
International Scholarly Research Network
ISRN Applied Mathematics
Volume 2011, Article ID 693787, 12 pages
doi:10.5402/2011/693787

Research Article
Eighth-Order Iterative Methods without
Derivatives for Solving Nonlinear Equations

R. Thukral
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A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented.
It is proved that these methods have the convergence order of eight. These new methods are
derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained
the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub
conjectured that the multipoint iteration methods, without memory based on n evaluations, could
achieve optimal convergence order 2n−1. Thus, we present new derivative-free methods which
agree with Kung and Traub conjecture for n = 4. Numerical comparisons are made to demonstrate
the performance of the methods presented.

1. Introduction

Consider iterative methods for finding a simple root α of the nonlinear equation

f(x) = 0, (1.1)

where f : D ⊂ R → R is a scalar function on an open interval D, and it is sufficiently
smooth in a neighbourhood of α. It is well known that the techniques to solve nonlinear
equations have many applications in science and engineering. In this paper, a new family of
three-point derivative-free methods of the optimal order eight is constructed by combining
optimal two-step fourth-order methods and a modified third step. In order to obtain these
new derivative-free methods, we replace derivatives with suitable approximations based on
divided difference. In fact, it is well known that the various methods have been used in order
to approximate the derivatives by the Newton interpolation, the Hermite interpolation, the
Lagrange interpolation, and ration function [1, 2].
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The prime motive of this study is to develop a class of very efficient three-step
derivative-free methods for solving nonlinear equations. The eighth-order methods pre-
sented in this paper are derivative-free and only use four evaluations of the function
per iteration. In fact, we have obtained the optimal order of convergence which supports
the Kung and Traub conjecture. Kung and Traub conjectured that the multipoint iteration
methods, without memory based on n evaluations, could achieve optimal convergence order
2n−1. Thus, we present new derivative-free methods which agree with the Kung and Traub
conjecture for n = 4. In addition, these new eighth-order derivative-free methods have an
equivalent efficiency index to the established Kung and Traub eighth-order derivative-free
method presented in [3]. Furthermore, the new eighth-order derivative-free methods have
a better efficiency index than the three-step sixth-order derivative-free methods presented
recently in [4, 5], and in view of this fact, the new methods are significantly better when
compared with the established methods. Consequently, we have found that the new eighth-
order derivative-free methods are consistent, stable, and convergent.

This paper is organised as follows. In Section 2 we construct the eighth-order methods
that are free from derivatives and prove the important fact that the methods obtained
preserve their convergence order. In Section 3 we will briefly state the established Kung and
Traub method in order to compare the effectiveness of the new methods. Finally, in Section 4
we demonstrate the performance of each of the methods described.

2. Methods and Convergence Analysis

In this section we will define a new family of eighth-order derivative-free methods. In order
to establish the order of convergence of these new methods, we state the three essential
definitions.

Definition 2.1. Let f(x) be a real function with a simple root α, and let {xn} be a sequence of
real numbers that converge towards α. The order of convergencem is given by

lim
n→∞

xn+1 − α
(xn − α)m

= ζ /= 0, (2.1)

where ζ is the asymptotic error constant andm ∈ R
+.

Definition 2.2. Suppose that xn−1, xn, and xn+1 are three successive iterations closer to the root
α of (1.1). Then, the computational order of convergence [6] may be approximated by

COC ≈
ln
∣
∣
∣(xn+1 − α)(xn − α)−1

∣
∣
∣

ln
∣
∣
∣(xn − α)(xn−1 − α)−1

∣
∣
∣

, (2.2)

where n ∈ N.

Definition 2.3. Let β be the number of function evaluations of the new method. The efficiency
of the new method is measured by the concept of efficiency index [7, 8] and defined as

μ1/β, (2.3)

where μ is the order of the method.
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2.1. The Eighth-Order Derivative-Free Method (RT)

We consider the iteration scheme of the form

yn = xn −
(
f(xn)
f ′(xn)

)

,

zn = yn −
(

f
(

yn
)

f ′(yn
)

)

,

xn+1 = zn −
(
f(zn)
f ′(zn)

)

.

