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ABSTRACT: 

This paper introduces a novel global patch matching method that focuses on how to remove fronto-parallel bias and obtain continuous 
smooth surfaces with assuming that the scenes covered by stereos are piecewise continuous. Firstly, simple linear iterative cluster 
method (SLIC) is used to segment the base image into a series of patches. Then, a global energy function, which consists of a data term 
and a smoothness term, is built on the patches. The data term is the second-order Taylor expansion of correlation coefficients, and the 
smoothness term is built by combing connectivity constraints and the coplanarity constraints are combined to construct the smoothness 
term. Finally, the global energy function can be built by combining the data term and the smoothness term. We rewrite the global 
energy function in a quadratic matrix function, and use least square methods to obtain the optimal solution. Experiments on Adirondack 
stereo and Motorcycle stereo of Middlebury benchmark show that the proposed method can remove fronto-parallel bias effectively, 
and produce continuous smooth surfaces.  

1. INTRODUCTION

Stereo dense matching has been attracting increased attentions in 
the photogrammetry and computer vision communities for 
decades (Scharstein and Szeliski, 2002). Most stereo dense 
matching algorithms assume fronto-parallel planes and assign 
one label for each pixel, which are called 1D label algorithms. 
1D label algorithms are usually simple and fast. However, they 
produce fronto-parallel bias in slanted planes, as shown in Figure 
1. Figure 1(a) shows the original reference image. The surface of
the lamp is a typical slanted plane. Figure 1(b) shows the
corresponding ground truth. Figure 1(c) - (g) represent the
matching results of image-guided matching (IG) (Pham and Jeon,
2013), semi-global matching (SGM) (Hirschmuller, 2008), graph 
cut (GC) (Kolmogorov and Zabih, 2001), image-guided non-
local dense matching with three-steps optimization (INTS)
(Huang, et al., 2016) and stereo matching using non-texture
regions and edge information (NTDE) (Kim et al., 2016),
respectively. All of above algorithms are 1D label algorithms.
The fronto-parallel bias in Figure 1(c) - (g) influences the
visualization of 3D reconstruction.

In order to acquire continuous smooth and accurate surface, this 
paper proposes a novel global patch matching method (GPM) 
which is able to remove fronto-parallel bias efficiently by 
assigning three labels for each patch, as shown in Figure 1(h). 
The contributions of this paper are as follows: 

(1) The proposed GPM reduces the complexity significantly.
Traditional 3D label algorithms transform matching into a
NP-hard problem, resulting in a high time complexity. The
proposed GPM transforms matching into a quadratic
problem for the first time which is solved by the least
squaremethod. Besides, cost volumes and aggregation
volumes are not needed in the proposed GPM.

(2) This paper employs the second-order Taylor expansion of
correlation coefficients as the data term in the energy
function innovatively. Compared with the traditional least
square feature matching, the proposed method has a much
smaller unknown set of the Taylor expansions because the
proposed energy function is built without radiation
correction parameters.

(a) Original Image (b) Ground Truth (c) IG (d) SGM

(e) GC (f) INTS (g) NTDE (h) Proposed Method

Figure 1. Results of Different Matching Methods in Slanted Planes. 
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 (3) The proposed GPM can remove fronto-parallel bias and 
obtain continuous smooth surfaces of 3D models. 

 
1.1 Review of Related Work 

Three dimensional (3D)  label algorithms assign three labels 
including disparity and normal direction for every pixel (Olsson, 
2013), which can remove fronto-parallel bias efficiently. The 
challenge of 3D label algorithms is how to perform global 
optimization in the infinite three dimensional label space. 
According to whether the initial matching is needed, 3D label 
methods can be divided into the initial matching based methods 
and the matching methods without initial solutions. 
 
The matching methods without initial solutions can achieve 
accurate matching results without initial matching (Li, et al., 
2016; Zhang, et al., 2015; Taniai, et al., 2014; Xu, et al., 2015; Li, 
et al., 2015; Besse, et al., 2014). They define a NP-hard global 
energy function and use PatchMatch (Barnes, et al., 2009) or 
fusion move (Bleyer, et al., 2010) to acquire an approximate 
optimal solution as the matching results. However, the matching 
methods without initial solutions are very time consuming. They 
are not suitable for large scale 3D reconstruction in outdoor 
scenes.  
 
Initial matching based methods (Klaus, et al., 2006; Veldandi, et 
al., 2014; Bleyer and Gelautz, 2005; Guney and Geiger, 2015; 
Yamaguchi, et al., 2012) uses window matching or 1D label 
algorithms to achieve initial matching results quickly. The initial 
matching results are approximate to the ground truth. Then, 
higher order smoothness constraints are used to optimize the 
initial matching results iteratively. These initial matching based 
methods adopted SLIC (Achanta, et al., 2012) to segment the 
depth image into a series of patches, and still defined the stereo 
dense matching as a NP-hard problem. Graph cuts (Bleyer and 
Gelautz, 2005), belief propagation (Klaus, et al., 2006; Guney 
and Geiger, 2015; Yamaguchi, et al., 2012), minimum spanning 
tree (Veldandi, et al., 2014) were used to obtain an approximate 
solution iteratively.  
 
