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ADJUSTMENT FOR SUSPECTED MISCLASSIFIED 

SMOKING DATA IN AN HISTORICAL COHORT STUDY OF 

WORKERS EXPOSED TO ACRYLONITRILE  

Sarah Downing Zimmerman, MS 

University of Pittsburgh, 2013 

Objectives: To examine the association between exposure to acrylonitrile (AN) and lung cancer

mortality after properly addressing misclassification and possible positive confounding of smoking 

history. 

Methods: Subjects were 992 white males who were employed for three or more months between

1960 and 1996 at an AN chemical plant in Lima, OH. There were 15 identified cases of lung cancer 

deaths. Smoking histories were obtained for 90.3% of the cohort and 54.2% of the cohort were 

identified as having “ever smoked”.  Though there were few “unknown” smoking histories, the 

smoking variable was determined to be misclassified as the RR for having ever smoked related to 

lung cancer was only 1.08 (95% CI=0.26, 6.18). We addressed potential confounding by smoking 

in the presence of suspected misclassified smoking data by determining if a reasonable adjustment 

of the available smoking data would change the risk levels of lung cancer in the original Lima 

cohort and the relationship between AN exposure and lung cancer using Monte Carlo simulation 

and bias adjustment. 

Conclusions: After running Monte Carlo simulation, we found that the mean RR of lung cancer

mortality given differing levels of AN exposure decreased after adjusting for the simulated smoking 

data. However, the results from the bias adjustment must be interpreted with caution as the analysis 

ABSTRACT
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was limited by the number of lung cancer cases. In this cohort, we concluded that smoking 

positively confounded the relationship between AN exposure and lung cancer mortality. 

Public Health Relevance:  Properly adjusting for smoking history in studies of lung cancer is 

critical of the validity of the study results. As seen in this study, smoking habits impact the risk of 

certain health outcomes. Researchers must attempt to address the potential confounding by smoking 

whenever possible. 
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1.0    INTRODUCTION 

 

1.1    BACKGROUND AND RATIONALE 

 

Acrylonitrile (AN) is a chemical used in the production of many plastics, synthetic fibers and 

rubbers, and previous experimental studies have shown AN to be carcinogenic in animals. Excess 

exposure to AN in rats has resulted in certain types of cancer (astrocytomas), occurring in the brain 

and spinal cord, and tumors of the Zymbal gland, forestomach, stomach and mammary gland 

(Strother et al., 1998).  Due to the prevalence of AN in manufacturing, many studies focus on 

human exposure to the chemical in occupational settings, and researchers are interested in 

determining if AN is potentially carcinogenic to humans. To date, epidemiologic studies have 

provided inconclusive evidence to support a claim that AN is carcinogenic to humans. AN is 

currently labeled as a “possible” (Group 2B) carcinogen by the International Agency for Research 

on Cancer (IARC, 1999). 

 

There are four main occupational cohort mortality studies that focus on the health effects of AN. 

The National Cancer Institute (NCI) performed the largest study to date which analyzed the 

relationship between the manufacture and use of AN and mortality rates among employees in eight 

facilities (Blair et al., 1998). In this study, researchers attempted to find a relationship between 
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varying levels of exposure to the chemical and changes in mortality rate of the workers. They 

concluded that the exposure levels in the facilities did not create a significant increase in relative 

risk of cancer deaths, but they did notice an “excess of lung cancer in the highest quintile of 

cumulative exposure.” Similar analyses were performed in other cohort studies, for example in 

South Carolina (DuPont cohort- Symons et al., 2008), the UK (Benn et al., 1998), and the 

Netherlands (Swaen et al., 1998). These studies reported slight elevations in risk for several types of 

cancer mortality, including lung cancer, but found no statistically significant relationship between 

exposure to AN and the risk of lung cancer mortality.  

 

Researchers would like to conduct a full evaluation of this increased risk for lung cancer, however 

they are limited by the absence or misclassification of smoking data. In all studies of lung cancer, 

one must take into account the effects of smoking on the occurrence of lung cancer as there is a 

well-known relationship between these factors. However, in the UK, Dutch, and DuPont analyses 

mentioned above, smoking data are missing, and it is possibly misclassified in the NCI study. As 

such, one cannot draw full conclusions about the association between AN exposure and lung cancer 

in these studies. 