(2.4)

This scheme consists of three steps in which the Newton method is repeated. It is clear
that formula (2.4) requires six evaluations per iteration and has an efficiency index of
81/6 = 1.414, which is the same as the classical Newton method. In fact, scheme (2.4) does
not increase the computational efficiency. The purpose of this paper is to establish new
derivative-free methods with optimal order; hence, we reduce the number of evaluations
to four by using some suitable approximation of the derivatives. To derive higher efficiency
index, we consider approximating the derivatives by divided difference method. Therefore,
the derivatives in (2.4) are replaced by

f ′(xn) ≈ f[wn, xn] =
f(wn) − f(xn)

wn − xn =
f(wn) − f(xn)

f(xn)
,

f ′(yn
) ≈ f

[

xn, yn
]

f
[

wn, yn
]

f[wn, xn]
,

f ′(zn) ≈
(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

.

(2.5)

Substituting (2.5) into (2.4), we get

wn = xn + βf(xn),

yn = xn −
(

f(xn)2

f(wn) − f(xn)

)

,

zn = yn −
(

f[wn, xn]f
(

yn
)

f
[

xn, yn
]

f
[

wn, yn
]

)

,

xn+1 = zn −
(

f(zn)
(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

)

.

(2.6)

The first step of formula (2.6) is the classical Steffensen second-order method [9], and the
second step is the new fourth-order method. Furthermore, we have found that the third
step does not produce an optimal order of convergence. Therefore, we have introduced two
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weight functions in the third step in order to achieve the desired eighth-order derivative-free
method. The two weight functions are expressed as

(

1 − f(zn)
f(wn)

)−1
,

(

1 +
2f
(

yn
)3

f(wn)2f(xn)

)−1

.

(2.7)

Then the iteration scheme (2.4) in its final form is given as

wn = xn + βf(xn),

yn = xn −
(

f(xn)2

f(wn) − f(xn)

)

,

zn = yn −
(

f[wn, xn]f
(

yn
)

f
[

xn, yn
]

f
[

wn, yn
]

)

,

xn+1 = zn −
(

1 − f(zn)
f(wn)

)−1(

1 +
2f
(

yn
)3

f(wn)2f(xn)

)−1(
f(zn)

(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

)

,

(2.8)

where n ∈ N, β ∈ R
+, provided that the denominators in (2.8) are not equal to zero.

Thus the scheme (2.8) defines a new family of multipoint methods with two weight
functions. To obtain the solution of (1.1) by the new derivative-free methods, we must set a
particular initial approximation x0, ideally close to the simple root. In numerical mathematics
it is very useful and essential to know the behaviour of an approximate method. Therefore,
we will prove the order of convergence of the new eighth-order method.

Theorem 2.4. Assume that the function f : D ⊂ R → R for an open interval D has a simple
root α ∈ D. Letting f(x) be sufficiently smooth in the interval D and the initial approximation x0 is
sufficiently close to α, then the order of convergence of the new derivative-free method defined by (2.8)
is eight.

Proof. Let α be a simple root of f(x), that is, f(α) = 0 and f ′(α)/= 0, and the error is expressed
as

e = x − α. (2.9)

Using the Taylor expansion, we have

f(xn) = f(α) + f ′(α)en + 2−1f ′′(α)e2n + 6−1f ′′′(α)e3n + 24−1fiv(α)e4n + · · · . (2.10)

Taking f(α) = 0 and simplifying, expression (2.10) becomes

f(xn) = c1en + c2e2n + c3e
3
n + c4e

4
n + · · · , (2.11)



ISRN Applied Mathematics 5

where n ∈ N and

ck =
f (k)(α)
(k!)

for k = 1, 2, 3, 4, . . . . (2.12)

Expanding the Taylor series of f(wn) and substituting f(xn) given by (2.11), we have

f(wn) = c1
(

1 + c1β
)

en +
(

3βc1c2 + β2c21c2 + c2
)

e2n + · · · . (2.13)

