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ABSTRACT: 

Winter wheat crop yield forecasting at national, regional and local scales is an extremely important task. This paper aims at 
assessing the efficiency (in terms of prediction error minimization) of satellite and biophysical model based predictors assimilation 
into winter wheat crop yield forecasting models at different scales (region, county and field) for one of the regions in central part of 
Ukraine. Vegetation index NDVI, as well as different biophysical parameters (LAI and fAPAR) derived from satellite data and 
WOFOST crop growth model are considered as predictors of winter wheat crop yield forecasting model. Due to very short time 
series of reliable statistics (since 2000) we consider single factor linear regression. It is shown that biophysical parameters (fAPAR 
and LAI) are more preferable to be used as predictors in crop yield forecasting regression models at each scale. Correspondent 
models possess much better statistical properties and are more reliable than NDVI based model. The most accurate result in current 
study has been obtained for LAI values derived from SPOT-VGT (at 1 km resolution) on county level. At field level, a regression 
model based on satellite derived LAI significantly outperforms the one based on LAI simulated with WOFOST. 

1. INTRODUCTION

Crop yield forecasting is one of the main components of 
agriculture monitoring and an extremely important input in 
enabling food security and sustainable development (Kussul et 
al., 2011, 2010b; Skakun et. al., 2014, 2015). Providing timely 
and reliable crop yield forecasts is equally important at global, 
national and regional (local) scales. Currently, there are several 
operational systems providing crop yield forecasts at global 
scale. These are Global Information and Early Warning System 
(GIEWS) by FAO, National Agricultural Statistical Service 
(NASS) and Foreign Agricultural Service (FAS) by USDA, 
CropWatch by Chinese Academy of Sciences, and MARS Crop 
Yield Forecasting System (MCYFS) by EC-JRC (López-
Lozano et al., 2015). These systems are being built using a wide 
range of data sets and models including remote sensing data, 
meteorological observations and crop growth models. 

The use of remote sensing data from space for crop yield 
forecasting is motivated by wide coverage, near-real time 
delivery of data and products, and ability to provide different 
vegetation indicators. Many studies have shown that forecasting 
models based on remote sensing data can give similar or better 
performance comparing to the more sophisticated crop growth 
models (Gallego et al., 2012, Kogan et al., 2013a, 2013b; 
Kowalik et al., 2014). Usually, remote sensing derived 
indicators are connected to crop yield using empirical 
regression-based models. Traditionally, vegetation indices such 
as Normalized Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), and Vegetation Health Index (VHI) are 
used as input parameters into empirical models (Becker-Reshef 
et al., 2010; Franch et al., 2015; Kogan et al., 2013a; Kowalik et 
al., 2014; Salazar et al., 2008). Recently, however, more 
attention has been brought to the usage of biophysical 
parameters such as leaf area index (LAI) and fraction of 

absorbed photosynthetically active radiation (fAPAR) 
(Camacho et al., 2013; Shelestov et al., 2015). It is stated that 
biophysical parameters more adequately reflect the state of the 
crops and thus could be better suited for predicting crop yield 
and production (Duveiller et al., 2013; Kussul et al., 2014; 
López-Lozano et al., 2015). López-Lozano et al. (2015) use 
accumulated over optimal time period FAPAR values to predict 
yield for wheat, barley and maize for European Union and 
neighboring countries. They find that FAPAR is strongly 
correlated (R2>0.6) with yield for all three crop types for water 
constrained countries. (Kussul et al., 2014) compare FAPAR, 
NDVI and VHI for winter wheat yield forecasting in Ukraine. 
They find that performance of empirical regression models 
based on satellite data with biophysical variables (such as 
FAPAR) is approximately 20% more accurate comparing to the 
NDVI approach when producing winter wheat yield forecasts at 
oblast level in Ukraine 2–3 months prior to harvest. (Duveiller 
et al., 2013) use FAPAR parameter for sugarcane yield 
prediction in Brazil. They achieve yield estimation accuracy of 
around 1.5 t/ha without considering the trend and about 0.6 t/ha 
when the trend is taken into account. 

