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ABSTRACT: 

 

In this research, a fast, adaptive and user friendly segmentation methodology is developed for highly speckled SAR images. The 

developed region based centroidal Voronoi tessellation (R-BCVT) algorithm is a kind of polygon-based clustering approach in 

which the algorithm attempts to (1) split the image domain into j numbers of centroidal Voronoi polygons (2) assign each polygon a 

label randomly, then (3) classify the image into k cluster iteratively to satisfy optimum segmentation, and finally a k-mean clustering 

method refine the detected boundaries of homogeneous regions. The advantages of the novel method arise from adaptively, 

simplicity and rapidity as well as low sensitivity of the model to speckle noise. 

 

 

*  Ghasem Askari - gh.askari@du.ac.ir 

1. INTRODUCTION 

One of the oldest and yet still popular tools employed to 

analyze and understand images is provided by clustering (Diday 

and Simon, 1980; Jain, 1989). Broadly speaking, clustering is a 

commonly used technique for the determination and extraction 

of desired features from large data sets and for the 

determination of similarities and dissimilarities between 

elements in the data set (Hartigan 1975; Jain and Dubes, 1988). 

In the context of image processing, data sets take the form of 

one or more images. 

 

CVT is a particular type of Voronoi tessellation that has many 

applications in computational sciences and engineering, 

including computer graphics. The basic definition of the CVT 

can be generalized to very broad settings ranging from abstract 

spaces to discrete point sets. The concept of CVT has recently 

received much attention in numerous applications, including 

computer graphics and image processing (Du et al., 1999; Du et 

al., 2003; Hausner, 2001; Ju et al., 2002; Kanungo et al., 2002). 

CVT can be viewed as being a very natural clustering strategy. 

In the simplest mode, CVT-based clustering coincides with the 

well-known k-means clustering scheme. Applied to image 

segmentation problems, CVT’s also fall within the class of 

thresholding segmentation methods. Among such methods, 

CVT has the distinct feature that as part of the CVT 

methodology, the threshold values are determined through an 

optimization procedure (Du et al., 2006). This feature of the 

CVT methodology accounts for much of its effectiveness in the 

segmentation and other image processing settings. Furthermore, 

CVT provides a general mathematical framework that allows for 

a natural means for developing substantial extensions, 

improvements, and enhancements of k-means clustering and 

other existing clustering and thresholding methods. In this 

research, the two concepts of centroidal Voronoi polygons and 

CVT-based clustering approaches are integrated to the resolve 

the problem of segmentation of speckled SAR images. In image 

segmentation, the central tasks are to (1) divide an image into 

centroidal Voronoi polygons, (2) classify the splitted regions 

into a known number of homogeneous regions based on a 

novel, multi-scale and adaptive R-BCVT algorithm, (3) refine 

the boundaries of the provided segmentation using of a k-mean 

clustering method.  

 

2. IMAGE MODEL  

Assume that a SAR image contains a known number of 

homogeneous regions k and its domain is partitioned into an 

unknown number of polygons m a priori by CVT. Associated 

with each polygon, there is a prior variable that indicates the 

homogeneous region to which the polygon belongs, and label 

variables for all polygons forms a label field L = {Lj; j = 1, … , 

m}. A realization of L, l = {lj  {1, …, k}; j = 1, …. , m}, 

corresponds to the segmentation of the image. In a given set of 

polygons having same label, Δ (l) = {Pj; lj = l, j  {1, …, m}}, 

the intensity values of pixels in Δl, Z (l) = {Zi; (xi, yi)  Δl }, are 

conditionally characterized by identical and independent 

Gamma distributions as follows: 
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where ( ) is Gamma function, l = {α1, …, αk} and βl = {β1, 

…, βk} are shape and scale parameters of Gamma distribution, 

respectively. Then the joint PDF of Z becomes 
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 Voronoi diagrams, centroidal Voronoi Polygons 

The concept of Voronoi diagrams plays a central role in our 

meshing algorithm. Given a set of n distinct points or seeds G, 

the Voronoi tessellation of the domain Q  R2 is defined by: 

T (G;Q) = {Vy ∩ Q : y  G}   (1) 

where Vy is the Voronoi cell associated with point y: 

Vy ={x  R2 : |x – y|< |x – z| , z  G\ {y}}   

Therefore Vy consists of points in the plane closer to y than any 

other point in G.The regularity of Voronoi diagrams is 

determined entirely by the distribution of the generating point 

set. A random or quasi-random set of generators may lead to a 

discretization not suitable for use in finite element analysis. 

Therefore, we restrict our attention to a special class of Voronoi 

tessellations that enjoy a higher level of regularity. A Voronoi 

tessellation T (G;Q) is centroidal if for every y  G (Talischi et 

al., 2012) 

y=yc , where 
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and μ(x) is a given density function defined over Q. Hence, in a 

CVT each generating point y coincides with the centroid yc of 

the corresponding region (i.e., Vy ∩ Q). 

 

An alternative variational characterization of a CVT is used on 

the deviation of each Voronoi region from its generating seed, 

measured by the following energy functional: 
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 In Du et al. (2006), it is shown that the energy functional 

decreases in consecutive iterations of Lloyd’s algorithm, that is, 

(Gi+1; Q) ≤ (Gi ; Q)  ( 5) 

which means that the Lloyd’s algorithm can be viewed as a 

descent method for the energy functional. The above discussed 

concept is employed to generate the centroidal Voronoi 

polygons. The Rasterized centroidal Voronoi polygons for 

different number of generating points, NP = [100, 800, 1500, 

2500] is provided in Figure 1  

 
Figure 1. Rasterized centroidal Voronoi polygons for different 

number of generating points, NP=[100, 800, 1500, 2500]. 