Substituting (2.11) and (2.13) in expression (2.8) gives us

yn − α = xn − α −
(

βf(xn)2

f(wn) − f(xn)

)

=
(
c2
c1

)
(

βc1 + 1
)

e2n + · · · . (2.14)

The expansion of f(yn) about α is given as

f
(

yn
)

=
[

c1
(

yn − α
)

+ c2
(

yn − α
)2 + c3

(

yn − α
)3 + · · ·

]

. (2.15)

Simplifying (2.15), we have

f
(

yn
)

= c2
(

c1β + 1
)

e2n +

(

βc31c3 − 2c22 + 3βc21c3 + 2c1c3 − β2c21c22 − 2βc1c22
c1

)

e3n + · · · . (2.16)

The expansion of the particular term used in (2.8) is given as

f[wn, xn] =
(
f(wn) − f(xn)

wn − xn

)

= c1 +
(

2c2 + βc1c2
)

en +
(

3c3 + 3βc1c3 + β2c21c3 + βc
2
2

)

e2n + · · · ,

f
[

wn, yn
]

=

(

f(wn) − f
(

yn
)

wn − yn

)

= c1 +
(

c2 + βc1c2
)

en +

(

βc21c3 + c
2
2 + 2βc1c22 + 2βc21c3 + c

3
1c3

c1

)

e2n + · · · ,

f
[

xn, yn
]

=

(

f(xn) − f
(

yn
)

xn − yn

)

= c1 + c2en +

(

c1c3 + c22 + βc1c
2
2

c1

)

e2n + · · · ,

f[wn, xn]
f
[

xn, yn
]

f
[

wn, yn
] =

1
c1

+

(

βc21c3 − 3c22 − 3βc1c22 + c1c3
c31

)

e2n + · · · .

(2.17)
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Substituting appropriate expressions in (2.8), we obtain

zn − α = yn − α −
(

f[wn, xn]f
(

yn
)

f
[

xn, yn
]

f
[

wn, yn
]

)

. (2.18)

The Taylor series expansion of f(zn) about α is given as

f(zn) =
[

c1(zn − α) + c2(zn − α)2 + c3(zn − α)3 + · · ·
]

. (2.19)

Simplifying (2.18), we have

f(zn) =

(

2c32 − c1c2c3 + 4βc1c32 + 2β2c21c
3
2 − 2βc21c2c3 − c31c2c3

c21

)

e4n + · · · . (2.20)

In order to evaluate the essential terms of (2.8), we expand term by term

f
[

yn, zn
]

=

(

f
(

yn
) − f(zn)

yn − zn

)

= c1 +

(

βc1c
2
2 + c

2
2

c1

)

e2n + · · · ,

f[xn, zn] =
(
f(xn) − f(zn)

xn − zn

)

= c1 + c2en + c3e2n + · · · .
(2.21)

Collecting the above terms,

ψ =
[

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn] =
]−1 =

1
c1

+

(

c2c3 + βc1c2c3
c31

)

e3n + · · · ,

ω =
(

1 − f(zn)
f(wn)

)−1
= 1 −

(

βc21c2c3 − 2βc1c32 + c1c2c3 − 2c32
c31

)

e3n + · · · ,

ξ =

(

1 +
2f
(

yn
)3

f(wn)2f(xn)

)−1

= 1 −
(

2βc1c32 + 2c32
c31

)

e3n + · · · ,

ωξ = 1 −
(

βc1c2c3 + c2c3
c21

)

e3n + · · · ,

ψωξ

=
1
c1

+

(−β2c21c42 + 6βc21c
2
2c3 + 3β2c31c

2
2c3 + βc1c

4
2 − 2βc31c2c4 + 2c42 − c21c2c4 + 3c1c22c3 − β2c41c2c4

c51

)

×e4n + · · · .
(2.22)
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Substituting appropriate expressions in (2.8), we obtain

en+1 = zn − α − ψωξf(zn). (2.23)