It should be however noted that in many studies satellite data 
from space are used at global or national scales. In our previous 
study, we have estimated efficiency of using predictors of 
different nature (vegetation indices, biophysical parameters, and 
a crop growth model adopted for the territory of Ukraine) at 
oblast level (Kogan et al., 2013a, 2013b; Kussul et al., 2013; 
Kussul et al., 2014). No previous studies assessed efficiency of 
satellite-derived indicators at multiple scales. This paper is 
aimed at addressing this gap. 

This paper is devoted to winter wheat yield forecasting problem 
in Ukraine at different scales. Since reliable statistical data are 
available for Ukraine only since 2000, we use a single factor 
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regression model for crop yield estimation. Our previous study 
have demonstrated the effect of overfitting when more complex 
models are used (Kogan et al., 2013b). The main goal of the 
paper is to determine the best predictors for regression models 
at different scales among satellite and biophysical model 
(WOFOST) input parameters. We consider three levels of 
investigation for the best predictor selection in yield forecasting 
problems: region, county and fields of concrete farm. Oblast is 
a sub-national administrative unit that corresponds to the 
NUTS2 level of the Nomenclature of Territorial Units for 
Statistics (NUTS) of the European Union, county corresponds 
to NUTS3 level.  

Therefore, the objective of the study presented in this paper is 
to assess the efficiency (in terms of prediction error 
minimization) of satellite and biophysical model based 
predictors assimilation into winter wheat crop yield forecasting 
models at different scales (region, county and field). 

2. STUDY AREA AND DATA DESCRIPTION

A study area in Onufriivka county of Kirovohrad region has 
been selected for winter wheat forecasting (Figure 1). The 
region was selected for investigation for several reasons. First, 
it is one of our points of interest within SIGMA project 
(Lavreniuk et al., 2015) situated not far from one of the agro-
meteorological stations, for which we have calibrated 
WOFOST model and gathered correspondent time series of 
meteorological and phenological parameters since 2000. 
Second, there are fields of agriculture enterprise “Veres” at the 
county, for which agronomical data were collected since 2010 
year. For example, Figure 1 shows location of “Veres” 
enterprise fields, where winter wheat was grown during one 
year (shown in yellow), two years (green) and three years (red) 
since 2010. Therefore, ground measurements for this territory at 
different scales were available to build and compare winter 
wheat forecasting models. 

Figure 1. The area of investigation at different scales: Kirovohrad region, Onufriivka county and fields with winter, grown for 1 
(yellow), 2 (green) and 3 (red) years since 2010 

The following satellite-based predictors for empirical regression 
crop yield models are used in the study: 16-day NDVI 
composites derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) at 250 m spatial resolution, LAI 
and FAPAR composites from SPOT-Vegetation at 1 km spatial 
resolution. At the field level, we will compare the efficiency of 
using as a predicator LAI values derived from satellites images 
and WOFOST crop growth model that was adapted and 
calibrated for the study area. 

In our previous study we have compared NDVI MOD13Q1 
composites and FAPAR derived from SPOT-Vegetation as a 
predictors for crop yield estimation for Kirovohrad region 
(Kussul et al., 2014). We have demonstrated that the most 
informative NDVI predictors are from the last decad of April, 
and the most informative values of FAPAR are from the last 
decad of May. 

So in our present study we considered several possible 
predictors derived for the last decad of April till end of May for 
each scale level: 

- LAI and FAPAR (SPOT-Vegetation, 1 km resolution), 
NDVI (MODIS, 250 m resolution), averaged at region 
level using a 300 m resolution GlobCover map and 
built within the SIGMA project 30-meter LandCover 
(Lavrenuik et al., 2015) crop mask;  

- LAI and FAPAR (SPOT-Vegetation, 1 km resolution), 
NDVI (MODIS, 250 m resolution), averaged at county 
level using a 300 m resolution GlobCover map and 
built within the SIGMA project 30-meter LandCover 
(Lavrenuik et al., 2015) crop mask; 

- LAI and FAPAR (SPOT-Vegetation, 1 km resolution), 
NDVI (MODIS, 250 m resolution) and modeled LAI 
from WOFOST model averaged at field level. 
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Since traditional harvest time for winter wheat in Ukraine is 
July, the use of such kinds of predictors allows us to forecast 
the crop yield 1–2 months before the harvest. 

