∗ ≡ limJ→∞
1
J

∑J
i=1 (ζi)

2 characterises

the degree of asymmetry in the distribution of steady-state base market shares. The

value of 0.063 was chosen as this corresponds to a Zeta distribution with a shape

parameter of γ = 1.2517 and Axtell (2001) finds that the size of firms in the USA,

when estimated over a 10 year period, are well characterised by such a distribution.

In everything that follows, period 0 denotes the period immediately prior to any

shock occurring (the economy is invariably assumed to be in steady-state in period

0) and period 1 denotes the “on impact” period.

17See assumption 2 in chapter 2. The same logic applies here, with the p.d.f. φN (i) simply
replaced with αJ (i)

∗
.
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4.6.1 Comparing demand systems

Figure 4.5 plots impulse responses for each of the three demand systems following

one s.d. shocks to each of the two underlying state variables under the baseline

parameterisation.
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(a) Aggregate TFP shock
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(b) Monetary Policy shock

Figure 4.5: IRFs for the three systems of demand

The impulse responses for Dixit-Stiglitz and Uniform TransLog preferences are

very similar for both aggregate shocks. For the shock to productivity, firms on impact

attribute their private observations of productivity increases to idiosyncratic factors

and consequently lower their prices only somewhat. In period 2, they observe the

change in aggregate variables and their private demand that occurred in period 1

and immediately respond fully to the shock. Prices and real GDP then return to

zero as the underlying shock itself dies away. For the shock to monetary policy,
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since firms observe no contemporary signal of household demand before setting their

prices, there is no change in aggregate prices on impact and real GDP absorbs all

of the effect. In period 2, upon observing aggregate signals and their own quantities

from the impact period, firms’ prices adjust fully and real GDP essentially returns to

zero (the slight positive effect in period 2 arises from firms’ average expectation that

there is a slight increase in aggregate TFP as well - see figure 4.6a below). In other

words, with firms having full flexibility in their price-setting, we essentially have the

standard result of money being neutral, with monetary policy shocks having only a

transitory real effect and prices capturing the aggregate effects thereafter.

However, Near-Uniform TransLog preferences induce responses that stand in

marked contrast. For the shock to productivity, the same 1 standard deviation innov-

ation as under Dixit-Stiglitz and Uniform TransLog preferences produces responses

that are more subdued, noticeably more hump-shaped and considerably more per-

sistent than those of UTL or DS (so that relative to their peak response, NUTL

preferences induce very much more persistent responses). The aggregate price level

and the simple-average price move essentially one-for-one. For a monetary shock,

despite the absence of any nominal rigidity and firms having access to the same in-

formation as under UTL or DS preferences, the neutrality of money result is lost:

the subdued price response of NUTL grants the policy shock a considerably more

persistent effect on real GDP.

To appreciate the increased persistence associated with NUTL preferences, we

look at impulse responses for firms’ hierarchies of simple-average expectations re-

garding the two underlying state variables following each of the two shocks. First,

figure 4.6 plots those hierarchies for UTL and NUTL preferences following an ag-

gregate TFP shock.

Under Uniform TransLog preferences, on impact, firms attribute the majority

of their observed increases in productivity to idiosyncratic forces (because of the

latter’s higher variance). In period 2, the public signals regarding aggregate variables

in period 1 increase the average belief considerably, but the measurement errors in

those public signals mean that the average belief is still below the truth. Firms

in period 2 also partially attribute the increase in real GDP to increased demand

following a monetary policy shock, although this belief dies away very quickly over
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(a) Uniform TransLog (UTL) preferences
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(b) Near-Uniform TransLog (NUTL) preferences

Figure 4.6: Hierarchies of simple-average expectations following a TFP shock

the next few periods. The impulse responses for aggregate beliefs under Dixit-Stiglitz

preferences are broadly the same as those shown in figure 4.6a.

Under Near-Uniform TransLog preferences, the responses on impact are identical

to those under UTL preferences, but thereafter differ considerably. Because firms

must estimate both the aggregate price level and the simple-average price, but only

receive public signals regarding the former, they incorrectly attribute some of the

movements in their signals to shocks in both the level and the distribution of de-

mand. This leads average expectations regarding aggregate TFP to be higher and

considerably more persistent than the truth, and those regarding monetary shocks

to also be more persistent (although still quite small).

Figure 4.7 next plots the equivalent graphs following a monetary policy shock.
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(a) Uniform TransLog (UTL) preferences
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(b) Near-Uniform TransLog (NUTL) preferences

Figure 4.7: Hierarchies of simple-average expectations following a monetary policy
shock

For UTL preferences (DS preferences are largely the same), the absence of any

signal of aggregate demand before setting their prices in a given period means that

firms’ beliefs do not move on impact. In period 2, the observed signal of real GDP

from period 1 raises their expectations regarding both underlying variables, but in

period 3 the information they receive in period 2 partially confirms that a monetary

policy shock has occurred and so lowers their estimates of aggregate TFP. Beliefs

regarding the former then follow the truth back to zero, while the latter have returned

to zero after a handful of periods.

For NUTL preferences, there is likewise no on-impact response, but additional

persistence thereafter. Average expectations regarding aggregate TFP rise higher
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and persist throughout, while those regarding the monetary shock fall to zero from

above the truth. Once again, these reflect the more challenging signal extraction

problem faced by firms under NUTL preferences.

4.6.2 Aggregate volatility from idiosyncratic shocks under

NUTL preferences

Under Near-Uniform TransLog preferences, the aggregate price level is comprised of

the weighted -average of individual firms’ prices and the weighted-average of firms’

idiosyncratic shocks in that period, with the weights given by firms’ steady-state

base market shares. Since the weighted-average of idiosyncratic shocks need not

be subject to the law of large numbers, NUTL preferences therefore give rise to

aggregate volatility emerging from firms’ idiosyncratic shocks.

To illustrate this, figures 4.8 and 4.9 plot aggregate impulse responses and the

hierarchies of simple-average expectations following shocks to ṽAt and ṽαt respectively.

That is, following situations in which firms with relatively large steady-state marginal

costs experience positive shocks while firms with relative small steady-state marginal

costs experience negative shocks (recall that in steady-state all firms receive the same

share of household expenditure; see section 4.3.7 for a description of steady-state).

A shock to more expensive firms’ productivity (figure 4.8) induces aggregate

responses that are suggestive of a true aggregate shock to productivity. The aggregate

price (which is a weighted-average) falls on impact, but the simple-average price does

not because the law of large numbers holds for it. Demand rises because of the fall

in the aggregate price level. In period 2, all firms observe that real GDP rose and

the aggregate price level fell in period 1 and consequently, the average firm believes

that an aggregate productivity shock has occurred (although it cannot dismiss the

possibility of a monetary shock being the source of the increased real GDP). As such,

the simple-average firm also reduces its price, leading to a larger movement in real

GDP. Over time, firms quite quickly disregard the likelihood of a monetary policy

shock being the cause but only reduce their expectations of an aggregate TFP shock

gradually.

Under the baseline specification, movements in real GDP and the aggregate price
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(b) Hierarchy of simple-average expectations under NUTL preferences

Figure 4.8: Responses to a 1 s.d. shock to ṽAt

level are roughly half of the magnitude of those following a true aggregate productiv-

ity shock (it remains the case that the magnitude of the price level movement is quite

a bit larger than that of real GDP) and somewhat less persistent. This stands in

contrast to the previous chapter that examined the aggregate effect from network

shocks, in which responses were roughly an order of magnitude smaller.