 

3. R- BCVT CLUSTERING 

Given an image Z from a spatial domain Q  R2 , let z = {zi = z 

(xi, yi); i = 1, …, n} denote the set of (not necessarily distinct) 

intensity values in the original SAR image. Given a set of 

intensities at generating points, IG = {wl = z(uj, vj)  z ; j = 1, 

…. , k; l =1, …, k}, where k is the number of generating points, 

the Voronoi tessellation classifies image into l clusters {l}k
l=1 

based on distance minimization of pixel values z(xi, yi) from IG 

that is,  

Δl = {z(xi, yi )  Z; |z(xi, yi) - wl | ≤ | z(xi, yi) - wl |} , wl  IG / 

wl ( 3.1) 

Note that in the process of image clustering using Voronoi 

tessellation the number of Voronoi clusters or Voronoi cells Δl 

is equal to the number of generating points. In addition, 

geographical location of generating points in CVT clustering 

are not used in contrast to Voronoi tessellation. 

For a general Voronoi tessellation of Z, we have that w ≠

__

w  for 

l = 1, ..., k, i.e., the intensity values that generate the Voronoi 

clustering are not the means or centroids of the corresponding 

clusters. CVTs of Z are special Voronoi clusters {l}k
l=1 whose 

generators {wl}k
l=1 satisfy wl =

__

w  for l = 1, …, k, i.e., the 

intensity values that generate the Voronoi clustering are also the 

means or centroids of the associated clusters. 

On the other hand, for any non-overlapping covering of Z=Zk
l=1 

into k subsets, we can define the means or centroids of each 

subset Δl as the intensity lZw
__

 that minimizes energy of 

CVT given by, 
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4. SEGMENTATION IMPLEMENTATION FOR R-

BCVT CLUSTERING 

Given a set of centroidal Voronoi polygons P = {Pj ; j = 1, 

..., m} and the associated intensity average 
__

Z  and a digital 

image z = {zi ; i = 1, …, n} , choose any l intensity values k

lZ 1}{
__

 

and determine the associated region based Voronoi 

clustering{Δl} k
l =1. 

1- For every 
__

Z   Z, 

a) Evaluate the CVT energy for all possible transfers of 
__

Z  from its current cluster Δl to any of other clusters 

ΔlQ, l≠l. 

b) If moving 
__

Z  from its current cluster Δl to the cluster 

Δl most reduces the CVT energy, then 

i. Transfer 
__

Z  from cluster Δl to cluster 

Δl; 

ii. Replace intensities k

lZ 1}{
__

 by the 

associated means of the newly 

modified clusters {Δl} k
l =1. 

2- If no transfers occurred, exit; otherwise go to step 1. 

3- Detect the buffer zone of homogenous regions and refine 

segmentation by use of k-mean clustering method. 

 

5. EXPERIMENTAL RESULTS 

Figure 2 shows RADARSAT ScanSAR images with 

dimensions of 512×512 pixels.  The image shows a 

RADARSAT-2 image of a coastal scene with spatial resolution 

of 30 m. Visually, it includes three homogeneous regions. The 

proposed algorithm is developed using MATLAB (R2007b) on 

a Lenovo B450 computer. For all calculations, the time needed 

for image segmentation is approximately 3 seconds for an image 

with a dimension of 512×512 pixels. Therefore the model can 

be asses as fast image segmentation approach. 

 

 
Figure 2. (a) SAR intensity image (b) R-BCVT algorithm 

outcome. (c) Buffer zone around the outlines of segmented 

image. (d) Refined segmentation image in buffer zone by use of 

k-mean clustering. 

 

 

 
Figure 3.The energy graph decay in the condition of  NP = [100, 

800, 1500, 2500] for SAR intensity image (a) presented in 

Figure 2. 
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Figure 4. Histogram and Gamma distribution with estimated 

parameters of segmented regions (b1, b2, b3) with NP =800 for 

SAR intensity image shown in Figure 2. 

 

6. CONCLUSION  

In this research, a novel, adaptive and fast CVT based 

segmentation methodology is developed. The model takes 

advantage of both regional and local information extracting 

with the aid of R-BCVT and k-mean clustering, respectively. 

The Adaptivity of the presents algorithms arise from the 

optional selection of number of classes and centroidal Voronoi 

polygons as well as calculation of distance function in one 

(mean) and two (mean-STD) dimension. Furthermore the user is 

authorized to manually determine the filter window and buffer 

zone for segmentation process. Certainly, user specification of 

generating seeds is possible. Similar to many segmentation 

methodologies, the presented algorithm conveys some 

limitations, for instance, deficiency of the model in detection of 

objects in noisy texture images. In such cases integration of the 

methodology with some other global segmentation models such 

as fuzzy and MRF models is recommended. The fuzzy models 

taking advantage of definition a threshold value for proximity of 

a segment to the associated homogenous regions. For instance 

the centroidal Voronoi polygons located on the border of two or 

more classes can be categorize as less reliable area than other 

polygons within a cluster.  
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