
Hydrol. Earth Syst. Sci., 20, 3691–3717, 2016
www.hydrol-earth-syst-sci.net/20/3691/2016/
doi:10.5194/hess-20-3691-2016
© Author(s) 2016. CC Attribution 3.0 License.

Reliability of lumped hydrological modeling in a semi-arid
mountainous catchment facing water-use changes
Paul Hublart1,7, Denis Ruelland2, Inaki García de Cortázar-Atauri3, Simon Gascoin4, Stef Lhermitte5, and
Antonio Ibacache6

1UM2, UMR HydroSciences Montpellier, Montpellier, France
2CNRS, UMR HydroSciences Montpellier, Montpellier, France
3INRA, US 1116 AGROCLIM, Avignon, France
4CNRS, CESBIO, UMR 5126, Toulouse, France
5Delft University of Technology, Department of Geoscience & Remote Sensing, Delft, the Netherlands
6INIA, Colina San Joaquín s/n, La Serena, Chile
7CEAZA, Raúl Bitrán s/n, La Serena, Chile

Correspondence to: Paul Hublart (p.hublart@gmail.com)

Received: 16 September 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 3 November 2015
Revised: 28 April 2016 – Accepted: 5 July 2016 – Published: 8 September 2016

Abstract. This paper explores the reliability of a hydrolog-
ical modeling framework in a mesoscale (1515 km2) catch-
ment of the dry Andes (30◦ S) where irrigation water use and
snow sublimation represent a significant part of the annual
water balance. To this end, a 20-year simulation period en-
compassing a wide range of climate and water-use conditions
was selected to evaluate three types of integrated models re-
ferred to as A, B and C. These models share the same runoff
generation and routing module but differ in their approach to
snowmelt modeling and irrigation water use. Model A relies
on a simple degree-day approach to estimate snowmelt rates
and assumes that irrigation impacts can be neglected at the
catchment scale. Model B ignores irrigation impacts just as
Model A but uses an enhanced degree-day approach to ac-
count for the effects of net radiation and sublimation on melt
rates. Model C relies on the same snowmelt routine as Model
B but incorporates irrigation impacts on natural streamflow
using a conceptual irrigation module. Overall, the reliabil-
ity of probabilistic streamflow predictions was greatly im-
proved with Model C, resulting in narrow uncertainty bands
and reduced structural errors, notably during dry years. This
model-based analysis also stressed the importance of con-
sidering sublimation in empirical snowmelt models used in
the subtropics, and provided evidence that water abstractions
from the unregulated river are impacting on the hydrologi-
cal response of the system. This work also highlighted areas

requiring additional research, including the need for a better
conceptualization of runoff generation processes in the dry
Andes.

1 Introduction

Mountains act as natural water towers in many semi-arid re-
gions. Glaciers and seasonal snowpack in the uplands serve
as reservoirs, accumulating water during the winter and sus-
taining streams and aquifers during the spring and summer.
This reduces streamflow variability in the lowlands and pro-
vides local communities with the opportunity to develop
agricultural systems based on regular water supplies. Irriga-
tion often represents a large part of crop water use in these
areas due to the dry conditions that prevail during the grow-
ing season (Siebert and Döll, 2010).

This makes such systems highly vulnerable to projected
changes in climate conditions, for at least two reasons. First,
warmer temperatures will reduce the fraction of precipita-
tion falling as snow and tend to accelerate snowmelt, lead-
ing to earlier and reduced spring peak flows and increased
winter flows (Adam et al., 2009; Sproles et al., 2013). Re-
duced summer and fall flows could in turn significantly im-
pact water availability for irrigation purposes. Second, higher
temperatures in the valleys will affect the timing of pheno-
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logical events (Cleland et al., 2007), which drive the sea-
sonal pattern of crop water needs. Some perennial crops like
grapevines are already showing a tendency toward earlier
budburst events and shortened growth intervals in many re-
gions of the world (Jones et al., 2005; Duchêne and Schnei-
der, 2005). Vineyards located in semi-arid mountainous ar-
eas are particularly exposed, owing to high diurnal tempera-
ture variations and overall sub-optimal growing temperatures
(Caffarra and Eccel, 2011). It has also been noted that ele-
vated temperatures may adversely affect the ability to meet
chilling requirements during the crop dormancy (Webb et al.,
2007).

Thus, the future of agricultural systems in snow-
dominated, semi-arid catchments relies on our ability to an-
ticipate the complex relationships between climate condi-
tions, snowmelt timing, water availability and crop water use.

1.1 Advantages and limitations of current conceptual
precipitation–runoff models

To understand and forecast the response of hydrological sys-
tems, hydrologists often rely on numerical catchment models
known as “conceptual precipitation–runoff models”. Precip-
itation inputs are processed into runoff through a number of
inter-connected water stores representing different aspects of
the system’s behavior (e.g., slow vs. fast responses, surface-
water vs. groundwater compartments). In general, relatively
simple structures are used, in which typically fewer than
10 parameters require calibration against physically observ-
able responses (e.g., streamflow data) (Wagener et al., 2001).
Such models also have low data and computer requirements,
making them especially attractive in data-scarce areas such
as remote mountainous catchments. As a result, they are be-
ing increasingly used to evaluate the potential impacts of
land-use and/or climate changes on the capacity to meet agri-
cultural water demands (e.g., Merritt et al., 2004; Collet et
al., 2015; Fabre et al., 2015a).

The conclusions drawn from these models, however, are
naturally bounded by a range of uncertainty arising from
multiple sources of error and approximations. This includes
the impacts of input data errors, numerical approximations,
structural inadequacies and model non-uniqueness. Parame-
ter instability under changing climate and/or anthropogenic
conditions represents an additional source of uncertainty that
may be difficult to distinguish from parameter equifinality in
the absence of uncertainty analysis (Seibert and McDonnell,
2010; Brigode et al., 2013). Such limitations remain largely
overlooked in many impact studies. Instead, it is often as-
sumed that the uncertainty associated with climate and/or
water-use scenarios greatly outweighs that arising from the
modeling process itself. From a water management perspec-
tive, however, the added value of precipitation–runoff models
lies not simply in their ability to provide accurate streamflow
predictions, but also in the systematic examination of the un-

certainty surrounding these predictions and the ultimate de-
cision being addressed (Ajami et al., 2008).

One of the most effective means of providing such in-
formation is through the use of Bayesian inference meth-
ods. Notwithstanding important issues in how best to handle
epistemic uncertainties, and whether probability theory is the
right tool to use (Beven et al., 2011; Montanari, 2011), for-
mal Bayesian approaches offer the opportunity to test the re-
liability of model predictions through a series of posterior di-
agnostics. This, in turn, provides a meaningful way to discuss
the relative merits of competing model structures or different
versions of the same model. Very often, structural inadequa-
cies can be partially alleviated by comparing alternative rep-
resentations of the processes at work. This paper addresses
two specific issues pertaining to the use of conceptual models
in semi-arid catchments where the effects of irrigation water
use and snow sublimation cannot be dismissed a priori.

1.2 Potential impacts of water abstraction and
irrigation water use

The first issue deals with water abstraction for irrigation,
which has many potential impacts on hydrological processes,
including changes in groundwater recharge (Scanlon et al.,
2006) and low-flow characteristics (Yang et al., 2010). In
arid and semi-arid catchments, these impacts may be hard
to quantify because a high degree of temporal and spatial
variability in climate conditions often masks anthropogenic
trends (Kim et al., 2007). During low-flow and drought peri-
ods, however, a much greater proportion of natural flow may
be abstracted, leading to amplified impacts (in relative terms)
on the flow regime. The poor performance of most concep-
tual models during these critical periods is a well-recognized
issue in the hydrological research community and many stud-
ies have formulated different approaches towards improving
low-flow simulations (e.g., Smith et al., 2010; Staudinger et
al., 2011; Pushpalatha et al., 2011). However, most of these
studies have been concerned mainly with undisturbed river
systems. The impacts of river damming and regulation have
also been studied extensively, but there is a surprising dearth
of work regarding the effects of water abstraction from un-
regulated streams.

A common approach to remove such effects in model
building and evaluation is to rely on “naturalized” streamflow
data (e.g., Ashagrie et al., 2006). This requires detailed in-
formation on surface water or groundwater withdrawals and
irrigation water use, which is rarely available. In practice,
the sum of all water access entitlements is often taken as an
upper bound for the actual water consumption at the catch-
ment scale, and added back to observed streamflow data be-
fore calibrating a given model. However, farmers may not
withdraw their full entitlement all year long and a signifi-
cant part of water withdrawals actually returns to the river
system within a few days or weeks due to conveyance and
field losses. In theory, ignoring these return flows would
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lead to overestimation of natural streamflow. But in reality,
it can be very difficult to disentangle the relative influence
of epistemic errors in streamflow estimates (rating curve er-
rors, unknown return flows) and input data (precipitation,
temperature, potential evapotranspiration). Therefore, for a
proper assessment of model reliability, streamflow natural-
ization should be considered an integral part of the modeling
process and explicitly recognized as an additional source of
imprecision in streamflow predictions (Hughes and Mantel,
2010; Hublart et al., 2015a).

1.3 Potential impacts of sublimation losses

The second issue addressed by this paper concerns the
means by which snowmelt inputs are obtained in snow-
dominated, semi-arid catchments. Many studies rely on em-
pirical degree-day approaches, in which air temperature is
taken as a reasonable proxy for the energy available for melt
(Ohmura, 2001). Melt rates are assumed to be linearly related
to air temperature by a constant of proportionality known as
the “melt factor”, which can vary on a seasonal basis (Hock,
2003). Enhanced degree-day methods are sometimes imple-
mented to include the effects of additional variables such as
solar radiation or wind speed. However, by focusing exclu-
sively on melt rates, such approaches can prove highly mis-
leading where sublimation losses represent a large part of
ablation rates. This is generally the case in semi-arid areas
located around 30◦ S and 30◦ N.

