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Electrostatic solitary waves in plasmas are the focus of many current studies of localized electrostatic

disturbances in both laboratory and astrophysical plasmas. Here, an investigation of the nonlinear

dynamics of plasma evolving in two dimensions, in the presence of excess superthermal background

electrons and positrons, is undertaken. We investigate the effect of a magnetic field on weakly

nonlinear ion acoustic waves. Deviation from the Maxwellian distribution is effectively modelled by

the kappa model. A linear dispersion relation is derived, and a decrease in frequency and phase speed

in both parallel and perpendicular modes can be seen, when the proportion of positrons to electrons

increases. We show that ion acoustic solitary waves can be generated during the nonlinear evolution

of a plasma fluid, and their nonlinear propagation is governed by a Zakharov-Kuznetsov (ZK) type

equation. A multiple scales perturbation technique is used to derive the ZK equation. The solitary

wave structures are dependent on the relation between the system parameters, specifically the

superthermality of the system, the proportion of positron content, magnetic field strength, and the

difference between electron and positron temperature. The parametric effect of these on electrostatic

shock structures is investigated. In particular, we find that stronger superthermality leads to narrower

excitations with smaller potential amplitudes. Increased positron concentration also suppresses

both the amplitude and the width of solitary wave structures. However, the structures are only

weakly affected by temperature differentials between electrons and positrons in our model. VC 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4849415]

I. INTRODUCTION

Electrostatic solitary waves in plasmas are the focus of

many current studies of localized electrostatic disturbances

in both laboratory and astrophysical plasmas. A great deal of

attention has been paid to astrophysical systems and space

plasmas that are observed to have so-called superthermal dis-

tribution functions, that is, distributions with high energy

tails or pronounced shoulders.1–6 For example, observations

and in situ measurements have confirmed the wide-spread

existence of superthermal populations at different altitudes

in the solar wind plasma,3,4,7 in Earth’s magnetospheric

plasma sheet,5,8 and in Saturn.2,9

Such distribution functions may be well fitted by the

so-called kappa distribution, as was shown for the first time

by Vasyliunas,1 as well as by Maksimovic et al.,7 Formisano

et al.,8 Schippers et al.,9 and Hellberg et al.10 The spectral

index, kappa (j), for which the kappa distribution is named,

acts to modify the effective thermal speed in the distribution

function. At low values of j, distributions have a large compo-

nent of superthermal particles, but at very large values of

kappa, the distribution function approaches a Maxwellian distri-

bution. At present, although the kappa distribution is quite suc-

cessful in modelling superthermal plasmas, there is as yet no

rigorous theoretical foundation for kappa distribution theory.

It should be noted that there is more than one version of

the kappa distribution expression in literature. Considering

the comment by Hellberg et al.,10 we utilize below the origi-

nal version of the distribution,1 as employed by Sultana

et al.,11,12 Baluku and Hellberg13 and many others, rather

than that used in papers by Hau and Fu14 and El-Bedwehy

and Moslem.15

Electron-positron-ion (e-p-i) plasmas may be either par-

tially or fully ionized gases depending upon the plasma pa-

rameters, and are found not only in the early universe16,17

but also in astrophysical environments such as in the magne-

tosphere of pulsars,18 active galactic nuclei (AGN),19 in neu-

tron star atmospheres,20 in the inner regions of accretion

disks surrounding black holes,21,22 and the interstellar

medium.23,24

In the laboratory, the production of electron-positron

pairs by the interaction of relativistic superthermal electrons

with high Z material was shown by Liang et al.,25 and the ex-

istence of positrons in plasmas has also been confirmed in

other laboratory plasmas.26–28 The process of electron-

positron pair production can also occur during the interaction

of a strong laser pulse with plasmas.29,30 This creation of

large numbers of MeV positrons in the laboratory has led to

more antimatter research, including investigation of the

physics underlying various astrophysical phenomena such as

black holes and gamma ray bursts, positronium production

and Bose-Einstein condensates. Chen et al.31 illuminated

gold targets with short ultraintense laser pulses, and posi-

trons of up to 2� 1010 per steradian were observed to emerge

from the back of the target, with effective temperatures of

almost 3 MeV, which was found to be approximately half
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that of the effective electron temperature. Electron-positron

and c-photon production by a high-intensity laser pulse was

also investigated32 using two 330 femtosecond laser pulses

and the positron density was found to be 5� 1022 cm�3. Pair

production was also studied for underdense plasmas and

plasma channels.33 In this context, the number of relativistic

electrons can be high, because the laser pulse can propagate

a long distance, whereas the density is limited by the critical

density for the laser pulse. Various mechanisms can be found

for the production of electron-positron pairs by intense

focused laser light pulses. (See, for example, Refs. 34 and

35, and the references therein.) Thus, the study of the proper-

ties of e-p-i plasmas in the presence of strong and super-

strong laser pulses or non-thermal equilibrium cosmic field

radiation is of much interest. In particular, we are inspired by

recent experimental results on positron production in the lab-

oratory,36,37 as well as currently unpublished results on

pair-plasma production via table-top laser based proce-

dures38 which will clearly generate even more interest on

this topic.

Interestingly, the presence of ions enables the existence

of low frequency waves such as ion-acoustic waves, which

otherwise could not propagate in electron-positron (e-p) plas-

mas. Nonlinear techniques can be used to investigate electro-

static excitations that may arise in e-p-i plasmas. The

Zakharov-Kuznetsov (ZK) equation,39 derived in 1974

(Ref. 40) for ion-acoustic waves in a magnetized plasma, is a

multi-dimensional extension of the well-known Korteweg-de

Vries (KdV) equation. In recent years, several studies have

utilized ZK type equations to investigate the nonlinear char-

acteristics of e-p-i plasmas.41–43 Kourakis et al.41 investi-

gated the existence and properties of nonlinear electrostatic

structures in rotating magnetized e-p-i plasmas using the ZK

equation, and showed that the balance among dispersion and

nonlinearity gives rise to localized solitary wave solutions.