For a preference distribution shock that favours more expensive firms (figure 4.9),

firms receive no signal of the shocks on impact and so do not adjust their prices, but

real GDP increases mechanically. In period 2, seeing the increase in real GDP and

no movement in the aggregate price from period 1, firms attribute the shock to

both aggregate TFP and monetary policy. Both beliefs contribute to an increase

in firms’ prices in period 2, causing overall demand to fall enough to counteract the
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(b) Hierarchy of simple-average expectations under NUTL preferences

Figure 4.9: Responses to a 1 s.d. shock to ṽαt

mechanical increase in real GDP that emerges from the shock. The drop in real GDP

and increase in the aggregate price in period 2 induces the average firm in period 3

to largely unwind its belief in a monetary policy shock, but remains consistent with

an aggregate TFP shock. Firms’ prices subsequently remain elevated and real GDP

below trend until the shock dissipates.

Relative to an aggregate demand shock (to monetary policy), a shock to the

distribution of demand under the baseline specificiation induces a price level response

of roughly half the magnitude, but a relatively much smaller response in real GDP.
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Variance decomposition

Table 4.2 shows the share of unconditional variance in real GDP and the aggregate

price level that can be attributed to idiosyncratic shocks under NUTL preferences

and the baseline parameterisation for different degrees of asymmetry in steady-state

distribution of firms’ base market shares. For Near-Uniform TransLog preferences

ζ∗ Real GDP Aggregate price level
0 0 0

0.02 0.19 1.54
0.04 0.35 3.22
0.06 0.49 5.01
0.08 0.62 6.87
0.10 0.74 8.78

Table 4.2: Share of unconditional variance attributable to idiosyncratic shocks (%)

under the baseline parameterisation (ζ∗ = 0.063), roughly 0.5% of unconditional

volatility in real GDP and 5.0% unconditional volatility in the aggregate price level

are attributable to idiosyncratic shocks. Recall that the baseline parameterisation

corresponds to a Zeta distribution with a shape parameter of γ = 1.25.
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4.7 Conclusion

This chapter has discussed the possibility of making use of TransLog preferences in

a macroeconomic model when household preferences are not uniform across goods

and firms are free to adjust their prices every period (thereby avoiding both the

Lucas critique under purely time-based price setting rules and the complexity of

aggregation under state-based pricing systems) but face incomplete information.

Under TransLog preferences, firms continue to set their price as a mark-up over

their nominal marginal costs, but the mark-up is endogenous. A price rise lowers a

firm’s share of household expenditure, which raises its own-price elasticity of demand

and, hence, lowers its optimal mark-up, thereby dampening any response to a change

in marginal cost. Under full information, we solve for an explicit solution to the firm’s

pricing problem and note that an endogenous market-exit condition arises in response

to sufficiently large shocks to marginal cost (that necessitate prices sufficiently high

as to cause the firm’s expenditure share to be zero).

Under incomplete information, firms’ signal extraction problem implies that (a)

larger firms will place relatively more weight on movements in their marginal costs,

while smaller firms will place more weight on movements in competitors’ prices or

consumer preferences; and (b) when considering competitors’ prices, every firm must

consider two distinct sums: the aggregate price level (as part of its estimation of

nominal marginal cost) and a firm-specific weighted sum of competitors’ prices.

The pricing rule under full TransLog preferences is, in general, intractable to ag-

gregation. This is because each firm, in considering a weighted sum of other firms’

prices, must also consider the weighted-average price specific to each of its compet-

itors. This recursion creates an explosion in the size of the state vector quite apart

from that arising from higher-order expectations (see section 1.2.1 in chapter 1).

To simplify, we suppose that the representative household exhibits TransLog pref-

erences with near-uniformity in steady-state preferences : firms’ steady-state shares

of household expenditure and their mark-ups are all equal, but their marginal costs

and prices are not. With Near-Uniform TransLog (NUTL) preferences, all firms are

interested in estimating the same two sums of individual prices: A weighted-average
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price18 that comprises the aggregate price level and a simple-average price that affects

movements in their mark-ups.

We compare the performance of NUTL preferences in a small DSGE model to

corresponding models with fully Uniform TransLog (UTL) or Dixit-Stiglitz (DS)

preferences. UTL and DS preferences are shown to induce very similar impulse

responses following shocks to aggregate TFP or monetary policy. In contrast, impulse

responses in the NUTL framework were generally more subdued, more hump-shaped

and considerably more persistent. Despite firms experiencing no nominal rigidity

and observing the same signals as under UTL or DS preferences, monetary shocks

are clearly non-neutral beyond the period in which the shock occurs.

The inclusion of weighted-average prices also implies that the law of large num-

bers may not hold, so that firms’ idiosyncratic shocks can have aggregate effects

on the economy. In the context of NUTL preferences, this occurs when firms with

large steady-state marginal costs experience shocks in one direction while firms with

small steady-state marginal costs experience shocks in the other. We show that un-

der parameterisations that match the distribution of firm size in the United States,

idiosyncratic shocks in this sense may contribute 0.5% of unconditional volatility in

real GDP and 5.0% of volatility in the price level.

18With the weights given by firms’ steady-state base market share.

197



4.A. Proofs

Appendix 4.A Proofs

This chapter contains derivations and proofs of results in the main paper.

4.A.1 Own-price super-elasticity of demand within the

Almost Ideal Demand System

Taking note of equation (4.4):

P (i)Q (i)

N
≡ s (i) = α (i) +

∑
j

γij ln (P (j)) + βi ln

(
N

P

)
and equation (4.9):

εii = 1− 1

s (i)

[
γii − βi

(
α (i) +

∑
k

γki ln (P (k))

)]
The super-elasticity of demand is derived as follows, again taking income and other

firms’ prices as given:

ξii ≡
∂ ln εii
∂ lnP (i)

=
1

εii

[
−
∂ 1
s(i)

[γii − βi (α (i) +
∑

k γki ln (P (k)))]

∂ lnP (i)

]

=
1

εii

[
βiγii
s (i)

+
1

s (i)

[
γii − βi

(
α (i) +

∑
k

γki ln (P (k))

)]
1

s (i)

∂s (i)

∂ lnP (i)

]

=
1

εii

βiγii
s (i)

+

{
1

s (i)

[
γii − βi

(
α (i) +

∑
k

γki ln (P (k))

)]}2


=
1

εii

[
βiγii
s (i)

+ (εii − 1)2
]

which is equation (4.17) in the main text.

4.A.2 Proof of proposition 3: Explicit solution for the

one-period optimal price under full information

Defining lower-case letters to be the (natural) log of their upper-case counterparts –

e.g. x (i) ≡ ln (X (i)) – and substituting equation (4.14) in for s (i), we can rewrite
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the monopolist’s one-period profit (4.44) as

Π (i) =

(
α (i) + γiip (i) +

∑
j 6=i

γijp (j)

)
en−C

((
α (i) + γiip (i) +

∑
j 6=i

γijp (j)

)
en−p(i)

)

Taking all parameters, other firms’ prices and aggregate expenditure as given, the

optimal price for a monopolist when free to adjust their price every period is therefore

found at the point p (i) such that the following first-order condition is satisfied

γiie
n − C ′ (Q (i))

(
γiie

n−p(i) −
(
α (i) + γiip (i) +

∑
j 6=i

γijp (j)

)
en−p(i)

)
= 0

Defining mc (i) ≡ ln (C ′ (Q (i))) as the log of marginal costs, we can rearrange this

to give

γii
(
p (i) + ep(i)−mc(i)

)
= γii − α (i)−

∑
j 6=i

γijp (j)

or

p (i) + ep(i)−mc(i) = 1− α (i)