Given good initial matching results, these initial matching based 
methods need multi-iterations, which reduces the computational 
efficiency. Besides, most methods require large memory to store 

cost volume and aggregation volume. Specifically speaking, 
some methods (Veldandi, et al., 2014; Klaus, et al., 2006) still 
used fixed matching windows to compute data term. Fixed 
matching windows assume fronto-parallel planes, which will 
introduce fronto-parallel bias into the global energy function. The 
matching algorithm may even not converge in the case of large 
matching windows. 
 

2. PROPOSED METHOD 

2.1 Algorithm Outline 

The work flow of GPM is shown in Figure 2. It consists of four 
parts: ○1E

A The inputs of GPM are stereo pairs and the 
corresponding disparity image. A○2E

A SLIC (Achanta, et al., 2012) 
is adopted to segment the base image. A○3E

A Construct data terms of 
patches one by one. The subfigure in A○3E

A presents the solution of 
energy function which only involves data terms. A○4E

A Construct 
smoothness terms between patches. The subfigure in A○4E

A presents 
the solution of energy function which involves both data terms 
and smoothness terms. Finally, the disparity image with smooth 
surface can be obtained.  
 
2.2 SLIC Segmentation 

We assume that the scene is piecewise continuous and thus use 
SLIC to segment the base image into a series of patches. Every 
Patch can be described by a dispairty plane function:  
 

𝑑𝑑(𝒑𝒑) =  𝑎𝑎𝑖𝑖 ∙ 𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖 ∙ 𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖;  𝒑𝒑 ∈ 𝑺𝑺𝑖𝑖 .      (1) 
 
where, Si represents the i th patch; ai, bi, ci represents the plane 
parameters of patch Si; 𝒑𝒑 = (𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖)T represents a pixel in Si; 
(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝑝𝑝𝑖𝑖𝑖𝑖)T represents centralized coordinates of 𝒑𝒑. The purpose 
of coordinate centralization is to improve the robustness of 
adjustment models. 
 
Then, we check the number of valid disparities in each patch, 
because patches with little valid disparities are possible to be 
mismatches. The patches are called valid patches if they contain 
more valid disparities. Otherwise, the patches are called invalid 
patches if they contain less valid disparities. The number of valid 
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Figure 2. Workflow of Proposed Method 
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disparities in patches are used to judge whether the patches are 
valid or not: 
 

𝑺𝑺𝑖𝑖 = �
𝑉𝑉𝑎𝑎𝑉𝑉𝑉𝑉𝑑𝑑 |𝑺𝑺𝑖𝑖| ≥ 𝛿𝛿
𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑉𝑉𝑉𝑉𝑑𝑑 |𝑺𝑺𝑖𝑖| < 𝛿𝛿.             (2) 

 
where, |𝑺𝑺𝑖𝑖| represents the number of valid disparities in Si; 𝛿𝛿 
represents the given threshold. 
 
2.3 Global Matrix Energy Function Construction 

This paper defines matching as a global energy function. D 
represents a disparity image. E(D) represents a global Energy 
function as follows: 
 

𝐸𝐸(𝑫𝑫) = Edata + Esmooth.            (3) 
 
where, Edata  represents a data term which measures the 
dissimilarity between a patch in the base image and the 
corresponding patch in the reference image; Esmooth represents a 
smoothness term which controls the smoothness between patches. 
 
2.3.1 Data Term 

Data term is defined as the summation of cost of all the valid 
patches, as follows: 
 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝐶𝐶(𝑺𝑺𝑖𝑖 , ni���⃗ )𝜏𝜏
𝑖𝑖=1 . (4) 

 
where, 𝜏𝜏 represents the number of valid patches; C represents 
matching cost of patches; 𝑺𝑺𝑖𝑖  represents a patch; ni���⃗ =
(𝑑𝑑𝑎𝑎𝑖𝑖 ,𝑑𝑑𝑏𝑏𝑖𝑖 ,𝑑𝑑𝑐𝑐𝑖𝑖)T represents the corrections of the disparity plane 
parameters in 𝑺𝑺𝑖𝑖. 
 