Sublimation rates in the subtropics are expected to be high
as a result of very low relative humidity and intense solar
radiation during most of the year. In the dry Andes, for in-
stance, Gascoin et al. (2013) found that sublimation losses
represented more than 70 % of the total ablation simulated by
a physically based model in the instrumented site of Pascua-
Lama (1043 km2, 2600–5630 m a.s.l.). Similar results were
also obtained by experimental studies conducted on small
glaciers of the same region (MacDonell et al., 2013). In
the Northern Hemisphere, Schulz and de Jong (2004) at-
tributed up to 44 % of annual snow ablation to sublimation
in a 140 km2 catchment of the High Atlas range (2000–
4000 m a.s.l.). It is becoming increasingly recognized that
failure to account for sublimation losses in commonly used
temperature-index methods can impair model performance,
distort parameter identification and question the reliability of
snowmelt estimates under higher temperatures (e.g., Boud-
har et al., 2009; Ayala et al., 2015).

1.4 Objectives

Ideally, the incorporation of new processes into a given
model structure should be achieved using the same level of
mathematical abstraction and process representation as in the
original model. Blöschl and Montanari (2010) insisted that “a
better understanding of the hydrological processes should not
necessarily translate into more complex models used in im-

pact studies”. Indeed, maintaining low-dimensional, holistic
modeling approaches is essential to constrain parameter un-
certainty and help the modelers focus on understanding the
main drivers of hydrological change.

This paper investigates one possible way of integrating the
effects of irrigation water use and snow sublimation into a
parsimonious, catchment-scale modeling framework. Such
processes are typically not accounted for in currently avail-
able precipitation–runoff models. Particular attention is paid
to the representation of changes in irrigated areas and crop
varieties over time. The method is tested in a snowmelt-fed
catchment of the Coquimbo region (Chile), which is cur-
rently facing one of the worst droughts in its recorded his-
tory (Salinas et al., 2015). In the same catchment, Hublart
et al. (2015a) attempted to reduce structural uncertainty in
a non-probabilistic way by comparing 72 alternative mod-
els derived from the same modular framework. However, the
potential effects of irrigation and sublimation were not in-
cluded in this multiple-hypothesis framework, thereby lim-
iting its ability to cope with climate and anthropogenic
changes. Hublart et al. (2015b) provided a first attempt to
incorporate these two processes in a precipitation–runoff
model, but several important aspects, such as the quantifi-
cation of model uncertainty and the quality of snowmelt sim-
ulations, remained outside the scope of their study. Com-
pared to this previous paper, the present study makes use of
(1) extended calibration and validation periods to encompass
a wider range of climate and water-use conditions, (2) for-
mal Bayesian theory to quantify predictive uncertainty in a
probabilistic way, and (3) remotely sensed snow-cover data
to evaluate the internal consistency of the snow module.

2 Study area and data

2.1 General setting

2.1.1 Physical landscape

The Claro River catchment is a semi-arid, mountainous
catchment located in northern–central Chile (30◦ S). It drains
an area of about 1515 km2 characterized by a series of
granitic mountain blocks interspersed with steep-sided val-
leys. Elevations range from 820 m a.s.l. at the catchment
outlet in Rivadavia to approximately 5500 m a.s.l. near the
border with Argentina (Fig. 1a). Above 3000 m a.s.l., re-
peated glaciations and the continuous action of frost and
thaw throughout the year have caused an intense shattering
of the exposed rocks, leaving a landscape of bare rock and
screes almost devoid of soil. The valley-fill material con-
sists of mostly unconsolidated glaciofluvial and alluvial sed-
iments mantled by generally thin soils (< 1 m) of sandy to
sandy-loam texture. Natural vegetation outside the valleys is
extremely sparse and composed mainly of subshrubs (e.g.,
Adesmia echinus) and cushion plants (e.g., Laretia acaulis)
with very low transpiration rates (Squeo et al., 1993; Kalthoff
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Figure 1. The Claro River catchment, Chile (30◦ S): (a) topography and current location of irrigated areas, (b) evolution of irrigated areas
since 1985 (interpolated from local cadastral surveys) for both types of grapes, and (c) potential effects of increased irrigation water use on
mean annual hydrographs since the mid-1990s. These effects were estimated from the difference between streamflow measured at the outlet
in Rivadavia (in black) and that measured at Cochiguaz and Alcohuaz (in red), which remains largely unaltered.

et al., 2006). In the lower part of the catchment, vineyards
and orchards cover most of the valley floors and lower hill
slopes, where they benefit from a unique combination of
clear skies, high diurnal temperature variations and overall
dry conditions during the growing season. The Claro River
originates from a number of small, snowmelt-fed tributaries
flowing either permanently or seasonally in the mountains.

2.1.2 Climate

Most of the annual precipitation falls as snow during typi-
cally two or three winter storms (Favier et al., 2009), when
the South Pacific High reaches its northernmost position
(June–August). Mean annual precipitation ranges from ap-
proximately 100 mm at the catchment outlet (Rivadavia) to
670 mm in the High Cordillera (Bourgin et al., 2012). The
annual snow-cover duration estimated from MODIS snow-
covered area (SCA) data (see Sect. 2.2) ranges from less than
20–40 days at low elevations (< 2000 m a.s.l.) to about 160–
180 days at high elevations (> 4000 m a.s.l.), where sublima-

tion is expected to be the dominant cause of ablation (Gas-
coin et al., 2013; MacDonell et al., 2013). In the dry An-
des, net shortwave radiation represents the dominant source
of energy available for melt and sublimation (Pelliciotti et al.,
2008).

At the inter-annual timescale, the El Niño–Southern Oscil-
lation (ENSO) represents the largest source of climate vari-
ability (Montecinos and Aceituno, 2003). Anomalously wet
(dry) years in the region are generally associated with warm
(cold) El Niño (La Niña) episodes and a simultaneous weak-
ening (strengthening) of the South Pacific High. It is worth
noting, however, that some very wet years in the catchment
can also coincide with neutral to weak La Niña conditions, as
in 2000–2001, while several years of below-normal precipi-
tation may not exhibit clear La Niña characteristics (Verbist
et al., 2010). These anomalies may be due to other modes
of climate variability affecting the Pacific basin on longer
timescales. The Interdecadal Pacific Oscillation (IPO), in
particular, has been shown to modulate ENSO’s influence ac-

Hydrol. Earth Syst. Sci., 20, 3691–3717, 2016 www.hydrol-earth-syst-sci.net/20/3691/2016/



P. Hublart et al.: Reliability of lumped hydrological modeling 3695

cording to cycles of 15 to 30 years (Schulz et al., 2011). Fig-
ure 1c shows a sustained decrease in mean annual streamflow
since the mid-1990s, which could be associated with a shift
in the IPO phase around 1998.

2.1.3 Agricultural activity

Grape growing is by far the main agricultural activity in the
catchment. All grapes are grown to be exported as early-
season table grapes or processed into a brandy-like national
drink known as pisco. Reliable water supplies are critical
to satisfy crop water needs in the summer, since precipita-
tion events occur mostly at high elevations or outside the
growing season. Irrigation water is diverted at multiple lo-
cations along the river’s course and conveyed to the fields
through a complex network of open, mostly unlined canals.
The amount of water diverted from the river depends on
both historical water rights and current water availability. Ta-
ble varieties are mostly drip-irrigated, while pisco varieties
remain largely furrow-irrigated.

Irrigated areas in the Claro River catchment have increased
by about 200 % between 1985 and 2005 (Fig. 1b). This ex-
pansion has been limited by both water and agricultural land
availability, and irrigated areas currently represent less than
5 % of the total catchment area. A rough estimate of the ef-
fects of increased irrigated areas on mean annual streamflow
can be obtained by looking at the difference in discharge
measured at Rivadavia (downstream from cultivated areas)
and that measured at Cochiguaz and Alcohuaz (upstream
from cultivated areas) (Fig. 1c). Note that transmission losses
caused by infiltration through the riverbed may also reduce
streamflow at downstream points, especially during dry peri-
ods when the depth of water tables is low.

2.2 Materials

2.2.1 Hydro-climate data

Precipitation and temperature data were interpolated from,
respectively, 12 and 8 stations to a 5× 5 km grid using an
inverse distance squared weighting (Ruelland et al., 2014).
Orographic effects on precipitation were considered using
the approach described in Valéry et al. (2010a) with a cor-
rection factor of 6.5× 10−4 m−1 (determined by sensitivity
analysis), resulting in a gradient of around 0.4 m water equiv-
alent per kilometer. For temperature, a constant lapse rate of
−6.0 ◦C km−1 was estimated from the observed data. Daily
streamflow data were extracted from the Chilean “Dirección
General de Aguas” database.

In addition, remotely sensed data from the MODerate res-
olution Imaging Spectroradiometer (MODIS) sensor were
introduced to estimate the seasonal patterns of fractional
snow-covered areas (FSCA) over a 12-year period (2000–
2011). Daily snow-cover products retrieved from NASA’s
Terra (MOD10A1) and Aqua (MYD10A1) satellites were

combined into a single, composite 500 m resolution prod-
uct to reduce the effect of swath gaps and cloud obscuration.
The remaining data voids due to cloud cover or missing data
were subsequently filled using a linear temporal interpolation
method, where a pixel was classified as snow/land depending
on the closest previous/next observation of snow/land.

2.2.2 Agricultural data

Two different grapevine varieties were selected to represent
phenological patterns in the valleys, namely, Flame Seedless
(for table grapes) and Moscatel Rosada (for pisco grapes).
Phenological observations for these two varieties were car-
ried out over a 10-year period (2003–2012) at the Instituto de
Investigaciones Agropecuarias (INIA), located a few kilome-
ters downstream from the catchment outlet. Grapevines were
trained using an overhead trellis system and fully irrigated
during the whole growing season. The experiment kept track
of three major events: budburst (BB), full bloom (FB) and the
beginning of harvest (HV). Budburst was defined as the mo-
ment when the first leaf tips become visible and full bloom
as the moment when 80 % of the flower caps are off. The be-
ginning of harvest depends on the intended use of the grapes.
Table varieties require lower sugar contents (∼ 16◦ Brix, i.e.,
160 g of sucrose per liter) than those dedicated to the produc-
tion of pisco (22◦ Brix), which are generally harvested a few
months later (Ibacache, 2008).