γii
−
∑
j 6=i

γij
γii
p (j)︸ ︷︷ ︸

≡φ(i)

Denoting the right-hand side by φ (i), this in turn rearranges to

ln (P (i)) +
P (i)

C ′ (Q (i))
= φ (i) (4.72)

Taking the exponential of both sides and then dividing both sides by C ′ (Q (i)) gives(
P (i)

C ′ (Q (i))

)
e

(
P (i)∗

C′(Q(i))

)
=

1

C ′ (Q (i))
eφ(i)

The left-hand side is now in the form of the inverse of the Lambert W function, so

we can therefore write

P (i)

C ′ (Q (i))
=W

(
eφ(i)

C ′ (Q (i))

)
(4.73)

which is equation (4.46) in the main text.
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First and Second Derivatives

∂P (i)

∂MC (i)
=W

(
eφ(i)

MC (i)

)
−W ′

(
eφ(i)

MC (i)

)
eφ(i)

MC (i)

=W
(

eφ(i)

MC (i)

)
−

 W
(

eφ(i)

MC(i)

)
eφ(i)

MC(i)

(
1 +W

(
eφ(i)

MC(i)

))
 eφ(i)

MC (i)

=

[
W
(

eφ(i)

MC(i)

)]2
1 +W

(
eφ(i)

MC(i)

)
> 0

∂2P (i)

∂MC (i)2
= 2

W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)W ′( eφ(i)

MC (i)

)(
− eφ(i)

[MC (i)]2

)

−

 W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
2

W ′
(

eφ(i)

MC (i)

)(
− eφ(i)

[MC (i)]2

)

=

2−
W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)W ′( eφ(i)

MC (i)

)(
− eφ(i)

[MC (i)]2

)

= −

2 +W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)W ′( eφ(i)

MC (i)

)
eφ(i)

[MC (i)]2

= −

2 +W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
2

1

MC (i)

< 0

∂P (i)

∂P (j)
=W ′

(
eφ(i)

MC (i)

)
eφ(i)

∂φ (i)

∂P (j)

=

 W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
MC (i)

P (j)

(
−γij
γii

)
> 0
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∂2P (i)

∂P (j)2
=

1[
1 +W

(
eφ(i)

MC(i)

)]2MC (i)

P (j)

(
−γij
γii

)
W ′
(

eφ(i)

MC (i)

)
eφ(i)

MC (i)

∂φ (i)

∂P (j)

−

 W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
MC (i)

[P (j)]2

(
−γij
γii

)

=

 W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
MC (i)

[P (j)]2

(
−γij
γii

) 1[
1 +W

(
eφ(i)

MC(i)

)]2 (−γijγii
)
− 1


< 0

∂P (i)

∂α (i)
=W ′

(
eφ(i)

MC (i)

)
eφ(i)

∂φ (i)

∂α (i)

=

 W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
MC (i)

(
− 1

γii

)
> 0

∂2P (i)

∂α (i)2
=

1[
1 +W

(
eφ(i)

MC(i)

)]2MC (i)

(
− 1

γii

)
W ′
(

eφ(i)

MC (i)

)
eφ(i)

MC (i)

∂φ (i)

∂α (i)

=
W
(

eφ(i)

MC(i)

)
[
1 +W

(
eφ(i)

MC(i)

)]3 (− 1

γii

)2

MC (i)

> 0

∂2P (i)

∂MC (i) ∂P (j)
=

2 +W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)
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)
1 +W

(
eφ(i)
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)
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MC (i)

)
eφ(i)

MC (i)

∂φ (i)
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=

2 +W
(

eφ(i)
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)
1 +W

(
eφ(i)

MC(i)

)
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(
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)
1 +W

(
eφ(i)

MC(i)

)
2

1

P (j)

(
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∂2P (i)

∂MC (i) ∂α (i)
=

2 +W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
W ′( eφ(i)

MC (i)

)
eφ(i)

MC (i)

∂φ (i)

∂α (i)

=

2 +W
(

eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
2(
− 1

γii

)
> 0

∂2P (i)

∂P (j) ∂α (i)
=

1[
1 +W

(
eφ(i)

MC(i)

)]2MC (i)

P (j)

(
−γij
γii

)
W ′
(

eφ(i)

MC (i)

)
eφ(i)

MC (i)

∂φ (i)

∂α (i)

=
1[

1 +W
(

eφ(i)

MC(i)

)]2
 W

(
eφ(i)

MC(i)

)
1 +W

(
eφ(i)

MC(i)

)
MC (i)

P (j)

(
−γij
γii

)(
− 1

γii

)
> 0

Existence and uniqueness of an equilibrium

The price-setting equation under full information (4.46) represents a mapping

T : RJ
+ → RJ

+ (4.74)

and a Nash equilibrium in prices will be a fixed point of this mapping. Clearly Pt = 0

will be one such fixed point, but we dismiss this as trivial. In order to demonstrate

the uniqueness of a non-zero vector of prices such that P ∗t = T (P ∗t ), note that it

is insufficient to make use of the Banach (Contraction) Fixed-Point Theorem and

Blackwell’s sufficient conditions for demonstrating contraction (Blackwell, 1965), as

T is not a contraction: the derivatives are unbounded as prices approach zero.

Instead, we note that as T is concave and satisfies the following:

T (0) = 0

lim
P (j)→0

P (i) =∞ ∀j 6= i

lim
P (j)→∞

P (i) = 0 ∀j 6= i
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then it meets the requirements laid out by Kennan (2001) for uniqueness. Because

of its concavity and monotonicity, the mapping T (Pt) will therefore converge to the

unique P ∗t for any strictly positive starting vector of prices.

4.A.3 Static pricing rule under incomplete information

As both settings are with static pricing, the first-order condition for the full-information

case must hold in expectation here:

Et (i) [γiie
nt ] = Et (i)

[
γiie

nt+mct(i)−pt(i)

(
1− 1

γii

(
αt (i) + γiipt (i) +

∑
j 6=i

γijpt (j)

))]
We suppose that the Γ matrix remains constant and known, while all other variables

may vary over time. Denoting variables with an asterisk as being that variable in the

no-shock, full-information equilibrium and variables with a hat above them to be that

variable’s deviation from the no-shock equilibrium – that is, p̂t (i) ≡ pt (i)−p (i)∗, etc.

– a first-order Taylor series approximation of the left-hand side around the no-shock

equilibrium is simply

LHS ≈ γiie
n∗t + γiie

n∗tE (i) [n̂t]

Next, note that(
1− 1

γii

(
αt (i) + γiipt (i) +

∑
j 6=i

γijpt (j)

))
= 1− st (i)

γii
= µt (i)

so that a first-order approximation of the right-hand side is given by

RHS ≈ γiie
n∗t+mct(i)

∗−pt(i)∗µt (i)∗

+ γiie
n∗t+mct(i)

∗−pt(i)∗µt (i)∗E (i) [n̂t + m̂ct (i)− p̂t (i)]

− en∗t+mct(i)∗−pt(i)∗E (i)

[
α̂t (i) + γiip̂t (i) +

∑
j 6=i

γij p̂t (j)

]
Equating these, noting that the first terms on each side must cancel out and rearran-

ging slightly then gives

ept(i)
∗−mct(i)∗E (i) [n̂t] = µt (i)∗E (i) [n̂t + m̂ct (i)− p̂t (i)]

− E (i)

[
1

γii
α̂t (i) + p̂t (i) +

∑
j 6=i

γij
γii
p̂t (j)

]
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Recognising that ept(i)
∗−mct(i)∗ = µt (i)∗, we see that the terms in n̂t cancel out and

we arrive, finally, at

p̂t (i) =
µt (i)∗

1 + µt (i)∗
Et (i) [m̂ct (i)]−

(
1

1 + µt (i)∗

)
Et (i)

[
1

γii
α̂t (i) +

∑
j 6=i

γij
γii
p̂t (j)

]

which is equation (4.52) in the main text.