Correlation coefficients are defined as the matching cost in this 
paper. The matching cost of each patch in the base image is 
shown as follows:  
 
𝐶𝐶(𝑺𝑺𝑖𝑖 , ni���⃗ ) = −𝑟𝑟(𝑎𝑎0 + 𝑑𝑑𝑎𝑎𝑖𝑖 , 𝑏𝑏0 + 𝑑𝑑𝑏𝑏𝑖𝑖 , 𝑐𝑐0 + 𝑑𝑑𝑐𝑐𝑖𝑖|𝑺𝑺𝒊𝒊 )

= −  
∑ �𝐼𝐼𝑏𝑏(𝒑𝒑) − 𝐼𝐼𝑏𝑏(𝑺𝑺i)����������𝐼𝐼𝑟𝑟(𝒒𝒒) − 𝐼𝐼𝑟𝑟(𝑺𝑺i|ni���⃗ )������������𝒑𝒑∈𝑺𝑺𝒊𝒊

�∑ (𝐼𝐼𝑏𝑏(𝒑𝒑) − 𝐼𝐼𝑏𝑏(𝑺𝑺i)��������)𝒑𝒑∈𝑺𝑺𝒊𝒊
2 ∑ (𝐼𝐼𝑟𝑟(𝒒𝒒) − 𝐼𝐼𝑟𝑟(𝑺𝑺i|ni���⃗ )�����������)𝒑𝒑∈𝑺𝑺𝒊𝒊

2
 (5) 

 
where, r represents the correlation coefficient; a0, b0, c0 
represents the initial disparity plane parameters which are 
computed from initial matching results; 𝑺𝑺i represents a patch in 
the base image; p represents a pixel in 𝑺𝑺i; 𝐼𝐼𝑏𝑏 represents the base 
image; 𝐼𝐼𝑟𝑟 represents the reference image; 𝐼𝐼𝑏𝑏(𝑺𝑺i)�������� represents the 
average intensity of all pixels in 𝑺𝑺i ; 𝐼𝐼𝑟𝑟(𝑺𝑺i|ni���⃗ )����������� represents the 
average intensity of all pixels in the corresponding patch of 𝑺𝑺i. 
𝒒𝒒 = (𝑞𝑞𝑖𝑖, 𝑞𝑞𝑖𝑖)  in the reference image represents the 
corresponding pixel of p; the coordinate 𝑞𝑞𝑖𝑖 can be obtained by 
the disparity plane function in Equation (1); the coordinate 𝑞𝑞𝑖𝑖 is 
equal to 𝑝𝑝𝑖𝑖 in the case of epipolar stereos.  
 
Equation (5) shows that the correlation coefficient is a 
complicated nonlinear function. It is difficult to acquire the 
optimal solution of the global energy function in Equation (3), if 
the correlation coefficient in Equation (5) is adopted as the 
matching cost directly. It is worth noting that the correlation 
coefficient can be expressed as the second-order Taylor 
expansion, if good initial matching results are given.  
 

𝑟𝑟(𝑎𝑎0 + 𝑑𝑑𝑎𝑎𝑖𝑖 , 𝑏𝑏0 + 𝑑𝑑𝑏𝑏𝑖𝑖 , 𝑐𝑐0 + 𝑑𝑑𝑐𝑐𝑖𝑖|𝑺𝑺𝒊𝒊 )

≈ 𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )

+ �𝑑𝑑𝑎𝑎𝑖𝑖
𝜕𝜕
𝜕𝜕𝑎𝑎

+ 𝑑𝑑𝑏𝑏𝑖𝑖
𝜕𝜕
𝜕𝜕𝑏𝑏

+ 𝑑𝑑𝑐𝑐𝑖𝑖
𝜕𝜕
𝜕𝜕𝑐𝑐
� 𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )

+
1
2
�𝑑𝑑𝑎𝑎𝑖𝑖

𝜕𝜕
𝜕𝜕𝑎𝑎

+ 𝑑𝑑𝑏𝑏𝑖𝑖
𝜕𝜕
𝜕𝜕𝑏𝑏

+ 𝑑𝑑𝑐𝑐𝑖𝑖
𝜕𝜕
𝜕𝜕𝑐𝑐
�
2

𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 ) 

(6) 

 
Equation (6) can be composed of matrices and vectors, as follows: 
 
𝑟𝑟(𝑎𝑎0 + 𝑑𝑑𝑎𝑎, 𝑏𝑏0 + 𝑑𝑑𝑏𝑏, 𝑐𝑐0 + 𝑑𝑑𝑐𝑐|𝑺𝑺𝒊𝒊 )

≈
1
2
𝒏𝒏i���⃗

T𝒈𝒈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊)ni���⃗ − 𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑T (𝑺𝑺𝒊𝒊)�
𝑑𝑑𝑎𝑎
𝑑𝑑𝑏𝑏
𝑑𝑑𝑐𝑐
� + 𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺 ) (7) 

 
where, 𝒈𝒈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊) represents the quadratic coefficient matrix of 
the Taylor expansion for 𝑺𝑺𝒊𝒊 ; 𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊) represents the linear 
coefficient matrix of the Taylor expansion for 𝑺𝑺𝒊𝒊 . The two 
coefficient matrices can be expressed as follows:  
 
𝒈𝒈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊)

