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ABSTRACT:

We investigate the advantages of using what we call sensor state parameters or sensor state to describe the geometrical relationship
between a sensor and the 3D space or the 4D time-space that extend the traditional image pose or orientation (position and attitude) to
the image state. In our concept, at some point in time t, the sensor state is a 12-dimensional vector composed of four 3-dimensional
subvectors p(t), v(t), γ(t) and ω(t). Roughly speaking, p(t) is the sensor’s position, v(t) its linear velocity, γ(t) its attitude and ω(t)
its angular velocity. It is clear that the state concept extends the pose or orientation ones and attempts to describe both a sensor’s statics
(p(t),γ(t)) and dynamics (v(t),ω(t)). It is also clear that if p(t), γ(t) are known for all t within some time interval of interest, then
v(t) and ω(t) can be derived from the former.
We present three methods to compute the state parameters, two for the continuous case and one for the discrete case. The first two
methods rely on the availability of inertial measurements and their derived time-Position-Velocity-Attitude (tPVA) trajectories. The first
method extends the INS mechanization equations and the second method derives the IMU angular velocities from INS mechanization
equations’ output data. The third method derives lineal and angular velocities from relative orientation parameters.
We illustrate how sensor states can be applied to solve practical problems. For this purpose we have selected three cases: multi-sensor
synchronization calibration, correction of image motion blur (translational and rotational) and accurate orientation of images acquired
with focal-plane shutters.

1 INTRODUCTION AND MOTIVATION

For many years, sensor position and attitude parameters —orient-
ation parameters— have served well the needs of photogram-
metry, remote sensing and their sister and customer disciplines;
i.e., the traditional 3D reconstruction tasks with traditional sen-
sors can be performed with them. However, in recent times, the
complexity and variety of photogrammetric and remote sensing
tasks as well as the variety of sensing devices has blossomed.
The cost of the sensing devices in use —including but not lim-
ited to cameras— ranges from a few hundred to a million euros
(C). Sensing techniques have diversified from film cameras to
digital ones (including multispectral and hyperspectral frequency
bands), to LiDAR and radar. In addition to geometric 3D scene
reconstruction (a genuine photogrammetric task) and to terrain
classification (a genuine remote sensing tasks), images are re-
stored, integrated with other images, geometrically and radio-
metrically calibrated, time aligned to a common time reference
frame, and processed in many other ways. For this purpose, it is
many times convenient to know the sensor’s velocity or the ratio
of change of its attitude matrix.

In this paper we explore the convenience, advantages and dis-
advantages of using what we call “sensor state parameters” —
“camera state parameters” when appropriate— to describe the ge-
ometrical relationship between a sensor and the 3D space or the
4D time-space. In our concept, at some point in time t, the sensor
state is a 12-dimensional vector composed of four 3-dimensional
subvectors p(t), v(t), γ(t) and ω(t). Roughly speaking, p(t) is
the sensor’s position, v(t) its linear velocity, γ(t) its attitude and
ω(t) its angular velocity. It is clear that the “state” concept ex-
tends the “pose” or “orientation” ones and attempts to describe
both a sensor’s statics (p(t),γ(t)) and dynamics (v(t),ω(t)). It is
also clear that if p(t), γ(t) are known for all t within some time

interval of interest, then v(t) and ω(t) can be derived from the
former. However, this is not always the case, as it is inconvenient
to keep the camera trajectory {p(t), γ(t)}t and make it available
to potential users.

First, we propose a modification of the INS mechanization equa-
tions to include the angular velocity as an unknown state. Sec-
ond, we describe a post-processing method where measured an-
gular rates are corrected with the angular rate sensors estimated
systematic errors. Last, we derive sensor linear and angular ve-
locities from relative orientation parameters.

Three theoretical cases will be presented: multi-sensor synchro-
nization calibration, correction of image motion blur (transla-
tional and rotational) and accurate orientation of images acquired
with focal-plane shutters.