Simplifying (2.23), we obtain the error equation

en+1 = −c−71
[

30β2c21c
2
2 − 2c21c

4
2c4 + 26βc1c72 + 14β3c31c

7
2 − 2c21c

3
2c

2
3 + 9β2c31c

5
2c3 − 12β2c41c

4
2c4

− 8β3c51c
4
2c4 + 3βc21c

4
2c3 − 8βc31c

4
2c4 + 9β3c41c

5
2c3 − 12β2c41c

3
2c

2
3 − 8βc31c

3
2c

2
3

− 8β3c31c
3
2c

2
3 + 8c72 + 2β4c41c

7
2 + c

3
1c

2
2c3c4 + β

4c71c
2
2c3c4 − 2β4c61c

4
2c4 + 4βc41c

2
2c3c4

+6β2c51c
2
2c3c4 + 4β3c51c

2
2c3c4 − 2β4c61c

3
2c

2
3 + 3β4c51c

5
2c3
]

e8n.

(2.24)

Expression (2.24) establishes the asymptotic error constant for the eighth order of conver-
gence for the new eighth-order derivative-free method defined by (2.8).

2.2. Method 2: Liu 1

The second of three-step eighth-order derivative-freemethod is constructed by combining the
two-step fourth-order method presented by Liu et al. [2], and the third step is developed to
achieve the eighth order. As before, we have introduced twoweight functions in the third step
in order to achieve the desired eighth-order method. In this particular case the two weight
functions are expressed as

(

1 − f(zn)
f(wn)

)−1
,

(

1 +
2f
(

yn
)3

f(wn)2f(xn)

)−1

.

(2.25)

Then the iteration scheme based on Liu et al. method is given as

zn = yn −
[

f
(

yn
)

(

f
[

xn, yn
]

+ f
[

wn, yn
] − f[wn, xn]

)

]

, (2.26)

xn+1 = zn −
[

1 − f(zn)
f(wn)

]−1[

1 +
f
(

yn
)3

f(xn)f(zn)2

]−1[
f(zn)

(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

]

,

(2.27)

where wn, yn are given in (2.8) and x0 is the initial approximation provided that the de-
nominators of (2.26)-(2.27) are not equal to zero.

Theorem 2.5. Assume that the function f is sufficiently differentiable and f has a simple root α ∈ D.
If the initial approximation x0 is sufficiently close to α, then the method defined by (2.27) converges to
α with eighth order.



8 ISRN Applied Mathematics

Proof. Using appropriate expressions in the proof of Theorem 2.4 and substituting them into
(2.27), we obtain the asymptotic error constant

en+1 = −c−71
[

12β2c21c
7
2 − c21c42c4 + 10βc1c72 − c1c52c3 + 6β3c31c

7
2 − 2c21c

3
2c

2
3 − 6β2c41c

4
2c4

− 4β3c51c
4
2c4 − 2βc21c

5
2c3 − 4βc31c

4
2c4 + 2β3c41c

5
2c3 − 12β2c41c

3
2c

2
3 − 8βc31c

3
2c

2
3

+ 3c72 + β
4c41c

7
2 + c

3
1c

2
2c3c4 + β

4c71c
2
2c3c4 − β4c61c42c4 + 4βc41c

2
2c3c4 + 6β2c51c

2
2c3c4

+4β3c61c
2
2c3c4 − 2β4c61c

3
2c

2
3 + β

4c51c
5
2c3 − 8β3c51c

3
2c

2
3

]

e8n.

(2.28)

Expression (2.28) establishes the asymptotic error constant for the eighth order of conver-
gence for the new eighth-order derivative-free method defined by (2.27).