=

⎝

⎜
⎜
⎜
⎛

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑎𝑎𝜕𝜕𝑎𝑎

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑎𝑎𝜕𝜕𝑏𝑏

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑎𝑎𝜕𝜕𝑐𝑐

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑎𝑎𝜕𝜕𝑏𝑏

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑆𝑆𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑏𝑏𝜕𝜕𝑏𝑏

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊)
𝜕𝜕𝑏𝑏𝜕𝜕𝑐𝑐

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑎𝑎𝜕𝜕𝑐𝑐

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑏𝑏𝜕𝜕𝑐𝑐

𝜕𝜕2𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑺𝑺𝒊𝒊 )
𝜕𝜕𝑐𝑐𝜕𝜕𝑐𝑐 ⎠

⎟
⎟
⎟
⎞

 

𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊)

= �−𝜕𝜕𝑟𝑟
(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑆𝑆 )

𝜕𝜕𝑎𝑎
−
𝜕𝜕𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑆𝑆 )

𝜕𝜕𝑏𝑏
−
𝜕𝜕𝑟𝑟(𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0|𝑆𝑆 )

𝜕𝜕𝑐𝑐
� 

 
Define 𝒙𝒙� = (𝒏𝒏1����⃗ 𝒏𝒏2����⃗     … 𝒏𝒏𝜏𝜏����⃗ )T as the unknown vector which 
is composed of unknowns of all the patches. The data term 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
can be expressed in the matrix form:  
 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒙𝒙�𝑇𝑇𝑮𝑮𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒙𝒙� − 2𝑯𝑯𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇 𝒙𝒙�. (8) 

 
Where, 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the quadratic coefficient matrix of the 
data term; 𝑯𝑯𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 represents the linear coefficient matrix of the 
data term. Constant term is neglected in Equation (8), because 
constant term has no influence on the computation of the optimal 
solution. All the coefficient matrices are expressed as follows: 
 

𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑉𝑉𝑎𝑎𝐷𝐷(−𝒈𝒈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝒊𝒊)) 
𝑯𝑯𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = (−𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑T (𝑺𝑺1) −𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑T (𝑺𝑺2) ⋯ −𝒉𝒉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑T (𝑺𝑺𝜏𝜏))𝐓𝐓 

 
Traditional least square feature matching methods introduce 
radiation correction parameters, which lead to a large unknown 
set. This paper proposes to use the the second-order Taylor 
expansion of the correlation coefficient as the matching cost, 
which can solve linear radiation distortion problems without 
introducing any radiation correction parameters. In the case of 
color image matching, the proposed GPM only use three 
unknowns for each patch, while traditional least square feature 
matching methods use nine unknowns for each patch. Besides, 
traditional correlation matching methods use fixed window, 
which will bring in fronto-parallel bias. The correlation window 
in this paper can be changed by disparity planes functions, which 
can remove fronto-parallel bias effectively.  
 
2.3.2 Smoothness Term 
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For any two adjacent patches, there are two geometrical 
relationships:  
1. Connectivity Constraints. Any two adjacent patches are 
connected or disconnected, as shown in Figure 3. S1 and S2 
represent adjacent patches. 𝒅𝒅 = (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖)T represents the border 
pixel in S1, which is adjacent to S2. Figure 3(a) shows the case 
that S1 and S2 are connected. Figure 3(b) shows the case that S1 
and S2 are disconnected. This paper defines the connectivity 
measure as the distance from the border pixel to the plane of 
adjacent patches, as shown in Equation (9). CNCT(𝒅𝒅,  𝑺𝑺1,𝑺𝑺2) is 
small in the case of Figure 3(a), whereas it is large in the case of 
Figure 3(b). All the border pixels should be used to compute the 
connectivity measure.  
 

CNCT�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗� = ∆𝑑𝑑(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)
= �𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖 − 𝑎𝑎𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖 − 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑖𝑖 − 𝑐𝑐𝑗𝑗�

2
 

(9) 

 
where, CNCT represents the connectivity measure between two 
adjacent patches; ∆𝑑𝑑  represents the square of disparity 
differences; (𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 ) represents the centralized coordinates of 
border pixels in 𝑺𝑺𝑖𝑖 ; ( 𝑡𝑡𝑗𝑗𝑖𝑖 ,  𝑡𝑡𝑗𝑗𝑖𝑖 ) represents the centralized 
coordinates of border pixels in 𝑺𝑺𝑗𝑗 ; 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖  represent the 
disparity plane parameters of 𝑺𝑺𝑖𝑖. 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖 can be expressed as 
the sum of initial parameters and the corresponding corrections, 
as follows: 
 

𝑎𝑎𝑖𝑖 = 𝑎𝑎0 + 𝑑𝑑𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 = 𝑏𝑏0 + 𝑑𝑑𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖 = 𝑐𝑐0 + 𝑑𝑑𝑐𝑐𝑖𝑖. 
 