A database of water access entitlements was used to esti-
mate the total volume of water licensed for abstraction in the
catchment. This included a time series of monthly restric-
tions to these entitlements issued by the Dirección General
de Aguas during prolonged dry periods.

3 Methods

3.1 Modeling framework

In this paper we developed and compared three differ-
ent models. These differed in their approach to snowmelt
and irrigation modeling. The first one, referred to as
“Model A”, used a simple degree-day approach to estimate
snowmelt rates while neglecting the effects of irrigation wa-
ter use (IWU) at the catchment scale. The second one, re-
ferred to as “Model B”, ignored IWU effects just as Model A
but relied on an enhanced degree-day approach to account for
the effects of net radiation and sublimation on melt rates. The
third one, referred to as “Model C”, used the same snowmelt
routine as Model B and incorporated IWU effects on natural
streamflow using a conceptual irrigation module.

Figure 2 shows a block diagram of this modeling
framework. The blue blocks refer to the hydrological
part of the framework shared by the three models (see
Sect. 3.1.2 and 3.1.3). The green blocks relate to the esti-
mation of irrigation water requirements (IWR) used only by
Model C. This involves several phenological models to cap-
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Figure 2. Block diagram of the lumped modeling framework developed in this study. The blue blocks refer to the hydrological part of the
framework (used by Models A, B and C), while the green blocks relate to the estimation of irrigation water requirements and irrigation water
use (used only by Model C). The simulated outputs and observed data used for calibration/validation are indicated in orange. A satisfaction
rate can also be computed based on the ratio between water availability and irrigation requirements.

ture the main dynamics of crop water needs over each grow-
ing season (Sect. 3.1.4) and a moisture-accounting store rep-
resenting the valley soils (Sect. 3.1.3). Net irrigation water
use at the catchment scale is computed as a function of IWR,
irrigated areas and water availability (i.e., natural stream-
flow) (Sect. 3.1.3). The whole modeling chain is fed by pre-
cipitation and temperature data.

We also stress that smoothing functions were used
throughout this framework to remove all threshold nonlin-
earities from the models’ equations (insofar as possible), as
recommended by several authors (e.g., Fenicia et al., 2011).
These smoothing functions will not be shown in the follow-
ing sections for the sake of clarity.

3.1.1 Simplifying assumptions

The modeling framework described in Fig. 2 relies on three
important assumptions regarding the representation of IWU
and IWR at the catchment scale.

1. First, IWU refers to the amount of water lost by evap-
otranspiration from the cropped fields and the ripar-
ian vegetation that thrives along the irrigation canals.

It should not be confused with the actual surface-water
withdrawals (SWW) that vary on a weekly or monthly
basis depending on historical water rights and plan-
ning/management decisions. SWW include IWU but
also non-consumptive losses caused by canal seepage
and deep percolation in the fields. Unfortunately, the
impact of SWW on the catchment behavior is difficult
to estimate because reliable information on these ad-
ditional losses and the proportion of abstracted flows
coming back to the system is lacking. In this study, all
return flows were assumed to come back to the river
within each 10-day time step. A similar assumption can
be found in Kiptala et al. (2014).

2. Second, IWR refer to the amount of water needed to sat-
isfy crop evapotranspiration under optimal conditions.
In practice, this quantity depends on the irrigation tech-
nique used by the farmers. In furrow-irrigated fields,
IWR would be expected to bring the soil moisture to
saturation (or field capacity) and thereby satisfy crop
water needs during several days. In drip-irrigated fields,
irrigation is required to compensate for the difference
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between the amount of water stored in the soil and crop
water needs. In this study, we assumed that both irri-
gation techniques lead to the same water requirements
over a sufficiently long time interval.

3. Third, the two varieties (Flame Seedless, Moscatel
Rosada) selected to represent phenological patterns in
the valleys are at best a rough approximation of the real
crop diversity in this catchment. In reality, phenological
dates for each type of grape (pisco or table grapes) can
spread over several days or weeks depending on the va-
riety involved. For instance, pisco producers report dif-
ferences of between 1 and 2 weeks between the various
varieties used for pisco (Ibacache et al., 2010).

Taking heed of these underlying assumptions, all models (A,
B and C) were run at a daily time step but evaluated using
a 10-day time step. This 10-day interval was also more con-
sistent with the temperature-index approach used to estimate
snowmelt rates (Hock, 2003) (Sect. 3.1.2).

3.1.2 Snow accumulation and ablation modules

The snow accumulation and ablation (SAA) modules de-
veloped in this study borrow much of their philosophy and
equations from the Cemaneige model (Valéry et al., 2014).
The catchment was divided into five elevation zones (EZs) of
equal area, within which separate modules operated simulta-
neously based on the same set of parameters. At each time
step t, precipitation was partitioned into rain and snow by as-
suming a linear transition from snow to rain across a fixed
temperature range defined as [−1 ◦C, 3 ◦C] (L’Hôte et al.,
2005). The amount of water contained in the snowpack, or
snow water equivalent (SWE, in mm), was then updated as

SWEt = SWEt−1+Snowt. (1)

As in the original Cemaneige model, an antecedent
temperature-index approach was used to keep track of the
snowpack temperature (TS, in ◦ C) and determine when the
pack was ready to melt:

TS, t =min
[
0 , θSTS,t−1+ (1− θS)TA,t

]
, (2)

where TA(◦C) is the mean air temperature within the eleva-
tion zone and θS is a parameter quantifying the sensitivity of
the snowpack temperature to TA. As such, θS is expected to
be higher in regions characterized by thick snowpacks (see
also Sect. 4.2.1). A similar representation can be found in
other hydrological models, including enhanced versions of
SWAT (Fontaine et al., 2002) and SRM (Harshburger et al.,

2010). Melt rates (mm day−1) were computed as follows:

Melt= (3) min
[
SWE,MF(TA− Tthr)+

YN/(ρλf)
]
× f (FSCA) if TS = 0◦C and TA ≥ Tthr

0 if TS < 0◦CorTA < Tthr

with

YN =


−CT×SWE×1TS for Model A
1RSW+1RLW−

CT×SWE×1TS for Models B and C
, (4)

f (FSCA)= (1−Vmin)FSCA+Vmin, (5)

FSCA =min
[
1,SWE/SWEmax

]
, (6)

where MF (mm ◦C−1 day−1) is the melt factor, Tthr is the
temperature threshold at which snowmelt begins (usually set
at 0 ◦C), λf is the latent heat of fusion (∼ 0.34 MJ kg−1 at
0 ◦C), ρ is the density of water (∼ 1000 kg m−3), 1RSW and
1RLW (MJ m−2 day−1) are the net shortwave and longwave
radiations, respectively (more details are given in the Ap-
pendix), CT is the specific heat of snow (∼ 0.0021 MJ kg−1

at 0 ◦C), FSCA is the fractional snow-covered area and Vmin
is a parameter accounting for the effects of low SWE lev-
els on melt rates. YN represents the energy available from
net radiation and changes in the snowpack heat storage. The
FSCA function can be thought of as a basic depletion curve
representing the influence of snow distribution within each
zone. As a first approximation, it was assumed to increase
linearly with SWE until a threshold SWEmax was reached,
above which the whole elevation zone was assumed to be
covered by snow. Following Valéry et al. (2014), the value of
SWEmax was fixed at 90 % of the mean annual snowfall ob-
served within each elevation zone separately. Similarly, the
value of Vmin was fixed at 0.1 as in the original Cemaneige
model (Valéry et al., 2010b) to ensure that melt still occurred
when FSCA was close to zero.

For Models B and C, sublimation losses (mm day−1) were
estimated as follows:

Sublimation= (7){
0 if TA ≥ Tthr
min

[
SWE YN/(ρλs)

]
× f (FSCA) if TA < Tthr

,

where λs is the latent heat of sublimation (∼ 2.84 MJ kg−1 at
0 ◦C). Note that when TA ≥ Tthr and TS < 0 ◦C, all the energy
available at the snow surface was used to warm the snow-
pack. The SAA module of Model A is equivalent to the Ce-
maneige model (Valéry et al., 2014), whereas that of Models
B and C corresponds to an enhanced version of this model in
which sublimation and net radiation are considered explic-
itly. However, both of these modules rely on the same cali-
brated parameters.
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3.1.3 Runoff production and routing modules

Spatially averaged rainfall and snowmelt estimates were
combined into a single “precipitation” term that was used
as input to the lumped GR4J model (Perrin et al., 2003). Po-
tential evapotranspiration (PE) was first determined for each
grid cell using the temperature-based formula proposed by
Oudin et al. (2005):

PEOudin,C =

{
Re
(
TA,C+K2

)
/(ρλvK1) if TA+K2 > 0

0 otherwise
,

where TA, C ( ◦C) is the interpolated air temperature of cell C,
λv is the latent heat of vaporization (∼ 2.46 MJ kg−1) andK1
(5 ◦C) and K2 (100 ◦C) are fitted parameters (see Sect. 3.1.4
for further details). Spatially averaged PE inputs to the GR4J
model (i.e., PEGR4J) were obtained after subtracting the en-
ergy consumed by melting and sublimation:

PEGR4J =max
(∑

C
PEOudin,C/NC

−

∑
Z
(λf MeltZ+ λs SublimationZ)/(λvNZ) 0

)
, (8)

where NC is the number of grid cells, NZ is the number of
elevations zones (Z), λv is the latent heat of vaporization
(∼ 2.46 MJ kg−1) and PEOudin, C (mm) is given by Eq. (11).
Note that PEGR4J accounts for evapotranspiration from soils,
natural vegetation and crops only insofar as it relates to pre-
cipitation or meltwater. It is not supposed to include evapo-
transpiration from cultivated areas caused by irrigation wa-
ter use. Thus, the GR4J model simulates only those hydro-
logical processes that relate to the “natural” catchment be-
havior. Incorporation of IWU into the modeling framework
does not modify the structure and governing equations of the
GR4J model, but only the estimates of natural streamflow.
This choice can be justified by the fact that the cultivated ar-
eas concentrate mainly in the lower part of the catchment and
represent only a small portion of the total area (Fig. 1).