In the multi-sensor synchronization calibration, i.e., in the esti-
mation of time delays between the instrumental time coordinate
reference frames (CRFs) of the various sensors of a system, we
will build upon our own results where we used the knowledge of
p(t), v(t), γ(t) and ω(t) for the estimation of the δtji between the
CRFs of instruments i and j. We claim, that using the 12 state
parameters makes the use of the aerial control models in our ex-
tended aerial control models straightforward and, therefore, the
knowledge of the state parameters and their covariance matrices
becomes a big advantage.

In image translational and rotational motion deblurring, we build
upon the technique presented by N. Joshi in 2010. N. Joshi used,
for the first time, inertial measurement units for dense, per-pixel
spatially-varying image deblurring. In our proposal their method
can be further simplified because we propose to use INS/GNSS
integrated results and not only INS results, thus avoiding their
smart, though complex, INS drift correction.
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In the orientation of images acquired with cameras whose shutter
is of the focal-plane type, we propose a new orientation model
that extends the classical colinearity equations and that takes into
account that, although all image rows are exposed during a time
interval of the same length, not all rows are exposed with the same
central time. For this purpose, the twelve image state parameters
are used to derive more accurate orientation parameters for each
image row.

The core of the paper is organized in four sections, 2 to 5: in-
troduction of the sensor state parameters (section 2; with frame,
notation and naming conventions in section 2.1 and with the def-
inition of sensor states in 2.2); mathematical structure of pose
and state parameters (section 3); their computation (section 4);
and some of their applications (section 5; to image deblurring in
section 5.1, to multi-sensor system synchronization in section 5.2
and to orientation and calibration of low-cost and amateur cam-
eras in section 5.3).

2 SENSOR STATE PARAMETERS

2.1 Reference frames, notation and naming conventions

We begin by describing the coordinate systems and reference
frames —i.e., coordinate reference frames (CRF) or just frames—
of our models.

For the object frame we have selected the local [terrestrial] geode-
tic cartesian frame parameterized by the east (e), north (n) and up
(u) coordinates. This type of frame will be denoted by l. c will
be camera or imaging instrument frame and b the inertial mea-
surement unit (IMU) frame. When mounted on a vehicle, we will
assume that both c and b are defined following the (forward-left-
up) convention.

In the equations we will use superscripts to indicate the frame
of vectors like in pl or vl; superscripts and subscripts to indicate
the “to” and “from” frames, respectively, of rotation matrices and
their angular parametrization like in R(γ)lc or γl

c; superscripts
and double subscripts like in Ω(ω)clc or γc

lc to indicate the angular
velocity matrix or vector of the frame c with respect to the frame
lmeasured in the frame c. Time dependency, also for frames, will
be written as usually like in pl(t), γc

lc(t) or xc(t).

As usual, the superscript T will indicate transpose of a vector or
matrix. If clear from the context, in order to simplify notation and
facilitate lecture, we will avoid its use and write (e, n, u) instead
of the formally correct (e, n, u)T .

Last, if a rotation or angular velocity matrix is parametrized by
angles γl

c and ωc
lc respectively, we will write R(γ)lc and Ω(ω)clc

and neither R(γl
c) nor Ω(ωc

lc). Time dependency of these matri-
ces will be written R(γ)lc(t) and Ω(ω)clc(t).

2.2 The concept of sensor state

We define slc the state of a sensing instrument or, simply, the
sensor state or sensor state parameters as the duodecuple —the
quadruple of triples—

slc = ( pl, vl, γl
c, ω

c
lc ) (1)

where pl = (e, n, u)l, vl = (ve, vn, vu)l, γl
c = (ω, ϕ, κ)lc and

ωc
lc = (ωx, ωy, ωz)clc. pl is the position vector of the origin of

the instrumental CRF in the l frame and vl its velocity vector.
γl
c is a parametrization of R(γ)lc, the rotation matrix from c to l

—the sensor attitude matrix— and ωc
lc is the vector of instanta-

neous angular velocities of the c frame with respect to the l frame,

referred to the c frame. ωc
lc can be also seen as a parameteriza-

tion of the angular velocity skew-symmetric matrix Ω(ω)clc —the
sensor angular velocity matrix—

Ω(ω)clc =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .
We will write W (n) to denote the set of all real skew-symmetric
n× nmatrices. Following the notation conventions of section 2.1
in the sequel we will write R(γ)lc and Ω(ω)clc for the rotation
and angular velocity matrices respectively. Last, when it is clear
from the context we will write the sensor state defined in 1 as
(p, v, γ, ω), (p, v, R(γ),Ω(ω)) or, simply, (p, v,R,Ω).