2. Coplanarity Constraints. The geometric relationship of any 
two connected patches is coplanar or noncoplanar, as shown in 
Figure 4. S1 and S2 represent two connected patches. c represents 
the centre of gravity in S2. Figure 4(a) shows the case that S1 and 
S2 are coplanar. The normal vectors of S1 and S2 in Figure 4(a) 
are parallel with each other. Figure 4(b) shows the case that S1 
and S2 are noncoplanar. The most common way to measure the 
coplanarity of the connected patches is to compute the angle 
between normal vectors. However, the computation of the angle 
is a complicated nolinear function which will lead to high time 
complexity of correction computation. In order to avoid this 
problem, this paper defines the coplanarity of the connected 
patches as the distance from the center c to the plane of the 
adjacent patch, as shown in Equation (9). It can be seen from 
Figure 4(b) that S1 and S2 are more likely to be coplanar with 
smaller ∆𝑑𝑑, and S1 and S2 are more impossible to be coplanar 
with bigger ∆𝑑𝑑.  
 

S1S1

S2S2

(a) Connected(a) Connected (b) Disconnected(b) Disconnected
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Figure 3. Connectivity between Patches 
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Figure 4. Coplanarity between Patches 

 
This paper defines smooth constraints as the combination of the 
connectivity constraints and the coplanarity constraints. This 
paper assumes that the surfaces of two adjacent patches are 
continuous smooth when the average intensity of the adjacent 
patches are close; otherwise, the smooth constraints are weak. 
The smoothness term 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ can be defined as follows:  
 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ

= �� � �
𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗)

|𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗  )|
� ∆𝑑𝑑(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)

𝒅𝒅∈𝑬𝑬(𝑺𝑺𝑖𝑖,𝑺𝑺𝑗𝑗 )𝑺𝑺𝑗𝑗∈𝑵𝑵(𝑺𝑺𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

+ 𝑃𝑃𝐼𝐼2(𝑉𝑉, 𝑗𝑗)∆𝑑𝑑(𝒄𝒄𝑖𝑖 ,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)�� 

(10) 

 
where, 𝑵𝑵(𝑺𝑺𝑖𝑖)  represents the neighbor patch set of 𝑺𝑺𝑖𝑖 ; 
𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 )  represents pixels in  𝑺𝑺𝑖𝑖  which is adjacent to 𝑺𝑺𝑗𝑗 ; 
|𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 )| represents the number of pixels in 𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 ); 𝒄𝒄𝑖𝑖 =
(𝑐𝑐𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖)T  represents the center pixel in 𝑺𝑺𝑖𝑖 ; 𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗) 
represents a connectivity penalty; 𝑃𝑃𝐼𝐼2(𝑉𝑉, 𝑗𝑗)  represents a 
coplanarity penalty. The two penalties are defined as follows:  
 

𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗) = 𝑃𝑃 ∙ 𝑒𝑒𝑒𝑒𝑝𝑝 �− �𝐼𝐼𝑏𝑏(𝑺𝑺i)�������� − 𝐼𝐼𝑏𝑏�𝑺𝑺j���������� /𝜎𝜎� 

𝑃𝑃𝐼𝐼2(𝑉𝑉, 𝑗𝑗) = 𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗) ∙ �𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑺𝑺i,𝑺𝑺j >�𝑠𝑠 
(11) 

 
where, P represents a given penalty coefficient; 𝜎𝜎 represents a 
smooth factor; 𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑺𝑺i,𝑺𝑺j > represents the angle between the 
normal vectors of 𝑺𝑺i and  𝑺𝑺j. 𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑺𝑺i,𝑺𝑺j > can be computed 
by the initial matching results. m represents a given power factor.  
 
The first function in Equation (11) shows that when the average 
intensities of adjacent patches are close, a larger penalty 𝑃𝑃𝐼𝐼1 
should be given, which aims at encouraging smoothness in 
intensity homogenous regions. The second function in Equation 
(11) shows that a larger 𝑃𝑃𝐼𝐼2  should be given, when the 
connectivity of the adjacent patches is strong and the angle 
between the normal vectors is small. A larger 𝑃𝑃𝐼𝐼2  punishes 
noncoplanarity of the adjacent patches. Otherwise, when the 
connectivity of the adjacent patches is weak or the angle between 
the normal vectors is big, smaller 𝑃𝑃𝐼𝐼2  should be given to 
guarantee the matching accuracy in curved areas.  
 