2.3. Method 3: Liu 2

The third of three-step eighth-order derivative-free method is constructed by combining the
two-step fourth-order method presented by Liu et al. [2], and the third step is developed to
achieve the eighth-order. As before, we have introduced two weight functions in the third
step in order to achieve the desired eighth-order method. In this particular case the two
weight functions are expressed as

(

1 − f(zn)
f(wn)

)−1
, (2.29)

(

1 +
2f
(

yn
)3

f(wn)2f(xn)

)−1

. (2.30)

Then the iteration scheme based on Liu et al. method is given as

zn = yn −
[

f
(

yn
)(

f
[

xn, yn
] − f[wn, yn

]

+ f[wn, xn]
)

(

f
[

xn, yn
])2

]

, (2.31)

xn+1 = zn −
[

1 −
(
f(zn)
f(wn)

)]−1
⎡

⎣1 −
(

f
(

yn
)

f(zn)

)3
⎤

⎦

[

1 +
f
(

yn
)3

f(xn)f(zn)2

]−1

×
[

f(zn)
(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

]

,

(2.32)

where wn, yn are given in (2.8) and x0 is the initial approximation provided that the
denominators of (2.31)-(2.32) are not equal to zero.

Theorem 2.6. Assume that the function f is sufficiently differentiable and f has a simple root α ∈ D.
If the initial approximation x0 is sufficiently close to α, then the method defined by (2.32) converges to
α with eighth order.
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Proof. Using appropriate expressions in the proof of Theorem 2.4 and substituting them into
(2.32), we obtain the asymptotic error constant

en+1 = −c−71
[

β4c71c
2
2c3c4 − β4c61c42c4 − 2β4c61c

3
2c

2
3 + β

4c51c
5
2c3 + β

4c41c
7
2 + 4β3c61c

2
2c3c4

− 5β3c51c
4
2c4 + 3β3c41c

5
2c3 + 8β3c31c

7
2 + 6β2c51c

2
2c3c4 − 12β2c41c

3
2c

2
3 − 9β2c41c

4
2c4

+ 3β2c31c
5
2c3 + 21β2c21c

7
2 + 4βc41c

2
2c3c4 − 7βc31c

4
2c4 − 8βc31c

3
2c

2
3 + βc

2
1c

5
2c3

+22βc1c72 − 2c21c
3
2c

2
3 − 2c21c

4
2c4 + 8c72 + c

3
1c

2
2c3c4 − 8β3c51c

3
2c

2
3

]

e8n.

(2.33)

Expression (2.33) establishes the asymptotic error constant for the eighth order of conver-
gence for the new eighth-order derivative-free method defined by (2.32).

2.4. Method 4: SKK

The fourth of three-step eighth-order derivative-free method is constructed by combining the
two-point fourth-order method presented by Khattri and Agarwal [10], and the third point is
developed to achieve the eighth order. Here also, we have introduced two weight functions
in the third step in order to achieve the desired eighth-order method. In this particular case
the two weight functions are expressed as

(

1 − f(zn)
f(wn)

)−1
,

(

1 +
3f
(

yn
)3

f(wn)2f(xn)

)−1

.

(2.34)

Then the iteration scheme based on the Khattri and Agarwal method is given as

wn = xn − βf(xn), (2.35)

yn = xn −
f(xn)2

f(xn) − f(wn)
, (2.36)

zn = yn −
(

f(xn)f
(

yn
)

f(xn) − f(wn)

)
⎡

⎣1 +
f
(

yn
)

f(xn)
+

(

f
(

yn
)

f(xn)

)2

+
f
(

yn
)

f(wn)
+

(

f
(

yn
)

f(wn)

)2
⎤

⎦, (2.37)

xn+1 = zn −
[

f(wn)
f(wn) − f(zn)

][

1 +
3f
(

yn
)3

f(xn)f(zn)2

]−1[
f(zn)

(

f
[

yn, zn
] − f[xn, yn

]

+ f[xn, zn]
)

]

,

(2.38)

where wn, yn are given in (2.8) and x0 is the initial approximation provided that the de-
nominators of (2.35)–(2.37) are not equal to zero.
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Theorem 2.7. Assume that the function f is sufficiently differentiable and f has a simple root α ∈ D.
If the initial approximation x0 is sufficiently close to α, then the method defined by (2.38) converges to
α with eighth order.