The first-order approximation of firm i’s nominal marginal cost(4.30) around

steady-state is:

m̂ct (i) = ŵt − (1 + η) ât (i) + η (ŷt + p̂t − p̂t (i))

+
η

s (i)∗

(
α̂t (i) + γiip̂t (i) +

∑
j 6=i

γij p̂t (j)
)

(4.75)

Recall that ŵt is the (log deviation in the) nominal wage. We can replace it by ŵt ≡
$̂t + p̂t, where $̂t is the real wage and p̂t is the aggregate price level. Substituting

this expression in for m̂ct (i) gives us

p̂t (i) =

(
µt (i)∗

1 + µt (i)∗

)
Et (i)

[
$̂t + p̂t − (1 + η) ât (i) + η (ŷt + p̂t − p̂t (i))

+ η
s(i)∗

(
α̂t (i) + γiip̂t (i) +

∑
j 6=i γij p̂t (j)

) ]

+

(
1

1 + µt (i)∗

)
Et (i)

[(−1

γii

)
α̂t (i) +

∑
j 6=i

(−γij
γii

)
p̂t (j)

]
Gathering like terms produces

p̂t (i) =

(
µ∗i (1 + η)

1 + µ∗i (1 + ηε∗ii)

)
Et (i) [p̂t]

+

(
µ∗i

1 + µ∗i (1 + ηε∗ii)

)
Et (i) [$̂t − (1 + η) ât (i) + ηŷt]

+

(
1 + ηε∗ii

1 + µ∗i (1 + ηε∗ii)

)
Et (i)

[(−1

γii

)
α̂t (i) +

∑
j 6=i

(−γij
γii

)
p̂t (j)

]

which, noting that
1+ηε∗ii

1+µ∗i (1+ηε∗ii)
= 1− µ∗i (1+η)

1+µ∗i (1+ηε∗ii)
, is equation (4.53) in the main text.

4.A.4 Aggregation under near-uniformity in preferences

There are three aggregations to consider in the firm’s pricing problem, two common

and one firm-specific.
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First, we have that individual firms are interested in firm-specific weighted av-

erages of their competitors’ prices∑
j 6=i

−γij
γii

pt (j)

The assumption of uniformity-in-Γ (4.40a) turns this into∑
j 6=i

−γij
γii

pt (j) =
γ

J

1

J − 1

∑
j 6=i

pt (j)

Assumption (4.40b) then (a) supposes that each firm is sufficiently small that this

expression is the same for everyone∑
j 6=i

−γij
γii

pt (j) =
γ

J

1

J − 1

∑
j 6=i

pt (j) =
γ

J
pt ∀i

and (b) applies a normalisation that when in steady-state, this simple average of log

prices is zero (roughly, although not exactly, that the average steady-state price is

unitary)∑
j 6=i

−γij
γii

p (j)∗ =
γ

J

1

J − 1

∑
j 6=i

p (j)∗ =
γ

J
p∗ = 0 ∀i

Outside of steady-state, firms will therefore wish to estimate (note the hats to indic-

ate deviations from steady-state)∑
j 6=i

−γij
γii

p̂t (j) =
γ

J
p̂t ∀i

Second, the linearised aggregate price level (4.5) is

p̂t =
∑
i

p (i)∗ α̂t (i) +
∑
i

(
α (i)∗ + 2

∑
j 6=i

γijp (j)∗
)
p̂t (i)

With uniformity-in-Γ (4.40a), this becomes

p̂t =
∑
i

p (i)∗ α̂t (i) +
∑
i

1

J
(ζi + 2γp∗) p̂t (i)
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and with the normalisation that p∗ = 0, we get

p̂t =
∑
i

p (i)∗ α̂t (i) +
∑
i

α (i)∗ p̂t (i)

For the sum over prices, it is clear that since α (i)∗ ∈ (0, 1) and
∑

i α (i)∗ = 1,

this is a weighted average all firms’ prices, which we denote ˜̂pt. Next, substitute in

the expression for p (i)∗ – see equation (4.41) in the main text – and noting that

α̂t (i) = 1
J
vαt – see equation (4.25a) – to get

p̂t = ˜̂pt +
∑
i

1

γ
(ζi − 1)

1

J
vαt (i)

= ˜̂pt +
1

γ

∑
i

1

J
ζiv

α
t (i)− 1

γ

1

J

∑
i

vαt (i)

The last term clearly goes to zero as J → ∞, since it is a simple average and

E [vαt (i)] = 0. We are therefore left with

p̂t = ˜̂pt +
1

γ
ṽαt (4.76)

which is equation (4.57) in the main text.

Third, aggregate TFP (4.33) linearises as

ẑt =

∫
ât (i) + p̂t (i)− p̂t −

1

s (i)∗

[
α̂t (i) + γiip̂t (i) +

∑
j 6=i

γij p̂t (j)
]
di

Applying the uniformity-in-Γ (4.40a) assumption and using the definition of αt (i),

this becomes

ẑt =

∫
ât (i) + p̂t (i)− p̂t−

1

s (i)∗

[
1

J
vαt (i)− γ

J
p̂t (i) +

γ

J (J − 1)

∑
j 6=i

p̂t (j)

]
di

Applying uniformity in steady-state expenditure shares (4.40c) and expanding ât (i),

we get

ẑt =

∫
εAt + vAt (i) + p̂t (i)− p̂t − vαt (i) + γp̂t (i)− γ 1

(J − 1)

∑
j 6=i

p̂t (j) di

But then the last two terms cancel out and and we arrive at

ẑt = εAt + p̂t − p̂t (4.77)
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Finally, we can linearise the household’s intratemporal first-order condition

(4.22) and the aggregate production function (4.32) to express the real wage as

$̂t =

(
1

σ
+

1

ψ
(1 + η)

)
ŷt −

1

ψ
(1 + η) ẑt

Combined with the earlier linearised expressions for aggregate TFP (4.77) and the

aggregate price level (4.76), we can substitute this into equation (4.56) to give

p̂t (i) = θ

(
1 +

1

ψ

)
Et (i)

[ ˜̂pt]+

(
1− θ

(
1 +

1

ψ

))
Et (i)

[
p̂t

]
+ Et (i)

[
θ

( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt − θ

(
1 +

1

ψ

)
εAt + θ

(
1 +

1

ψ

)
1

γ
ṽαt − θvAt (i)

]
or, since Et (i) [ṽαt ] = 0,

p̂t (i) = θ

(
1 +

1

ψ

)
Et (i)

[ ˜̂pt]+

(
1− θ

(
1 +

1

ψ

))
Et (i)

[
p̂t

]
+ Et (i)

[
θ

( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt − θ

(
1 +

1

ψ

)
εAt − θvAt (i)

]
which is equation (4.58) in the main text.

