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Abstract
Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia
(CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic
regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1–CCN3
signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited
the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1
targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3
(rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05).
Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but
increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation
with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an
oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1–CCN3 signalling contributes
to the pathogenesis of CML.
 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Chronic myeloid leukaemia (CML) is a haematopoietic
stem cell (HSC) disorder characterized by the constitu-
tive expression of the fusion protein BCR-ABL kinase
[1]. Imatinib, the first tyrosine kinase inhibitor (TKI)
developed to inhibit BCR-ABL signalling, is used as
the front-line therapy for CML [2]. However, a signifi-
cant subset of CML patients do not respond to imatinib
because of intolerance or toxicity or due to drug resis-
tance, and a second-generation TKI is recommended
[3,4]. Also, the persistence of the residual BCR-ABL
clone even after therapy and its subsequent expansion
results in relapses [5]. TKIs can inhibit BCR-ABL
activity in CML stem cells but these cells are not
addicted to BCR-ABL and BCR-ABL inhibition does
not eradicate the leukaemic clone [6]. This has led to
widespread interest in identifying the key stem cell reg-
ulators that are important in CML pathology [7].

Our group identified the down-regulation of a novel
haematopoietic regulator, CCN3, in CML as an initial
effector of BCR-ABL activity in a murine CML stem
cell model [8]. CCN3 is a member of the CCN fam-
ily of matricellular proteins that have emerged as key

regulators of diverse cellular processes; deregulated
expression of CCN proteins is observed in many
pathologies including cancer [9]. CCN3 is generally
associated with tumour suppressor activity in solid
tumours [10–12]. We found that CCN3 was not
expressed in cells from CML patients at diagnosis, but
expression was restored to normal on response to ima-
tinib [8]. Overexpression of CCN3 in K562 CML cells
reduced proliferation, induced apoptosis, and enhanced
sensitivity to imatinib [13]; the anti-proliferative effect
of CCN3 was associated with decreased phosphory-
lation of ERK, AKT, and the up-regulation of α6β4
integrin [13,14].

CCN3 is a non-canonical NOTCH1 ligand impli-
cated in the cell fate decisions of HSCs [15,16].
NOTCH1 is activated by receptor–ligand interactions,
resulting in the γ-secretase complex-mediated release
of its active intracellular domain (NOTCH1-ICD) [17].
The major downstream effector molecules of NOTCH1
include c-MYC [18] and the members of the HES and
HEY protein families [19]. Activating mutations of
NOTCH1 are observed in nearly 50% of T-cell acute-
lymphoblastic leukaemia (T-ALL) and 30% of adult
T-cell leukaemia (ATL) patients [20].

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
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NOTCH signalling has been associated with T-cell
leukaemias and its role in myeloid malignancies is not
well investigated. Since CCN3 is absent in CML, it
could be postulated that the regulatory effect of CCN3
on the NOTCH1 signalling pathway is abolished.
The objectives of this study were (i) to define the
role of NOTCH1 in CML; (ii) to characterize the
CCN3–NOTCH1 signalling in CML; and (iii) to
examine the anti-proliferative potential of γ-secretase
inhibitors (GSIs) which block NOTCH1 signalling in
CML.

Materials and methods

Cell lines and reagents
The K562 CML cell line was obtained from Deutsche
Sammlung von Mikrorganismen und Zellkulturen
(DSMZ GmbH, Braunschweig, Germany). KCL22s
and LAMAs cells were a gift from Professor Junia
Melo (University of Adelaide, Adelaide, Australia).
CML cell lines (K562, LAMAs, and KCL22s) and
K562 cells transfected with the pCMV82 vector
encoding full-length CCN3 (K562/CCN3) or empty
vector pCb6+ (K562/control) were routinely cultured
as previously described [14].

Primary CML samples and normal controls
Leukopheresis products were obtained from CML
patients at the time of diagnosis and bone marrow
from healthy donors was collected as a normal control.
Mononuclear cells were prepared using Ficoll Hypaque
(GE Healthcare, Buckinghamshire, UK) as previously
described [8] and stored at −80◦C until required. All
samples were obtained with ethical approval from the
Research Ethics Committee Northern Ireland and those
involved gave their informed consent in accordance
with the Declaration of Helsinki.

BCR-ABL siRNA transfection
K562, KCL22s, and LAMAs cells were transfected
with anti-BCR-ABL siRNA or scrambled sequence as
previously described [21]. Cells after transfection were
incubated at 37◦C with 5% CO2 for 48 h and 72 h
post-transfection.