The GR4J model was chosen for its simplicity and par-
simony. Basically, the precipitation–runoff process is broken
down into two components: a runoff generation module com-
putes the amount of water available for runoff, i.e., “effective
precipitation”, while a routing module subsequently routes
this quantity to the catchment outlet. In the first module, a
soil-moisture accounting (SMA) store is used to partition
the incoming rainfall and/or snowmelt into storage, evapo-
transpiration and excess precipitation. At each time step, a
fraction of the SMA store is also computed to represent soil
drainage and added to excess precipitation to form the ef-
fective precipitation. The second module splits this quantity
between two different pathways with respect to a constant ra-
tio: 10 % passes as direct runoff through a quick flow routing
path based on a unique unit hydrograph, whereas 90 % passes
as delayed runoff through a slow flow routing path composed
of a unit hydrograph and an additional routing store. Outputs

from both pathways are finally added up to simulate natural
streamflow at the catchment outlet. This model relies on four
calibrated parameters (X1, X2, X3 and X4) that are described
in Table 1.

3.1.4 Irrigation water-use module (Model C)

In Model C, irrigation water requirements per unit area
(IWR, in mm day−1) were estimated for each crop variety
i using a simple soil-water balance approach:

IWRi =max
[
0 , ETMi −SWCi −PValley

]
(9)

with ETMi

(
TA,V

)
=KC,iET0

(
TA,V

)
, (10)

where ETM (mm day−1) refers to crop evapotranspiration
under optimal conditions and SWC (mm) to the average
soil-water content in the root zone. PValley (mm day−1), ET0
(mm day−1) and TA, V (◦C) are, respectively, the areal effec-
tive precipitation, reference evapotranspiration and air tem-
perature in the valleys, and KC is a coefficient depending on
crop growth stages. A realistic estimate of ET0 was provided
by using a modified version of Oudin’s formula (Eq. 11). In
Oudin et al. (2005), the values of K1 and K2 were chosen
as those giving the best streamflow simulations for differ-
ent hydrological models applied to a large number of catch-
ments. In this study, the FAO Penman–Monteith equation for
a reference grass was used as a basis to re-calibrate these pa-
rameters at different locations across the valleys. This mod-
ification was required since the Penman–Monteith equation,
which was more suited to estimating crop water needs, could
not be used over the whole study period due to limited data
availability (wind speed, relative humidity, solar radiation).
Interpolated KC curves were constructed for each crop vari-
ety using a series of phenological models to simulate the an-
nual dates of budburst, full bloom, harvest and leaf fall (see
Sect. 3.1.5). The value of KC at each of these dates (KC, BB,
KC, FB, KC, HV and KC, LF) was determined from the litera-
ture (Villagra et al., 2014) and interviews with local grape
growers. Net irrigation water use in the catchment (IWU, in
m3 s−1) was computed as a function of IWR, irrigated areas
and surface-water availability:

IWU={
min

[
Qnat−Qmin ,

∑
iIWRi ×Ai/ε

]
if Qnat ≥Qmin

0 otherwise , (11)

where Qnat (m3 s−1) is the natural streamflow simulated by
the GR4J model, ε is a conversion factor and Ai (ha) is the
irrigated area for crop variety i, which varies on a yearly ba-
sis as shown in Fig. 1b. Qmin (m3 s−1) is a minimum dis-
charge below which no withdrawal is allowed. This param-
eter was fixed at 0.25 m3 s−1 based on historical low-flow
records. Simulated (influenced) discharge at the catchment
outlet was computed from the difference between Qnat and
IWU at each time step. When IWR could not be entirely sat-
isfied, irrigation water was allocated to each crop variety i in
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Table 1. Initial range or value of each model parameter. The third column provides explanations of the meaning of the parameters and their
units (in parentheses). The fourth column indicates whether parameters are calibrated or fixed beforehand.

Parameter Model Meaning Calibration Initial range or value

Phenological models (calibrated against observed phenological dates)

t0 UniChill Starting date for chilling rate accumulation (–) No 15 April
a UniChill Shape parameter of the chilling bell curve (–) Yes 0.1–2
b UniChill Optimal chilling temperature (◦C) Yes 0–20
c UniChill Shape parameter of the sigmoidal curve (–) No −0.25
d UniChill Shape parameter of the sigmoidal curve (◦C) No 15
CBB UniChill Critical chilling requirement (–) Yes 4–100
FBB UniChill Critical state of forcing for budburst (–) Yes 10–200
Tmin WE Minimum temperature (◦C) No 0
Topt WE Optimum temperature (◦C) Yes 0–40
Tmax WE Maximum temperature (◦C) No 40
FFB WE Critical state of forcing for full bloom (–) Yes 1–300
FHV WE Critical state of forcing for harvest (–) Yes 1–300

Hydrological models (calibrated against observed streamflow data)

θS SAA Snowpack cold-content factor (–) Yes 0–1
MF SAA Restricted melt factor (mm day−1) Yes 0–20
Tthr SAA Snowmelt temperature threshold (◦C) No 0
αmin SAA Minimum snow albedo (–) No 0.4
αmax SAA Maximum snow albedo (–) No 0.8
ka SAA Timescale parameter for the albedo (day−1) No 0.25
X1 GR4J Capacity of the soil-moisture accounting store (mm) Yes 0–2000
X2 GR4J Groundwater exchange coefficient (mm) Yes −10–10
X3 GR4J Capacity of the routing store (mm) Yes 0–500
X4 GR4J Unit hydrograph time base (day) Yes 0–10
KC, BB IWU Crop coefficient at budburst (–) No 0
KC, FB IWU Crop coefficient at full bloom (–) No 0.7
KC, HV IWU Crop coefficient at harvest (–) No 1.4
KC, LF IWU Crop coefficient at the end of leaf fall (–) No 0
NLF IWU Length of the post-harvest period (day) No 60 (Moscatel Rosada), 120

(Flame Seedless)

Generalized likelihood function (inferred together with the hydrological parameters*)

σ0 GL Heteroscedasticity intercept (mm day−1) Yes 0–1
σ1 GL Heteroscedasticity slope (–) Yes 0–1
81 GL Autocorrelation coefficient (–) Yes 0–0.8
ß GL Kurtosis parameter (–) Yes −1–1
4 GL Skewness parameter (–) No 1
µh GL Bias parameter (mm day−1) No 0

* For more details on the GL function, see Schoups and Vrugt 2010).

proportion to its irrigated area:

AIWi =min
[
IWRi , ε× IWU×Ai/A2

tot

]
, (12)

where AIWi (mm) is the amount of water allocated to crop
variety i andAtot (ha) is the sum of all irrigated areas. Finally,
the average soil water content in the root zone was updated

as

SWCi, tmax=[
0 , SWCi, t−1+PValley,t+AIWi, t−ETMi, t

]
. (13)

3.1.5 Phenological modeling (Model C)

To construct the KC curves, the growing season was split
into five phenophases: endodormancy, ecodormancy, flow-
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Figure 3. Crop growth and water requirement modeling framework: (a) partitioning of the growing season into five phenophases and pa-
rameterization of each phenophase, (b) functions used to express the accumulated chilling and forcing rates over each phenophase, and
(c) translation of the simulated dates of budburst, full bloom and harvest into an interpolated KC curve for use in the IWU model. Model
parameters are indicated in italic and colored in red. Note that parameters t0, c, d , Tmin, Tmax, KC, BB, KC, FB, KC, HV and KC, LF were
fixed beforehand to avoid over-parameterization.

ering, ripening and senescence. For each grapevine variety,
different process-based models were applied to predict the
start and end dates of each phenophase (Fig. 3).

A simplified version of the UniChill model (Chuine,
2000) was chosen to simulate the annual dates of budburst
(tBB). This model covers the periods of endodormancy, when
growth inhibition is due to internal physiological factors,
and ecodormancy (or quiescence), when buds remain dor-
mant because of inadequate environmental conditions. To
emerge from endodormancy, grapevines usually require an
extended period of low temperatures, which is represented in
the model as an accumulation of “chilling” rates RCH:

CBB =
∑t1

t=t0
RCH

(
TA,V

)
, (14)

RCH
(
TA,V

)
= 1/

[
δ
(

1+ ea(TA,V−b)
2)]

, (15)

where TA, V is the average daily temperature in the valley
and t0, a, b and CBB are fitted parameters described in Ta-
ble 1. δ is a scaling factor set at 0.5 to ensure that the opti-
mal chilling rate (when TA, V = b) has a value of 1 (Caffarra
and Eccel, 2010). A sensitivity analysis (not shown here for
brevity’s sake) was performed to determine the optimal value
for t0, i.e., the starting date of the endodormancy period (see
Table 1). Likewise, from dormancy release to budburst an
extended period of high temperatures is generally required

(ecodormancy). This process is represented as an accumula-
tion of “forcing” rates RBB:

FBB =
∑tBB

t=t1
RBB

(
TA,V

)
, (16)

RBB
(
TA,V

)
= 1/

[
1+ ec(TA,V−d)

]
, (17)

where c, d and FBB are fitted parameters. To prevent over-
parameterization, the values of c and d were fixed at −0.25
and 15 ◦C based on information available in the literature
(Caffarra and Eccel, 2010; Fila et al., 2012). The sigmoid
function of Eq. (21) describes the temperature dependence
of growth rates in a more realistic way than usual approaches
based on growing degree-days.