4.A.5 Higher-order expectations

With a linearisation of the household Eular equation, we therefore have the following

system of equations:

ŷt = Et [ŷt+1]− σ
(̂
it − Et [p̂t+1 − p̂t]

)
ît = κyŷt + κπEt [p̂t+1 − p̂t] + εMt

p̂t =

{ ˜̂pt + 1
γ
ṽαt for NUTL

p̂t for UTL and DS
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and our three possible price-setting rules:

p̂t (i)TL = θ∗Et (i) [p̂t] + (1− θ∗)Et (i)
[
p̂t

]
+ θEt (i)

[( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt −

(
1 +

1

ψ

)
εAt − vAt (i)

]
p̂t (i)STL = Et (i)

[
p̂t

]
+ θEt (i)

[( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt −

(
1 +

1

ψ

)
εAt − vAt (i)

]
p̂t (i)DS = Et (i)

[
p̂t

]
+

1

1 + εη
Et (i)

[( 1
σ

+ η

1 + η
+

1

ψ

)
ŷt −

(
1 +

1

ψ

)
εAt − vAt (i)

]
Substituting the first three expressions into the individual price equations, recog-

nising that Et (i) [ṽαt ] = 0 and noting that firms observe ât (i) directly, we have

p̂t (i)∗ = λ∗1Et (i)
[
p̂t

]
+ λ∗2Et (i)

[ ˜̂pt]
+ λ∗3Et (i) [p̂t+1] + λ∗4Et (i) [ŷt+1]

+ λ∗5Et (i)
[
εAt
]

+ λ∗6Et (i)
[
εMt
]

+ λ∗7 ât (i)

for ∗ ∈ {NUTL,UTL,DS} and where the λ∗∗ coefficients are given by:

Near-Uniform TransLog

λNUTL1 = 1− θ
(

1 +
1

ψ

)
λNUTL2 = θ

(
1 +

1

ψ

)
− θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ)

λNUTL3 = θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ) λNUTL4 = θ

( 1
σ

+ η

1 + η
+

1

ψ

)
1

1 + σκy

λNUTL5 = −θ
(

1 +
1

ψ

)
λNUTL6 = −θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy

λNUTL7 = −θ
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Uniform TransLog

λUTL1 = 1− θ
( 1

σ
+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ) λUTL2 = 0

λUTL3 = θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ) λUTL4 = θ

( 1
σ

+ η

1 + η
+

1

ψ

)
1

1 + σκy

λUTL5 = −θ
(

1 +
1

ψ

)
λUTL6 = −θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy

λUTL7 = −θ

Dixit-Stiglitz

λDS1 = ξ λDS2 = 0

λDS3 =
1 + η

1 + εη

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ) λDS4 =

1 + η

1 + εη

( 1
σ

+ η

1 + η
+

1

ψ

)
1

1 + σκy

λDS5 = − 1 + η

1 + εη

(
1 +

1

ψ

)
λDS6 = − 1 + η

1 + εη

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy

λDS7 = − 1 + η

1 + εη

where ξ ≡ 1− 1+η
1+εη

(
1
σ
+η

1+η
+ 1

ψ

)
σ

1+σκy
(1− κπ) is the same as in the previous chapter.

In order to ensure stability in the system, we require that decreasing weight be

applied to higher-order expectations. In other words, we require that

λ1 ∈ (0, 1) ; λ2 ∈ (0, 1) ; and λ1 + λ2 ∈ (0, 1)

The first of these requires that ψ be sufficiently large to ensure that θ
(

1 + 1
ψ

)
< 1.

For any of the parameterisations chosen here, this requirement is satisfied. Given

the definitions of λ1 and λ2, the third will automatically be satisfied so long as the

second is, while the second requires that

0 ≤ θ

(
1 +

1

ψ

)
− θ

( 1
σ

+ η

1 + η
+

1

ψ

)
σ

1 + σκy
(1− κπ) ≤ 1

Taking the simple average of the pricing equation (4.60), we have

p̂t = λ1Et

[
p̂t

]
+ Et

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + λ5ε

A
t + λ6ε

M
t

]
+ λ7ε

A
t
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Repeatedly substituting this back into itself gives

p̂t =
∞∑
k=0

λk1

(
E

(k)

t

[
λ7ε

A
t + Et

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + λ5ε

A
t + λ6ε

M
t

]])
or

p̂t = λ7ε
A
t +

∞∑
k=0

λk1E
(k+1)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]
Putting this into (4.60) in place of p̂t, we have

p̂t (i) = λ1Et (i)

[
λ7ε

A
t

+
∑∞

k=0 λ
k
1E

(k+1)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

] ]
+ λ2Et (i)

[ ˜̂pt]
+λ3Et (i) [p̂t+1] +λ4Et (i) [ŷt+1]

+λ5Et (i)
[
εAt
]

+λ6Et (i)
[
εMt
]

+λ7 ât (i)

or, rearranging,

p̂t (i) = Et (i)

[
∞∑
k=0

λk1E
(k)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]]
+ λ7 ât (i)

which is equation (4.61) in the main text. Now taking a weighted average of this

(using α (i)∗ as the weights), we obtain˜̂pt = λ7
(
εAt + ṽt

)
+ Ẽt

[
∞∑
k=0

λk1E
(k)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]]
Substituting this back into itself gives˜̂pt = λ7

(
εAt + ṽt

)

+ Ẽt


∞∑
k=0

λk1E
(k)

t


λ2


λ7
(
εAt + ṽt

)
+Ẽt

∑∞k=0 λ
k
1E

(k)

t

 λ2 ˜̂pt
+λ3p̂t+1 + λ4ŷt+1

+ (λ5 + λ1λ7) ε
A
t + λ6ε

M
t





+λ3p̂t+1 + λ4ŷt+1

+ (λ5 + λ1λ7) ε
A
t + λ6ε

M
t




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Repeating this substitution eventually leads to

˜̂pt = λ7
(
εAt + ṽAt

)
+ Ẽt

[
φ′E

(0:∞)
t

[
λ3p̂t+1 + λ4ŷt+1 + (λ5 + (λ1 + λ2)λ7) ε

A
t + λ6ε

M
t + λ2λ7ṽ

A
t

]]
where E

(0:∞)
t [·] is the hierarchy of all permutations of the two compound expectations

and φ assigns geometrically decreasing weights to each, with λ1 raised to the power

of the number of orders of Et [·] and λ2 raised to the power of the number of orders

of Ẽt [·].

For Near-Uniform TransLog preferences, we can plug this into equation (4.76) to

obtain

p̂NUTLt = λ7
(
εAt + ṽAt

)
+

1

γ
ṽαt

+ Ẽt

[
φ′E

(0:∞)
t

[
λ3p̂t+1 + λ4ŷt+1 + (λ5 + (λ1 + λ2)λ7) ε

A
t + λ6ε

M
t + λ2λ7ṽ

A
t

]]
which is equation (4.63) in the main text.

4.A.6 Firms’ learning

Deriving the Kalman filter

The filter derived here closely follows that developed by Nimark (2011b) as a means

of avoiding the doubling-up of the state vector more typical in the literature, thereby

allowing more accurate simulation results when working with finite computing re-

sources.

Denoting i’s expectation formed with period-t information as Et (i) [·] ≡ E [·|It (i)],

our goal is to find a mean square error minimising19 formula for Et (i) [Xt]. To begin,

we suppose (and verify below) that each firm’s signal vector is given by

qt (i) = C1Xt + C2Xt−1 +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+R3et +R4ṽt−1

19And hence, given that all shocks are mean zero, a variance-minimising estimator.
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and that the innovation (i.e. the unexpected component) in the firm’s signal vector

may be written as:

−→q t|t−1 (i) ≡ qt (i)− Et−1 (i) [qt (i)]

= D
−−−−−→
Xt−1|t−1 (i) + C1G1ut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1

where D ≡ (C1F + C2) and
−−−−−→
Xt−1|t−1 (i) ≡ Xt−1 − Et−1 (i) [Xt−1] is i’s contemporan-

eous error in estimating Xt. Derivations of the coefficients in these two expressions

are provided below in appendix 4.A.7. Note that there is no term in ṽt here, as firms’

only contemporaneous signal is their productivity shock, which does not rely on it.