Western blotting
Total proteins [14] and nuclear and cytoplasmic pro-
teins were extracted from the cells as previously
described [22]. Tris acetate gels (3–8%) were used
to detect NOTCH1 and BCR-ABL, and 4–12% Bis-
Tris gels (Invitrogen, Paisley, UK) for other proteins.
Immuno-blotting was performed using antibodies to
BCR-ABL, NOTCH1, p21, PARP, c-MYC, p27, and
TATA box binding protein (Santa Cruz Biotechnology,
Santa Cruz, CA, USA); HES1 (Abcam, MA, USA);
and β-actin (Sigma, St Louis, MO, USA). For CCN3

detection, NH5 antibody raised against the C-terminus
of CCN3 was provided by B Perbal [22]. Immuno-blots
were visualized by enhanced chemiluminescence (ECL
plus, Amersham, UK).

Real-time PCR
BCR-ABL and CCN3 primers and probes were used as
previously described [8]. NOTCH1 (Hs01062014_m1),
18S rRNA (Hs03928985_g1) primers, and probes were
based on TaqMan chemistry (Applied Biosystems,
Foster City, CA, USA) and amplification was per-
formed according to the manufacturer’s protocol.
The primers for HES1 and c-MYC were designed
against Genbank published sequences in association
with Primer Express (Applied Biosystems) and were
obtained from Eurofins MWG Operon (Huntsville,
AL, USA). Amplification for HES1 and c-MYC was
performed using the FastStart universal SYBR Green
master mix (Roche Applied Science, Mannheim,
Germany). All reactions were performed on a 7900HT
Fast Real-Time PCR System using ABI sequence
detection software v2.3 (Applied Biosystems). After
normalizing to the endogenous 18S rRNA control, the
relative mRNA fold changes were quantified using the
2−��CT method [23].

Cell treatment with rCCN3, GSI, and imatinib
K562/control and K562/CCN3 cells (2 × 105 cells/ml)
were treated with InSolution γ-secretase inhibitor
(GSI) X-250 UG (Calbiochem, San Diego, CA, USA)
at concentrations of 25, 50, 100, 500, and 1000 nM.
For experiments using rCCN3, cells (2 × 105 cells/ml)
were grown in Opti-MEM I Reduced Serum Media
(Invitrogen) rather than RPMI supplemented with 10%
serum to avoid the possible effect of traces of CCN3
in the serum. K562, KCL22s, and LAMAs cells were
treated with 100 ng/ml rCCN3 (Peprotech, London,
UK) for 72 h before extracting proteins for western
blotting.

For combination treatments of rCCN3 and GSI, cell
lines (2 × 105 cells/ml) were treated with 100 ng/ml
rCCN3 for 24 h. Following this, GSI was added at
25–1000 nM to the cell culture. Cells were again
incubated for 24, 48, and 72 h. For combination
treatment with imatinib, cell lines (2 × 105 cells/ml)
were treated with 200 nM imatinib along with GSI
(25–1000 nM) for 24 and 48 h.

Viability assays
Cell viability was measured using the CellTiter-Glo
assay (Promega, Madison, WI, USA) following the
manufacturer’s instructions; luminescence was read
using a Tecan plate reader (Tecan Ltd, Switzerland)
at 590 nm. The data are represented as luminescence
relative to the untreated control. Based on the cell
viability measurements, the Chou–Talalay analysis was
performed to analyse the effect of GSI in combination
with either rCCN3 or imatinib using CalcuSyn software

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
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(Biosoft, Cambridge, UK). A combination index (CI)
value of less than 0.9 is synergistic, 0.9–1.1 is additive,
and more than 1.1 is indicative of an antagonistic effect
between the two drugs in combination [24].

Methylcellulose colony assays
K562/control and K562/CCN3 cells (1 × 103 cells)
were plated in MethoCult H4034 medium (Stem Cell
Technologies, Vancouver, Canada) supplemented with
25, 50, 100, 500, and 1000 nM GSI. For combination
experiments with rCCN3, K562 cells (1 × 103 cells)
were plated on methylcellulose culture medium con-
taining 100 ng/µl rCCN3 and GSI (above-mentioned
concentrations). Parallel assays were conducted with
K562 cells with 25–1000 nM GSI without adding
rCCN3. For combination treatments with imatinib and
GSI, each of the three CML cell lines (1 × 103) were
plated with 200 nM imatinib and increasing concentra-
tions of GSI (25–1000 nM). All assays were performed
in triplicates for each treatment. The plates were incu-
bated at 37◦C at 5% CO2 for 7 days in a humidi-
fied atmosphere and colonies were counted using an
inverted microscope (Olympus, Tokyo, Japan; magni-
fication ×40).

Flow cytometry
K562/control and K562/CCN3 cells (5 × 105) after
24 h of GSI treatment were prepared for propidium
iodide staining and analysis using a BD LSR II flow
cytometer as previously described [13].

Microarray gene expression profiles
To compare and validate our findings, we interpreted
the gene expression profiles of CCN3 , NOTCH1 ,
HES1 , and c-MYC from three CML microarray
databases from GEO (accession numbers: GSE24739
[25]; GSE11889 [26]; and GDS838 [27].