 

In 1995, the University of Pittsburgh’s Center for Occupational Biostatistics and Epidemiology 

(COBE) was commissioned by BP Chemicals, Inc. (BPC) to perform an updated and extended 

investigation of mortality patterns with an emphasis on cancer mortality in relation to AN exposure 

within their chemical plant located in Lima, OH (Marsh et al. 1999), which was one of the eight 

plants studied in the NCI cohort study. At BPC’s request, COBE updated the mortality and work 

histories of employees from this plant to include data on those employees who worked at the plant 
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for at least three months between 1960 and 1996. The study gathered data on 992 white males who 

worked in the plant during this time period. Of these 992 workers, 15 of them died from lung 

cancer. In this update, smoking histories were also provided to enable an evaluation of the 

relationships among AN exposure, lung cancer mortality, and smoking history.  

 

In the Marsh et al. publication (1999), there was limited evidence of an exposure-response trend 

between AN exposure and lung cancer after adjusting for time since first employment. In the lowest 

(>0 - 4.9 ppm), middle (5.0 - 11.9 ppm) and highest (12.0+ ppm) categories of average intensity of 

AN exposure, the relative risk (RRs) and associated confidence intervals were 1.18 (95% CI=0.16, 

6.84), 1.46 (95% CI=0.22, 7.29) and 2.91 (95% CI=0.46, 14.13) respectively. They concluded that, 

although the exposure-response analysis showed monotonically increasing RRs for lung cancer 

given AN exposure, this trend was not statistically significant. Accurately accounting for smoking 

history in the evaluation of the relationship between AN exposure and lung cancer is a necessary 

step in evaluating an exposure-response trend.  

 

In the Marsh et al. study (1999), however, the final exposure-response results were not adjusted for 

smoking histories of the workers because the RR for lung cancer mortality related to smoking 

history was inordinately low. This RR was 1.08 with 95% confidence interval (0.28, 6.18). It is well 

known (as discussed later) that smoking is a major risk factor of lung cancer, and this relationship 

was not evident in the smoking data from the 1999 study. As the smoking variable was not a 

statistically significant predictor of lung cancer mortality, the data was considered to be highly 

misclassified, and thus smoking information was not included in the analysis. This thesis will 

address the issue of possible smoking misclassification in the 1999 study. 
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1.2    STATEMENT OF THE PROBLEM 
 

In this thesis, using Monte Carlo simulation and bias adjustment, I will address potential 

confounding by smoking in the presence of suspected misclassified smoking data by determining if 

a reasonable adjustment of the available smoking data changes the risk levels of lung cancer in the 

original Lima cohort and the relationship between AN exposure and lung cancer. This will provide 

a more valid assessment of the association between AN exposure, lung cancer mortality, and 

smoking history. The focus of this thesis will use the Lima, OH cohort updated by COBE (Marsh et 

al., 1999) with the study period January 1, 1960 to December 31, 1996. 

 

1.3    RELATIONSHIP BETWEEN SMOKING AND LUNG CANCER 

 

Smoking history for the workers in the original Lima cohort was determined by a voluntary mail-in 

survey issued by BP. Also, medical records were examined by the original researchers to obtain 

more information on lifetime smoking history.  The relationship between smoking history and AN 

exposure is displayed in Table 1. The first column groups workers based on their cumulative 

exposure to acrylonitrile over the course of their entire employment at the plant. For example, 

among of all workers with a cumulative exposure over 110 parts per million per year (ppm-years), 

three workers died of lung cancer, and 61 of the workers in this category admitted to having ever 

smoked (which accounts for 80.3% of all people in this category). Also, 13 workers with exposure 

rates above 110 ppm-years claimed to have never smoked (17.1% of the category). Cumulative 

exposure is displayed in this table (rather than duration of exposure or average exposure) to enable 

the comparison of smoking histories of those in the highest exposure levels to those unexposed to 

AN. Within the total cohort, smoking data were gathered for 90.3% of workers and 93.0% of AN 
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exposed workers. Further, 54.2% of the workers were identified as having “ever smoked”. Those 

without reported smoking histories were classified as unknown. 

 

Table 2 displays results from Marsh et al’s (1999) univariate risk estimates for smoking history, AN 

duration (Dur) of exposure, AN cumulative (Cum) exposure, and AN average intensity of exposure 

(AIE). In the row corresponding to “Smoking History”, we note that, of the 15 reported deaths due 

to lung cancer, three people claimed to have never smoked, 10 claimed to have smoked and two had 

unclassified smoking data. Here, it is shown that the univariate RRs of lung cancer mortality due to 

smoking is 1.08 with associated p-value=0.999, while the RR of those with unknown smoking data 

is 1.18. Because the RR of lung cancer mortality due to smoking history was close to 1.00 for both 

ever and unknown smokers in the original study, smoking history was not a significant main effect 

of lung cancer mortality, and was thus not included in the final statistical model developed by 

Marsh et al. (1999). Further explanation of relative risk regression is in Section 2.1. 