For the term in ṽt−1, we note that firms cannot form a prior expectation (strictly,

it is zero) because of the independence of idiosyncratic shocks and the assumption

that we have a continuum of firms.

Since −→q t (i) contains only new information available in period t, it must be

orthogonal to any of i’s estimates based on information from earlier periods. We can

therefore use the result that E [w|y, z] = E [w|y] + E [w|z] when y⊥z, so that

Et (i) [Xt] = E [Xt|It−1 (i)] + E
[
Xt|−→q t (i)

]
= Et−1 (i) [Xt] +Kt

−→q t (i) (4.78)

for some projection matrix, Kt (the Kalman gain). Note that Kt does not require

an agent subscript as the problem is symmetric for all agents. For this to be the

best linear estimator, we require that Kt be such that −→q t|t−1 (i) is orthogonal to the

corresponding projection error, Xt −Kt
−→q t|t−1 (i). That is, we require that

E
[(
Xt −Kt

−→q t|t−1 (i)
)−→q t|t−1 (i)′

]
= 0 (4.79)

Rearranging this gives

Kt = E
[
Xt
−→q t|t−1 (i)′

] (
E
[−→q t|t−1 (i)−→q t|t−1 (i)′

])−1
(4.80)

Before evaluating this, note that we can rewrite the law of motion for the hidden

state as

Xt = F
(−−−−−→
Xt−1|t−1 (i) + Et−1 (i) [Xt−1]

)
+G1ut +G2ṽt +G3et +G4ṽt−1
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The first term of equation (4.80) thus expands to:

E
[
Xt
−→q t|t−1 (i)′

]
= E



(
F
(−−−−−→
Xt−1|t−1 (i) + Et−1 (i) [Xt−1]

)
+G1ut +G2ṽt

+G3et +G4ṽt−1

)

×

 D
−−−−−→
Xt−1|t−1 (i) + C1Gut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1


′


which simplifies to

E
[
Xt
−→q t|t−1 (i)′

]
= FVt−1|t−1D

′ +G1ΣuuG
′
1C
′
1

+G3Σee (R3 + C1G3)
′ +G4Σṽṽ (R4 + C1G4)

′

where Vt|t ≡ E
[−−→
Xt|t (i)

−−→
Xt|t (i)′

]
is the variance-covariance matrix associated with

Et (i) [Xt] and I have exploited the fact that α (i)∗ → 0 as J →∞ to obtain zero co-

variance between individual idiosyncratic shocks and their aggregated counterparts.

Given the symmetry of the problem across agents, although individual expectations

may differ the variance of each estimate will be common. For the second term, we

have that

E
[−→q t|t−1 (i)−→q t|t−1 (i)′

]

= E



 D
−−−−−→
Xt−1|t−1 (i) + C1Gut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1


×

 D
−−−−−→
Xt−1|t−1 (i) + C1Gut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1


′


which simplifies to

E
[−→q t|t−1 (i)−→q t|t−1 (i)′

]
= DVt−1|t−1D

′ + C1G1ΣuuG
′
1C
′
1

+R1ΣvvR
′
1 +R2ΣvvR

′
2

+ (R3 + C1G3) Σee (R3 + C1G3)
′

+ (R4 + C1G4) Σṽṽ (R4 + C1G4)
′
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where Σvv =
[ σ2

vA
0

0 σ2
vα

]
. All together, the Kalman gain is therefore given by

Kt =

(
FVt−1|t−1D

′ +G1ΣuuG
′
1C
′
1

+G3Σee (R3 + C1G3)
′ +G4Σṽṽ (R4 + C1G4)

′

)
(4.81)

×


DVt−1|t−1D

′ + C1G1ΣuuG
′
1C
′
1

+R1ΣvvR
′
1 +R2ΣvvR

′
2

+ (R3 + C1G3) Σee (R3 + C1G3)
′

+ (R4 + C1G4) Σṽṽ (R4 + C1G4)
′


−1

Evolution of the gain and variance matricies

First, since we can rewrite the state equation as

Xt − Et−1 (i) [Xt] = FXt−1 +G1ut +G2ṽt +G3et +G4ṽt−1 − Et−1 (i) [Xt]

= F (Xt−1 − Et−1 (i) [Xt−1]) +G1ut +G2ṽt +G3et +G4ṽt−1

we have that

Vt|t−1 = FVt−1|t−1F
′ +G1ΣuuG

′
1 +G2ΣṽṽG

′
2 +G3ΣeeG

′
3 +G4ΣṽṽG

′
4 (4.82)

Next, add Xt to each side of equation (4.78) and rearrange to get

Xt − Et (i) [Xt] +Kt
−→q t|t−1 (i) = Xt − Et−1 (i) [Xt]

Since the innovation is orthogonal to both the prior error, Xt−Et−1 (i) [Xt], and the

posterior error, Xt − Et (i) [Xt], the variance of the right-hand side must equal the

sum of the variances on the left-hand side, so that

Vt|t = Vt|t−1 −KtV ar
(−→q t|t−1 (i)

)
K ′t

= Vt|t−1 −KtV ar

 D
−−−−−→
Xt−1|t−1 (i) + C1Gut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1

K ′t

= Vt|t−1 −Kt


DVt−1|t−1D

′ + C1G1ΣuuG
′
1C
′
1

+R1ΣvvR
′
1 +R2ΣvvR

′
2

+ (R3 + C1G3) Σee (R3 + C1G3)
′

+ (R4 + C1G4) Σṽṽ (R4 + C1G4)
′

K ′t (4.83)
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Provided that F represents a contraction, then there will exist time-invariant Kalman

gain and Variance matricies, found by iterating equations (4.81), (4.82) and (4.83)

forward until convergence is achieved. The form of these matricies will be:

K =

(
FV D′ +G1ΣuuG

′
1C
′
1

+G3Σee (R3 + C1G3)
′ +G4Σṽṽ (R4 + C1G4)

′

)

×


DVD′ + C1G1ΣuuG

′
1C
′
1

+R1ΣvvR
′
1 +R2ΣvvR

′
2

+ (R3 + C1G3) Σee (R3 + C1G3)
′

+ (R4 + C1G4) Σṽṽ (R4 + C1G4)
′


−1

V = F

V −Kt


DVD′ + C1G1ΣuuG

′
1C
′
1

+R1ΣvvR
′
1 +R2ΣvvR

′
2

+ (R3 + C1G3) Σee (R3 + C1G3)
′

+ (R4 + C1G4) Σṽṽ (R4 + C1G4)
′

K ′
F ′

+G1ΣuuG
′
1 +G2ΣṽṽG

′
2 +G3ΣeeG

′
3 +G4ΣṽṽG

′
4

The law of motion for the hierarchy of firms’ expectations

First note that the recursive formulation of Xt

Xt ≡ E(0:∞)
t [xt] =

 xt

Et [Xt]

Ẽt [Xt]


allows us to write

Et [Xt] =
[
0 I 0

]
Xt = TsXt

Ẽt [Xt] =
[
0 0 I

]
Xt = TwXt

where Ts and Tw select the elements from Xt with simple- and weighted-average

expectations as their outermost. Next, recalling that the innovation in the firm’s

signal vector is given by

−→q t (i) = D (Xt−1 − Et−1 (i) [Xt−1]) + C1G1ut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1
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we can take the simple average of the Kalman filter (4.78) to obtain