Clearly, the sensor state parameters (p, v, γ, ω) generalize and in-
clude the sensor pose or exterior orientation parameters (p, γ). If
they are time dependent differentiable functions they are related
as follows

ṗl = vl, Ṙ(γ)lc = R(γ)lcΩ(ω)clc. (2)

We borrowed the term “state” from mechanics and navigation.

3 MATHEMATICAL STRUCTURE OF POSE AND
STATE PARAMETERS

The sensor’s pose or exterior orientation parameters pl and γl
c —

strictly speaking plc and γl
c— describe the translation and rotation

of the sensing instrument 3D reference frame c with respect to a
world or object 3D reference frame l. In other words, (pl, γl

c)
represent a rigid body transformation in <3 from xc in xl

xl = R(γ)lc x
c + pl. (3)

In the mathematical abstraction, the set of affine maps ϕ of <3,
ϕ(x) = Rx+ p, where R ∈ SO(3) and p ∈ <3 with the binary
operator · defined as

(ϕ2 · ϕ1)(x) = ϕ2(ϕ1(x))

is the group of rigid motions SE(3), the Special Euclidean group
of <3. We recall that SO(3) is the Special Orthogonal group of
<3 —i.e., the group of rotation matrices in <3— and that SE(3)
is a semidirect product of SO(3) and <3, SE(3) = SO(3)o<3

(Gallier, 2011).

Let us now assume that the sensor moves; i.e., that the reference
frame c is a function of time c(t) and that the reference frame l
remains static. Then, it holds[
xl(t)
ẋl(t)

]
=

[
R(γ)lc(t) x

c(t) + plc(t)
R(γ)lc(t)Ω

c(t)

l c(t) x
c(t) +R(γ)lc(t) ẋ

c(t) + ṗlc(t)

]

Let us also assume now that xc(t) does not move with respect to
the c(t) instrumental reference frame; i.e., ẋc(t) = 0. In this case[

xl(t)
ẋl(t)

]
=

[
R(γ)lc(t) x

c(t) + plc(t)
R(γ)lc(t)Ω

c(t)

l c(t) x
c(t) + vlc(t)

]

since R(γ)lc(t) ẋ
c(t) = 0. Thus, the dynamics (xl(t), ẋl(t)) in l

of a point xc(t), static with respect to the instrumental reference
frame c(t), can be derived from p(t), v(t), γ(t) and ω(t). There-
fore, p(t), v(t), γ(t) and ω(t) characterize the dynamics of the
instrument.
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4 COMPUTATION OF SENSOR STATES

In this section we present two approaches to estimate the sensor
state parameters; one based on the measurements and/or results
of INS/GNSS integration and one based on the relative orienta-
tion and angular velocities between consecutive images of image
sequences.

4.1 States from inertial and GNSS measurements

Sensors states can be computed in a number of ways. Since the
beginning of the nineteen nineties integrated INS/GNSS systems
(Schwarz et al., 1993) have been used to directly estimate or to in-
directly contribute to the estimation of the orientation parameters
of imaging instruments. In the latter case the estimation method
is known as Integrated Sensor Orientation (ISO) and in the for-
mer as Direct Georeferencing (DG) or Direct Sensor Orientation
(DiSO). When neither INS/GNSS nor GNSS aerial control ob-
servations are available (or of sufficient precision and accuracy)
sensor orientation has to resort to the old Aerial Triangulation
(AT) or Indirect Sensor Orientation (InSO).