Statistics
Data are presented as mean ± SD. Statistical analyses
were performed using the two-tailed Student’s t-test for
two-sample tests; for multiple comparisons, two-way
ANOVA was used.

Results

Expression of NOTCH1 and CCN3 in CML
We have previously shown down-regulation of CCN3
by BCR-ABL in primary CML CD34+ cells [8]. To
determine whether NOTCH1 signalling was dependent
on BCR-ABL, K562 cells were transfected with anti-
BCR-ABL siRNA and its effect was examined. BCR-
ABL knockdown decreased mRNA levels of NOTCH1 ,
HES1 , and c-MYC (Figure 1a), and reduced expres-
sion of full-length NOTCH1-FL (300 kDa), cleaved

Figure 1. BCR-ABL knockdown decreases NOTCH1 signalling.
(a) The fold changes in BCR-ABL, NOTCH1, HES1, c-MYC , and
CCN3 mRNA expression in K562 cells after 48 and 72 h of
scrambled (grey bars) or anti-BCR-ABL siRNA transfection (white
bars) relative to the untreated K562 cells (black bars). (b) BCR-ABL
silencing reduces NOTCH1 signalling and induces CCN3 expression.
K562 cells transfected with siRNA against BCR-ABL were examined
for the expression of BCR-ABL, NOTCH1-FL, NOTCH1-ICD, HES1, c-
MYC, and CCN3 48 and 72 h post-transfection. (c) Corresponding
optical densitometry units for the blots in b normalized to β-
actin levels. Data represent the mean ± SD of three independent
experiments. *p < 0.05; **p < 0.01; ***p < 0.001.

NOTCH1-ICD (120 kDa), and NOTCH1 downstream
targets c-MYC and HES1 (Figure 1b). Optical densito-
metry showed an inverse correlation between NOTCH1
and CCN3 expression in CML (Figure 1c). These
effects were also observed following BCR-ABL knock-
down in KCL22s and LAMAs cell lines (Supplemen-
tary Figure 5).

CCN3 reduces NOTCH1 signalling
K562 cells stably expressing CCN3 (K562/CCN3)
or transfected with vector control (K562/control)
were used to investigate if CCN3 regulates NOTCH1
signalling. NOTCH1 mRNA levels were similar in
both cell lines, indicating that CCN3 does not regulate
NOTCH1 transcription (Figure 2a). In contrast,
NOTCH-FL, NOTCH-ICD, and HES1 protein expres-
sion was reduced in K562/CCN3 cells, compared
with K562/control, suggesting that CCN3 reduces
NOTCH1 signalling in CML and that regulation is
post-transcriptional (Figures 2b and 2c). In the nuclear
compartment of K562/control cells, increased levels
of NOTCH1-ICD and p27 were observed, whereas the

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
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Figure 2. CCN3 reduces NOTCH1 signalling. (a) The mRNA expression of NOTCH1 and CCN3 in K562/CCN3 cells (white bars) relative
to K562/control (grey bars). (b) Representative western blot showing NOTCH1-FL, NOTCH1-ICD, and HES1 expression in K562/control
and K562/CCN3 cells. (c) Expression of NOTCH1-FL, NOTCH-ICD, and HES1 levels relative to K562/control cells (n = 3). *p < 0.05. (d)
Representative western blot showing the expression of NOTCH1-ICD, p21, and p27 in the nuclear and cytoplasmic extracts of K562/control
and K562/CCN3 cells. TATA binding protein was used as the nuclear loading control and β-actin was the endogenous control for the
cytoplasmic fraction. (e) Expression of NOTCH1-ICD, p21, and p27 in the nuclear fraction of K562/CCN3 cells relative to K562/control
cells (n = 3). *p < 0.05. (f) Co-immunoprecipitation (Co-IP) showing the association of CCN3 with the extracellular domain of NOTCH1
(NOTCH1-ECD) in K562/CCN3 cells. CCN3 was not bound to the NOTCH1-ICD.

nuclear fraction of K562/CCN3 cells expressed less
NOTCH1-ICD but had higher p27 levels (Figure 2d);
p21 expression was similar in both compartments.
This suggests that the reduction in NOTCH1 activity
by CCN3 is associated with higher p27 levels possibly
reflecting a gain in cell cycle control (Figures 2d
and 2e). To investigate if CCN3 directly interacts
with NOTCH1 and participates in the NOTCH1
signalling pathway, co-immunoprecipitation (Co-IP)
was performed. CCN3 was found to precipitate
with the protein fraction incubated with antibody
binding to NOTCH1-ECD but not with NOTCH1-ICD
(Figure 2f).