Qu et al.42 looked at soliton solutions of the ZK equation in

e-p-i plasmas and their interactions, and utilising the Hirota

method, found an N-soliton solution. El-Shamy and El-

Bedwehy43 also investigated nonlinear electrostatic solitary

waves in e-p-i magnetoplasmas using both the ZK equation,

and studied their compressive and rarefactive nature.

In this paper, we study ion acoustic waves in a magne-

tized plasma with excess kappa distributed superthermal

electrons and kappa distributed positrons, building on previ-

ous research.41,42,44 We investigate the solitary solutions of

the ZK equation and address two separate situations—the

first is the e-p-i plasmas likely to arise in laboratory plasmas

which are close to the e-i limit (so very few positrons pres-

ent). The second situation is at the other extreme, typical in

astrophysical plasmas, where the plasma is close to the e-p

limit (so very few ions present). The paper is organized in

the following manner. In Sec. II, we present the relevant

fluid equations for ion acoustic waves in a magnetized e-p-i

plasma. Section III details the linear behaviour of the system.

We derive the dispersion relation and discuss the effects of

variation in positron content and temperature variation

between electrons and positrons. In Sec. IV, a reductive per-

turbation technique is used45 to derive the ZK equation.46

Solitary wave solutions to the ZK equation are found in

Sec. V, and the stability of these solutions is considered in

Sec. VI. In Sec. VII, a parametric investigation is under-

taken, in terms of relevant plasma parameters, looking sepa-

rately at low positron content plasmas (Regime A) and high

positron content plasmas (Regime B). Some alternative solu-

tions are discussed in Sec. VIII, and finally, our results are

summarized in Sec. IX.

II. THE FLUID EQUATION MODEL

We are modelling ion-acoustic waves propagating in a

magnetized electron-positron-ion plasma. The magnetic

field B0 is uniform and for simplicity we choose for it to lie

along the z-axis of our Cartesian coordinate system. The

plasma consists of cold ions, kappa-distributed electrons,

and kappa-distributed positrons. At equilibrium, we assume

that Zini0 þ np0 ¼ ne0, where ni0, np0, and ne0 are the equilib-

rium ion, positron and electron number densities, respec-

tively; and Zi is the charge state of the ions. We employ the

following system of equations:

@ni

@t
þrniui ¼ 0; (1)

@ui

@t
þ uirui ¼

Zie

m

� �
�r/þ ui � B0ẑð Þ; (2)

with the system closed by Poisson’s equation

�0r2/ ¼ e ne � Zini � npð Þ; (3)

where ni, ne, np, and ui are ion density, electron density, posi-

tron density and ion velocity, respectively; / is the electric

potential; and e and mi are the unit charge and ion mass,

respectively. The electron and positron densities are charac-

terized by kappa distributions1

ne ¼ ne0 1� e/
ðje � 3=2ÞkBTe

� ��jeþ1=2

¼ ne0feð/Þ;

and

np ¼ np0 1þ e/
ðjp � 3=2ÞkBTp

� ��jpþ1=2

¼ np0fpð/Þ;

where the real parameters je (for electrons) and jp (for

positrons) measure the deviation from Maxwellian equilib-

rium, which is recovered in the limit of infinite j at every

step.1,47 Note that kB is Boltzmann’s constant, and Te and

Tp are the electron and positron temperatures, respectively.

Note that ionic thermal effects have been neglected in this

model.

To make the calculations tractable analytically, we have

employed the following normalizations: we have normalized

lengths by a characteristic Debye length kD ¼ ð �0kBTe

ni0Z2
i e2Þ

1
2, time

by the inverse ion plasma frequency xpi ¼ ðni0Z2
i e2

�0mi
Þ

1
2, number

density by the total ion density ni0, electrostatic potential by

ðkBTe

Zie
Þ, velocities by the ion-acoustic sound speed ci;s ¼ ðkBTe

mi
Þ

1
2

and the magnetic field is represented by X ¼ xci=xpi, which

122311-2 G. Williams and I. Kourakis Phys. Plasmas 20, 122311 (2013)
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is the ratio of the ion cyclotron frequency (xci ¼ ZieB0

mi
) to the

ion plasma frequency (xpi ¼ ðZ
2
i n0e2

�0mi
Þ1=2

).

We also utilize the following definitions: h ¼ Tp

Te
; d ¼ np0

ne0
,

which represent the ratio of positron temperature to electron

temperature, and the ratio of positron density to electron den-

sity, respectively. It follows that ne0

Zini0
¼ 1

1�d, and
np0

Zini0
¼ d

1�d. At

d near 0, we have a quasi electron-ion (e-i) plasma, with very

few positrons present, typical of a laboratory plasma. At d near

1, we have a quasi electron-positron (e-p) plasma with a small

population of minority ions, typical of astrophysical plasmas,

and where we expect the role of h to be more pronounced.

We have expanded Eq. (3) using a Taylor series, trun-

cated at second order, and so achieve the following dimen-

sionless system of equations:

@n

@t
þrnu ¼ 0; (4)

@u

@t
þ uru ¼ �r/þ u� Xẑ; (5)

r2/ � 1þ p/þ q/2 � n; (6)

where

p ¼ 1

Zið1� dÞ
2je � 1

2je � 3

� �
þ d

h
2jp � 1

2jp � 3

� �" #
;

q ¼ 1

2Z2
i ð1� dÞ

4j2
e � 1

ð2je � 3Þ2

 !
� d

h2

4j2
p � 1

ð2jp � 3Þ2

 !2
4

3
5:

(7)

We note that p¼ 2q¼ 1 is recovered in the Maxwellian e-i

limit (with Zi set to 1 and d¼ 0).