Proof. Using appropriate expressions in the proof of Theorem 2.4 and substituting them into
(2.38), we obtain the asymptotic error constant

en+1 = −c−71
[

8βc31c
3
2c

2
3 + β

4c51c
5
2c3 − 2β4c61c

3
2c

2
3 + 15c72 + 60β2c21c

7
2 − 4βc41c

2
2c3c4 + 6β2c51c

2
2c3c4

+ c31c
2
2c3c4 − 4β3c61c

2
2c3c4 + 15β4c41c

7
2 + β

4c71c
2
2c3c4 − 3β4c61c

4
2c4 − 8βc21c

5
2c3 − 3c21c

4
2c4

+ 12βc31c
4
2c4 − 18β2c41c

4
2c4 + 12β3c51c

4
2c4 − 2c21c

3
2c

2
3 + c1c

5
2c3 − 48βc1c72 − 39β3c31c

7
2

+β5c61c
5
2c3 − 3β5c51c

7
2 − 11β3c41c

5
2c3 + 8β3c51c

3
2c

2
3 + 16βc31c

5
2c3 − 12β2c41c

3
2c

2
3

]

e8n.

(2.39)

Expression (2.38) establishes the asymptotic error constant for the eighth order of conver-
gence for the new eighth-order derivative-free method defined by (2.38).

3. The Kung-Traub Eighth-Order Derivative-Free Method

The classical Kung-Traub eighth-order derivative-free method considered is given in [3].
Since this method is well established, we will state the essential expressions used in order
to calculate the approximate solution of the given nonlinear equations and thus compare the
effectiveness of the new eighth-order derivative-free methods. The Kung-Traub method is
given as

zn = yn −
(

f(xn)f(wn)
f
(

yn
) − f(xn)

)[

1
f[w,x]

− 1
f
[

w,y
]

]

,

xn+1 = zn −
(

f(wn)f(xn)f
(

yn
)

f(zn) − f(xn)

)

×
{(

1
f(zn) − f(wn)

)[

1
f
[

y, z
] − 1

f
[

w,y
]

]

−
(

1
f
(

yn
) − f(xn)

)[

1
f
[

w,y
] − 1

f[w,x]

]}

,

(3.1)

where wn, yn are given in (2.8) and x0 is the initial approximation provided that the
denominators of (3.1) are not equal to zero.

4. Application of the New Derivative-Free Iterative Methods

To demonstrate the performance of the new eighth-order methods, we take ten particular
nonlinear equations. We will determine the consistency and stability of results by examining
the convergence of the new derivative-free iterative methods. The findings are generalised
by illustrating the effectiveness of the eighth-order methods for determining the simple root
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Table 1: Test functions and their roots.

Function Root

f1(x) = (x − 2)(x10 + x + 1) exp(−x − 1), α = 2

f2(x) = exp(−x2 + x + 2) − cos(x + 1) + x3 + 1, α = −1
f3(x) = sin(x)2 − x2 + 1, α = 1.40449165 · · ·
f4(x) = e−x − cos(x), α = −0.666273126 · · ·
f5(x) = ln(x2 + x + 2) − x + 1, α = 4.15259074 · · ·
f6(x) = exp(x2 + 7x − 30) − 1, α = 1.40449165 · · ·
f7(x) = cos (x)2 − x

5
α = 1.08598268 · · ·

f8(x) = sin(x) − x

2
, α = 0

f9(x) = x10 − x3 − x + 1 α = 0.591448093 · · ·
f10(x) = sin(x) − x + 1 α = 2.63066415 · · ·

Table 2: Comparison of various iterative methods.