Effect of GSI on K562/control and K562/CCN3 cells
Next we investigated the anti-proliferative effect of
GSI, which blocks NOTCH1 signalling. K562/CCN3
cells formed fewer colonies (Figure 3a) and showed
a modest increase in sub-G0 events (Figure 3b)
compared with K562/control when treated with
GSI (25–1000 nM). GSI stabilized NOTCH1-FL
in K562/control cells, whereas in K562/CCN3 cells,
NOTCH1-FL was present in very low amounts (Figure
3c). NOTCH1-ICD levels were lower in K562/CCN3
than in K562/control cells. In K562/control cells, GSI
reduced NOTCH1-ICD levels at high concentrations
but these cells still had higher levels of NOTCH1-
ICD compared with K562/CCN3. GSI decreased
c-MYC levels in both K562/control and K562/CCN3

cells; HES1 expression was significantly reduced in
K562/CCN3 cells only (Figures 3d–3g).

Effect of recombinant CCN3 on the NOTCH1
signalling pathway
Previously, we showed that recombinant CCN3
(rCCN3) treatment of K562 cells decreased their cell
proliferation and colony formation capacity [13]. Here,
we examined if exogenous addition of CCN3 could
modulate NOTCH1 signalling. NOTCH1 signalling
was significantly reduced with rCCN3 treatment in all
CML cell lines (Supplementary Figures 1a, 1b, and
2a–2c). Treatment of K562 cells with GSI alone had
no significant effects on cell viability (Supplementary
Figure 1c); however, rCCN3 treatment of K562
cells sensitized them to GSI treatment (Supplemen-
tary Figure 1d). Pretreatment with rCCN3 induced
a synergistic effect with all concentrations of GSI
(Chou–Talalay analysis; 0.072–1.044). These observa-
tions were supported by colony assays; GSI treatment
alone increased the clonogenicity of K562 cells,
whereas in combination with rCCN3 there was a signif-
icant reduction in colony formation capacity (Figures
4a and 4b). Western blotting showed decreased
NOTCH1-ICD, c-MYC, HES1, and induction of PARP
cleavage in K562 cells treated with the combination
treatment (Figures 4d–4f). A decrease in cell viability
and clonogenicity was also observed when KCL22s

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
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Figure 3. Effect of GSI on the proliferation of K562/CCN3 cells. K562/control cells (grey bars) and K562/CCN3 cells (white bars) were treated
with GSI (25–1000 nM). (a) Methylcellulose colony formation assay showing the effect of GSI on the clonogenicity of K562/CCN3 cells
relative to the corresponding K562/control treatments. Statistical significance was calculated by comparing K562/control and K562/CCN3
with each dose of GSI used. (b) The percentage of sub-G0 events observed with 24 h of GSI treatment. (c) Representative western blot
showing the expression of NOTCH1-FL, NOTCH1-ICD, c-MYC, and HES1 after GSI treatment in K562/control and K562/CCN3 cells. (d–g)
Densitometry plots showing the relative expression of these proteins in treated cells compared with the untreated. Data represent the
mean ± SD of triplicate experiments. *p < 0.05; **p < 0.01; ***p < 0.001.

and LAMAs cells were treated with the rCCN3 and
GSI combination (Supplementary Figures 2d–2g).

Effect of combining imatinib and GSI on K562 cells
To examine if there is a synergistic effect of combin-
ing imatinib and GSI, K562 cells were treated with
imatinib (200 nM) in combination with GSI (25–1000
nM). Imatinib combined with 25 nM GSI induced an
approximately 50% reduction in K562 cell viability

relative to its use as a single agent (data not shown).
GSI had a synergistic effect at concentrations up to
100 nM (25 nM CI 0.52) but was antagonistic at higher
concentrations (1000 nM CI 1.51). These observations
were substantiated by colony studies (Figure 5a) and
similar results were observed in KCL22s and LAMAs
cell lines (Supplementary Figures 3a and 3b). Western
blotting showed a decrease in NOTCH1 signalling in
K562 cells with imatinib treatment and combining GSI

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
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Figure 4. Combinatorial treatment of K562 cells with rCCN3 and GSI. (a, b) Colony formation of K562 cells (grey bars) increases in the
presence of GSI alone but this increase was not observed when rCCN3 was used in combination (white bars). Plots in b show the decrease
in colony formation observed with the combination strategy in comparison with the use of rCCN3 as a single agent. (c) K562 cells were
treated with rCCN3 for 24 h followed by GSI treatment for a further 24 h (25–1000 nM). Representative western blot showing the effect
on NOTCH signalling and the induction of PARP cleavage in K562 cells treated with the combination of rCCN3 and GSI. (d–f) Optical
densitometry units for NOTCH1-ICD, c-MYC, and HES1 normalized to β-actin. Data represent the mean ± SD of triplicate experiments.
*p < 0.05; **p < 0.01; ***p < 0.001.

with imatinib enhanced this effect (Figures 5b–5f).
This suggests the potential clinical utility of GSI at
low doses.