Et [Xt] = TsXt = {FTs +KD (I − Ts)}Xt−1

+KC1G1ut

+K (R3 + C1G3) et

+K (R4 + C1G4) ṽt−1

and the weighted average of the same to obtain

Ẽt [Xt] = TwXt = {FTw +KD (I − Tw)}Xt−1

+KC1G1ut

+KR1ṽt

+K (R3 + C1G3) et

+K (R2 +R4 + C1G4) ṽt−1

We can therefore write

Xt = FXt−1 +G1ut +G2ṽt +G3et +G4ṽt−1

where

F =


[
ρAε 0 01×∞

0 ρMε 01×∞

]
FTs +KD (I − Ts)
FTw +KD (I − Tw)

 G1 =


[

1 0

0 1

]
KC1G1

KC1G1



G2 =


[

0 0

0 0

]
0∞×2

KR1

 G3 =


[

0 0

0 0

]
K (R3 + C1G3)

K (R3 + C1G3)

 G4 =


[

0 0

0 0

]
K (R4 + C1G4)

K (R2 +R4 + C1G4)


4.A.7 Solving the model

Given the law of motion for the hierarchy of firms’ expectations:

Xt = FXt−1 +G1ut +G2ṽt +G3et +G4ṽt−1
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and the following expression for firms’ signal vectors:

qt (i) = C1Xt + C2Xt−1 +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+R3et +R4ṽt−1

we here demonstrate that the aggregate variables of the economy may then be char-

acterised as:

ŷ∗t = γ∗′y Xt + δ∗′y ṽt

p̂∗t = γ∗′p Xt + δ∗′p ṽt

for ∗ ∈ {NUTL,UTL,DS}.

Building an expression for ŷt

We start with the expression for output in period t

(1 + σκy) ŷt = Et [ŷt+1]

− σ (1− κπ) p̂t

+ σ (1− κπ)Et [p̂t+1]

− σεMt
Substituting in the conjectured solution and recalling that the representative house-

hold and central bank have full information then gives

(1 + σκy) ŷt = γ∗′y (FXt +G4ṽt)

− σ (1− κπ)γ∗′p Xt

+ σ (1− κπ)γ∗′p (FXt +G4ṽt)

− σεMt
Rearranging then gives

ŷt = γ∗′y Xt + δ∗′y ṽt

where

γ∗′y =
1

1 + σκy


γ∗′y F

+σ (1− κπ)γ∗′p (F − I)

+
[
0 −σ 01×∞

]


δ∗′y = γ∗′y G4 + σ (1− κπ)γ∗′p G4
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or

γ∗′y =
1

1 + σκy

(
σ (1− κπ)γ∗′p (F − I)

+
[
0 −σ 01×∞

] )(
I − 1

1 + σκy
F

)−1

Building an expression for p̂t (Uniform TransLog and Dixit-Stiglitz

preferences)

We start with the expression for the aggregate price:

p̂∗t = λ∗7 ε
A
t

+
∞∑
k=0

(λ∗1)
k E

(k+1)

t

[
λ∗3p̂

∗
t+1 + λ∗4ŷt+1 + (λ∗5 + λ∗1λ

∗
7) ε

A
t + λ∗6 ε

M
t

]
for ∗ ∈ {UTL,DS}. Substituting in the conjectured solution and noting that firms’

incomplete information implies that Et (i) [ṽt] = 0 ∀i, we have

p̂∗t = λ∗7 ε
A
t

+
∞∑
k=0

(λ∗1)
k E

(k+1)

t

[
λ∗3γ

∗′
p FXt + λ∗4γ

∗′
y FXt + (λ∗5 + λ∗1λ

∗
7) ε

A
t + λ∗6 ε

M
t

]
or

p̂∗t =
[
λ∗7 0 01×∞

]
Xt

+
(
λ∗3γ

∗′
p F + λ∗4γ

∗′
y F +

[
(λ∗5 + λ∗1λ

∗
7) λ∗6 01×∞

]) ∞∑
k=0

(λ∗1)
k E

(k+1)

t [Xt]

from which we can read that

p̂∗t = γ∗′p Xt

where

p̂∗t =
[
λ∗7 0 01×∞

]
+

(
λ∗3γ

∗′
p F + λ∗4γ

∗′
y F

+
[
(λ∗5 + λ∗1λ

∗
7) λ∗6 01×∞

] ) (I − λ∗1Ts)−1 Ts
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Building an expression for p̂t (Near-Uniform TransLog preferences)

We start with the expression for the aggregate price level in period t

p̂NUTLt = λ7
(
εAt + ṽAt

)
+

1

γ
ṽαt

+ Ẽt

[
φ′E

(0:∞)
t

[
λ3p̂t+1 + λ4ŷt+1 + (λ5 + (λ1 + λ2)λ7) ε

A
t + λ6ε

M
t + λ2λ7ṽ

A
t

]]
Substituting in the conjectured solution and recalling that Et (i) [ṽt] = 0 ∀i, we have

p̂NUTLt = λ7
(
εAt + ṽAt

)
+

1

γ
ṽαt

+ Ẽt

[
φ′E

(0:∞)
t

[
λ3γ

′
pFXt + λ4γ

′
yFXt + (λ5 + (λ1 + λ2)λ7) ε

A
t + λ6ε

M
t

]]
or

p̂NUTLt =
[
λ7 0 01×∞

]
Xt +

[
λ7

1
γ

]
ṽt

+

( (
λ3γ

′
p + λ4γ

′
y

)
F[

(λ5 + (λ1 + λ2)λ7) λ6 01×∞

] ) Ẽt [φ′E(0:∞)
t [Xt]

]
To simplify this further, it will be necessary to consider the following object

φ′E
(0:∞)
t [Xt]

Recalling the recursive formulation of E
(0:∞)
t [·], we have that

Xt =

 xt

Et [Xt]

Ẽt [Xt]


Et [Xt] =

[
0 I 0

]
Xt = TsXt

Ẽt [Xt] =
[
0 0 I

]
Xt = TwXt

where Ts and Tw select the elements from Xt with simple- and weighted-average

expectations as their outermost. We can therefore write

φ′E
(0:∞)
t [Xt] = Xt

+ λ1Et [Xt] + λ2Ẽt [Xt]

+ λ21Et

[
Et [Xt]

]
+ λ1λ2Ẽt

[
Et [Xt]

]
+ λ1λ2Et

[
Ẽt [Xt]

]
+ λ22Ẽt

[
Ẽt [Xt]

]
+ · · ·
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and then rewrite this as

φ′E
(0:∞)
t [Xt] = Xt

+ λ1TsXt + λ2T2Xt

+ λ21T
2
sXt + λ1λ2TwTsXt

+ λ1λ2TsTwXt + λ22T
2
wXt

+ · · ·

But this is then simply an infinite (and convergent) sum of binomials

φ′E
(0:∞)
t [Xt] =

(
∞∑
k=0

[λ1Ts + λ2Tw]k
)
Xt

which may be written as

φ′E
(0:∞)
t [Xt] = (I − [λ1Ts + λ2Tw])−1Xt

Moving back to the expression for the aggregate price level, we can therefore

write

p̂NUTLt =
[
λ7 0 01×∞

]
Xt +

[
λ7

1
γ

]
ṽt

+

( (
λ3γ

′
p + λ4γ

′
y

)
F[

(λ5 + (λ1 + λ2)λ7) λ6 01×∞

] )
× (I − [λ1Ts + λ2Tw])−1 TwXt

or, gathering terms,

p̂NUTLt =
(
γNUTLp

)′
Xt +

(
δNUTLp

)′
ṽt

where(
γNUTLp

)′
=
[
λ7 01×∞

]
+

 (
λ3
(
γNUTLp

)′
+ λ4

(
γNUTLy

)′)
F[

(λ5 + (λ1 + λ2)λ7) 01×∞

] 
× (I − [λ1Ts + λ2Tw])−1 Tw(

δNUTLp

)′
=
[
λ7

1
γ

]
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The firms’ signal vector

Recall the signal vector observed each period

qt (i) =


ŷt−1 + ey,t

p̂t−1 + ep,t

ŷt−1 (i)