3. SATELLITE PRODUCTS DESCRIPTION

LAI and FAPAR, used in this study, are free of charge SPOT 
Vegetation products, which were obtained from Copernicus 
Global Land Service (http://land.copernicus.eu). These 
products are modeled data taken by processing the SPOT 
Vegetation (SPOT-VGT) satellite imagery. Their temporal 
coverage includes period from Dec 1998 to May 2014, and its 
spatial resolution is 1 km. 

The MODIS product MOD13Q1 contains two vegetation 
indices – NDVI and EVI, which are computed from 
atmospherically corrected surface reflectance (SR), that have 
been masked for water and atmospheric effects, i.e. clouds, 
cloud shadows and heavy aerosols. It is provided for every 16 
days at 250-meter spatial resolution. In our study we used only 
NDVI satellite product, obtained from MOD13Q1. 

A 30-meter crop mask was derived from land cover map that 
was created within SIGMA project from Landsat-7 images 
(Gallego et al., 2014; Lavreniuk et al., 2015; Shelestov et al., 
2013; Skakun et al., 2014). 

4. RESULT ANALYSIS

Yield is estimated as a sum (1) of trend component (linear trend 
in yield time series is present (2)) and deviation from trend, 
caused by current situation with vegetation development:  

iii dYTY  (1) 

iaaTi *10  (2) 

At the same time deviation is estimated with a linear single-
factor regression model 

  iii datasatbbdatasatfdY _*_ 10  ,  (3)

where sat_datai — is information feature (predictor) for year i 
in available time series. In this study we consider as predictors 
such bioparameters as satellite derived LAI and FAPAR 
averaged on decad base (3 times per month) and 16-days NDVI 
index composites containing best pixels for 16-day period of 
time for cropland in borders of region, county and field. Also as 
predictor we consider LAI time series samples generated from 
WOFOST model calibrated for generalized winter wheat field 
at test site location (field level) with the same time resolution as 
satellite derived LAI product. 

Models are calibrated on official statistics data for 2000-2013. 
The reason is at the moment fAPAR and LAI derived from 
PROBA-V data are under the development and expected to be 
available on Q3 2015. At the same time SPOT-VGT derived 
bioparameters are limited by May 2014.  

Figure 2. Official statistics on winter wheat crop yield for 
region, county scale and field based crop yield 

Figure 3. Linear dependency between county level statistics and 
field level crop yield data 

Very good linear correlation (R2=0.99) between county level 
statistics and field level crop yield data allows us to restore 
missing observations at field level (Table 1) for 2000-2009 and 
use it for a field level model identification. 
Trend analysis for official statistics on winter wheat crop yield 
for different scales is shown in Figure 2. County level statistics 
is absent for exceptionally dry 2003 year. Field level data are 
available only since 2010. The trends for region (solid line) and 
county (dashed line) scales are very similar. Field level trend is 
not representative, because we have only 4 points of 
observations. But linear dependency between winter wheat crop 
yield at field and county scale is observed (Figure 3). 

Year NUTS 2 NUTS 3 FIELD 

2000 18 10.7 12.9 

2001 42 38.1 48.3 

2002 38 34.4 43.5 

2003 7.2 

2004 38.2 27.4 34.5 

2005 33.4 29.2 36.8 

2006 30.3 24.4 30.6 

2007 20.8 21.9 27.4 

2008 38.8 46.0 58.5 

2009 31.1 31.7 40.0 

2010 30.1 33.3 42.7 

2011 34.6 30.9 38.9 

2012 28.4 28.8 35.9 

2013 41.3 41.4 52.3 

Table 1. Crop yield statistics and field level crop yield for 
winter wheat 
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Vegetation parameters are averaged within corresponding 
administrative units using the crop mask with 30-meter 
resolution, derived from the land cover map developed by SRI 
within SIGMA project and field borders for field level.  