 

Table 3 shows a summary of the relative risk regression analysis for lung cancer mortality adjusted 

for time since first employment as reported by Marsh et al. in 1999. This thesis will investigate 

whether reassigning smoking history data through simulation will change the exposure-response 

trend reported by Marsh et al. by comparing the adjusted data to the data displayed in Table 3.  

 

Earlier studies have shown that the risk of lung cancer increases 11-fold (Higgins and Wynder, 

1988) among those who have ever smoked and reported the odds ratio to be 35.5 (Samet, 1993) 

among heavy smokers compared to non-smokers.  The US Surgeon General’s report (2006) shows 

a comparison of lung cancer standardized mortality ratios (SMR) between smokers and 
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nonsmokers. The reported SMRs for smokers ranged from 2.03 to 14.20 in a Japanese study (Loeb 

et al., 1984) and a Canadian Veterans study (Loeb et al., 1984), respectively. The American Cancer 

Society (Loeb et al., 1984) reported the lung cancer SMR to be as high as 10.73 in smokers 

compared to nonsmokers.  

 

Given the RRs for lung cancer mortality due to smoking observed in the literature, the “inordinately 

low” RR mentioned above of 1.08 reported by Marsh et al. (1999) strongly suggests smoking was 

misclassified among members of this cohort.  In the first part of this thesis, we attempted to 

determine if adjusting the data for smoking and then including it in the final analysis would change 

the results (thereby showing that misclassification of smoking data has a strong impact on the 

outcome of the study). This was done by randomly reassigning a percentage of workers labeled as 

“non-smokers” to “smokers” repeatedly via a Monte Carlo process, and repeatedly analyzing the 

results. This process generated a more realistic RR between the smoking data and the lung cancer 

mortality cases. In the second part of this thesis, we attempted to remove any bias related to 

smoking history from the final RR of lung cancer mortality related to AN exposure using 

Richardson’s method (2010) described in more detail later. 

 

1.4    CONFOUNDING BY SMOKING 

 

Confounding can occur when a third variable (here, smoking history), which is not in the causal 

pathway between the exposure and health outcome (here, AN exposure and lung cancer), is related 

to both factors.  The first step is to determine if the potential confounder is a statistically significant 

risk factor for the health outcome. If it is a risk factor, then the variable (smoking history) has the 
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potential to confound the exposure-response relationship if it is also related to the exposure variable 

(AN exposure). It is possible that the limited evidence of a relationship between AN exposure and 

lung cancer in the NCI study (Blair et al., 1998) and the Lima cohort study (Marsh et al., 1999) was 

due, at least in part, to a misclassification of smoking history among the workers, and  a more 

accurate assessment of the association (or lack thereof) will result after accounting for the potential 

confounding by smoking history. 

 

A well-known example of confounding occurred in a classic study in which researchers were 

attempting to find causes of lung cancer. In this study (Marsh et al., 1988), researchers noticed that 

many of the participants who had lung cancer also frequented bars. From this information, they 

drew the conclusion that alcohol increased the risk for lung cancer. However, the researchers failed 

to take into account that these participants were inhaling a large amount of cigarette smoke while at 

the bar. This is an example where the confounding variable (smoking) affected the conclusion 

relating the risk factor (alcohol) and health outcome (lung cancer). Specifically, this is an example 

of positive confounding as the relationship between alcohol consumption and lung cancer was 

artificially increased by the confounding effects of smoking. Negative confounding occurs when the 

confounding variable masks the association between the risk factor and health outcome.  

 

If smoking is more prevalent among workers with higher exposure rates and less prevalent among 

those with lower rates, positive confounding by smoking is likely to have occurred between these 

variables.  In the Lima cohort study (Marsh et al. 1999), those workers who experienced a higher 

cumulative exposure to AN were more likely to report having ever smoked. This relationship is 

evident in Table 1; as AN exposure increases, the number of those identified as “ever smoked” is 
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larger than “never smoked”. Thus, positive confounding by smoking is a possibility in this study. In 

this thesis, we attempted to identify and account for the extent to which smoking was positively 

confounding the relationship between AN exposure and lung cancer mortality. 