The four-parameter model developed by Wang and En-
gel (1998) (hereafter referred to as WE) was selected to sim-
ulate the annual dates of full bloom (tFB) and harvest (tHV):

FFB =∑
t=tBB

t

FB
RFB

(
TA,V

)
and FHV =

∑tHV

t=tFB
RHV

(
TA,V

)
, (18)

RFB
(
TA,V

)
=

RHV (T)=


2
(
TA,V− Tmin

)α(
Topt− Tmin

)α
−
(
TA,V− Tmin

)2α(
Topt− Tmin

)2α
if Tmin ≤ TA,V ≤ Tmax
0 otherwise

(19)
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with α = log(2)/log
[
(Tmax− Tmin)/

(
Topt− Tmin

)]
, (20)

where FFB, FHV and Topt (◦C) were calibrated separately for
each variety. Note that Topt also varies with the phenophase
under study (flowering or ripening). Compared to other flow-
ering and harvest models based on forcing rates, this one
has the major advantage of also accounting for the inhibit-
ing effect of extreme temperatures on photosynthesis. As leaf
growth typically ceases at temperatures below 0–5 ◦C (Hen-
drickson et al., 2004) and above 35–40 ◦C (Greer and Wee-
don, 2013), parameters Tmin and Tmax were fixed beforehand
at 0 and 40 ◦C, respectively (García de Cortázar-Atauri et al.,
2010).

Eventually, the post-harvest period was modeled as a con-
stant number of days (NLF) between tHV and the end of leaf
fall (tLF). The value of NLF was obtained from interviews
with local grape growers for each variety (see Table 1).

3.2 Model evaluation

The phenological and hydrological models were evaluated
separately using different methods and/or objective func-
tions. Models A and B have the same number of calibrated
hydrological parameters (i.e., six parameters).

3.2.1 Hydrological modeling

The data set was divided into a calibration period (1985–
1995), showing a sharp increase in irrigated areas (+100 %),
and a validation period (1995–2005), characterized by a
much lower increase (+20 %) (Fig. 1b). Each period was
defined in terms of water years (from 1 May to 30 April)
and included at least one major El Niño (1987–1988, 1997–
1998 and 2002–2003) or La Niña (1988–1989, 1998–1999
and 1999–2000) event.

The models were evaluated using either (1) simulations
obtained with a single, “optimal” parameter set, or (2) proba-
bilistic predictions obtained by sampling the posterior distri-
butions of the parameters. In the first case, model efficiency
and internal consistency were assessed. In the second case,
predictive uncertainty bands were derived and scrutinized in
terms of reliability and sharpness.

Model efficiency and internal consistency

Model efficiency measures the ability to fit the observed
behavior of the system with regard to specific criteria. In
this study, the Shuffle Complex Evolution (SCE) algorithm
(Duan et al., 1993) was used to maximize the following cri-
terion:

Fobj = (KGE+KGEinv)/2, (21)

where KGE and KGEinv refer to the Kling–Gupta efficiency
(Gupta et al., 2009) computed from discharge (Q) and in-

verse discharge (1/Q) values, respectively. This compos-
ite criterion was chosen to emphasize high and low flows
equally (Pushpalatha et al., 2012; Nicolle et al., 2014).

Internal consistency can be defined as the ability to repro-
duce the dynamics of internal catchment states without con-
ditioning the model parameters on additional data. Here, this
analysis was limited to the Snow Accumulation and Ablation
module to evaluate its ability to reproduce the seasonal pat-
tern of snow storage and release within each elevation zone.
This was achieved through visual inspection of model-based
and MODIS-derived FSCA time series and based on the snow
error criterion defined in Hublart et al. (2015a).

Model predictive uncertainty

The Differential Evolution Adaptive Metropolis (DREAM)
algorithm (Vrugt et al., 2009) was chosen to approximate
the posterior distributions of model parameters and obtain
probabilistic streamflow predictions. This required a statis-
tical model of the differences between observed and sim-
ulated flows (i.e., residual errors). We used the general-
ized likelihood (GL) function introduced by Schoups and
Vrugt (2010), which describes correlated, heteroscedastic
and non-Gaussian errors based on a number of parameters
given in Table 1. Uniform priors were assumed to reflect the
lack of information on model parameters in this catchment.
After a maximum of 30 000 iterations, the quantitative diag-
nostic of Gelman and Rubin (1992) was used to determine
when the chains had converged to the stationary posterior
distribution.

The reliability of the predictive distributions was first as-
sessed by checking for the ability of various p confidence
intervals (with p = 0.05 to 0.95) to bracket the adequate per-
centage of streamflow observations (hereafter called POCI
for percentage of observations within the p confidence inter-
val):

POCI(p)=

N
(
Qobs ∈

[
LimitUpper (p),LimitLower (p)

]
∀ t
)
/n, (22)

where n is the total number of observations, LimitUpper(p)

and LimitLower(p) are the upper and lower boundary values
of the p confidence interval and N indicates the number of
observations enclosed within these boundaries. When plot-
ted as a function of p, the POCI points should fall along the
diagonal 1 : 1 line. The predictive distributions were also ver-
ified using the probability integral transform (PIT) values of
streamflow observations, defined as (e.g., Thyer et al., 2009;
Wang et al., 2009; Engeland et al., 2010)

πt = Ft
(
Qobs,t

)
, (23)

where Ft is the empirical cumulative distribution function
(CDF) of streamflow predictions at time t . For ideal predic-
tions (i.e., based on correct statistical assumptions regarding
model errors), the πt values are expected to be uniformly dis-
tributed between 0 and 1. More details on the correct use and
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interpretation of PIT plots, including the use of Kolmogorov
significance bands as a test of uniformity, can be found in
Laio and Tamea (2007) (see also Fig. 4).

Finally, the sharpness (or “resolution”) of the predictive
distributions was measured using the average relative inter-
val length (ARIL) criterion proposed by Jin et al. (2010),
which should be as small as possible for any p between 0
and 100 %:

ARIL(p)=
1
n

∑
t

[
LimitUpper,t (p)−LimitLower,t (p)

]
/Qobs,t. (24)

Each of these posterior diagnostics (POCI, PIT and ARIL)
was performed separately for all streamflow observations and
three distinct regions of the observed flow duration curve,
namely, high flows (20 % exceedance probability), mid flows
(20 to 80 % exceedance probability) and low flows (20 % ex-
ceedance probability).

3.2.2 Phenological modeling

The phenological models used in Model C were calibrated
by minimizing the root-mean-square error (RMSE) between
simulated and observed phenological dates over the whole
data set (2003–2013). This was achieved using the SCE algo-
rithm with the same number of complexes for all models and
crop varieties. Given the small number of available observa-
tions, a leave-one-out cross-validation technique was chosen
to assess the robustness of each model. Additional metrics
such as the Nash–Sutcliffe efficiency (NSE) and the mean
difference between observed and predicted dates (i.e., model
bias) were also used in validation to characterize the model-
ing errors. On the whole, eight parameters required calibra-
tion for each variety (Table 1).

4 Results

4.1 Phenological simulations

Figure 5 and Tables 2 and 3 show the results obtained for
both grapevine varieties with the three phenological mod-
els. On the whole, approximately 76 % of the differences be-
tween observed and predicted phenological dates fell within
the range of ±5 days during calibration (Fig. 5). Moreover,
mean absolute errors did not exceed 6.4 days in any case.
Such errors can be considered acceptable with regard to the
10-day time step chosen to evaluate the hydrological models.

The best results were obtained for Flame Seedless with the
budburst (BB) model and for Moscatel Rosada with the full
bloom (FB) and harvest (HV) models. RMSE values ranged
from 3.0 to 6.1 days in calibration and from 5.4 to 7.9 days
in validation, indicating a moderate loss of performance (Ta-
ble 2). In general, bias values remained close to zero, ex-
cept for Moscatel Rosada with the HV model. NSE values

Figure 4. Possible interpretations of PIT plots (modified from Laio
and Tamea, 2007). The diagonal line (in black) represents the ideal
case.

were positive for all varieties and models in calibration but
decreased sharply in validation, with only two values above
0.50 and one negative value for Flame Seedless with the FB
model. However, very low to negative NSE values are not
uncommon in phenological modeling, when only a few ob-
servations (< 10 years) collected from a single site are used
to calibrate the models (e.g., Parker et al., 2013). The opti-
mized parameter values displayed in Table 3 are discussed in
Sect. 5.4.

4.2 Hydrological simulations

4.2.1 Model efficiency and internal consistency

Table 4 shows the results obtained from the calibration and
validation of Models A, B and C. Clearly, Model C was
found to perform better than Models A and B with respect
to the objective function given by Eq. (25). This higher per-
formance was mostly the result of improved low-flow simu-
lations (KGEinv). Table 5 shows that simulated sublimation
rates and contribution to snow ablation remained approxi-
mately the same when IWU was introduced in the model
equations. Estimated mean annual sublimation rates at high
elevations (EZ nos. 4 and 5) were consistent with those found
by other studies, including experimental studies conducted
on small glaciers of the region (MacDonell et al., 2013).

The internal consistency of the SAA module was verified
over an independent validation period (2000–2011) using the
parameters (θS, MF) calibrated with each model from 1985 to
1995. The snow errors displayed in Table 4 vary from 2 % in
the first elevation zone (EZ no. 1) to 11–17 % in the last one
(EZ no. 5). Such errors were very encouraging, as they were
comparable to those obtained by Hublart et al. (2015) in the
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Figure 5. Observed vs. predicted dates of budburst, full bloom and harvest for Flame Seedless and Moscatel Rosada at the INIA experimental
site. The dates are expressed in number of days since 1 June. The minimum, maximum and mean absolute errors (in days) are given for each
variety and stage of growth (the values between parentheses relate to the validation step, while the values in front of the parentheses relate to
the calibration step). The upper and lower blue lines indicate delays of ±5 days between observed and predicted dates, respectively.