III. LINEAR ANALYSIS

We linearize the system of fluid equations and form a

homogeneous system of 3 algebraic equations in the three

variables ni; u;/, which can be solved to give the linear dis-

persion equation

x4 � x2 X2 þ x2
0

� �
þ x2

0X
2 � k2

?
k2 þ p

X2 ¼ 0; (8)

where p is given by Eq. (7) above, kk and k? are wavenumber

components parallel and perpendicular to the magnetic field,

respectively, so that k2 ¼ k2
k þ k2

?; and x2
0 ¼ k2=ðk2 þ pÞ is

the linear dispersion relation of ion-acoustic waves in a

non-magnetized plasma.

We can also usefully express the dispersion relation in

terms of x2 as

x2
6 ¼

1

2
x2

0 þ X26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � X2Þ2 þ 4k2
?X

2

k2 þ p

s2
4

3
5: (9)

This equation leads to two separate modes of propagation, as

shown in Figure 1, which displays the dispersion relation for

three different values of d. The upper plot shows both the

upper and lower modes, which decrease in frequency with

increasing d, but the lower mode decrease is very small and

only noticeable for small values of k (long wavelength val-

ues). The lower plot in Figure 1 zooms in on this lower

mode, and importantly we note that it is an acoustic mode,

that is, it satisfies limk!0ðx�Þ ¼ 0. We will consider quasi-

parallel propagation below (in the next Section), hence the

phase speed of relevance will be: limkk!0ðx�=kkÞ ¼ 1ffiffi
p
p . This

is essentially the phase speed of the lower (acoustic) mode in

the long wavelength (k� 1) region. In other words, it is pre-

cisely the true sound speed in the given plasma configura-

tion. Figure 2 shows the same dispersion relation, but this

time with varying temperature differential between electrons

and positrons (changing h in the equation). We find that

varying h has very little effect on the linear dispersion, in ei-

ther the upper or lower mode.

Limiting Case 1—no magnetic field: If the magnetic field is

so weak that we can neglect it, Eq. (9) reduces to:

x2 ¼ x2
0ðkÞ, which describes an ion acoustic wave in a

non-magnetized plasma.

Limiting Case 2—parallel propagation: If we consider only

waves propagating parallel to the magnetic field (k?! 0),

Eq. (9) becomes

FIG. 1. Linear dispersion relation based on Eq. (9). The upper plot shows

both modes, and the lower plot zooms in on the acoustic mode only. In both

plots, the dotted-dashed (red) line is for d¼ 0.2, the dotted (blue) line is

d¼ 0.4, and the dashed (purple) line is d¼ 0.8. Here, we have taken

X¼ 0.09, j¼ 3, h¼ 1 and set the perpendicular component of k, k?¼ 0.3.

FIG. 2. Linear dispersion relation based on Eq. (9). The dotted-dashed (red)

line is for h¼ 1.1, the dotted (blue) line is h¼ 1.2, and the dashed (purple)

line is h¼ 1.3. Here, we have taken j¼ 3, d¼ 0.2, X¼ 0.09 and set the per-

pendicular component of k, k?¼ 0.3.
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x2 ¼ 1

2

k2
k

k2
k þ p

þ X26
k2
k

k2
k þ p

� X2

 !" #
: (10)

This leads to two solutions: the trivial solution x2¼X2,

which we can neglect as it is non-propagating, and

x2 ¼ k2
k

k2
kþp

, which (upon setting k ¼ kjj) is equivalent to x2
0

above, the ion-acoustic wave linear dispersion relation seen

in the unmagnetized case. This is expected, as in parallel

propagation the vector cross product of the velocity with

the magnetic field is equal to zero, and so the wave disper-

sion is unaffected by the magnetic field.

Limiting Case 3—perpendicular propagation: If we con-

sider only waves propagating perpendicularly to the mag-

netic field (kk! 0), Eq. (9) leads to: x2 ¼ k2
?

k2
?þp
þ X2, which

is a dispersion relation describing low frequency magnetoa-

coustic waves, as described by Swanson.48

Overall, there is a decrease in frequency and phase speed in

both parallel and perpendicular modes due to excess super-

thermal positrons, discernible in both the upper mode and

the lower (acoustic) mode.

IV. REDUCTIVE PERTURBATION THEORY

To investigate the nonlinear behaviour of the small ion

acoustic waves, we use reductive perturbation theory, in

which the independent variables are stretched as follows:

X ¼ e
1
2x; Y ¼ e

1
2y; Z ¼ e

1
2ðz�VtÞ; T ¼ e

3
2t, where V is a

speed to be determined.