Current results of models identification in terms of time 
consistency and statistical properties of models are presented in 
Table 2. Taking into account very limited number of 
observations (only 14 for region and 13 for county and field 
level), to identify the best model we have used the cross-
validation procedure (LOOCV). In order to identify the 
parameters of regression we used all except one (13 or 12) 
observations, and the one is used for independent testing of the 
model. Repeating the procedure for all possible independent 
observations, we select the best model for each scale level. 

UNIT Stat 
NDVI,  

beginning 
of May 

FAPAR,  
end of 
May 

LAI, end 
of May 

R2 0.5 0.57 0.58 
Fstat 10.18 13 14.04 
p-val 9.6e-3 4.8e-3 3.7e-3 

Region 

RMSE 5.77 5.18 5.31 
R2 0.61 0.86 0.89 

Fstat 15.37 60.95 82 
p-val 2.8e-3 1.5e-5 3.9e-6 

County 

RMSE 5.87 3.77 3.24 
R2 0.52 0.84 0.86 

Fstat 10.86 52 59.53 
p-val 8.1e-3 2.8e-5 1.6e-5 

Field 

RMSE 8.64 5.22 4.92 
Table 2. Statistical properties of regression models at different 

scales 

In Table 2 we have used following designations and 
abbreviations: R2 is the coefficient of determination (shows how 
well data fit the model), Fstat is Fisher’s statistics (F-statistics), 
the measure of statistical model adequacy, p-val is hypothesis 
test that determines the significance of regression model 
coefficients (predictor with p-value <0.05 is likely to be a 
meaningful addition to the model), RMSE is Root Mean 
Squared Error (RMSE) built within the Leave-One-Out-Cross-
Validation procedure (LOOCV) where one case is used for 
model testing and other is for model calibration. 

According to Table 2, biophysical products (fAPAR and LAI) 
are more preferable to be used as predictors in crop yield 
forecasting regression models. Correspondent models possess 
much better statistical properties and are more reliable than the 
NDVI based model. The most accurate result in current study 
has been obtained for LAI values derived from SPOT-VGT (at 
1 km resolution) on county scale averaged using the crop mask, 
derived from 30 m land cover map (Lavreniuk et.al, 2015). 

For region scale models we have compared the efficiency of 
two different crop masks: GlobCover-2009 at 300 m resolution 
(Arino et. al, 2012) and the crop mask, derived from developed 
by Space Research Institute NASU-NSAU landcover map with 
30 meter resolution (Lavreniuk et.al, 2015) with resolution of 
30m. Statistical properties of the models in both cases are 
nearly the same (Table 3). It means that considered crop masks 
are consistent enough, and higher accuracy of crop yield 
estimation could be reached using dynamic crop mask, based on 
early season crop classification. 

UNIT Stat 
NDVI,  
start of 

May 

FAPAR, 
end of 
May 

LAI, 
end of 
May 

R2 0.54 0.57 0.58 
Fstat 10.18 13 14.04 

GlobCover 
by UCL 

p-val 9.6e-3 4.8e-3 3.7e-3 
R2 0.51 0.57 0.59 

Fstat 10.27 13.2 13.7 
LandCover 

by SRI 
p-val 9.4e-3 4.5e-3 4e-3 

Table 3. Efficiency analysis of different crop masks for winter 
wheat crop yield forecasting at region level 

For field scale, we also compared the efficiency of satellite 
based and biophysical model derived predictors. As model 
based predictors we used LAI time series, simulated with 
WOFOST model for the same period of vegetation period as 
satellite based LAI (end of May). 