 

As shown in Table 2, there was a monotonically increasing exposure-response trend for AN 

exposure and lung cancer mortality, and a sufficient amount of smoking data is present to analyze 

the effect of confounding on the results. We were able to adjust the smoking data through 

simulation and investigate the resulting effect on the exposure-response relationship. 

 

 

2.0    PROPOSED METHODS FOR THESIS 

 

2.1    OVERVIEW OF METHODS 

 

Several approaches are available for adjusting an exposure-response analysis for a potential 

confounding variable. This thesis will implement and compare two techniques to account for the 

potential confounding effect of smoking on the relationship between AN exposure and lung cancer 

mortality. 

 

The first technique used to adjust for confounding is a sensitivity analysis using the Monte Carlo 

(MC) method. The MC method is a general procedure that is used to run simulations many times. In 

this thesis, we will simulate the problematic variable (i.e. smoking history) by random reassignment 

of the “never smoked” label to “ever smoked”. We will then perform regression analysis using the 
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new variable and repeat this combination using the simulated variable many times. Using the MC 

method, we can analyze the sensitivity of the RRs and thereby answering the question “how much 

did these RRs change as a proportion of the smoking data was changed from never smoked to ever 

smoked”?  

 

Steenland and Greenland used a very similar method in their publication, “Sensitivity Analysis of 

an Unmeasured Confounder” (2004), where the authors used and compared two different methods 

to adjust for confounding by smoking on lung cancer risk: MC sensitivity analysis and Bayesian 

bias analysis. Steenland and Greenland concluded that the two methods yielded similar results and 

that these types of analyses “should be more widely adopted by epidemiologists” (2004). Also, a 

similar approach was used by Cunningham (2005) in his unpublished thesis to adjust for missing 

smoking data in the NCI case-cohort study. Though similar in methodology, this thesis will address 

misclassification rather than missing data in smoking history using the MC approach.  

 

The second approach, developed by Richardson (2010), is used if smoking history is too difficult to 

obtain or if there exists a large proportion of missing data. This is a common issue, as it is rare to 

accumulate accurate smoking data in a cohort study. Richardson proposed a method in which one 

can estimate and remove the bias of smoking from the RR of AN exposure related to lung cancer 

mortality. Richardson suggests using this method as this approach does not require smoking data or 

assumptions of the smoking variable distribution. 
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2.2   FIRST METHOD: MONTE CARLO (MC) SIMULATION 

 

The following general steps are required to incorporate the Monte Carlo (MC) approach: 

Step 1: Adjust data to achieve a realistic odds ratio (OR) for smoking and lung cancer 

similar to those shown in the Surgeon General’s Report (2010), 

Step 2: Generate risk sets using OCMAP (Marsh et al 1998), a statistical software, to help 

adjust for the effect of potential confounding due to age and time period on health 

outcome, 

Step 3: Simulate a new smoking history variable using the MC approach, 

Step 4: Run conditional logistic regression models to estimate the relative risk (RR) of 

smoking using the simulated smoking variable, 

Step 5: Compare the new RRs to the original RRs to determine if adjusting for the new 

smoking variable affects the risk of lung cancer given exposure to AN. 

 

Step 1:  Adjust Data to Achieve a More Realistic Odds Ratio 

 

According to the Surgeon General’s Report (1986, 2010), about 90% of lung cancer cases can be 

attributed to smoking. In the original Lima cohort, only around 67% of those people who died of 

lung cancer were identified as smokers according to the literature. This, along with the inordinately 

low RR for smoking and lung cancer mortality observed in the original cohort by Marsh et al. 

(1999), provides evidence that the smoking data are possibly misclassified, as a higher percentage 

of those who died of lung cancer should have also been smokers. In order to achieve a more 
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realistic percentage, the smoking data must be reclassified through simulation to reflect a higher 

smoking prevalence within lung cancer deaths.  

 

Table 4 illustrates how the odds ratio (OR) of lung cancer mortality related to smoking increases as 

the prevalence of smoking is increased. The ORs were calculated using 2x2 tables. The first row in 

the table displays the information about the original data set. In this set, 10 workers who died of 

lung cancer (cases) were identified as having ever smoked, and five of the cases were identified as 

never having smoked or had missing smoking data. Thus, about 66.7% of all cases had identified 

themselves as smokers. The OR for this scenario is presented in the fifth column, and the last 

column displays the p-value from a Fisher’s Exact Test on the null hypothesis that the OR equals 

1.00. The following rows display scenarios in which the prevalence of smoking was increased by a 

value of one each time. In other words, one case labeled as “never smoked” or “unknown” was 

reassigned to “ever smoked.” In each of these new scenarios, the smoking prevalence, OR, and p-

value were calculated. These changes were made with the purpose of adjusting the smoking 

prevalence among cases and increasing it to a more realistic value similar the one reported by the 

Surgeon General (1986, 2010). 