We have assumed that the ion streaming velocity is along

the z-axis, and expand in the wave amplitude while keeping one

order higher than in linear theory. Due to the anisotropy intro-

duced into the system by the magnetic field, the coordinates of

velocity perpendicular to the magnetic field, ux and uy appear at

higher order in e than the parallel component uz. This means that

the gyromotion is treated as a higher order effect in this model

ni ¼ 1þ en1 þ e2n2 þ…; �/ ¼ e/1 þ e2/2 þ…;

�ux ¼ e
3
2ux1 þ e2ux2 þ…; �uy ¼ e

3
2uy1 þ e2uy2 þ…;

�uz ¼ euz1 þ e2uz2 þ…:

We substitute the stretched variables above into our

dimensionless set of fluid equations, and extract the lowest

order terms to produce a series of compatibility conditions,

which allows us to express n1, ux1, uy1, and uz1 in terms of /1

as follows:

n1 ¼ p/1;

@uz1

@Z
¼ V

@n1

@Z
¼ 1

V

@/1

@Z
;

Xuy1 ¼
@/1

@X
;

Xux1 ¼
@/1

@Y
:

(11)

Combining these expressions allows us to express the speed

V as

V ¼ p�1=2; (12)

where p is given by Eq. (7). V is thus dependent on the elec-

tron and positron j parameters, the ratio of positron to elec-

tron density, d, and the ratio of positron to electron

temperature, h. We notice that the method provides Eq. (12)

as a compatibility condition, which prescribes the stationary

pulse speed V as the true sound speed. Figure 3 shows how

the phase velocity changes with increase in positron content

and superthermality. Lower values of kappa indicate strong

superthermality, and we see that the phase speed is signifi-

cantly reduced at low values of kappa. As j ! 1, V! 1,

which represents the normalized sound speed in Maxwellian

conditions. These comments agree with earlier considera-

tions in literature, for example, Eq. (21) in Ref. 47 (in which

M1 is equivalent to our V), and also Sec. III in Ref. 12.

Additionally, the phase speed also reduces with increasing

positrons, approaching zero as d! 1.

The second order terms yield a further set of compatibil-

ity conditions, which when combined with the 1st order con-

ditions above, lead to the derivation of a ZK type equation

@/1

@T
þ A/1

@/1

@Z
þ B

@3/1

@Z3
þ C

@

@Z

@2/1

@X2
þ @

2/1

@Y2

� �
¼ 0;

(13)

FIG. 3. The variation of phase velocity V with d. Upper plot: Regime A,

plasma with a small percentage of positrons, and lower plot, Regime B,

plasma with large percentage of positrons. In both plots, the dotted-dashed

(red) line is for j¼ 2, the dotted (blue) line is j¼ 3, the continuous (green)

line is j¼ 6, and the dashed (purple) line is j¼ 12. Here, we have taken

h¼ 1.2.
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where the nonlinearity coefficient A, and dispersion coeffi-

cients B and C are defined as

A ¼ 3

2

1

Zið1� dÞ
2je � 1

2je � 3

� �
þ d

h
2jp � 1

2jp � 3

� �" #1=2

� 1

2Zi

4j2
e � 1

ð2je � 3Þ2

 !
� d

h2

4j2
p � 1

ð2jp � 3Þ2

 !2
4

3
5

2je � 1

2je � 3

� �
þ d

h
2jp � 1

2jp � 3

� �" #3=2
;

B ¼ 1

2

1

Zið1� dÞ
2je � 1

2je � 3

� �
þ d

h
2jp � 1

2jp � 3

� �" #�3=2

;

C ¼ B 1þ 1

X2

� �
:

(14)

If we look at the Maxwellian electron-ion limit, whereby je

and jp ! 1, d¼ 0, and also take Zi ! 1, Eq. (14) reduces

to: A ¼ 1;B ¼ 1
2
;C ¼ 1

2
ð1þ 1

X2Þ. This is the expected result

for ion acoustic waves in a magnetized electron-ion plasma,

agreeing with Ref. 49 (Eq. (1.2)), Ref. 50 (Eq. (8) therein),

and also in agreement with Ref. 12 for coefficients A and B.

V. SOLITARY WAVE SOLUTIONS

This section follows closely the discussion in Ref. 44,

thus we proceed by omitting unnecessary details, simply fol-

lowing a layout of relevant results to proceed.

The general solution of Eq. (13) can be found using the

hyperbolic tangent (tanh) method,51 whereby we transform

coordinates so that /1ðX; Y; Z; TÞ ¼ wðvÞ, where v ¼ aðlX
þmY þ nZ � UTÞ; l2 þ m2 þ n2 ¼ 1, and U is the incremen-

tal soliton velocity (above the sound speed).

Details of the method can be found in Appendix A of

Ref. 44 and will be omitted here. We find

wsol ¼ w0sech2 vð Þ; (15)

where w0 ¼ 3U
A0

is the amplitude of the excitation, v

¼ aðlX þ mY þ nZ � UTÞ; a�1 ¼ 2
ffiffiffiffi
B0

U

q
is the soliton width,

A0 ¼ An; B0 ¼ Bn3 þ Cn l2 þ m2ð Þ, and A, B, C are as

defined previously.

This result agrees with Eq. (24) of Ref. 52, and is a

localized solitary wave solution, describing a pulse excita-

tion, in which dispersion and nonlinearity are balanced.

Further discussion of their characteristics is discussed below.

Interestingly, we may now, based on Eq. (15), derive an

exact expression for the electric field vector E ð¼ �rwsolÞ

E ¼
Ex

Ey

Ez

0
@

1
A ¼ 3U3=2

A0B
1=2
0

sech2 v tanh v
lx̂
mŷ
nẑ

0
@

1
A; (16)

where x̂; ŷ; ẑ are the unit vectors in the direction x, y, and z.

Note that the magnitude of the electric field is

E ¼ 3U3=2

A0B
1=2
0

sech2v tanh v; (17)

in agreement with Eq. (28) from Ref. 53, if we substitute U
for V therein, and note that L0 in that equation is the soliton

width, equivalent to a�1 ¼ 2
ffiffiffiffi
B0

U

q
.