Generated by WOFOST model LAI values significantly 
overestimate the real state of the vegetation (Fig. 4). It is 
probably due to WOFOST model provide just potential yield 
forecasting. Thus, usage of modeled bioparameters leads to 
statistically inadequate model (according to p-val and F-stat), 
especially in the case of limited availability of field-specific 
data for model calibration (Table 4). For the most important 
part of winter wheat vegetation period for considered region– 
from the end of April till the end of May – p-val for such 
predictor grows significantly from 0.03 to 0.7 which means that 
modeled LAI is meaningless addition to the yield forecasting 
model with current level of ground data measurements by 
farmers. F-statistics is less then critical one – critical level of 
F-statistics with λ=0.01 is 9.07 for model with 1 predictor at 13 
samples. RMSE error of the crop yield prediction on model 
based LAI obtained within LOOCV-procedure is at least twice 
higher than for satellite predictors. So we can conclude that 
model is not calibrated well enough, and do not simulate the 
real state of the vegetation. For its adequate calibration much 
more phenological, agronomic and local meteorological data is 
required. As a rule such data are missing for agricultural 
companies or databases contain only very limited amount of 
data. So, in the nearest future satellite based predictors are 
expected to be more preferable for use in regression models for 
crop yield estimation. 
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Figure. 4. LAI values derived from SPOT-VGT and WOFOST 
model at the field level 
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Stat 
LAI modeled,  
start of May 

LAI modeled,  
end of May 

LAI satellite, 
end of May 

R2 0.46 0.02 0.86 
Fstat 6.9 0.1 59.53 
p-val 0.03 0.7 1.6e-5 

RMSE 8.2 10.4 4.92 
Table 4. Statistical properties of crop yield regression models 
with model based and satellite predictors at the field level 

5. DISCUSSION AND CONCLUSIONS

In the paper the problem of winter wheat crop yield prediction 
is considered at different scales, namely NUTS2, NUTS3 and 
field level for the territory of Kirovohrad region of Ukraine. 
The study area is selected for several reasons: the region is one 
of the main producers of winter wheat in Ukraine, it is situated 
at the central part of Ukraine with typical climatic conditions, 
within SIGMA project we have collected soil, meteorological 
and phenological data at the county level, and field level 
agronomic and statistical data are available for the territory. So, 
we have all necessary information for multi scale winter wheat 
crop yield modelling. Since reliable statistics in Ukraine is 
available since 2000 year, we use a single factor linear 
regression model for crop yield estimation to avoid overfitting. 
We have investigated 3 kinds of satellite based predictors 
(NDVI with 250 meter resolution, fAPAR and LAI at 1 km 
resolution) averaged within static crop mask at three different 
scales. As a crop mask we used GlobCover and a 30 meter crop 
mask, based on LandCover map, created within SIGMA project 
(Lavreniuk et al., 2015). Both crop masks provide quite good 
results with very similar statistical properties, while higher 
accuracy of forecasting could be reached with dynamic crop 
masks. We plan to implement this approach in our future work 
with use of high-performance computations (Kussul et al., 
2009, 2010a, 2012; Kravchenko et al., 2008, Shelestov et al., 
2006). The regression model with the best statistical properties 
is received for county level when satellite based biophysical 
predictors (FAPAR or LAI) are used. The results are consistent 
to our previous study and recent results for European territory 
(López-Lozano et al., 2015). 

At field scale, we also have considered as a regression model 
based LAI simulated with WOFOST biophysical model. But 
statistical properties of the regression are much poorer than with 
satellite based predictors. RMSE error of the crop yield 
prediction on model based LAI is at least twice higher than for 
satellite predictors. So we can conclude that model is not 
calibrated well enough, and do not simulate the real state of the 
vegetation. For its adequate calibration much more 
phenological, agronomic and local meteorological data is 
required. As a rule, such data are missing for agricultural 
companies or databases contain only very limited amount of 
data. So, in the nearest future satellite based predictors are 
expected to be more preferable for use in regression models for 
crop yield estimation. 
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