 

Table 4 shows that as the smoking prevalence increased within cases, the OR increased as well. As 

the prevalence approached 90.0%, the OR approached 10, which is expected as the Surgeon 

General’s report (1986, 2010) concluded that the SMR for lung cancer given smoking is around 10. 

In the final and most extreme scenario, the p-value is 0.028 indicating a statistically significant 

relationship between smoking and lung cancer mortality exists. 
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This thesis will focus on the results shown in Table 4 Scenario 4. Recall that, in order for a variable 

to cause confounding in a study, a relationship between the confounding variable and the main risk 

factor is necessary. This was shown to be the case between AN exposure and smoking in this data 

set in Table 1. Additionally, a statistically significant relationship between the confounding variable 

and the health outcome must be present. As such, we will be able to determine if smoking 

confounds the relationship between AN exposure and lung cancer death.  

 

In this analysis, we assumed that the misclassification is biased downward away from “ever 

smoking” rather than biased toward “never smoking”. One possible explanation for this 

misclassification is the self-conscious response by workers being interviewed for their medical 

records. Considering that there is a social stigma associated with being identified as a smoker, we 

will assume that many individuals would misrepresent themselves as a nonsmoker when, in reality, 

they have smoked. Workers may be unlikely to admit that they smoked when being checked by a 

health professional during regular checkups, and they may also be unwilling to admit to the 

company that they smoke due to negative responses from health insurance providers. For these 

reasons, we chose to focus on an increased prevalence of smoking within the simulation to account 

for the supposedly low amount of smoking data. 

 

Step 2: Generate Risk Sets 

 

The technique of creating a risk set is a method which matches employees who died of lung cancer 

(cases) with those who did not (controls) based on some specific criterion. A risk set was created 

for each case by matching the controls who were alive at the exact age at which the case died. That 
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is, if a case died at the age of x, then all controls who were at risk and lived to be at least x years old 

were grouped with this case. The risk set was then further matched on year of birth using caliper 

matching by only considering those controls whose birth date was within some determined range of 

the case. Thus, the case that died at x years old was matched with all controls that lived to be at 

least x, were at risk and were born within five years before or after the case’s birthday. The range of 

birthdates around each case was originally one year, but this created risk sets that were too small. 

As such, the range was increased to five years for everyone, and ten years for two cases (in order to 

create large enough risk sets). To properly analyze the data, the statistical software, OCMAP 

(Marsh et al. 1998), was used to create these risk sets for each case. By the method with which 

these risk sets were matched, it is possible that some controls appear in multiple risk sets, and some 

do not appear in any of them.  

 

Creating risk sets helps eliminate the confounding effects caused by the matched variables which, 

in this instance, are exact age and time. Age is a major factor in the onset of cancer, therefore, if 

controls and cases are matched based on exact age at death, confounding due to age should be 

reduced during the analysis within risk sets. Additionally, matching on year of birth helps eliminate 

any birth cohort effects. 

 

 Table 5 displays the counts for each risk set partitioned by smoking history information. Each row 

represents a different risk set for each case as described above. There are 15 risk sets as there were 

15 cases of lung cancer in the data set. The second column displays the number of controls matched 

with each case. The following three columns each contain a pair of numbers indicating the number 

of cases and controls in that risk set labeled at the listed level of smoking. For example, in risk set 
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one (which contains case one), 22 controls were matched, and column three shows that the case was 

identified as having ever smoked while three controls were labeled in this way. Column 4 shows 

that 16 controls in this risk set were labeled “never smoked”, and the last column indicates that 

three controls had unknown smoking data.  

 

Step 3: Simulate New Smoking Variable 

 

As mentioned above, the remainder of the analysis and simulation was conducted using adjusted 

data from Scenario 4 in Table 4 (which contained the most realistic OR for lung cancer and 

smoking prevalence among cases). In an attempt to remove confounding from the likely 

misclassification of the smoking data, we simulated new smoking history data using the statistical 

software STATA (StataCorp, 2005). The STATA code is shown in Appendix B. In these 

simulations, we reassigned some of the nonsmokers and all of those with missing smoking data to 

“ever smoked”, and then statistical analyses were performed with this new smoking information. 