For any 𝒅𝒅 ∈ 𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 ) ∪ 𝒄𝒄𝑖𝑖, Equation (9) can be expressed in the 
matrix form:  
 

∆𝑑𝑑�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗�

= (𝑑𝑑𝑎𝑎𝑖𝑖 ,𝑑𝑑𝑏𝑏𝑖𝑖 ,𝑑𝑑𝑐𝑐𝑖𝑖)𝝈𝝈𝟏𝟏�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗� �
𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝑏𝑏𝑖𝑖
𝑑𝑑𝑐𝑐𝑖𝑖

�

+ �𝑑𝑑𝑎𝑎𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑐𝑐𝑗𝑗�𝝈𝝈𝟐𝟐�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗��
𝑑𝑑𝑎𝑎𝑗𝑗
𝑑𝑑𝑏𝑏𝑗𝑗
𝑑𝑑𝑐𝑐𝑗𝑗

�

+ (𝑑𝑑𝑎𝑎𝑖𝑖 ,𝑑𝑑𝑏𝑏𝑖𝑖 ,𝑑𝑑𝑐𝑐𝑖𝑖)𝝈𝝈𝟑𝟑�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗��
𝑑𝑑𝑎𝑎𝑗𝑗
𝑑𝑑𝑏𝑏𝑗𝑗
𝑑𝑑𝑐𝑐𝑗𝑗

�

+ �𝑑𝑑𝑎𝑎𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑐𝑐𝑗𝑗�𝝈𝝈𝟑𝟑�𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗�
T �

𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝑏𝑏𝑖𝑖
𝑑𝑑𝑐𝑐𝑖𝑖

�

− 2𝒉𝒉𝑖𝑖(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)T �
𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝑏𝑏𝑖𝑖
𝑑𝑑𝑐𝑐𝑖𝑖

� − 2𝒉𝒉𝑗𝑗(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)T �
𝑑𝑑𝑎𝑎𝑗𝑗
𝑑𝑑𝑏𝑏𝑗𝑗
𝑑𝑑𝑐𝑐𝑗𝑗

� 

(12) 
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where, 𝝈𝝈𝟏𝟏 , 𝝈𝝈𝟐𝟐 , 𝝈𝝈𝟑𝟑  represents the quadratic coefficient 
matrices of ∆𝑑𝑑 , respectively; 𝒉𝒉𝑖𝑖(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗)  and 𝒉𝒉𝑗𝑗(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) 
represents the linear coefficient matrices of ∆𝑑𝑑, respectively . 
Equation (12) neglects the constant term, which doesn't influence 
the computation of the optimal solution. The detailed expressions 
of 𝝈𝝈𝟏𝟏, 𝝈𝝈𝟐𝟐, 𝝈𝝈𝟑𝟑, 𝒉𝒉𝑖𝑖(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) and 𝒉𝒉𝑗𝑗(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) are as follows:  
 

𝝈𝝈𝟏𝟏(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) =

⎝

⎛
𝑡𝑡𝑖𝑖𝑖𝑖

2 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖

2 𝑡𝑡𝑖𝑖𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 1 ⎠

⎞ 

𝝈𝝈𝟐𝟐(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) =

⎝

⎛
𝑡𝑡𝑗𝑗𝑖𝑖

2 𝑡𝑡𝑗𝑗𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖
𝑡𝑡𝑗𝑗𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖

2 𝑡𝑡𝑗𝑗𝑖𝑖
𝑡𝑡𝑗𝑗𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 1 ⎠

⎞ 

𝝈𝝈𝟑𝟑(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) = �
−𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 −𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 −𝑡𝑡𝑖𝑖𝑖𝑖
−𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 −𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑡𝑡𝑗𝑗𝑖𝑖 −𝑡𝑡𝑖𝑖𝑖𝑖
−𝑡𝑡𝑗𝑗𝑖𝑖 −𝑡𝑡𝑗𝑗𝑖𝑖 −1

� 

𝒉𝒉𝑖𝑖(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) = �𝑑𝑑𝑗𝑗0(𝒅𝒅) − 𝑑𝑑𝑖𝑖0(𝒅𝒅)� �𝑡𝑡𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 1�
T
 

𝒉𝒉𝑗𝑗(𝒅𝒅,  𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗) = �𝑑𝑑𝑖𝑖0(𝒅𝒅) − 𝑑𝑑𝑗𝑗0(𝒅𝒅)� �𝑡𝑡𝑗𝑗𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 1�
T
 

 
where, 𝑑𝑑𝑖𝑖0(𝒅𝒅)  represents the disparity of pixel t, which is 
computed by the initial disparity plane parameters of 𝑺𝑺i; 𝑑𝑑𝑗𝑗0(𝒅𝒅) 
represents the disparity of pixel t, which is computed by the initial 
disparity plane parameters of 𝑺𝑺j.  
 
