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ABSTRACT: 

The automatic alignment of 3D point clouds acquired or generated from different sensors is a challenging problem. The objective of 
the alignment is to estimate the 3D similarity transformation parameters, including a global scale factor, 3 rotations and 3 
translations. To do so, corresponding anchor features are required in both data sets. There are two main types of alignment: i) Coarse 
alignment and ii) Refined Alignment. Coarse alignment issues include lack of any prior knowledge of the respective coordinate 
systems for a source and target point cloud pair and the difficulty to extract and match corresponding control features (e.g., points, 
lines or planes) co-located on both point cloud pairs to be aligned. With the increasing use of UAVs, there is a need to automatically 
co-register their generated point cloud-based digital surface models with those from other data acquisition systems such as terrestrial 
or airborne lidar point clouds. This works presents a comparative study of two independent feature matching techniques for 
addressing 3D conformal point cloud alignment of UAV and lidar data in different 3D coordinate systems without any prior 
knowledge of the seven transformation parameters. 

* Corresponding author 

1. INTRODUCTION

Co-registration is the process of aligning multiple shapes in a 
common coordinate system. It is typically applied to 
overlapping vector datasets, pairs of 2D images or 3D point 
cloud models. This work concentrates on addressing the latter 
issue of automated 3D point cloud co-registration. There are 
two types of alignment problems: refinement-based and coarse 
(Figure 1). This work explores two different approaches for 
coarse alignment. Both methods follow an automated feature 
matching workflow, including feature detection, feature 
attribute generation and feature correspondence. However, they 
are performed in different feature spaces, that is, one approach 
is 3D based whereas the other approach is 2D based. The 3D 
based method extracts 3D ‘anchor’ (or ‘key’) points (i.e., 
distinct points of interest) using local surface curvature cues. 
Feature description of these anchor points takes into account 
two local neighbourhood attributes: geodesic surface distance 
and surface slope. The 2D based method first generates a height 
image and 2D anchor points are extracted using a scale-space 
wavelet approach. This is followed by 2D feature description 
achieved using a combination of the log polar transformation 
and local Gabor wavelets. Both the 2D and 3D based methods 
are scale, rotation and translation invariant. Optimal anchor 
point correspondences are determined by evaluating their 
descriptor similarity. The matched anchor points in the source 
and target datasets are then used to estimate the seven 
conformal transformation parameters. 

The primary objective of this work is to evaluate the co-
registration performance of each of the two methods on point 

Figure 1. Distinction amongst various 3D point cloud alignment 
(co-registration) approaches (this work concentrates on the 

framework marked by the dashed outline). 

cloud datasets with varying properties related to the sensor 
types and the point cloud characteristics. Different sensor types 
are employed because these introduce additional challenges for 
the feature correspondence process (Figure 2).  

3D point clouds can have varying characteristics and be 
represented in various ways. They can be represented in 3D or 
2D formats such as: i) the default, raw 3D points, or as ii) 
interpolated, 2D height (or depth) map raster images. As shown 
in Figure 3, source and target point cloud datasets can also 
differ in terms of characteristics such as: i) point density (for  
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example, dense versus sparse point spacing), ii) point 
distribution (for example, regular, gridded points versus 
irregular, non-gridded points), and iii) missing point data (i.e., 
data gaps/holes), possibly caused by occlusions or by different 
sensor viewpoint perspectives during data acquisition. To 
handle these different cases (i.e., differences in data 
representation and characteristics) two novel, independent 
approaches for the automatic co-registration of point clouds are 
explored and presented.  

 

Figure 3. Example of two point cloud datasets from different 
sensors (left: UAV, right: Mobile laser scanner) with varying 

point characteristics such as different point density, point 
distribution and point details. 

Although both of the proposed approaches adopt a similar 
feature matching workflow (Figure 4), their inherent individual 
components are unique, i.e., the techniques used for keypoint 
extraction, keypoint descriptor formation, and keypoint 
matching are different. This stems from the two different ways 
in which the point clouds can be represented, i.e., either as 3D 
points or as interpolated, height map raster images. For the first 
proposed approach, feature matching is performed entirely in 
the original 3D point cloud spaces, whilst in the second method;  

 

the feature matching process is applied to the planimetric, 
height map projections (i.e., 2D image representation) of the 3D 
point clouds. For the latter, even though feature matching is 
performed in the 2D domain, the resulting matched points also 
have an associated (‘Z’) or depth component, thereby 
facilitating 3D to 3D co-registration. 