Table 2. Goodness-of-fit (calibration) and predicting performance (validation) of the phenological models. RMSE, root mean square error;
NSE, Nash–Sutcliffe efficiency; Bias, mean difference between the observed and predicted dates; BB, budburst; FB, full bloom; HV, harvest.

Calibration (whole data set) Leave-one-out cross-validation

Flame Seedless Moscatel Rosada Flame Seedless Moscatel Rosada

Model RMSE NSE Bias RSME NSE Bias RMSE NSE Bias RMSE NSE Bias
(days) (–) (days) (days) (–) (days) (days) (–) (days) (days) (–) (days)

BB 3.0 0.89 0.3 3.4 0.80 −0.29 5.4 0.64 0.4 6.8 0.18 0.6
FB 6.0 0.16 −0.6 6.1 0.46 0.5 7.0 −0.13 −0.1 7.2 0.24 0.13
HV 4.0 0.51 0.5 3.4 0.92 0.0 5.2 0.16 0.7 7.9 0.55 2.2

same catchment with less parsimonious (and less realistic)
snowmelt models. The impact of considering net radiation
and sublimation in the model equations, however, was only
evident for EZs no. 4 and 5, where a moderate drop in the
snow error was observed. Model A even performed slightly
better than Model B with respect to the Fobj function.

Figure 6 provides a visual comparison of simulated and
observed fractional snow-covered areas (FSCA) during this
validation period for Model C. On the whole, it can be seen
that the SAA model did not accumulate snow from one year
to another, which was consistent with the observed inter-
annual pattern of snow cover in the catchment. However,
there were important discrepancies between the lower and
upper elevation zones. In the lower zones (EZ nos. 2 and 3),

the model did fairly well during several years of the period
(e.g., 2001, 2004, 2009 and 2010), but also underestimated
the annual snow-cover duration (SCD) during several other
years (e.g., 2002, 2003 and 2007). In the upper zones (EZ
nos. 4 and 5), the model generally failed to reproduce the
observed variations in FSCA despite improved estimates of
the annual SCD. In EZ no. 5, there was also a tendency to
overestimate the SCD during the last 3–4 years of the period.

4.2.2 Model predictive uncertainty

Between 10 000 and 13 000 model evaluations were required
to reach convergence to a limiting distribution depending on
the model used. In each case, the last 5000 samples generated
with DREAM were used to compute the posterior diagnostics
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Table 3. Calibrated parameter values of the phenological models.

Budburst Full bloom Harvest

Variety a b CBB FBB Topt FFB Topt FHV
(◦C−1) (◦C) (–) (–) (◦C) (–) (◦C) (–)

Flame Seedless 0.11 11.5 27.4 21.2 22.0 55.5 30.2 28.9

Moscatel Rosada 0.57 11.3 10.8 41.8 20.2 49.9 32.9 31.3

Table 4. Goodness-of-fit (calibration) and predicting performance (validation) of the hydrological models.

Calibration (1985–1995) Validation (1985–1995) Snow errors (2000–2011)

Model Fobj KGEinv NSE RMSE Fobj KGEinv NSE RMSE EZ 1 EZ 2 EZ 3 EZ 4 EZ 5
(–) (–) (–) (m3 s−1) (–) (–) (–) (m3s−1) (%) (%) (%) (%) (%)

A 0.13 0.77 0.94 1.66 0.27 0.53 0.88 2.66 2 15 16 12 17
B 0.16 0.74 0.93 1.76 0.33 0.43 0.90 2.41 2 16 16 10 11
C 0.07 0.90 0.95 1.55 0.13 0.80 0.90 2.36 2 16 16 10 11

presented in Sect. 3.2.1 and generate predictive uncertainty
bands.

Figure 7 provides a range of formal tests of the statisti-
cal assumptions made to describe model residuals in the case
of Model C. The density plot of Fig. 7a confirms that model
residuals were broadly symmetric and kurtotic, although kur-
tosis appears to be slightly overestimated. Heteroscedasticity
(Fig. 7c) was largely removed by the variance model of the
GL function. However, Fig. 7b shows that the assumption of
independence was not fully respected, as residuals remained
slightly correlated (0.35) at a lag of 1 and at some greater
lags, indicating potential storage errors in the model struc-
ture.

Figure 8 displays the scatter plots and posterior histograms
of hydrological parameters for Models A and C. The results
obtained with Model B are not shown here as they were gen-
erally close to those of Model C. As can be seen, differences
between the structures of Models A and C had no particular
effect on parameter identifiability. All parameters appeared
to be relatively well-defined with approximately Gaussian
distributions, although the values of θS, MF and X3 occupied
a wider range of their prior intervals with Model A than with
Models B and C. Introducing sublimation and net radiation
into the SAA module reduced the correlation between θS and
MF observed with Model A but simultaneously increased the
interaction of θS with X3 and X4. Likewise, additional checks
performed with Models B and C showed that the incorpora-
tion of irrigation water use in Model C led to a strong corre-
lation between X2 and X3, which questions the internal con-
sistency of the runoff production and routing module when
increasing the model complexity.

Figure 9 shows the posterior diagnostics used to evaluate
the reliability (PIT, POCI) and resolution (ARIL) of fore-
cast distributions for Models B and C. At first sight, the PIT

values obtained with all streamflow observations appear to
be distributed quite uniformly during both simulation peri-
ods. Small departures from the diagonal line and the 5 %
Kolmogorov confidence bands indicate a tendency to under-
predict the observed data, but this applies to both models,
especially in validation. On the contrary, significant differ-
ences between the two models become obvious when look-
ing at specific portions of the observed flow duration curve.
At low flows, the PIT values obtained with Model B revealed
a significant overprediction bias during both calibration and
validation periods. While it did not affect the percentage of
observations covered by the confidence intervals (as POCI
values remained close to the diagonal line), this systematic
bias resulted in very high ARIL values (exceeding 1.5 in cal-
ibration and 3 in validation with the 95 % confidence inter-
vals). By contrast, Model C slightly overestimated predic-
tive uncertainty in calibration but led to highly reliable low-
flow predictions in validation, as evidenced by the PIT and
POCI plots. This resulted in relatively low ARIL values (< 1).
At mid flows, the two models exhibited a similar behavior
characterized by a systematic underprediction bias, underes-
timated POCI values and relatively low ARIL values (< 1). At
high flows, the PIT values were well within the Kolmogorov
confidence bands for both models, although there was still a
tendency to underpredict the observed data. In validation, this
underprediction bias translated into an excessively low num-
ber of observations enclosed within any p confidence interval
for p > 70 %.

Figure 10 shows the uncertainty bands obtained with Mod-
els B and C during the two simulation periods. The dark blue
region represents the uncertainty in streamflow predictions
associated with the posterior parameter distributions, while
the light blue region represents the total uncertainty arising
from parameter, model structure and input errors simultane-
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Table 5. Sublimation rates and contribution to snow ablation over the period 2000–2011. These results are for Models B and C and for the
five elevation zones (EZs).

Mean annual sublimation rates (mm day−1) Sublimation / ablation ratio (%)

Model EZ 1 EZ 2 EZ 3 EZ 4 EZ 5 EZ 1 EZ 2 EZ 3 EZ 4 EZ 5

B 0.00 0.07 0.30 0.75 1.11 0 4 11 26 36
C 0.00 0.07 0.31 0.75 1.11 0 4 12 26 37

Figure 6. Comparison of simulated (i.e., Model C, accounting for sublimation) and observed (i.e., MODIS-based) fractional snow-covered
areas (validation period). The graduations on the x axis indicate 1 January of each year.

ously. Some portions of the observed hydrograph have been
enlarged to highlight key differences between the two mod-
els. In general, uncertainty bands should be wide enough to
include the expected percentage of streamflow observations
(here, 95 %), but not so wide that the representation of the
observed hydrograph becomes meaningless. From this per-
spective, the main differences between Models B and C were
observed for summer flows, i.e., during the irrigation season.

Model B results in large uncertainty bands that are able to
capture most of the observations but that fail to reproduce the
seasonal pattern of streamflow during dry years (e.g., 1989–
1990, 1994–1995, 1996–1997, 1997–1998, 1999–2000). In
this case, structural and input errors represent the dominant
sources of uncertainty. By contrast, the width of the pre-
diction limits obtained with Model C tends to decrease as
the magnitude of the predicted streamflow decreases. In this
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Figure 7. Formal checks of the statistical assumptions used to describe model residuals. Application to Model C (simulated for the validation
period with the inferred maximum likelihood parameter set): (a) assumed and actual pdf; (b) partial autocorrelation; and (c) heteroscedasticity
of standardized residuals.

Figure 8. Two-dimensional scatter plots of the posterior parameter samples obtained with Models A and C. The numbers in italic at the
center of each cell indicate correlation coefficients. The histograms in orange represent the marginal posterior distributions of parameters
with superimposed kernel density estimates. The scatter plots and histograms of Model B were not included here for brevity’s sake, as they
were very close to those of Model C.

case, parameter uncertainty accounts for most of the predic-
tive uncertainty during summer. However, winter and early
summer flows are often underpredicted by both models. This
last point is further discussed in Sect. 5.3.