The smoothness term 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ  can be rewritten in the matrix 
form by inserting Equation (12) into Equation (10).  
 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ = 𝒙𝒙�𝑇𝑇𝑮𝑮𝑠𝑠𝒙𝒙� − 2𝑯𝑯𝑠𝑠
𝑇𝑇𝒙𝒙� (13) 

 
where, 𝒙𝒙� represents the unknown vector composed of all the 
corrections of disparity plane parameters; 𝑮𝑮𝑆𝑆  represents the 
quadratic coefficient matrix of the smoothness term; 𝑯𝑯𝑆𝑆 
represents the linear coefficient matrix of the smoothness term. 
The detailed description of 𝑮𝑮𝑆𝑆 is as follows:  
 

𝑮𝑮𝑠𝑠 = �� � �
𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗)

|𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 )|
� 𝒈𝒈𝒔𝒔𝒔𝒔� 𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 , 𝒅𝒅�

𝒅𝒅∈𝑬𝑬(𝑺𝑺𝑖𝑖,𝑺𝑺𝑗𝑗 )𝑺𝑺𝑗𝑗∈𝑵𝑵(𝑺𝑺𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

+ 𝑃𝑃𝐼𝐼2(𝑉𝑉, 𝑗𝑗)𝒈𝒈𝒔𝒔𝒔𝒔� 𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 , 𝒄𝒄𝑖𝑖��� 

(14) 

 
where,  

11 ii jj τ τ 
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ii
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The detailed description of 𝑯𝑯𝑆𝑆 is as follows:  
 

𝑯𝑯𝑠𝑠 = �� � �
𝑃𝑃𝐼𝐼1(𝑉𝑉, 𝑗𝑗)

|𝑬𝑬(𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 )|
� 𝒉𝒉𝒔𝒔𝒔𝒔� 𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 , 𝒅𝒅�T

𝒅𝒅∈𝑬𝑬(𝑺𝑺𝑖𝑖,𝑺𝑺𝑗𝑗 )𝑺𝑺𝑗𝑗∈𝑵𝑵(𝑺𝑺𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

+ 𝑃𝑃𝐼𝐼2(𝑉𝑉, 𝑗𝑗)𝒉𝒉𝒔𝒔𝒔𝒔� 𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑗𝑗 , 𝒄𝒄𝑖𝑖�
T�� 

(15) 

 
where,  

11 ii jj τ τ 

 
The global energy function can be redefined in the matrix form 
by combining Equation (8) and Equation (13).  
 

min𝐸𝐸(𝑫𝑫) = 𝒙𝒙�𝑇𝑇(𝑮𝑮𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 + 𝑮𝑮𝑠𝑠)𝒙𝒙� − 2(𝑯𝑯𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇 + 𝑯𝑯𝑠𝑠

𝑇𝑇)𝒙𝒙�. (16) 
 
Equation (16) is a typical objective function of least squares. 
Computing the minimum value of Equation (16) is equal to 
solving (𝑮𝑮𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 + 𝑮𝑮𝑠𝑠)𝒙𝒙� = 𝑯𝑯𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑯𝑯𝑆𝑆. There are many ways to 
acquire the optimal solution of Equation (16), such as conjugate 
gradient methods, quasi-newton method, Cholesky 
decomposition and so on. We used the Eigen tool to solve 
Equation (16) in all the following experiments.  
 

3. EXPERIMENTS 

In order to test the performance of the proposed method, two 
experiments were carried out. The Adirondack stereo and the 
Motorcycle stereo of Middlebury benchmark (Scharstein and 
Szeliski, 2002) are used as the experimental data We compared 
the performance of the proposed GPM with INTS (Huang, et al., 
2016) which is one of the state-of-the-art 1D labels. Then, we 
used the ground truth to evaluate the matching accuracy of GPM. 
In both experiments, all the matching parameters were fixed. We 
used the INTS matching results as the initial matching of GPM 
in all the experiments.  
 
3.1 Experiment on Adirondack stereo 

The base image of Adirondack is shown in Figure 5(a). Figure 
5(b) is the disparity image generated by INTS. Figure 5(c) is the 
disparity image generated by the proposed GPM. Region 1 in 
Figure 5(b) represents invalid regions where disparities were 
invalid.  
 
The reconstructed surfaces of INTS matching results face serious 
"disparity stair" problems, and the surfaces are rather rough, as 
shown in Figure 5(b). It is because 1D label algorithms assume 
fronto-parallel planes which can cause fronto-parallel bias. The 
proposed GPM can remove fronto-parallel bias. GPM assigns 
three labels to each patch and constructs smoothness terms 
between adjacent patches. Thus, the reconstructed surfaces of 
GPM matching results are continuous smooth, as shown in Figure 
5(c). It is worth noting that the invalid pixels of GPM are much 
less than that of INTS in Figure 5. It is because not all of the 
disparities in each SLIC patch are valid, as descripted in section 
2.2. Therefore, the optimal solution can be used to compute the 
disparity of invalid pixels in each valid patch, and a more 
complete disparity image can be obtained.  
 
Both Region 2 and Region 3 in Figure 5 are slanted regions. In 
order to make the comparison more comprehensively, the 
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zoomed sight of Region 2 and Region 3 are illustrated in Figure 
6 and Figure 7, respectively.  
 