2. RELATED WORKS

Co-registration of 3D point clouds can be achieved using 
different types of approaches. Alignment can be achieved using 
descriptor and non-descriptor-based matching workflows. The 
descriptor-based approaches include the use of the 2D and the 
raw 3D representations of 3D point cloud datasets. Feature 
matching can be used to obtain keypoint correspondences 
required for 3D point cloud co-registration using 2D images 
(i.e., point clouds represented as intensity images or depth 
images).  

In terms of descriptor-based approaches, (applicable to both the 
3D descriptor-based, as well as the 2D image-based categories) 
there are three main stages involved: i) extraction of keypoints 
(2D or 3D), ii) formation of keypoint descriptors and iii) 
correspondence determination based on similar keypoint 
descriptors. Keypoint detectors can be regarded either as: i) a 
fixed scale detector, where the user has to define a local 
neighbourhood around a query point to check if it can 
established as a keypoint, or ii) a scale-invariant detector, where 
the local scale (i.e., local neighbourhood of interest) around a 
keypoint is automatically defined by the algorithm. This local 
neighbourhood region is then used to define keypoint attributes 
(or descriptor). 

Common feature detectors and descriptors typically applied for 
image matching include the SIFT (Lowe, 2004) and SURF (Bay 
et al., 2008) feature detectors and descriptors. For instance, 
Weinmann and Jutzi (2011) use both range and reflectance 
image-based information for determining SIFT correspondences 
to match terrestrial laser point cloud scans. However, a large 
quantity of work is also in the area of 3D-based detectors and 
descriptors for point cloud alignment. 3D keypoint detectors 
and descriptors can be categorized into either surface geometry-
based or volumetric-based algorithms. The difference of these 
two categories is based on 3D point cloud representation, i.e., 

Figure 2. Illustration of the co-registration problem for 3D point cloud datasets from multiple sensors. 
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either as raw 3D point clouds (in the case of the geometry-based 
methods) or as voxelized grids (in the case of volumetric-based 
methods). Surface geometry-based detectors include Intrinsic 
Shape Signatures (ISS, Zhong, 2009), mesh-DoG (Zaharescu et 
al., 2009) and Harris 3D (Sipiran and Bustos, 2011). ISS is a 
fixed scale detector. ISS uses the ratios of the eigenvalues of the 
local neighbourhood to determine surface variation. Points with 
large surface variations are marked as keypoints. The mesh-
DoG and Harris 3D detectors operate on mesh representations 
of the point clouds. 

Figure 4. Illustration of the feature matching pipeline used for 
3D point cloud alignment. The input data for this workflow can 
be the raw 3D points or height map image representations of the 

point clouds. 

The mesh-DoG is scale-invariant, using a ‘Difference-of-
Gaussian’ approach (i.e., smoothing the data with Gaussian 
kernels of differing standard deviations) for scale-space 
representation. For mesh-DoG, the ratios of eigenvalues from 
the local mesh neighbourhood are used for keypoint definition. 
Harris 3D is not a scale-invariant detector. It fits a local surface 
quadratic patch to the point data and computes the so-called 
‘Harris-response’ (Harris and Stephens, 1988) for each mesh 
vertex. Query vertices with large responses are classified as 
keypoints.  

There has also been various surface geometry 3D point cloud 
descriptors developed over the years. Some of these include 
Spin Images (Johnson and Hebert, 1999), Fast Point Feature 
Histograms (FPFH) (Rusu et al., 2009) and Signature of 
Histograms of Orientations (SHOT) (Tombari et al., 2010). For 
Spin Images, every point within the local keypoint 
neighbourhood are assigned two coordinates, α and β; α is the 
distance from the keypoint to the projection of the 
neighbourhood point on the local surface tangent plane. β is the 
distance from the neighbourhood point to the local tangent 
plane. For every point in the local neighbourhood, these pair of 
coordinates is accumulated into a 2D array, thus forming the 
descriptor. FPFH is a histogram-based descriptor which bins 
three angular attributes defined by the relation between every 

neighbourhood point and the keypoint. SHOT is also a 
histogram-based descriptor which defines a spherical 
neighbourhood around the keypoint. This spherical 
neighbourhood is then partitioned into spherical grid sectors. 
For each grid sector, the angles between the normals at the 
neighbouring points and the normal at the keypoint are 
accumulated into a local histogram. The local histograms of all 
grid sectors are then concatenated to form the SHOT descriptor.  