Correlation between CCN3, NOTCH1, HES1, and
c-MYC in CML
We investigated the gene expression levels of CCN3 ,
NOTCH1 , HES1 , and c-MYC in three CML patients at
diagnosis and examined the expression of these genes
in three publically available CML microarray studies,

two of which compared CML patients with normal
donors and one that analysed CML patients following
imatinib treatment. Overall, a significant decrease in
CCN3 expression was observed in CML compared
with normal bone marrow (p < 0.05), with the excep-
tion of three patients in the accelerated phase in whom
expression was highly variable (Supplementary Figure
4a and Figures 6a and 6b). This is consistent with our
previous report showing decreased CCN3 expression
in CML patients at diagnosis [8]. One microarray study
demonstrated that expression of NOTCH1 and HES1

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
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Figure 5. Combinatorial treatment of K562 cells with imatinib and GSI. (a) Colony formation capacity of K562 cells (grey bars) when
imatinib (200 nM) was used with 25–1000 nM GSI (white bars) (n = 3). (b) Representative western blot showing the effect of NOTCH1
signalling in K562 cells treated with the combination of imatinib and GSI. (c–f) Optical densitometry units for NOTCH1-FL, NOTCH1-ICD,
c-MYC, and HES1 normalized to β-actin. Data represent the mean ± SD of triplicate experiments. *p < 0.05; **p < 0.01.

was significantly lower in CML; however, we, along
with Bruns et al [26], found no significant difference
in the expression of NOTCH1 and HES1 . All studies
demonstrated that c-MYC was not significantly altered
in CML compared with normal. Expression levels of
CCN3 , HES1 , and c-MYC in CML patients in major
molecular remission (MMR) were comparable to that
of normal bone marrow (Figure 6c), consistent with
restoration of normal phenotype in these patients.

We showed that knockdown of BCR-ABL in CML
cell lines results in reduced NOTCH1 signalling and
therefore hypothesized that NOTCH1 and its down-
stream targets may be up-regulated in CML. Gene
expression levels analysed in three patient samples and
microarray studies did not reflect this expectation and
generated variable results. In addition, protein levels of
NOTCH1, HES1, and c-MYC in CML samples were
found to be highly variable (Supplementary Figures
4b–4f). This may be attributed both to the small study
size and to the stage of disease that was investigated.
While there are limited data available on NOTCH1
expression in CML, a number of studies have found
that c-MYC and HES1 expression is unchanged in the
chronic phase but expression is increased in accelerated
and blast crisis CML [28,29]. As CML cell lines are
derived from CML in blast crisis, this is in agreement
with our findings and suggests that NOTCH1 signalling
may be important in CML disease progression.

Discussion

NOTCH1 signalling has established roles in haema
topoiesis, particularly in T-cell commitment and matu-
ration [30]. Pathological roles for NOTCH1 have also

been reported in B-chronic lymphocytic leukaemia,
where aberrant and constitutively active NOTCH1
signalling is associated with a poor prognosis and
drug resistance [31–33]. The role of NOTCH1 in
CML is not well defined and there are contradic-
tory reports from several groups. Overexpression of
active NOTCH1-ICD in K562 cells caused inhibition
of cell proliferation [34], whereas double transgenic
mouse models overexpressing Bcr-Abl and Notch1-
ICD developed T-ALL, demonstrating a co-operative
role for Bcr-Abl and Notch1 [35]. Here, we demon-
strate that NOTCH1 signalling in CML is BCR-ABL-
dependent, as silencing of BCR-ABL in the K562 CML
cell line caused a global reduction of NOTCH1 sig-
nalling.

The majority of work on NOTCH1 signalling has
focused on activation by canonical ligands of the Delta
and Jagged families [36]. However, there are sev-
eral non-canonical NOTCH ligands that could either
activate or inhibit NOTCH signalling [37]. CCN3 is
a non-canonical NOTCH1 ligand and has been pre-
viously shown to stimulate NOTCH1 signalling in
myoblasts [38], osteoblasts [39], and vascular smooth
muscle cells [40]. In contrast, we found that in CML
CCN3 inhibits NOTCH1 activity potentially by its
association with the extracellular domain of NOTCH1.
The low expression of NOTCH1-FL in the presence
of CCN3 indicates that CCN3 not only inhibits the
production of active NOTCH1-ICD cleaved by the γ-
secretase complex, but also has a negative impact on
the proteolytic steps that lead to the formation or sta-
bility of full-length NOTCH1 receptor. We assayed
the nuclear expression of NOTCH1-ICD together with
the levels of p21 and p27 in K562/CCN3 cells as
BCR-ABL and NOTCH1 deregulate the expression
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Figure 6. Correlation between CCN3, NOTCH1, HES1, and c-MYC in
CML. (a) The log2 expression values of CCN3, NOTCH1, HES1, and c-
MYC in normal CD34+ cells compared with the CD34+ cells from
CML patients in newly diagnosed chronic (n = 5) and accelerated
phases (n = 3). Significance was calculated by comparing the
expression values of CML samples with that of the normal bone
marrow (n = 4). (b) The expression of the candidate genes in the
common myeloid progenitor fraction of normal individuals (n =
5) and newly diagnosed chronic phase CML patients (n = 6). (c)
Expression profiling of CCN3, HES1, and c-MYC in CD34+ cells
from healthy individuals and from CML patients in MMR receiving
400 mg/day imatinib therapy for 11–39 months (n = 6).