The purpose of this simulation and reanalysis was to mimic the data adjustment from Table 4 on a 

large scale; we wanted to reassign the controls in a similar fashion to the cases. By comparing the 

results of the new analysis to the original results of the study, we would hopefully be able to 

determine if the smoking data confounded the association between AN exposure and lung cancer 

mortality. 

 

The details of the simulation process are as follows. First, we reassigned all of the controls who had 

unknown smoking data as “never smoked.” Then, every control labeled as “never smoked” had a 

50% probability of being randomly reassigned as “ever smoked”. Those controls that were not 
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chosen to be reassigned remained in the “never smoked” category. As for the cases, 10 of the total 

15 were identified as “ever smoked” while five cases were labeled as either “never smoked” or 

“unknown.” Similar to the controls, all cases listed as “unknown” were transformed to “never 

smoked.” Next, a total of four of the five smokers were randomly chosen and reassigned as “ever 

smoked” so that the distribution of smokers from Scenario 4 in Table 4 was reproduced. Doing so 

resulted in 14 cases labeled as “ever smoked” while one case remained as “never smoked”. This 

process of reassigning smoking histories was simulated 500 times and is referred to as “Scenario 

4A”. We chose to run this simulation 500 times as this provided enough estimates to create a stable 

mean of the RRs. Increasing the number of simulations did not change the mean RR substantially. 

This repeated simulation of data is known as a Monte Carlo simulation. 

 

To create more extreme scenarios, we reassigned the smoking data based on the AN exposure 

category. In scenario 4A, we assumed no relationship between AN exposure and smoking as the 

reassigning of nonsmokers to smokers was done randomly and did not take AN exposure into 

account. However, as discussed earlier and seen in Table 1, employees with higher levels of AN 

exposure were more likely to be classified as smokers. Therefore, we simulated scenarios 4B and 

4C to reflect this relationship. The rate at which controls were reassigned from “never smoked” to 

“ever smoked” was based on exposure category. In scenario 4B, “never smoked” controls with the 

highest average intensity exposure levels (higher than 12.0 parts per million per year) were 

reassigned as “ever smoked” 80% of the time while those with the lowest AIE levels (greater than 0 

and less than 4.9 ppm-years) were reassigned only 30% of the time. In scenario 4C, these 

probabilities were 95% and 5% respectively. Average intensity exposure was chosen to represent 
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exposure levels rather than cumulative exposure because changes in AIE exhibited the strongest 

increasing trend in RRs for lung cancer (as seen in Table 3). 

 

Step 4: Conditional Logistic Regression 

 

Once we had the simulated smoking variables for scenarios 4A, 4B, and 4C, RRs were estimated by 

running conditional logistic regression models. As the outcome is binary (case or control) and the 

observations are matched within each risk set, modeling using conditional logistic regression is 

appropriate. This model is shown here: 

  (
 ̂

   ̂
)    ̂    ̂        ̂        ̂       ̂       ̂   . 

In the Lima study,  ̂ was the probability that a worker died from lung cancer. In conditional logistic 

regression, the variables              represent which risk set a worker is assigned to through the 

matching process. Recall, all controls are matched to a case using the exact age at which the case 

died and further on the case’s year of birth. AN exposure, time since first employment, and the 

simulated smoking history variables were the explanatory variables in the model. These are 

represented by          and     respectively. The value of   (  ̂

   ̂
), or the logit, represents the 

natural log of the probability that an individual will be a case divided by the probability that they 

will be a control given specific variables. By exponentiating the outcome of a logistic regression, 

we obtain a value of the RR. Mathematically,  

      (  (
 ̂

   ̂
)). 

In this study, the RR may be interpreted as the probability that a workers died of lung cancer 

divided by the probability that one did not given the influence of certain variables. A higher RR 
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indicates that the given conditions are more likely to result in cancer death, while an RR close to 

1.00 indicates that the risk of dying from lung cancer was not affected by variables in the model.  

 

Step 5: Analysis of Relative Risk (RR)  

 

The next step was to compare the simulated RRs to the original RRs from Marsh et al. (1999) 

(Table 3) to determine if adjusting for the new smoking variable affected the risk of lung cancer 

mortality related to AN exposure. These regression results are shown in Table 6. For comparison 

purposes, the model results in the top half of the table are taken from the original analysis by Marsh 

et al. (1999).  The first section shows the original RRs for lung cancer given the two different 

options for smoking history, along with their confidence intervals; the next section displays the RRs 

of lung cancer given the four different levels of AN exposure adjusted for time since first 

employment (as seen in Table 3) and their associated confidence intervals.  