There are also volume-based methods which utilize 3D voxel 
representations instead of direct point cloud data for keypoint 
detection and keypoint description. These include a 3D 
extension of the 2D SIFT method (Lowe, 2004). The 3D-SIFT 
keypoint detector (Filipe and Alexandre, 2014) is scale-
invariant and utilizes a ‘Difference-of-Gaussian’ scale-space 
approach, where a series of downsampling / smoothing is 
applied to the point data to determine keypoints and their 
respective local scales. There is also volumetric 3D-SIFT 
descriptors (Flitton et al., 2013) which are based on gradient 
histogram attributes of the voxel grids. 

Non-descriptor 3D point cloud co-registration methods include 
methods such as principal component analysis (PCA), which 
can be usefully applied given that there is complete overlapping 
coverage for the pairwise point clouds to be aligned. Recently, 
the 4-Points Congruent Sets (4PCS) (Aiger et al., 2008) has 
also been popularly applied for 3D point cloud surface 
alignment. It utilizes geometric, affine-invariance ratios to 
extract co-planar, congruent points on the source and target 
shape which are then used for aligning the datasets. 

3. METHOD

We compare two methods for 3D point cloud alignment. The 
first approach (Persad and Armenakis, 2017a) uses the raw 3D 
point clouds for 3D feature matching. The second approach 
(Persad and Armenakis, 2017b) uses height map projections of 
the point clouds for 2D feature matching. Both of the methods 
are invariant to scale, 3D rotation and 3D translation, i.e., they 
can be applied to co-register point cloud datasets in different 3D 
conformal coordinate systems. The methods are briefly 
summarized in this section. 

3.1 3D-based feature matching 

This method (Persad and Armenakis, 2017a) firstly detects 3D 
scale-invariant keypoints on point cloud surfaces. The detector 
follows a scale-space approach to estimate the local keypoint 
scales to be used for defining the descriptor regions. The scale-
space mechanism is based on the definition on multiple, 
concentric circular neighbourhoods around a keypoint candidate 
(Figure 5). For each concentric region, the surface curvature for 
the point is estimated using the local point clouds defined 
within the region. This procedure is repeated for a series of 
normalized radii values. A search is then performed to detect 
distinct maxima based on the set of curvature values. For the 
points with a strong maxima response, a further check is then 
applied to compare its curvature strength relative to its 
neighbouring point clouds. A keypoint is detected if the 
strength of the candidate keypoint is higher than its neighbours. 
Adaptive non-maxima suppression is also used to filter weak 
keypoints. 

The radii maxima determined during the keypoint stage is then 
used to define the region for generating the keypoint’s 3D 
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descriptor. Local surface morphological attributes are used to 
populate the keypoint’s descriptor space. In particular, the 
radial geodesic distance projecting from the keypoint to its 
neighbours, as well as the local surface slope around each of the 
neighbouring points are used. 3D rotation and translation 
invariance of the descriptor is achieved through the definition of 
a local reference frame. The keypoint neighbourhood is then 
transformed to this local system. Bipartite graph matching and a 
RANSAC-based outlier removal algorithm are then used to find 
one-to-one descriptor correspondence. 

Figure 5. Concept of the 3D scale-invariant keypoint detector. 

3.2 Height map-based feature matching 

This approach (Persad and Armenakis, 2017b) projects the 3D 
points onto a 2D image plane where raster-based interpolation 
is then applied. The resultant height map images are then 
subjected to a multi-scale wavelet-based keypoint detector. The 
detector uses a complex wavelet transform (Kingsbury, 1998) to 
identify salient keypoints across scale-space. 