VI. STABILITY OF SOLITON SOLUTION

To investigate the stability of the soliton solution above,

we shall follow the methodology introduced in Refs. 54 and

55. Using appropriate scaling, as detailed in Appendix A,

and transforming Z! X formally, the ZK equation (13) can

be re-written as

@t
�/ þ �/@X

�/ þ @Xð@2
X þ @2

Y þ @2
ZÞ�/ ¼ 0; (18)

which is equivalent to Eq. (1.1) in Ref. 55, if we formally set
�/ ¼ n therein. So by transforming to the geometry used

there, we need not repeat Allen and Rowland’s stability

investigation,55 but restrict ourselves to summarizing the

main points.

Following Allen and Rowlands,55 we employ the fol-

lowing perturbation:

�/ ¼ wþ �UðxÞeikyect; (19)

where w is precisely the exact solution of Eq. (18). The pertur-

bation is transverse, as the axes in the ZK equation have been

rotated so the soliton moves along the x axis. According to this

perturbation, if Rec¼ 0, then the configuration is stable; how-

ever for Rec 6¼ 0, there is instability. One proceeds by substitut-

ing the perturbed solution into the ZK equation and linearising

in �, which leads to an eigenvalue problem (see Eq. (23) in

Ref. 55). In the following, we simply summarize the tedious

procedure employed therein. Based on the eigenvalue equation

obtained, Allen and Rowlands55 introduce multiple scales:

x1 ¼ kx; x2 ¼ k2x, etc., assuming k� 1 (physically represent-

ing long-wavelength background disturbances, e.g., noise).

Accordingly, we also set UðxÞ ¼ U0 þ kU1 þ… and proceed

by considering different orders in k. The growth rate for the

instability can be expressed as C ¼ kc1 þ k2c2 þ…,] neglect-

ing higher order terms. The tedious procedure, omitted here,

consists of eliminating secular terms, to find55

c1 ¼
8

3

�
8

5
cos2b� 1

�1=2

þ i sin b

" #
: (20)

So for stability, we require 8
5

cos2b� 1 < 0, or b > bcr

¼ arccosð5
8
Þ1=2 ’ 37:8�, which recovers exactly55 the result

of Das and Verheest in Ref. 56.

At this stage, stability is ensured for b> bcr. Allen and

Rowlands proceed by considering higher order (in)stability

(related to the real part of c2). In an analogous manner, they

obtain in their Eq. (2.17)

c2 ¼ �
4

9

�
8

5
cos2 b� 1

�
sec bþ 4ð5þ 4 cos2 bÞi tan b

45

�
8

5
cos2 b� 1

�1=2
:

(21)
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In summary, the growth rate of the instability, C can be

expressed as follows:

If b < bcr ’ 37:8�, then

C ¼ C1 ¼ kReðc1Þ þ Oðk2Þ

’ k
8

3

8

5
cos2b� 1

� �1=2

; (22)

If b > bcr ’ 37:8�, then

C ¼ C2 ¼ k2Reðc2Þ þ Oðk3Þ

’ k2 4

9
1� 8

5
cos2 b

� �
sec b: (23)

Recall that the above results are valid for k � 1.

Importantly, Allen and Rowlands55 have also obtained a so-

lution for k > cos b, via a numerical analysis. We neglect

that result here.

Figure 4 shows the 1st order instability growth rate, and

we can see that this reduces to zero as b ! bcr. Figure 5

shows the second order instability growth, which increases

for larger values of b.

Now, reverting back to our notation (for details see

Appendix B), we find that the growth rate of the instability,

C, can be expressed in our specific model as follows: If

b < bcr ’ 37:8�, then

C ¼ C1 ¼ kReðc1Þ þ Oðk2Þ

’ k

ffiffiffiffiffiffiffi
BC
p

L2
k

8

3

8

5
cos2b� 1

� �1=2

: (24)

If b > bcr ’ 37:8�, then

C ¼ C2 ¼ k2Reðc2Þ þ Oðk3Þ

’ k2 C

Lk

4

9
1� 8

5
cos2 b

� �
sec b: (25)

Here, as noted earlier, C and B are as defined in Eq. (14). We

note the explicit dependence of the growth rate on the

plasma parameters j, X, and d via B and C in Eqs. (24) and

(25) (see Figures 10 and 15).

VII. PARAMETRIC INVESTIGATION

A. Regime A—low positron content (near the e-i limit).
Approximate analysis (d� 1)

The nonlinearity coefficient is represented in our ZK

equation by A, while the coefficients B and C represent dis-

persive terms. A and B are dependent on j, d and h, while C
depends additionally on magnetic field strength X. Figure 6

shows how A, B, and C are affected by changes in d.

Close to the e-i limit where d� 0, we can Taylor expand

the expressions for A, B, and C to first order and get the

following:

A ’ 2ðj� 1Þ
2j� 3

2j� 3

2j� 1

� �1=2

þ 1þ 2jþ 6jh� h2 þ 4jh2ð Þ
2ð2j� 3Þh2

2j� 3

2j� 1

� �1=2

d;

B ’ 1

2

2j� 3

2j� 1

� �3=2

� 3

4

2j� 3

2j� 1

� �3=2
1þ h

h
d;

C ¼ Bð1þ 1=X2Þ:

(26)

It is clear that the nonlinear and dispersive terms are

strongly influenced by the proportion of positrons present in

the plasma. At low values of d, the dispersive coefficient C
dominates, but as d exceeds 0.1, the nonlinear coefficient A

FIG. 4. First order instability growth rate for C1/k. Based on Eq. (22).

FIG. 5. Second order instability growth rate for C2/k2. Based on Eq. (23).
FIG. 6. A, B, C vs d for values of d from 0 to 0.4, setting X¼ 0.3,

je¼jp¼ 3, and h¼ 1.1. Based on Eq. (14).
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increases steadily and overtakes C which along with B
diminishes with increasing positron content, although the

effect is not as noticeable for B with the particular values we

have taken for X and j.