of these cell cycle regulators. In CML, BCR-ABL
inhibits the nuclear translocation of p27; CD34+ CML
progenitor cells have less nuclear p27, which acti-
vates the AKT pathway resulting in enhanced cell
proliferation [41]. Active NOTCH1 has been shown
to permit cell cycle progression into the S-phase by
enhancing proteasomal degradation of p27 [42,43]. We
found that inhibition of NOTCH1 by CCN3 is associ-
ated with increased expression of p27. This suggests
that down-regulation of NOTCH1 signalling by CCN3
contributes to the restoration of cell cycle regulation
in CML.

Inhibition of the production of active NOTCH1-ICD
by GSIs has been shown to induce anti-tumourigenic
effects in mouse models of T-ALL [44], breast can-
cer [45], and pancreatic cancer [46]. We did not find
any significant response to GSI used as a single agent

in the CML cell lines K562, KCL22s, and LAMAs,
consistent with previous reports [47]. However, an
anti-proliferative effect of GSI was observed when
CCN3 expression was enforced in a CML cell line
(K562/CCN3) or when cells were pretreated with
rCCN3. GSI also had synergistic activity with imatinib
in all three CML cell lines, which may be mediated
by the ability of imatinib to induce CCN3 expression
in CML. The effect of NOTCH1 inhibition on CML
cells has generated conflicting data. K562 cells have
been reported to be insensitive to NOTCH1 inhibi-
tion [47], and inhibition of NOTCH1 has also been
reported to increase proliferation [34]. This could be
due to the absence of CCN3 in these systems, as we
also found that CML cells did not respond to GSI in
liquid cultures and produced increased colony forma-
tion of K562 cells when used as a single agent. We
suggest from our findings that CML cells are depen-
dent on NOTCH1 activity; however, for GSI to induce
anti-proliferative responses in CML, the presence of
CCN3 is an essential factor. GSI used in combination
strategies was able to reduce HES1 levels and expres-
sion of c-MYC. In multiple myeloma mouse models,
inhibition of NOTCH1 signalling by GSI-XII induced
an anti-tumourigenic effect by down-regulating Hes1
[48]. Expression of HES1 is reported to be high in
patients in the CML blast crisis phase compared with
the chronic phase; Hes1 interaction with Bcr-Abl is
essential for transformation of CML into blast crisis
[28]. Similarly, c-MYC is overexpressed in CML and
the oncogenic role of c-MYC in the transformation pro-
cess of CML is well established [29]. We found that
the expression of both of these proteins decreased with
the combinatorial treatment approaches that we used
in our study. CCN3 is a matricellular protein and is
expressed in the bone marrow micro-environment [49].
Our study showed that exogenous CCN3 decreased
NOTCH1 signalling by modulating the expression of
HES1 and c-MYC. This study provides key evidence
for CCN3 growth regulatory activity in NOTCH1
signalling in the haematopoietic niche and advo-
cates CCN3 as an essential regulator of normal
haematopoiesis.

From this study, supported by in silico analyses,
we suggest that the NOTCH1–CCN3 signalling axis
plays a key role in myelopoiesis. In CML, BCR-
ABL expression causes down-regulation of CCN3 and
impacts on NOTCH1 signalling, contributing to the
malignant phenotype. This work provides a rational
basis for the development of combinatorial therapeutic
strategies targeting NOTCH1 in CML, particularly in
advanced disease.

Author contribution statement

SS, LJC, WHL, and DJS carried out experiments. AEI
and LMcC designed the study and analysed data. All
authors contributed to drafting the manuscript.

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com



386 S Suresh et al

References
1. Deininger MW, Goldman JM, Melo JV. The molecular biology of

chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

2. Cortes JE, Baccarani M, Guilhot F, et al. Phase III, randomized,

open-label study of daily imatinib mesylate 400 mg versus 800

mg in patients with newly diagnosed, previously untreated chronic

myeloid leukemia in chronic phase using molecular end points:

tyrosine kinase inhibitor optimization and selectivity study. J Clin

Oncol 2010; 28: 424-430.

3. Pinilla-Ibarz J, Cortes J, Mauro MJ. Intolerance to tyrosine kinase

inhibitors in chronic myeloid leukemia: definitions and clinical

implications. Cancer 2011; 117: 688–697.

4. Giles FJ, le Coutre PD, Pinilla-Ibarz J, et al. Nilotinib in imatinib-

resistant or imatinib-intolerant patients with chronic myeloid

leukemia in chronic phase: 48-month follow-up results of a phase

II study. Leukemia 2013; 27: 107–112.

5. Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid

leukemia stem cells. Curr Hematol Malig Rep 2010; 5: 81–87.