Afterwards, 2D keypoint descriptors are computed. Compared 
to the 3D-based approach, the scale-invariance is achieved 
during the descriptor phase and not provided by the wavelet-
detector. Local log-polar sampled-gridding around the keypoint 
and mapping to log-polar space modelled any scale and rotation 
differences between source and target height maps. These 
differences are reflected as cyclic shifts in the log-polar 
descriptor space. For a fully-invariant representation, ‘Rapid-
transform’ (Reitboeck and Brody, 1969) was applied. Finally, 
bi-directional nearest neighbour matching in descriptor space 
and RANSAC-based outlier removal is employed for 
correspondence determination. 

4. EXPERIMENTS & RESULTS

4.1 Study area and datasets 

Two datasets were evaluated for co-registration. Dataset 1 
(shown in Figure 3) consists of UAV and mobile laser scanning 
point clouds. The UAV point cloud was obtained using 
Structure-from-Motion (SfM) from vertical imagery captured by 
a 19mm camera mounted on a Geo-X8000 UAV. Dataset 2 
(Figure 6) consists of UAV and airborne laser scanning point 
clouds. In the second case, the UAV platform was an Aeryon 
Scout and the photogrammetric point cloud was generated from 
oblique and nadir-looking imagery via SfM. 

4.2 Results 

Tables 1 and 2 show results achieved by the two approaches in 
terms of the number of determined correspondences, as well as 
alignment accuracy. Reference values were estimated by 
manually selecting 8 point correspondences and computing the 
parameters of the 3D conformal transformation. The alignment 
accuracy is reflected by Δs (which is the absolute difference in 
scale between the automatically estimated and the reference 
values), mean rotation error (MRE, which is the average 
absolute error of the 3 rotation angles) and mean translation 
error (MTE, which is the average absolute error of the 3 
translations).  

Figure 6. Illustration of the second dataset used for the co-
registration experiment. Top: Photogrammetric point clouds 
generated by SfM from UAV. Bottom: Airborne laser scanning 
point clouds. 

The 3D-based method did not recover any point matches for 
either case. This was due to the difference in point 
characteristics between the UAV and lidar datasets, including 
point density and point distribution. For example, in Dataset 2, 
the aerial lidar data had a lower point density than the UAV 
point clouds. The UAV point clouds were irregularly spaced 
and the aerial lidar was regularly spaced. Additionally, due to 
the different perspectives of the respective sensor during data 
acquisition, there were differences in point details (i.e., 
holes/gaps). For instance, in Dataset 1, the UAV point cloud 
included roof and wall structure details; while the mobile lidar 
data does not have any roof information. This resulted in 
unwanted dissimilarities between 3D descriptors at 
corresponding keypoint locations on the UAV and lidar 
datasets. The effect of missing points, and diverseness in point 
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characteristics were minimized when matching the height-map 
representations of the point clouds.  

Table 1. Results for 3D-based alignment 
Error measure Dataset 1 Dataset 2 

# source 
KPs/target KPs 

363/641 330/552 

# correct 
matches 

0 0 

Δs - - 
MRE (°) - - 

 MTE (m) - - 

Table 2. Results for Height-map based alignment 
Error measure Dataset 1 Dataset 2 

# source 
KPs/target KPs 

148/189 215/314 

# correct 
matches 

8 11 

Δs 0.080 0.010 
MRE (°) 0.207 0.300 

 MTE (m) 0.090 0.403 

5. CONCLUSIONS AND OUTLOOK

Two different 3D point cloud co-registration methods have been 
evaluated. Experimental analysis showed that the selection of 
using one co-registration method instead of the other depends 
strongly on the characteristics of the point cloud dataset. The 
height map-based method is a more ‘generalized’ 3D point 
cloud co-registration approach. That is, it is robust to datasets 
with different point densities and different point distributions 
since it provides a continuous form of coverage. Furthermore, 
the height map-based approach is able to co-register multi-
sensor datasets where there are missing point clouds (i.e., 
holes/gaps) due to data being collected from different viewing 
perspectives (e.g., Aerial and terrestrial point clouds). Future 
work will investigate approaches to improve the various 
components of the 3D-based co-registration approach, in an 
effort to remain robust to changes due to point cloud 
characteristics and sensor viewing perspectives. 
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