We can look at the dependence of the solitary wave ex-

citation with a variation in positron content, by changing d.

We see in Figure 7 that the soliton becomes narrower with a

reduced potential if the plasma positron content increases.

We now look at how soliton characteristics change with

variation in the j, which represents the degree of superther-

mality of the plasma. It is worth noting again here that a low

value of j indicates strong superthermality.

Figure 8 suggests that solitons with a low j value are

narrower with smaller amplitude. As j increases the soliton

shape converges to the Maxwellian case. So increasing

superthermality leads to lower amplitude and narrower

solitons.

We now investigate the effect of a disparity in tempera-

ture between electrons and positrons on the solitary excita-

tion in low positron plasmas. We see in Figure 9 that there is

only a weak dependence on h. This is to be expected as it is

a low positron content plasma, so the temperature difference

between positrons and electrons will only affect a small pro-

portion of the plasma constituents.

Finally, we analyse the effect of a change of positron

concentration and superthermality on the instability of the

soliton solution. In Figure 10, we see in the upper plot that

an increase in positron concentration causes the instability

growth to be suppressed. In the lower plot, an increase in

superthermality also causes a decrease in the growth rate of

the instability.

FIG. 7. w vs v for d¼ 0.1 (red dotted-dashed line), 0.2 (blue dotted line), 0.3

(green continuous line), and 0.4 (purple dashed line), for the particular orien-

tation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1,

je¼jp¼ 3, and h¼ 1.1. Based on Eq. (15).

FIG. 8. w vs v for j¼ 2 (red dotted-dashed line), 3 (blue dotted line), 6

(green continuous line), and 12 (purple dashed line), for the particular orien-

tation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1, d¼ 0.2,

and h¼ 1.1. Based on Eq. (15).

FIG. 9. w vs v for h¼ 1.1 (red dotted-dashed line), 1.2 (blue dotted line), 1.3

(green continuous line), and 1.4 (purple dashed line), for the particular orien-

tation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1, d¼ 0.2,

and j¼ 3. Based on Eq. (15).

FIG. 10. The first and second order instability growth rate C1 and C2 vs the

azimuthal angle b. Upper plot shows d¼ 0.1 (red dotted-dashed line), 0.2

(green dashed line), and 0.3 (blue continuous line), taking X¼ 0.3, h¼ 1.1,

j¼ 3, and wavenumber k¼ 0.05. Lower plot shows j¼ 2 (red dotted-dashed

line), 4 (green dashed line), and 12 (blue continuous line), taking X¼ 0.3,

h¼ 1.1, d¼ 0.1, and wavenumber k¼ 0.05. Based on Eqs. (24) and (25).
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B. Regime B—high positron content
(quasi e-p plasmas). Approximate analysis (d�1)

We now look at plasmas that have a high proportion of

positrons. These plasmas are likely to be found in astrophysi-

cal scenarios.

Close to the electron-positron limit where d� 1, we can

Taylor expand the expressions for A, B, and C to first order

and get the following:

A ’ 3

2

ð2j� 1Þð1þ hÞ
ð2j� 3Þh

� �1=2
1ffiffiffiffiffiffiffiffiffiffiffi

d� 1
p ;

B ’ 1

2

ð2j� 3Þh
ð2j� 1Þð1þ hÞ

� �3=2

ð1� dÞ3=2;

C ¼ Bð1þ 1=X2Þ:

(27)

Again we look at the nonlinear and dispersive coefficients

which dictate the evolution of the solitary wave structures.

Figure 11 shows how these vary with positron content ranging

from 60% to 100%. We see that the nonlinear and dispersive

terms are strongly influenced by the proportion of positrons

present in the plasma. The nonlinear coefficient A tends to in-

finity as d ! 1, whilst the dispersive terms tend to zero. Of

course as d approaches unity, this physically represents a pure

electron-positron plasma, so no ions are present, and therefore

of course no ion acoustic solitary structures can exist.

For the high positron content plasmas, we also investigate

the dependence of the solitary wave excitation on d—see

Figure 12. We note that as for low values of d, the trend con-

tinues that solitons get progressively narrower with smaller

potential, as d increases. We now look at how soliton shape

changes with j, which represents the degree of superthermality

of the plasma. As noted in Figure 8 for low positron content,

we also see in Figure 13 that solitons with a low j value are

narrower with smaller amplitude, so increasing superthermality

leads to lower amplitude and narrower solitons. We consider

in Figure 14 how disparity in temperature between electrons

and positrons affects the solitary excitation in plasmas with a

high positron content, and note very little variation. This is

interesting, as one might expect a greater dependence on pro-

portional temperature differences when the positron-electron

ratio is high; however, in reality, according to our model, and

looking at Eq. (15), the temperature differential plays only a

minor role in the development of solitary wave characteristics.

Also we only allow for temperature ratios of up to 1.4, as we

feel anything beyond this may be unrealistic. Finally, we ana-

lyse the effect of a change of positron concentration and super-

thermality on the instability of the soliton solution in plasmas

with a high positron content. In Figure 15, we see in the upper

plot that increases in positron concentration cause the instabil-

ity growth to be suppressed, as was also observed in the low

positron concentration regime earlier. In the lower plot, an

FIG. 11. Upper plot A vs d, lower plot B, C vs d for values of d from 0.6 to

1, setting j¼ 3, X¼ 0.3, and h¼ 1.1. Based on Eq. (14).

FIG. 12. w vs v for d¼ 0.6 (red dotted-dashed line), 0.7 (blue dotted line),

0.8 (green continuous line), and 0.9 (purple dashed line), for the particular

orientation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1,

j¼ 3, and h¼ 1.1. Based on Eq. (15).