6. Corbin AS, Agarwal A, Loriaux M, et al. Human chronic myeloid

leukemia stem cells are insensitive to imatinib despite inhibition of

BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

7. Perl A, Carroll M. BCR-ABL kinase is dead; long live the CML

stem cell. J Clin Invest 2011; 121: 22–25.

8. McCallum L, Price S, Planque N, et al. A novel mechanism for

BCR-ABL action: stimulated secretion of CCN3 is involved in

growth and differentiation regulation. Blood 2006; 108: 1716–1723.

9. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins

as emerging therapeutic targets. Nature Rev Drug Discov 2011; 10:
945–963.

10. Gupta N, Wang H, McLeod TL, et al. Inhibition of glioma cell

growth and tumorigenic potential by CCN3 (NOV). Mol Pathol

2001; 54: 293–299.

11. Fukunaga-Kalabis M, Martinez G, Telson SM, et al. Downregula-

tion of CCN3 expression as a potential mechanism for melanoma

progression. Oncogene 2008; 27: 2552–2560.

12. Doghman M, Arhatte M, Thibout H, et al. Nephroblastoma

overexpressed/cysteine-rich protein 61/connective tissue growth fac-

tor/nephroblastoma overexpressed gene-3 (NOV/CCN3), a selective

adrenocortical cell proapoptotic factor, is down-regulated in child-

hood adrenocortical tumors. J Clin Endocrinol Metab 2007; 92:
3253–3260.

13. McCallum L, Lu W, Price S, et al. CCN3: a key growth regulator

in chronic myeloid leukaemia. J Cell Commun Signal 2009; 3:
115–124.

14. McCallum L, Lu W, Price S, et al. CCN3 suppresses mitogenic

signalling and reinstates growth control mechanisms in chronic

myeloid leukaemia. J Cell Commun Signal 2012; 6: 27–35.

15. Bigas A, Robert-Moreno A, Espinosa L. The Notch pathway in

the developing hematopoietic system. Int J Dev Biol 2010; 54:
1175–1188.

16. Sakamoto K, Yamaguchi S, Ando R, et al. The nephroblastoma

overexpressed gene (NOV/ccn3) protein associates with Notch1

extracellular domain and inhibits myoblast differentiation via Notch

signaling pathway. J Biol Chem 2002; 277: 29399–29405.

17. Andersson ER, Sandberg R, Lendahl U. Notch signaling: sim-

plicity in design, versatility in function. Development 2011; 138:
3593–3612.

18. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an

important direct target of Notch1 in T-cell acute lymphoblastic

leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

19. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple

effectors of the Notch signaling pathway. J Cell Physiol 2003; 194:
237–255.

20. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of

NOTCH1 in human T cell acute lymphoblastic leukemia. Science

2004; 306: 269–271.

21. Crawford LJ, Windrum P, Magill L, et al. Proteasome proteolytic

profile is linked to Bcr-Abl expression. Exp Hematol 2009; 37:
357–366.

22. Perbal B. Nuclear localisation of NOVH protein: a potential role

for NOV in the regulation of gene expression. Mol Pathol 1999;

52: 84–91.

23. Livak KJ, Schmittgen TD. Analysis of relative gene expression

data using real-time quantitative PCR and the 2(−Delta Delta C(T))

method. Methods 2001; 25: 402–408.

24. Chou TC, Talalay P. Quantitative analysis of dose–effect relation-

ships: the combined effects of multiple drugs or enzyme inhibitors.

Adv Enzyme Regul 1984; 22: 27–55.

25. Affer M, Dao S, Liu C, et al. Gene expression differ-

ences between enriched normal and chronic myelogenous

leukemia quiescent stem/progenitor cells and correla-

tions with biological abnormalities. J Oncol 2011; 2011:
798592.

26. Bruns I, Czibere A, Fischer JC, et al. The hematopoietic stem cell

in chronic phase CML is characterized by a transcriptional profile

resembling normal myeloid progenitor cells and reflecting loss of

quiescence. Leukemia 2009; 23: 892–899.

27. Neumann F, Teutsch N, Kliszewski S, et al. Gene expression profil-

ing of Philadelphia chromosome (Ph)-negative CD34+ hematopoi-

etic stem and progenitor cells of patients with Ph-positive CML in

major molecular remission during therapy with imatinib. Leukemia

2005; 19: 458–460.

28. Nakahara F, Sakata-Yanagimoto M, Komeno Y, et al. Hes1

immortalizes committed progenitors and plays a role in blast crisis

transition in chronic myelogenous leukemia. Blood 2010; 115:
2872–2881.

29. Albajar M, Gomez-Casares MT, Llorca J, et al. MYC in chronic

myeloid leukemia: induction of aberrant DNA synthesis and asso-

ciation with poor response to imatinib. Mol Cancer Res 2011; 9:
564–576.