 

The bottom half of Table 6 contains information regarding the results of the 500 simulations 

scenarios 4A, 4B, and 4C. The mean RR among all 500 simulations in scenario 4A (50% chance of 

“never smoked” controls reassigned as “ever smoked”) for those who ever smoked was 1.48 with 

standard deviation 0.43, minimum 0.48 and maximum 2.96. Similarly the mean, standard deviations 

and extreme values of RRs for the four different levels of AN exposure can also be seen in this 

section of the table. This scenario produced mean RRs nearly identical to the original AN model 

from row two. Although the RR for smoker vs. nonsmoker increased from 1.08 to a mean of 1.48, 

the RRs for the exposure categories are very similar and the same increasing trend exists. This is 
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probably due to the fact that any prior relationship between AN exposure and smoking history was 

ignored during the simulation process in scenario 4A. 

 

In scenario 4B (detailed results can be seen in following section), the mean RR for “ever smoked” 

increased to 2.48 which indicates a slightly more realistic relationship between smoking and lung 

cancer, and the mean RRs for each exposure category decreased marginally compared to the 

original RRs. Similarly, in scenario 4C, the mean RR for “ever smoked” increased to 2.92, and the 

mean RRs for the exposure categories decreased even more than in scenario 4B. 

 

This relationship between mean RRs is shown more clearly in the box plot in Figure 1. There is a 

drop in the mean RR for exposure levels from the original model and Scenario 4A to Scenario 4C. 

Notice also that the increase in mean RR for the smoking data between the scenarios mirrors the 

drop in mean RR for the highest exposure level. It is possible that such a relationship between 

increased smoking RRs and decreased exposure RRs would be more evident with a more extreme 

adjustment of the data (to create smoking RRs similar to the well-known values), but such 

adjustment is not possible with such a small number of cases. This change in RRs is evidence for 

confounding by smoking: as the risk between smoking and lung cancer mortality increases, the risk 

between AN exposure and lung cancer mortality decreases.  

 

2.3    SECOND METHOD: RICHARDSON’S METHOD 

 

In this second method, we considered a health outcome that was highly correlated with the 

confounding variable (smoking) and not correlated with acrylonitrile exposure. Richardson 
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proposed to use the occurrence of chronic obstructive pulmonary disease mortality, or COPD, as the 

new variable. As there is no known relationship between COPD and AN exposure and a strong 

relationship between COPD and smoking, Richardson determined any observed relationship 

between COPD and exposure was solely due to a relationship between exposure and smoking. This 

relationship will be used to estimate a bias which will then be removed from the RR for lung cancer 

due to exposure and thereby eliminating any confounding due to smoking. The final result will 

hopefully show the true association between AN exposure and lung cancer. 

 

The following are general steps required to incorporate Richardson’s method: 

Step 1: Using the original data, perform Richardson’s method to estimate the bias due to 

confounding by smoking, 

Step 2: Adjust the original RR for lung cancer due to AN exposure by the bias estimate, 

Step 3: Analyze the results of Richardson’s method. 

 

Step 1: Estimate Bias due to Confounding by Smoking 

 

Richardson developed a different method to estimate the bias due to confounding in his publication, 

“Occupational Exposures and Lung Cancer: Adjustment for Unmeasured Confounding by 

Smoking”. In this paper, he outlined his method for adjusting RRs to account for unmeasured or 

unknown individual smoking history. As mentioned earlier, we will investigate the relationship 

between exposure and COPD as any association between exposure and COPD should reflect the 

relationship between exposure and smoking. If we remove the effects of exposure on COPD from 

the model through subtraction, we should also be removing any association between smoking and 
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exposure in the process. This should leave us with only the association between AN exposure and 

lung cancer remaining with any confounding by smoking eliminated. 