ŵt−1

ât (i)



′

With the conjectured solution, we can immediately write that

ŷt−1 = γ∗′y Xt−1 + δ∗′y ṽt−1

p̂t−1 = γ∗′p Xt−1 + δ∗′p ṽt−1

ât (i) =
[
1 0 01×∞

]
Xt +

[
1 0

] [vAt (i)

vαt (i)

]
which leaves only ŷt−1 (i) and ŵt−1 to work out.

Making use of the previous-period quantity (TransLog and Symmetric

TransLog preferences)

To make use of the quantity sold from the previous period, we note again the two

definitions of expenditure share in the TransLog framework:

Pt−1 (i)Yt−1 (i)

Pt−1Yt−1
= st−1 (i) = αt−1 (i) + γiipt−1 (i) +

∑
j 6=i

γijpt−1 (j)

Linearising and making use of our near-uniformity assumptions and the definition of

αt (i), this becomes

1

J
(p̂t−1 (i) + ŷt−1 (i)− p̂t−1 − ŷt−1) = ŝt−1 (i) =

1

J
vαt−1 (i)− γ

J
p̂t−1 (i) +

γ

J
p̂t−1

Further rearranging, we may write this as

p̂t−1 (i) + ŷt−1 (i) = ŷt−1 + p̂t−1 + γp̂t−1 + vαt−1 (i)

The left-hand side of this expression is made up entirely of objects observed by

the firm. Since the firm’s price is necessarily a linear function of its period t − 1
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information set, observing ŷt−1 (i) is informationally equivalent to observing p̂t−1 (i)+

ŷt−1 (i). To construct this, we start with the earlier expression for p̂t:

p̂t = λ7ε
A
t +

∞∑
k=0

λk1E
(k+1)

t

[
λ2 ˜̂pt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]
Substituting the definition of the aggregate price under Near-Uniform TransLog pref-

erences gives

p̂t = λ7ε
A
t +

∞∑
k=0

λk1E
(k+1)

t

[
λ2p̂t −

1

γ
ṽαt + λ3p̂t+1 + λ4ŷt+1 + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]
Substituting in the conjectured solution then gives

p̂t = λ7ε
A
t +

∞∑
k=0

λk1E
(k+1)

t

[
λ2γ

′
pXt + λ3γ

′
pFXt + λ4γ

′
yFXt + (λ5 + λ1λ7) ε

A
t + λ6ε

M
t

]
Gathering like terms,

p̂t =
[
λ7 0 01×∞

]
Xt

+

(
λ2γ

′
p + λ3γ

′
pF + λ4γ

′
yF[

(λ5 + λ1λ7) λ6 01×∞

] ) ∞∑
k=0

λk1E
(k+1)

t [Xt]

or

p̂t = γ ′pXt

where

γ ′p =
[
λ7 0 01×∞

]
+

(
λ2γ

′
p + λ3γ

′
pF + λ4γ

′
yF[

(λ5 + λ1λ7) λ6 01×∞

] ) (I − λ1Ts)−1 Ts

which is to say

p̂t−1 (i) + ŷt−1 (i) = (γy + γp + γγp)
′Xt−1 + (δy + δp)

′ ṽt−1 +
[
0 1

] [vAt−1 (i)

vαt−1 (i)

]
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Making use of the previous-period quantity (Dixit-Stiglitz preferences)

Equivalent logic to the above then grants the following for Dixit-Stiglitz preferences:

p̂t−1 (i) + ŷt−1 (i) = (γy + εγp)
′Xt−1 +

[
0 1

] [vAt−1 (i)

vαt−1 (i)

]

where ε is the elasticity of demand.

Including the wage in the signal vector

Recall from appendix 4.A.4 that

$̂t =

(
1

σ
+

1

ψ
(1 + η)

)
ŷt −

1

ψ
(1 + η) ẑt

ẑt = εAt + p̂t − p̂t

where $̂t ≡ ŵt − p̂t is the real wage. Combining these, we have

ŵt = γ ′wXt + δ′wṽt

γw = γp +

(
1

σ
+

1

ψ
(1 + η)

)
γy −

1

ψ
(1 + η) (γp − γp)

δw =

(
1

σ
+

1

ψ
(1 + η)

)
δy +

(
1− 1

ψ
(1 + η)

)
δp

The signal vector

We are therefore able to write

qt (i) = C1Xt + C2Xt−1 +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+R3et +R4ṽt−1
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where

C1 =


01×∞

01×∞

01×∞

01×∞

1 0 0 0 01×∞

 C2 =


γ ′y

γ ′p

γ ′y + γ ′p + γγ ′p

γ ′w

01×∞

 R1 =


0 0

0 0

0 0

0 0

1 0



R2 =


0 0

0 0

0 1

0 0

0 0

 R3 =


1 0

0 1

0 0

0 0

0 0

 R4 =


δ′y

δ′p

δ′y + δ′p

δ′w

0 0


Innovation in the signal vector

Recall that the optimal linear estimator in this setting is the Kalman filter (4.68):

Et (i) [Xt] = FEt−1 (i) [Xt−1] +K {qt (i)− Et−1 (i) [qt (i)]}

First note that firm i’s prior expectation of qt (i) (i.e. that formed in the previous

period) may be written as

Et−1 (i) [qt (i)] = (C1F + C2)Et−1 (i) [Xt−1] +R2Et−1 (i)

[
vAt−1 (i)

vαt−1 (i)

]
where we have dropped the terms in ut, v

A
t (i) and vαt (i) as they cannot be seen

in advance and have unconditional expectations of zero. The term in ṽt−1 is also

dropped as idiosyncratic shocks are fully independent (so that Et (i) [vt (j)] = 0 ∀j 6=
i) and in the limit, limJ→∞ α (i)∗ = 0 ∀i. It is also the case that Et−1 (i)

[
vαt−1 (i)

]
= 0

since firms make no observation of household demand at the moment of setting prices.

In principle, we have a complication in that since the firm observes ât (i), it must be

that

Et−1 (i)
[
vAt−1 (i)

]
= vAt−1 (i) + εAt−1 − Et−1 (i)

[
εAt−1

]
However, since nothing in qt (i) depends on Et−1 (i)

[
vAt−1 (i)

]
(the left-hand column

of R2 is all zeros), we may ignore this complication and simply write

Et−1 (i) [qt (i)] = (C1F + C2)Et−1 (i) [Xt−1]
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Consequently, we may write the surprise in (i.e. the unexplained portion of) the

firm’s signal vector as

−→q t (i) ≡ qt (i)− Et−1 (i) [qt (i)]

= (C1F + C2) (Xt−1 − Et−1 (i) [Xt−1]) + C1G1ut +R1

[
vAt (i)

vαt (i)

]
+R2

[
vAt−1 (i)

vαt−1 (i)

]
+ (R3 + C1G3) et + (R4 + C1G4) ṽt−1
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