30. Maillard I, Fang T, Pear WS. Regulation of lymphoid development,

differentiation, and function by the Notch pathway. Annu Rev

Immunol 2005; 23: 945–974.

31. Secchiero P, Melloni E, di Iasio MG, et al. Nutlin-3 up-regulates

the expression of Notch1 in both myeloid and lymphoid leukemic

cells, as part of a negative feedback antiapoptotic mechanism. Blood

2009; 113: 4300–4308.

32. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing

identifies recurrent mutations in chronic lymphocytic leukaemia.

Nature 2011; 475: 101–105.

33. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an

independent predictor of survival in chronic lymphocytic leukemia.

Blood 2012; 119: 521–529.

34. Yin DD, Fan FY, Hu XB, et al. Notch signaling inhibits the growth

of the human chronic myeloid leukemia cell line K562. Leuk Res

2009; 33: 109–114.

35. Mizuno T, Yamasaki N, Miyazaki K, et al. Overexpres-

sion/enhanced kinase activity of BCR/ABL and altered expression

of Notch1 induced acute leukemia in p210BCR/ABL transgenic

mice. Oncogene 2008; 27: 3465–3474.

36. Andersen P, Uosaki H, Shenje LT, et al. Non-canonical Notch

signaling: emerging role and mechanism. Trends Cell Biol 2012;

22: 257–265.

37. D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch

ligands. Oncogene 2008; 27: 5148–5167.

38. Zhang Y, Wang C. Nephroblastoma overexpressed (NOV/CCN3 )

gene: a paired-domain-specific PAX3-FKHR transcription target that

 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 378–387
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org.uk www.thejournalofpathology.com



NOTCH1–CCN3 signalling in CML 387

promotes survival and motility in alveolar rhabdomyosarcoma cells.
Oncogene 2011; 30: 3549–3562.

39. Minamizato T, Sakamoto K, Liu T, et al. CCN3/NOV inhibits
BMP-2-induced osteoblast differentiation by interacting with BMP
and Notch signaling pathways. Biochem Biophys Res Commun 2007;
354: 567–573.

40. Abe J, Yan C. CCN notch signaling in vascular smooth muscle cells:
good or bad? Arterioscler Thromb Vasc Biol 2010; 30: 667–668.

41. Chu S, McDonald T, Bhatia R. Role of BCR-ABL-Y177-mediated
p27kip1 phosphorylation and cytoplasmic localization in enhanced
proliferation of chronic myeloid leukemia progenitors. Leukemia

2010; 24: 779–787.
42. Sarmento LM, Huang H, Limon A, et al. Notch1 modulates

timing of G1–S progression by inducing SKP2 transcrip-
tion and p27 Kip1 degradation. J Exp Med 2005; 202:
157–168.

43. Dohda T, Maljukova A, Liu L, et al. Notch signaling induces
SKP2 expression and promotes reduction of p27Kip1 in T-cell
acute lymphoblastic leukemia cell lines. Exp Cell Res 2007; 313:
3141–3152.

44. Tammam J, Ware C, Efferson C, et al. Down-regulation of the
Notch pathway mediated by a gamma-secretase inhibitor induces
anti-tumour effects in mouse models of T-cell leukaemia. Br J

Pharmacol 2009; 158: 1183–1195.
45. Efferson CL, Winkelmann CT, Ware C, et al. Downregula-

tion of Notch pathway by a gamma-secretase inhibitor attenuates
AKT/mammalian target of rapamycin signaling and glucose uptake
in an ERBB2 transgenic breast cancer model. Cancer Res 2010; 70:
2476–2484.

46. Mizuma M, Rasheed ZA, Yabuuchi S, et al. The gamma secretase
inhibitor MRK-003 attenuates pancreatic cancer growth in preclini-
cal models. Mol Cancer Ther 2012; 11: 1999–2009.

47. Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the
NOTCH transcription factor complex. Nature 2009; 462: 182–188.

48. Nefedova Y, Sullivan DM, Bolick SC, et al. Inhibition of Notch sig-
naling induces apoptosis of myeloma cells and enhances sensitivity
to chemotherapy. Blood 2008; 111: 2220–2229.

49. Katsube K, Ichikawa S, Katsuki Y, et al. CCN3 and bone marrow
cells. J Cell Commun Signal 2009; 3: 135–145.

SUPPORTING INFORMATION ON THE INTERNET
The following supporting information may be found in the online version of this article.

Figure S1. Recombinant CCN3 reduces NOTCH1 signalling in K562 cells.

Figure S2. Recombinant CCN3 treatment reduces NOTCH1 signalling in KCL22s and LAMAs cell lines.

Figure S3. GSI in combination with imatinib reduces the clonogenicity of KCL22s and LAMAs cells.

Figure S4. NOTCH1, HES1, and c-MYC expression in primary CML samples.

Figure S5. BCR-ABL knockdown in KCL22s and LAMAs cells decreases NOTCH1 signalling.
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