5 Discussion

5.1 Snow accumulation and ablation

The “optimal” cold-content factor (θS) was very close to 1
with all models (Fig. 7), indicating a relative insensitivity
of the snowpack temperature to changes in air temperature.
This finding seems a contradiction of the idea that shallow
snowpacks such as those observed in the region should have
a low thermal inertia. By comparison, Stehr et al. (2009)
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Figure 9. Posterior diagnostics used to evaluate the reliability (PIT, POCI) and resolution (ARIL) of the forecast distributions obtained with
Model B (in blue) and Model C (in red).

obtained a value of zero for θS after calibrating the SWAT
model in a snowmelt-fed catchment of the more humid cen-
tral Chile (38◦ S). One possible explanation for this apparent
contradiction is that mean daily temperatures in northern–
central Chile are rarely negative at low and mid elevations
(< 4000 m a.s.l.). A high value of θS was therefore required
to preserve the seasonality of melting during the spring and
summer months, despite low snow depths and frequently
positive air temperatures throughout the winter. In EZs no. 3
and 4, this model requirement may be due to the impact
of latent heat fluxes on the snowpack cold content. During
the winter, almost all the energy available from net radiation
and sensible heat transfers is consumed by sublimation. This
maintains the snowpack temperature slightly below 0 ◦C and
effectively delays snowmelt until the mean daily air temper-
ature stabilizes above 0 ◦C for a sufficiently long period of
time. Another possible explanation is that a high value of
θS implicitly accounts for the effect of night-time freezing,
which further delays snowmelt despite warm day-time tem-
peratures. At high elevations (> 4000 m a.s.l., i.e., EZ no. 5),
where observed air temperatures are mostly negative, we
note that a constant lapse rate of 6.0 ◦C km−1, as applied in
this study for all elevation zones, was also likely to over-
estimate temperature inputs. Lapse rates at these elevations
are generally much greater than that, being in fact closer to
the dry adiabatic lapse rate. Again, this would be expected
to generate high values of θS to compensate for temperature
overestimation.

The main drawback of this approach (i.e., using air tem-
perature as a proxy for the snowpack cold content) is that
it remains largely implicit and only indirectly connected to

the amount of water lost by sublimation in the model (i.e.,
the outcome of Eq. 10 has no effect on Eq. 2). This does not
mean, however, that a physically oriented interpretation can-
not be sought a posteriori to check for the model realism. Al-
ternative approaches can also be used to account for the delay
in meltwater production at the start of the ablation season.
In general, these will involve an additional store represent-
ing the water-holding capacity of the snowpack (Schaefli and
Huss, 2011). Although further research would be required to
compare the relative merits of each approach, the represen-
tation chosen in this study may be more suited to catchments
with shallow snowpacks and significant sublimation.

The “optimal” melt factor (MF) was significantly higher
with Model A than with Models B and C (Fig. 7). This was
not surprising since, in the case of Models B and C, the ef-
fects of net radiation were explicitly considered and the melt
factor was meant to parameterize only the contribution of tur-
bulent energy fluxes. Such a “restricted” melt factor is ex-
pected to increase with increasing wind speed and/or relative
humidity, as shown by Brubaker et al. (1996). The relatively
low values (∼ 2 mm ◦C−1 day−1) obtained here were there-
fore consistent with the overall dry conditions of the study
area. However, we found little evidence of improved model
performance and internal consistency when a restricted melt
factor was used and net radiation and sublimation were in-
troduced in the model equations (see Table 4). This lack of
sensitivity may be due to other sources of uncertainty, in par-
ticular regarding the choice of an adequate snow depletion
curve to estimate fractional snow-covered areas (Eq. 6).

While most snowmelt routines used in conceptual catch-
ment models assume either entirely snow-free or entirely
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Figure 10. Predictive uncertainty bands obtained for Models B and C with the DREAM algorithm and GL function. The dark blue region
represents the 95 % confidence intervals associated with parameter uncertainty, whereas the light blue region represents the 95 % confidence
intervals associated with parameter, model structure and input errors. The tick values on the x axis indicate 1 January of each year.

snow-covered elevation zones, accounting for the proportion
of each zone over which snow extends can be critical where
mean snow depths are known to be small. As a first approxi-
mation, we relied on a linear relationship between SWE and
FSCA that did not account for wind redistribution effects or
differences in radiation receipt caused by slopes of different
aspects. In the dry Andes, wind-induced redistribution has
been shown to significantly increase the spatial variability in
snow depth, hence reducing the total snow-cover area dur-
ing winter (Gascoin et al., 2013; Ayala et al., 2014). For a
proper assessment of predictive uncertainty, a multi-criteria
likelihood function accounting for the differences between
several types of simulated and observed responses (typically,
fractional snow-covered areas and stream flows) should be
used (e.g., Koskela et al., 2012). This is the subject of ongo-
ing research.

5.2 Runoff generation and routing

Figures 9 and 10 revealed a clear underprediction bias in
the simulation of winter and early spring flows during sev-
eral water years. Further details on these systematic defi-
ciencies are provided by Fig. 11, which focuses on a spe-
cific El Niño event (2002–2003). From May to September
2002, the observed winter flow increased rapidly from 0.15 to
0.5 mm day−1 (Fig. 11a) in response to intense rainfall events
(Fig. 11b) and gradual snowmelt (Fig. 11c). Most of this pre-
cipitation, however, served to refill the soil-moisture account-
ing (SMA) store of the model, which, after 3 years of intense
La Niña-related drought (1999–2002), was only 15 % of ca-
pacity (Fig. 11d). As a result, effective precipitation did not
exceed 0.5 mm day−1 during this 5-month period (Fig. 11e),
of which only 10 %, i.e., less than 0.05 mm day−1, were pro-
cessed through the quick flow routing path (Fig. 11f). The
remaining 0.45 mm day−1 were added to the routing store,
whose water level was also very low in May 2012. The over-
all quantity routed by both pathways was therefore largely in-
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Figure 11. Internal state variables and fluxes obtained with Model C during the 2002–2003 El Niño event (using the best-performing
parameter set obtained by calibration against the Fobj function).

sufficient to match the actual streamflow. A similar sequence
was observed for all water years characterized by the same
failures in streamflow predictions, shedding light on two crit-
ical sources of uncertainty related to structural deficiencies
and input data errors.

5.2.1 Structural deficiencies

One possible source of model inadequacy lies in the repre-
sentation of runoff production by a single SMA store, which
lumps together quite distinct landscape units. In the moun-
tains, most of the land cover is dominated by barren to
sparsely vegetated exposed rocks, boulders and rubble. The
topography is steep, with slopes as large as 30◦ and very poor
soil development above the mountain front zone. By contrast,
the valley bottoms appear as relatively flat areas largely cov-
ered by vegetation. Alluvial fans are also found along the
mountain foothills, acting as hydrologic buffers between the
mountain blocks and the valleys.

Another potential source of structural uncertainty re-
lates to the type of precipitation entering the SMA store.
Snowmelt typically occurs at a much lower and more consis-
tent rate than rainfall, and much of the meltwater is expected
to soak into the ground. Rain, while not a dominant feature

of semi-arid Andean catchments, can exert a significant influ-
ence on winter flows even during dry years. While snowmelt
events occur mainly in the uplands, most rainfall events take
place in the valley bottoms, i.e., much closer to the catch-
ment outlet and generally not very far from the saturated ri-
parian zone. In most precipitation–runoff models, however,
rainfall and snowmelt inputs are treated as the same kind of
“water” and processed through the same model paths. More
research is needed to determine whether different types of
precipitation inputs, which would be expected to involve dif-
ferent modes of runoff generation, should translate into dif-
ferent model representations. Investigating such hypotheses
was far beyond the scope of this study.

5.2.2 Impacts of input data errors

Relatively high values were obtained for X1 (> 1000 mm) and
X2 (∼ 4–5 mm), which was somewhat surprising given our
understanding of storage capacities and water fluxes in the
Claro River catchment. The X2 parameter, in particular, is
used to represent groundwater exchanges with the underlying
aquifer and/or neighboring catchments. Positive values indi-
cate a net water gain at the catchment scale, whereas negative
values relate to a net water loss. Le Moine et al. (2007) have
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shown from the analysis of 1040 French catchments that al-
luvial aquifers are more likely to be associated with negative
values of X2, whereas crystalline bedrocks tend to correlate
with values centered on zero (−5 < X2 < 5). Over the long
term, however, the value of X2 is expected to be zero if the
catchment is a closed system.

In this catchment, the valley-fill aquifers that compose
most of the groundwater flow system are bounded by large
mountain blocks of granitic origin, which drastically limits
inter-catchment flow paths. Groundwater in the bedrock is
typically found in fractures or joints, with a low storage ca-
pacity, and soils are, on the whole, poorly developed. As a re-
sult, low values of X1 and negative values of X2 would have
seemed more “realistic”. Note that the autocorrelation struc-
ture of model residuals shown in Fig. 7 was also indicative
of substantial storage errors in the hydrological model. This
lack of physical realism suggests that other factors may be at
play. Both of these parameters, indeed, are known to interact
strongly with precipitation and evapotranspiration input er-
rors (e.g., Andréassian et al., 2004; Oudin et al., 2006; Thyer
et al., 2009). The capacity of the SMA store tends to increase
in the presence of random precipitation errors or if precip-
itation is systematically overestimated (Oudin et al., 2006).
Likewise, an excessively high value of X2 might indicate that
potential evapotranspiration is overestimated and/or precipi-
tation underestimated.

As in many mountainous catchments, some precipitation
events occurring at high elevations may not be captured by
the gauging network (< 3200 m a.s.l.) used to interpolate pre-
cipitation across the catchment. These occasional errors nat-
urally add to systematic volume errors caused by wind, wet-
ting and evaporation losses at the gauge level, leading to
an overall underestimation of precipitation at the catchment
scale. However, a large uncertainty also surrounds the es-
timation of elevation effects on precipitation. Mean annual
precipitation was assumed to increase by ∼ 0.4 m km−1 (in
water equivalent) (Sect. 2.2.1), yet in the absence of reliable
precipitation data above 3200 m a.s.l., it is unclear whether
this gradient underestimated or overestimated precipitation
enhancement. In general, it is unlikely that a constant value
would represent orographic effects correctly at all elevations
and over the whole simulation period. Precipitation enhance-
ment in the Andes can vary considerably on a year-to-year
basis or from one event to another (Falvey and Garreaud,
2007), leading to time-varying errors in the estimation of pre-
cipitation inputs. From Fig. 6 we hypothesize that precipita-
tion was on the whole underestimated, and only occasionally
overestimated. Overestimation of potential evapotranspira-
tion is also a plausible hypothesis for Models B and C owing
to possible interactions with the estimation of sublimation
rates and irrigation water use (Fig. 7).