FIG. 13. w vs v for j¼ 2 (red dotted-dashed line), 3 (blue dotted line), 6

(green continuous line), and 12 (purple dashed line), for the particular orien-

tation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1, d¼ 0.8,

and h¼ 1.1. Based on Eq. (15).
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increase in superthermality also causes a decrease in the

growth rate of the instability. We can see that in the high posi-

tron regime, the instability growth rate is an order of magni-

tude smaller than in the low positron concentration regime.

VIII. FURTHER SOLUTIONS OF THE ZK EQUATION

A further set of solutions of Eq. (13) was introduced in

Ref. 41 using the improved Modified Extended Tanh-

Function (iMETF) method.57 In that method, a solution is

anticipated as follows:

w1ðfÞ ¼ a0 þ a1yþ a2y2 þ b1

a1 þ y
þ b2

ða2 þ yÞ2
; (28)

where a0, a1, a2, b1, b2 and k are arbitrary constants and y, a1

and a2 are functions of f to be determined. As in Sec. V,

f ¼ lX þ mY þ nZ � Ut, l, m and n are positive real numbers

such that l2 þ m2 þ n2 ¼ 1 and U is the incremental soliton

velocity. Following Ref. 41, we postulate that

dy

df
¼ k þ y2; (29)

and the general solutions of this equation may be summar-

ized as follows:

For k< 0, y ¼ �
ffiffiffiffiffiffi
�k
p

tanhð
ffiffiffiffiffiffi
�k
p

fÞ, or y ¼ �
ffiffiffiffiffiffi
�k
p

coth

ð
ffiffiffiffiffiffi
�k
p

fÞ. For k¼ 0, y¼�1/f. For k> 0, y ¼
ffiffiffi
k
p

tanð
ffiffiffi
k
p

fÞ, or

y ¼
ffiffiffi
k
p

cotð
ffiffiffi
k
p

fÞ.
Equations (28) and (29) are substituted into Eq. (13) to

achieve a polynomial equation in y(f). The coefficients of y

are equated to zero and the resulting overdetermined system

of algebraic differential equations then solved. We find the

following solutions for values of k< 0:

w1 ¼
U � 8kB0

A0

þ 12kB0

A0

tanh2ð
ffiffiffiffiffiffi
�k
p

fÞ; (30)

or

w1 ¼
U � 8kB0

A0

þ 12kB0

A0

ðtanh2ð
ffiffiffiffiffiffi
�k
p

fÞ þ coth2ð
ffiffiffiffiffiffi
�k
p

fÞ;

(31)

where A0 ¼ An; B0 ¼ Bn3 þ Cn l2 þ m2ð Þ, and A, B, C are as

defined in Eq. (14). The solution (30) describes a solitary

pulse as shown in Figures 16 and 17 below. It can be seen

that the effect of increasing superthermality (lower value of

FIG. 15. The first and second order instability growth rate C1 and C2 vs the

azimuthal angle b. Upper plot shows d¼ 0.8 (red dotted-dashed line), 0.9

(green dashed line), and 0.95 (blue continuous line), taking X¼ 0.3, h¼ 1.1,

j¼ 3, and wavenumber k¼ 0.05. Lower plot shows j¼ 2 (red dotted-dashed

line), 4 (green dashed line), and 12 (blue continuous line), taking X¼ 0.3,

h¼ 1.1, d¼ 0.9, and wavenumber k¼ 0.05. Based on Eqs. (24) and (25).

FIG. 14. w vs v for h¼ 1.1 (red dotted-dashed line), 1.2 (blue dotted line),

1.3 (green continuous line), and 1.4 (purple dashed line), for the particular

orientation where n¼ 0.5, and l ¼ m ¼
ffiffiffiffiffiffiffi
1�l2

2

q
, taking X¼ 0.3, U¼ 0.1,

d¼ 0.8, and j¼ 3. Based on Eq. (15).

FIG. 16. The profile of a pulse, given

by Eq. (30) (left plot), and its corre-

sponding electric field (right plot), in

the X-Z plane at time s¼ 0 with m¼ 0,

l ¼ n ¼ 1=
ffiffiffi
2
p

, U¼ 1, k¼�0.5 and

taking X¼ 0.3, h¼ 1, d¼ 0.2, and

j¼ 10.
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FIG. 17. The profile of a pulse, given

by Eq. (30) (left plot), and its corre-

sponding electric field (right plot), in

the X-Z plane at time s¼ 0 with m¼ 0,

l ¼ n ¼ 1=
ffiffiffi
2
p

, U¼ 1, k¼�0.5 and

taking X¼ 0.3, h¼ 1, d¼ 0.2, and

j¼ 3.

FIG. 18. The profile of an explosive

pulse, given by Eq. (31) (left plot), and

its corresponding electric field (right

plot), in the X-Z plane at time s¼ 0

with m¼ 0, l ¼ n ¼ 1=
ffiffiffi
2
p

, U¼ 1,

k¼�0.5 and taking X¼ 0.3, h¼ 1,

d¼ 0.2, and j¼ 10.

FIG. 19. The profile of a pulse, given

by Eq. (31) (left plot), and its corre-

sponding electric field (right plot), in

the X-Z plane at time s¼ 0 with m¼ 0,

l ¼ n ¼ 1=
ffiffiffi
2
p

, U¼ 1, k¼�0.5 and

taking X¼ 0.3, h¼ 1, d¼ 0.2, and

j¼ 3.

FIG. 20. The profile of a train of well-

separated explosive periodic pulses,

given by Eq. (32) (left plot), and the

associated electric field (right plot), in

the X-Z plane at time s¼ 0 with m¼ 0,

ul ¼ n ¼ 1=
ffiffiffi
2
p

, k¼ 2, and taking

X¼ 0.3, h¼ 1, d¼ 0.2, and j¼ 10.