Functions K-T Liu1 Liu2 RT SKK

f1(x), x0 = 1.9 0.199e − 37 0.121e − 66 0.108e − 66 0.114e − 75 —

f2(x), x0 = −1.5 0.166e − 158 0.832e − 207 0.490e − 282 0.128e − 156 0.145e − 100

f3(x), x0 = 1.6 0.172e − 258 0.629e − 417 0.204e − 393 0.498e − 297 0.308e − 285

f4(x), x0 = 0.125 0.166e − 1385 0.107e − 1133 0.868e − 800 0.566e − 1060 0.609e − 220

f5(x), x0 = 4.4 0.115e − 927 0.350e − 1017 0.268e − 1022 0.471e − 1025 0.639e − 791

f6(x), x0 = 3.1 0.118e − 32 0.581e − 59 0.236e − 58 0.224e − 53 0.191e − 12

f7(x), x0 = 0.75 0.756e − 568 0.119e − 571 0.333e − 607 0.522e − 557 0.367e − 335

f8(x), x0 = 0.5 0.260e − 317 0.651e − 344 0.205e − 301 0.298e − 285 0.253e − 685

f9(x), x0 = 0.5 0.293e − 416 0.713e − 433 0.347e − 448 0.644e − 423 0.535e − 283

f10(x), x0 = 2.5 0.687e − 739 0.439e − 696 0.981e − 698 0.121e − 694 0.770e − 643

of a nonlinear equation. Consequently, we will give estimates of the approximate solution
produced by the eighth-order methods and list the errors obtained by each of the methods.
The numerical computations listed in the tables were performed on an algebraic system called
Maple. In fact, the errors displayed are of absolute value, and insignificant approximations
by the various methods have been omitted in Tables 1, 2, and 3.

Remark 4.1. The family of three-step methods requires four function evaluations and has the
order of convergence eight. Therefore, this family is of optimal order and supports the Kung-
Traub conjecture [3]. To determine the efficiency index of these new derivative-free methods,
we will use Definition 2.3. Hence, the efficiency index of the eighth-order derivative-free
methods given is 4

√
8 ≈ 1.682.

Remark 4.2. The test functions and their exact root α are displayed in Table 1. The differences
between the root α and the approximation xn for test functions with initial approximation x0
are displayed in Table 2. In fact, xn is calculated by using the same total number of function
evaluations (TNFEs) for all methods. Here, the TNFE for all the methods is 12. Furthermore,
the computational order of convergence (COC) is displayed in Table 3.
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Table 3: COC of various iterative methods.

Functions K-T Liu1 Liu2 RT SKK
f1(x), x0 = 1.9 7.5146 7.5602 7.5593 7.5078 —
f2(x), x0 = −1.5 8.0021 7.9707 8.0000 8.0026 7.8899
f3(x), x0 = 1.6 8.0000 8.0000 8.0000 8.0000 7.9847
f4(x), x0 = 0.125 12.000 11.000 10.000 11.000 8.0001
f5(x), x0 = 4.4 8.0000 8.0000 8.0000 8.0000 8.0000
f6(x), x0 = 3.1 7.7384 7.5837 7.5694 7.4350 —
f7(x), x0 = 0.75 8.0000 8.0000 8.0000 8.0000 7.9889
f8(x), x0 = 0.5 10.973 10.977 10.970 10.967 10.994
f9(x), x0 = 0.5 8.0000 8.0000 8.0000 8.0000 7.9845
f10(x), x0 = 2.5 8.0000 8.0000 8.0000 8.0000 8.0000

5. Remarks and Conclusion

We have demonstrated the performance of a new family of eighth-order derivative-free
methods. Convergence analysis proves that the new methods preserve their order of
convergence. There are two major advantages of the eighth-order derivative-free methods.
Firstly, we do not have to evaluate the derivative of the functions; therefore they are especially
efficient where the computational cost of the derivative is expensive, and secondly we
have established a higher order of convergence method than the existing derivative-free
methods [4, 5]. We have examined the effectiveness of the new derivative-free methods
by showing the accuracy of the simple root of a nonlinear equation. The main purpose of
demonstrating the new eighth-order derivative-free methods for many different types of
nonlinear equations was purely to illustrate the accuracy of the approximate solution, the
stability of the convergence, and the consistency of the results and to determine the efficiency
of the new iterative method. In addition, it should be noted that like all other iterative
methods, the new methods have their own domain of validity and in certain circumstances
should not be used.
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