5.3 Phenological modeling

In contrast to lumped catchment models, the phenological
models used in this study allow for a direct interpretation of
parameter values through comparison with existing experi-
mental studies. This provides a second level of model valida-
tion.

The values obtained for Topt (i.e., the optimal forcing tem-
perature) with the full bloom and harvest models (Table 3)
were generally close to the range of optimal photosynthetic
temperatures reported in the literature, i.e., typically 20–
30 ◦C (García de Cortázar-Atauri et al., 2010). By contrast,
relatively high values (around 11–12 ◦C) were found for pa-
rameter b (i.e., the optimal chilling temperature) compared to
those reported by previous modeling and experimental (e.g.,
Fila et al., 2012) studies. Moreover, the values obtained for
parameter a, which determines the range of acceptable chill-
ing temperatures around the optimum b, imply that temper-
atures around 13–16 ◦C were still effective as chilling tem-
peratures. Caffarra and Eccel (2010) and Fila et al. (2014)
also found large effective chilling intervals with similar bud-
burst models but different grapevine varieties, which they ex-
plained in different ways. In our case, this outcome was most
likely related to the use of mean daily temperatures as inputs
to the budburst model. Very high diurnal variations (∼ 20 ◦C)
can be observed at the INIA experimental site, where a mean
temperature of 11–12 ◦C actually reflects temperatures close
to 0◦ C during several hours of the day. The critical states
of chilling (CBB) obtained for both varieties indicate that be-
tween 11 and 27 days at 11–12 ◦C were required to break
endodormancy. Assuming that winter temperatures remained
close to zero during at least 5 h per day, these results are fully
consistent with the fact that most grapevine varieties typi-
cally require between 50 and 400 h at temperatures below
7 ◦C to achieve budburst (Fila et al., 2012). However, given
the limited number of years with available observations and
the absence of direct evidence for the release of endodor-
mancy, possible trade-offs between the chilling (a, b, CBB)

and forcing (FBB) parameters during the optimization pro-
cess cannot be dismissed a priori. Thus, while the phenolog-
ical models can be considered reliable under the conditions
observed over 1985–2005, their results should be treated very
carefully when dealing with potential impacts of higher tem-
peratures.
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Figure 12. Comparison of net surface-water withdrawals (SWW)
and irrigation water use (IWU) at the catchment scale: SWW were
obtained by considering monthly restrictions to water access entitle-
ments provided by the Chilean authorities, a conveyance efficiency
of 0.6 and a field application efficiency of 0.6 for pisco varieties and
0.9 for table varieties; IWU was obtained from model simulations.

5.4 Irrigation water-use modeling

While no ground data were available to verify our estimates
of irrigation water use, a comparison was made with net
surface-water withdrawals (SWW) estimated from the wa-
ter access entitlements database (Fig. 12). Not surprisingly,
this comparison revealed large discrepancies between these
two quantities, especially from 1985 to 1990, which could
explain the poor performance of all models in water years
1985–1986 and 1986–1987 (Fig. 10). It is worth noting, how-
ever, that SWW data reflect more a level of water availability
in the catchment than the actual water consumption in the
vineyards. These data may also indicate sudden changes in
the management of water resources at the regional scale that
do not necessarily affect irrigation requirements at the local
scale. Overall, the actual water use in the catchment is likely
to be somewhere between simulated IWU and net SWW esti-
mates. Incorporating IWU simulations into conceptual catch-
ment models can help reduce the uncertainty associated with
low-flow simulations, yet it is by no means a substitute for
accurate measurement of water withdrawals.

The relative stability of simulated IWU from year to year
is perhaps more surprising given the complexity of the phe-
nological models used. However, this stability could not be
taken for granted before running the models (it can only be
observed a posteriori). Using phenological models also has
considerable advantages in terms of model robustness under
climate- and/or human-induced changes, which are further
discussed in Sect. 6.

6 Conclusion and prospects

Hydrological processes are often poorly defined at the catch-
ment scale due to the limited number of observations at hand
and the integral (low-dimensional) nature of these signals
(e.g., streamflow). This makes it relatively easy to over-fit
the data by adding new hypotheses to our models, leading to
a low degree of falsifiability from a Popperian perspective.
Therefore the incorporation of new processes into a given
model structure should be achieved using as few additional
parameters as possible and the same level of mathematical
abstraction as in the original model (as stated in Sect. 1.4).
Ultimately, it is also necessary to show that this increase in
model complexity improves hydrological simulations with-
out increasing predictive uncertainty.

In the present paper, sublimation losses were incorporated
by assuming that the snowpack can either melt or sublimate.
This modeling choice may seem to oversimplify the physics
of snowpacks, yet it allows for the same level of process rep-
resentation as in commonly used empirical melt models. On
the whole, this modification helped to reduce errors in the
simulation of snow-cover dynamics at high elevations with-
out increasing the number of snow-related parameters. How-
ever, more research is needed to determine the exact interac-
tion between snow sublimation and melt in the model. Com-
pared to sublimation losses, the introduction of irrigation wa-
ter use (IWU) increased the overall number of parameters.
Yet this increase in complexity came with additional data
(observed phenological dates) to reduce the number of de-
grees of freedom. The reliability of probabilistic streamflow
predictions was greatly improved when IWU was explicitly
considered, resulting in relatively narrow uncertainty bands
and reduced structural errors. As such, this model modifica-
tion appears to be supported by the available data. Inciden-
tally, this approach also provided evidence that water abstrac-
tions from the unregulated Claro River are impacting on the
hydrological response of the system.

One of the main advantages of incorporating IWU is that
it provides an estimate of natural streamflow that can be used
to assess the system’s capacity to meet increasing irrigation
needs (e.g., Fabre et al., 2015b). To our knowledge, most of
the other approaches used to “naturalize” influenced stream-
flow in agricultural catchments do not account for the im-
pacts of climate variability on crop water use. Instead, the
sum of all historical water rights is usually taken as an up-
per bound for the actual water consumption and added back
to observed streamflow before calibrating the model. This
makes it difficult to use conceptual catchment models in cli-
mate change impact studies, since changes in temperature
patterns are expected to affect both the timing and volume
of irrigation water use. Depending on their magnitude, sea-
sonal shifts in the timing of snowmelt runoff and phenolog-
ical events could result in either additive or countervailing
effects. Earlier peak flows, for instance, could lead to an
increase in water supply at a time when it is not required,
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or simply compensate for a similar shift in crop phenology.
A new generation of low-dimensional modeling approaches
is required to better understand how these processes inter-
act and evaluate the possibility of selecting the most suitable
varieties and irrigation strategies for a given hydro-climatic
context (Duchêne et al., 2010; Palliotti et al., 2014). In this
paper, the use of phenological models based on functions that
integrate both the negative and positive effects of higher tem-
peratures on crop development is suggested as a parsimo-
nious way to improve model robustness in the future.

However, critical challenges remain to be addressed be-
fore the model can be used for such prospective studies. In
particular, more research is needed to better separate the ef-
fects of rural land-use change from other sources of variabil-
ity and uncertainty in conceptual catchment models (McIn-
tyre et al., 2014). Future work will focus on improving the
estimation of fractional snow-covered areas and the sensi-
tivity of runoff generation components to intense rainfall
and protracted droughts. Results also highlight the need for
a better representation of surface water–groundwater inter-
actions in the routing module. Given the difficulty in esti-
mating precipitation in the dry Andes, isotope-based studies

could considerably help to quantify the relative contributions
of snowmelt, rainfall, groundwater and glacierized areas to
streamflow (Ohlanders et al., 2013). Such understanding is
critical to discriminate between several sources of errors and
improve model reliability for use in impact and adaptation
studies.

7 Data availability

Hydro-climatic data (precipitation, temperature, streamflow,
monthly restrictions to water assess entitlements) are freely
available on request from the website of the Chilean Direc-
cion General de Aguas (2016) (http://www.dga.cl). MODIS
data are freely available through the NASA Distributed Ac-
tive Archive Center (DAAC) at the National Snow and Ice
Data Center (NSIDC, 2016) (https://nsidc.org/data/modis/).
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Appendix A

Net shortwave and longwave radiations were computed as
follows:

1RSW = (1−α)τRe, (A1)

1RLW = εAσ(TA+ 273.15)4− εSσ(TS+ 273.15)4, (A2)

where α is the snow albedo, τ is the atmospheric transmis-
sivity, Re is the extraterrestrial radiation (MJ m−2 day−1)

calculated from the latitude and the Julian day (Allen
et al., 1998), σ is the Stefan–Boltzmann constant
(4.89× 10−15 MJ m−2 K−4), εS is the longwave emis-
sivity for snow (0.97) and εA is the atmospheric longwave
emissivity estimated as in Walter et al. (2005). Snow albedo
generally decreases between snowfalls as a result of meta-
morphic processes. This was represented in the model by
adjusting an exponential decay rate related to the number of
days since the last snowfall (Nt):

αt = αmin+ (αmax−αmin)e−kaNt , (A3)

where αmin and αmax are the minimum and maximum snow
albedos, and ka is a recession factor. These parameters were
determined from the literature (Lhermitte et al., 2014; Aber-
mann et al., 2014) to prevent over-fitting (see Table 1). For
shallow snowpacks such as those found around 30◦ S, albedo
values also decrease during snowmelt periods as the influ-
ence of the underlying ground increases. This can have sig-
nificant effects on melt rates, which were accounted for im-
plicitly through the Vmin parameter in Eq. (5). Based on radi-
ation data available over the last few years (not shown here),
atmospheric transmissivity was set at 0.75 under clear-sky
conditions (precipitation < 5 mm) and 0.4 on cloudy days
(precipitation ≥ 5 mm).
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