FIG. 21. The profile of a train of well-

separated explosive periodic pulses,

given by Eq. (32) (left plot), and the

associated electric field (right plot), in

the X-Z plane at time s¼ 0 with m¼ 0,

ul ¼ n ¼ 1=
ffiffiffi
2
p

, k¼ 2, and taking

X¼ 0.3, h¼ 1, d¼ 0.2, and j¼ 3.
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j) results in smaller, narrower pulses and more localized

electric fields. Note that for k ¼ �U=4B0, the solution recov-

ers the solitary wave solution of Eq. (15). The solution (31)

produces an inverted explosive pulse as shown in Figures 18

and 19. It can be seen that the effect of increasing superther-

mality (lower value of j) results in smaller, narrower pulses

and more localized electric fields.

The following inverted periodic solution (shown in Figures

20 and 21) is obtained using the same method, with k> 0:

w1 ¼
U � 8kB0

A0

� 12kB0

A0

tan2ð
ffiffiffi
k
p

fÞ: (32)

IX. CONCLUSION

Using a fluid model for ion acoustic waves in a magne-

tized plasma in the presence of background kappa-distributed

electrons and positrons, we have derived a linear dispersion

relation, and noted a steady decrease in frequency and phase

speed due to higher presence of positrons. The frequency in

both upper and lower modes is largely unaffected by tempera-

ture differences of up to 40% between electrons and positrons.

Through reductive perturbation analysis, we have

derived a Zakharov-Kuznetsov equation, modelling ion

acoustic solitary waves influenced by the magnetized plas-

ma’s nonlinearity and dispersion. Solving this equation using

the hyperbolic tangent method, we have found exact analyti-

cal expressions for solitary waves. On investigation of the

stability of this solution, we have seen that to first order,

there is instability up to a critical angle of motion, bcr, and to

second order, the solution is unstable for all motion.

A parametric analysis of this solution gives insight into

the dependence of the soliton solution on positron concentra-

tion. As the positron concentration increases, the solitary

wave structures become smaller and narrower. In plasmas

with both high and low concentrations of positrons, in condi-

tions of higher superthermality, the dispersive terms of the

ZK equation are suppressed, solitary waves have smaller

potential amplitudes and narrower widths. The soliton ampli-

tude and width are largely unaffected by a small temperature

differential between the electrons and positrons.

Other solutions of the ZK equation have also been inves-

tigated, producing solitary and explosive pulse solutions, and

periodic solutions.
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APPENDIX A: TRANSFORM OF ZK EQ. (13) TO
EQ. (18)

Equation (13) is given by

@/1

@T
þ A/1

@/1

@Z
þ B

@3/1

@Z3
þ C

@

@Z

@2/1

@X2
þ @

2/1

@Y2

� �
¼ 0:

We make the following transformations:

/1 ! /0/
0; T ! T0t0; X; Y ! L?x0; L?y0; Z ! Lkz

0:

Substituting these values into Eq. (13), and adapting the

notation so that subscripts denote partial differentiation

gives

/0

T0

@t0/
0 þ A

/2
0

Lk
/0@z0/

0 þ B
/0

L3
k
@z0z0z0/

0

þC
/0

LkL
2
?
@z0@x0x0 þ @z0@y0y0
� �

/0 ¼ 0:

We multiply across by T0=/0, and cancel primes for simplic-

ity to get

@t/þ
A/0T0

Lk
/@z/þ

BT0

L3
k
@zzz/

þ CT0

LkL
2
?
@z@xx þ @z@yy

� �
/ ¼ 0:

Now we set
A/0T0

Lk
¼ BT0

L3
k
¼ CT0

LkL
2
?
¼ 1, and this requires that

L? ¼ LkðC=BÞ1=2; T0 ¼
L3
k

B ; /0 ¼ B
L2
kA

. (Note that if we chose

to take Lk¼ 1, we would find T0 ¼ 1
B ; /0 ¼ B

A, and

L? ¼ C
B

� �1=2
.) This results in the following expression:

@t/þ /@z/þ @zð@xx þ @yy þ @zzÞ/ ¼ 0:

We observe that the magnetic field dependence has

been “hidden” in the perpendicular length scale (recalling

that L? � C
B

� �1=2 ¼ 1þ 1=X2
� �1=2

). Then, by setting z ! x,

and permutating y and x accordingly we recover Eq. (18).

If we also formally set /! n, we retrieve Eq. (1.1) from

Ref. 55

@tnþ n@xnþr2@xn ¼ 0: (A1)

APPENDIX B: FROM THE CANONICAL FORM
(BY ALLEN AND ROWLANDS55) BACK

From Appendix A, the following scaling to convert to

the Allen and Rowlands55 variables has been used:

Z! Lkx, where Lk 2 < is arbitrary;

X; Y ! L?y; L?z, where L? ¼ Lk
C
B

� �1=2
;

/! /0
�/, where /0 ¼ B

L2
kA

;

T! T0t, where T0 ¼
L3
k

B .

Working in reverse, using Eq. (1.1) of Ref. 55 as our

starting point (with �/ ¼ n therein), we recover precisely our

Eq. (13) upon setting: x! Z
Lk
; y; z! X

L?
; Y

L?
; �/ ! /

/0
; t! T

T0
.

We also note that the k, c1 and c2 variables in Eqs. (22)

and (23) revert, respectively, to k! kL? ¼ kLk
C
B

� �1=2
;

c1 ! c1T0 ¼ c1

L3
k

B ; c2 ! c2T0 ¼ c2

L3
k

B :
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