INS/GNSS systems provide high-frequency —typically, from 50
to 1000 Hz— time-Position-Velocity (tPVA) trajectory solutions
that, as indicated, have been used for DiSO or ISO orientation
in P&RS. As already pointed in (Blázquez, 2008), the velocity
information of INS/GNSS-derived trajectories has not been fully
exploited. The tPVA trajectories can be easily transformed into
imaging instruments orientation parameters and velocity param-
eters by propagating them through lever arms (spatial shifts) and
rotation matrices (angular shifts, also known as boresight angles)
into a part of the state parameters slc, namely the nine components
(pl, vl, γl

c). However, for the purposes of this article, the imaging
instrument angular velocities ωc

lc are still missing.

The tPVA INS/GNSS-derived trajectories result from the [numer-
ical] integration of the inertial [stochastic differential] equations
of motion also known as inertial mechanization equations (Jekeli,
2001, Titterton and Weston, 2004). These stochastic differential
equations (SDE) generate the corresponding stochastic dynami-
cal system (SDS) that, together with external static [update] mea-
surements can be processed with a Kalman filtering and smooth-
ing strategy. GNSS carrier phase measurements or their derived
positions are the usual update measurements. In other words,
INS/GNSS integration as usual with an augmented state vector
with the inertial measurement unit (IMU) error states and, possi-
bly, other error modeling states. If we take into account that

Ω(ω)clc = Rc
b · (Ω(ω)blb + Ω(ω)bbc) ·Rb

c = Rc
b · Ω(ω)blb ·Rb

c

where b is the coordinate reference frame (CRF) of the inertial
measurement unit, our problem would be solved if we were able
to estimate ωb

lb in or from the Kalman filter and smoother.

In order to do so, we can use the IMU angular rate raw measure-
ments and correct them according to the IMU angular rate cali-
bration model and states. Or we can introduce a new [3D vector]
state in the KFS for ωb

lb. There are advantages and disadvan-
tages to each approach. In the latter approach, the extension of
the KFS state vector with ωb

lb requires a dynamical model for ωb
lb

be it through the trivial random walk model ω̇b
lb = 0 + w with

a large variance for w and then use the IMU angular rate mea-
surements as update measurements. This would introduce update
steps at the frequency of the IMU measurements which is com-
putationally expensive and not recommended for the numerical
integration algorithms. However the solution trajectory is con-
ceptually “clean” and the state covariance matrices are directly

available from the trajectory solution. The former approach, al-
though less rigorous in principle, requires no modification of the
INS/GNSS software which, for the P&RS community is more at-
tractive and, in general, has less impact in the existing installed
software base and production lines.

4.2 States from orientation parameters

In the previous section we have described how to determine the
sensor state parameters from INS/GNSS systems. In general we
favor this approach: INS/GNSS integration delivers an [almost]
drift-free and [sufficient] high frequency trajectory from where
sensor states can be interpolated. Of course, “almost” and “suf-
ficient” are context dependent attributes. However, there may be
situations where dense trajectory information is not available and,
still, where sensor state parameters are required. In the case of
image sequences like video images or photogrammetric blocks, a
sensor’s state parameters can easily be derived from its own and
neighboring exterior orientation parameters if the latter are time
tagged. Let us assume then the sequence {olc(ti)}i of exterior
orientation parameters

olc(ti) = ( pl(ti), γ
l
c(ti) ). (4)

vl(ti) can be derived from pl(ti) by standard numerical differen-
tiation. ωl

c(tk) can be derived from the series {γl
c(ti)}i by, for

instance, computing the relative attitude matrix Rk
k−1

Rk
k−1 = R(γl

c(tk))R(γl
c(tk−1))−1 (5)

and noting that the matrix logarithm of a rotation matrix is a skew
symmetric matrix (Higham, 2008)

(tk − tk−1) · Ωk
k−1,k = logRk

k−1. (6)

Last, Ωk
k−1,k can be transformed into Ω(ω)klk by

Ω(ω)klk = Rk
k−1Ωk−1

l,k−1R
k−1
k + Ωk

k−1,k (7)

which defines a recursive relation that can be exploited in the con-
text of an extended bundle adjustment from starting and ending
non-rotating instruments.