  
           (a) INTS               (b) GPM 

Figure 6. Comparison of Surface in Region 2 
 

  
(a) INTS                  (b) GPM 

Figure 7. Comparison of Surface in Region 3 
 
Figure 6 and Figure 7 show that the surfaces of GPM matching 
results are continuous smooth even in the zoomed sight. Ground 
truth was used to evaluate the performance of GPM. In order to 
give a comprehensive evaluation, this paper adopted the average 
matching accuracy, the percent of pixels with matching accuracy 
below 0.5 pixels, 1 pixel, 2 pixels and 3 pixels as accuracy 
metrics, respectively, as shown in Table 1. 
 

 Average 
(Pixel) 

% < 0.5 
Pixel 

% < 1 
Pixel 

% < 2 
Pixels 

% < 3 
Pixels 

GPM 0.379 79.2 92.3 97.6 98.8 
INTS 0.404 78.4 92.4 97.6 98.8 

Iteration 
Times 1 

Table 1. Accuracy Evaluation of GPM on Adirondack Stereo 
 
Table 1 shows that the matching accuracy of GPM is better than 
that of INTS. The matching accuracies of most pixels (79.2%) 
are below 0.5 pixels. The matching accuracies of almost all the 
pixels (98.8%) are below 3 pixels, which shows the good 
robustness of GPM. Smoothness terms make contributions to the 
robustness. It helps achieve the global optimal solutions. If no 
smoothness terms were used, GPM might trap in the local 
optimum, or even could not converge, which would lead to 
mismatches. The computation efficiency of GPM is high. Only 
one iteration was needed to obtain the continuous smooth surface 
model.  
 

3.2 Experiment on Motorcycle stereo 

The base image of Motorcycle is shown in Figure 8(a). Figure 
8(b) is the matching results of INTS. Figure 8(c) is the matching 
result of the proposed GPM.  
 
1D label algorithms assume fronto-parallel planes, thus the 
surface of INTS matching results face serious "disparity stair" 
problems, as shown in Figure 8(b). The proposed GPM can 
remove fronto-parallel bias and acquire continuous smooth 
surfaces, as shown in Figure 8(c).  
 
Though continuous smooth surfaces were obtained by GPM, 
excessive smoothness occurred in some regions. For example, 
Region 1 in Figure 8(a) and Figure 8(c) was over smooth. In 
Region 1, the disparities of the tyre and the disparities of the 
ground are discontinuous. However, the intensities of the tyre and 
the ground are close due to the shadow of the motorcycle. 
Therefore, GPM encouraged the disparities of the tyre and the 
ground to be continuous, which led to mismatches. The excessive 
smoothness showed that GPM performed weakly in regions with 
homogenous intensities but discontinuous disparities.  
 
Ground truth was used to evaluate the performance of GPM. In 
order to give a comprehensive evaluation, this paper adopted the 
average matching accuracy, the percent of pixels with matching 
accuracy below 0.5 pixels, 1 pixel, 2 pixels and 3 pixels as 
accuracy metrics, respectively, as shown in Table 2. 
 

 Average 
(Pixel) 

% < 
0.5 

Pixel 

% < 1 
Pixel 

% < 2 
Pixels 

% < 3 
Pixels 

GPM 0.541 70.4 87.0 95.1 97.3 
INTS 0.396 80.4 94.2 97.8 98.6 

Iteration 
Times 1 

Table 2. Accuracy Evaluation of GPM on Motorcycle Stereo 
 
The performance of GPM in Table 2 is still good with only one 
iteration. The average matching accuracy is 0.541 pixels. The 
matching accuracy of most pixels (70.4%) are below 0.5 pixels. 
However, the performance of GPM was worse than that of INTS. 
It is because there were some mismatches caused by excessive 
smoothness.  
 

4. CONCLUSION 

This paper proposed a novel global patch matching method to 
remove fronto-parallel bias and obtain continuous smooth 
surfaces. The main work of this paper were concluded as follows: 
 

1

22 22

33 33

 
       (a) Base Image                              (b) INTS                          (C) GPM 

Figure 5. Matching Results on Adirondack Stereo 
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1. The second-order Taylor expansion of correlation coefficients 
was introduced into the matching cost computation for the first 
time. The expression of the second-order Taylor expansion only 
contains three unknowns. Compared with the traditional least 
square feature matching, the unknown set of the Taylor 
expansions is much smaller.  
 
2. This paper defined the smoothness terms as the combination 
of the connectivity constraints and the coplanarity constraints, 
which is capable of guaranteeing the smoothness between 
adjacent patches.  
 
3. This paper transformed stereo matching into the least square 
problem. The global energy function can be rephrasedin the form 
of a quadratic matrix function, which can be solved by the least 
square principle. .  
 
Experiments on Adirondack stereo and Motorcycle stereo from 
Middlebury benchmark showed that the proposed GPM 
performed well in both stereos. Fronto-parallel bias can be 
removed effectively, and the reconstructed surfaces are 
continuous smooth. In future work, we will focus on solving the 
excessive smoothness problem.  
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