5 SOME APPLICATIONS

5.1 Image deblurring

Motion blurring occurs when, during the time exposure of an im-
age, either the image moves, or imaged objects move or both.
Motion blur becomes apparent for combinations of relatively long
exposure times and/or rapid motions. The problem is well known
in photogrammetry and traditionally solved with [mechanical]
forward motion compensation (FMC) techniques under the as-
sumption of dominant translational and negligible rotational mo-
tion effects. FMC systems add complexity —therefore cost—
to the image acquisition systems and, sometimes, like in UAS
photogrammetry, they also add non carriable critical additional
weight. (The topic of motion blur in UAS photogrammetry has
been recently addressed in (Sieberth et al., 2013).) Image deblur-
ring is an area of growing interest.

An observed blurred imageB can be thought as an ideal, original,
unblurred image L —the latent image— that has been degraded
by motion. It is customary to model this image degradation as

B + v = L⊗ k (8)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W1, 2014
EuroCOW 2014, the European Calibration and Orientation Workshop, 12-14 February 2014, Castelldefels, Spain

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W1-33-2014

35



where v is positive additive noise and k is a convolution kernel
that translates the camera/object 3D motion into 2D image “mo-
tion” that, in imaging terms, can be interpreted as a point spread
function (PSF). k is also known as the blur function. Image de-
blurring is the process of recovering L from known B, known v
and, known or unknown, k. Image deblurring is a deconvolution
problem. If the blur function k is known, L can be recovered
with a non-blind deconvolution method. However, for images
with just orientation parameters (pl(t), γl

c(t)), k is unknown and
must be recovered together with L with a blind-deconvolution
method. Blind deconvolution is an ill-posed problem, as the ob-
served blurred image B contributes insufficient measurements.
If the camera trajectory {pl(t), vl(t), γl

c(t), ω
c
lc(t)}t and the im-

aged object are known, k can be unambiguously determined. Ac-
cording to this, in P&RS, depending on the phase of the map
production line, k can be determined. Moreover, considering the
short exposure times and long distances camera-object, k can be
approximated with just the knowledge of the image state param-
eters at the central exposure time t,

(
pl(t), vl(t), γl

c(t), ω
c
lc(t)

)
,

or of the state parameters and the average height above ground.

For known k, the Lucy-Richardson iterative deconvolution me-
thod, also known as the Richardson-Lucy algorithm (Lucy, 1974),
is usually applied. An example of a blind deconvolution algo-
rithm, for unknown or poorly determined k can be found in (Lam
and Goodman, 2000). Blind deconvolution is more complex and
inefficient that non-blind deconvolution and therefore, consider-
able research has been devoted to estimate or measure, in one
way or another, camera/image motion parameters. In (Lelégard
et al., 2012) a method without the knowledge of the motion pa-
rameters is presented although the use of inertial measurements
is suggested as an alternative. In (Shah and Schickler, 2012) rota-
tional motion is extracted from single images by means of trans-
parency cues of blurred objects in the image. In (Joshi et al.,
2010) translation and rotational motion is derived from inertial
measurements and, from those, an aided blind deconvolution al-
gorithm is proposed.

Since exposure times in aerial photography are short, the use of
the image state parameters shall be sufficient to characterize the
dynamics of the image during the exposure time interval.

The (Joshi et al., 2010) approach can be simplified if, instead of
a free INS trajectory solution, a driftless INS/GNSS or any other
driftless trajectory is used; i.e., the blur function kernel k can
easily be computed.

5.2 Sensor space-time calibration

In (Blázquez, 2008) and (Blázquez and Colomina, 2012) we pre-
sented a concept and the corresponding mathematical models for
four dimensional space-time calibration of multi-sensor P&RS
data acquisition systems as an extension of the integrated sensor
orientation method. The key idea behind the concept was that
INS/GNSS-derived linear and angular velocity parameters can
be used to link synchronization errors to spatial errors. In this
way, spatial control information —aerial or terrestrial— and an
appropriate block geometry allow for simultaneous sensor cali-
bration, synchronization error correction (time calibration) and
even GNSS-related shift parameter estimation. The mathemati-
cal models are not reproduced here and the reader is referred to
the mentioned references for details.

5.3 Orientation of low-cost and amateur cameras

It is often the case, that mass-market small-format cameras are
used for mapping professional applications not only because of

?
r

-c

image
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Figure 1: Focal-plane shutter parameters.

their low cost but also because of their low weight, relative high
resolution —currently, up to 25 Mpx,— excellent optics and, in
general, high performance-to-price ratio. The exposure time e of
many, if not most, of these cameras is controlled by a focal-plane
shutter located in front of the image sensor near the camera focal
plane. Focal-plane shutters move a window aperture to uncover
the image sensor in such a way that every pixel is exposed to light
during a time interval of length e. Thus, if t is the image central
exposure time, not all pixels or row of pixels (line) are exposed
during the time interval [t− e/2, t+ e/2]. Instead, the actual
exposure time interval T (l) of a line l is

T (l) = [t+ ∆t(l)− e/2, t+ ∆t(l) + e/2]

where e = E/v, ∆t(l) = (l−n/2)/v,E is the width (height) of
the shutter sliding window, n is the row size (height) of the image
sensor and v is the moving speed of the window. We will say that
the central exposure time of line l or, simply, the exposure time
t(l) of line l is t(l) = t + ∆t(l). Figure 1 depicts a simplified
focal-plane shutter concept and relates it to the parameters E, n
and v. For instance, for a a Sony NEX-7 camera with exposure
time intervals of 1/4000 s, v ≈ 35 m/s.

In the above formulas we have used a (row, column) coordinate
system whose origin is in the (up, left) image corner, where rows
(lines) and columns are numbered 0, 1, . . . top-to-down and left-
to-right respectively, and where the shutter window moves top-
to-down. We used the traditional photogrammetric (x, y) PPS-
centered coordinate system, then

T (y) = [t+ ∆t(y)− e/2, t+ ∆t(y) + e/2]

where ∆t(y) = −y/v, and where e, E, n, v have to be given in
the appropriate physical units. Analogously, we will say that the
central exposure time, or exposure time, t(y) of line y is t(y) =
t+ ∆t(y).

For the sake of clarity we will now neglect image distortions and
atmospheric refraction. If the image state is

(
pl, vl, γl

c, ω
l
lc

)
and

a ground point xl is projected into the image point (x, y), then
we can write the classical colinearity condition

xl = pl(x, y) + µ ·Rl
c(x, y)

 x
y
−f

c

(9)

where µ > 0 and

pl(x, y) = pl + ∆t(y) · vl,
Rl

c(x, y) = Rl
c · (I + ∆t(y) ·R(ω)clc) .

(10)

The above equations 9 and 10 are rigorous models for focal-
plane shutter cameras that take into account the non-simultaneous
imaging effect of their shutter mechanism. Similar to the geome-
try of pushbroom cameras, if

(
pl, vl, γl

c, ω
l
lc

)
are known, image-

to-ground —in general, image-to-object— transformations are
straightforward. On the contrary, object-to-image transforma-
tions may involve iterative —simple and fast, though— algo-
rithms.
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6 CONCLUSIONS

We have explored the extension of camera exterior orientation or
pose parameters (position and attitude) to what we call camera or
image state parameters (position, velocity, attitude and attitude
rates). The state parameters capture the dynamics of the camera.

We have shown the advantages of the state parameters over the
orientation parameters with three examples: image deblurring,
spatio-temporal calibration of imaging instruments and orienta-
tion of low-cost amateur cameras with focal-plane shutters. In the
three cases, the state parameters, as we have formulated them, ap-
pear in a natural and independent way when trying to cope with
some problems caused and/or related to the sensing instrument
motion.

We plan to further investigate the mathematical structure of the
state parameters in the <3×<3×SO(3)×W (3) space and the
estimation of angular velocity states in the INS/GNSS Kalman
filter and smoother. We also plan to experimentally asses the
practical usefulness of the proposed methods for image deblur-
ring and orientation of focal-plane shutter camera images.
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