 

Mathematically, the following is Richardson’s method. The parameter we would like to estimate is 

   which represents the log RR of lung cancer death due to AN exposure adjusted for smoking. We 

calculate this by computing: 

     (        
     

)    (    ) 

where         
      represents the RR of lung cancer mortality due to AN exposure and      is the bias 

from confounding. This bias is equal to the RR of smoking given exposure which we estimate as 

the ratio of those workers exposed to AN who died of COPD to unexposed workers who died of 

COPD (denoted as       
     ). The final estimate will then be 

 ̂    (        
     

)    (      
     

)  

 

We have assumed that the only confounding effect in the study is due to smoking rather than other 

factors such as age or genetics. Note that Richardson said in his publication, “To be valid, such an 

interpretation requires that smoking is related to lung cancer and COPD, there is no true causal 

association between exposure and COPD, and the only uncontrolled confounder of the association 

between exposure and COPD is smoking” (2010). The first two conditions are satisfied as 

mentioned above, but we must assume that the third condition is also true to trust our results.  
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Step 2: Adjust Relative Risk (RR) Using Estimated Bias 

 

First, risk sets were created for the health outcome (lung cancer death) as described previously. 

These risk sets were used to perform a conditional logistic regression with AN exposure and 

smoking history as explanatory variables. The results of this regression analysis are displayed in the 

fourth column of Table 7. The highlighted row in this table is the adjusted RR using the original 

smoking data.  The estimate of RR = 1.035 (95% CI= (0.97, 1.11) will be used as a comparison for 

the new estimates. 

 

In the original data set, an insufficient number of COPD cases were available to properly analyze 

the data as Richardson suggests. To account for the small number of COPD cases, we also used 

mortality due to heart disease as heart disease has a high risk associated with smoking and is not 

known to be related to AN exposure. The combination of heart disease mortality and COPD 

mortality was used to create risk sets and later as the estimate for       
     . However, even when 

including heart disease as an additional cause of death, only 13 cases were observed. Thus, we 

repeated the analysis, using only cases from all non-malignant respiratory diseases (which includes 

COPD) to create the risk sets, which provided a total of only nine cases. However, there is some 

concern that some non-malignant respiratory diseases may be related to AN exposure. These 

models are shown in Table 8. Each of the rows displays one of the three models mentioned above, 

and the second column lists the number of cases in each of the situations. A univariate conditional 

logistic regression was run for each of the three new models, and the results of these are displayed 

in the fourth column in this table.  
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Step 3: Analysis of Results 

 

As shown above, using Richardson’s method, we calculated unbiased RRs using  

 ̂    (        
     

)    (      
     

). 

The value of         
      is contained in the first row in Table 8. This is the result of the conditional 

logistic regression for lung cancer deaths. The other two rows contain the values of       
      (the 

estimated bias from smoking) which were used in two different applications of Richardson’s 

method. 

 

The         
     

       in row one of Table 8 is very close to 1.00 which indicates little relationship 

between AN exposure and lung cancer. This is consistent with the results found by Marsh et al. 

(1999). Notice the RR values for COPD and heart disease deaths in column four are very close to 

1.00. This indicates one of two things. First, it may show that there is no observable relationship 

between AN exposure and smoking, as AN exposure did not show an increased risk for COPD and 

heart disease mortality. Another possible conclusion is that heart disease mortality is not a good 

cause of death for estimating smoking bias as the relationship between smoking and heart disease 

mortality is not as strong as the relationship between smoking and COPD mortality. Therefore the 

bias due to smoking may not be properly represented. Recall, there were too few cases of COPD in 

the cohort to perform the analysis as Richardson recommends and heart disease deaths were 

included in an attempt to account for this lack of data. Unfortunately, the use of heart disease 

mortality in combination with COPD mortality may lead to an incorrect value of       
     . 
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Table 9 displays the results from the computations using Richardson’s method. Column 1 lists the 

different variables considered in the calculations. The label in parentheses indicates which values 

are used in the calculation of       
     . For example, in the first row, the RR for deaths from both 

COPD and heart disease (from row two of Table 8) is used for       
     . In the second column, the 

lower limit of the confidence interval from deaths by COPD and heart disease is used as the value 

of       
      rather than the point estimate, and the third row uses the value of the upper limit of the 

confidence interval. The second column in Table 9 displays the adjusted RR which was obtained 

through the use of Richardson’s Method for each of the variables listed in column 1 (exponentiated 

to return from a logarithmic scale to the original one). The values from column 2 were subtracted 

from the original         
     

       in Table 7, and this difference is shown in column 3 of Table 9. 

Finally, the 95% confidence interval for the adjusted RR is shown in the last column (computed as 

instructed in Richardson’s paper). 

 

The adjusted RR values ( ̂ ) displayed in the first three rows of column two of Table 9 are not very 

different from the         
      of 1.035 computed from the original data when smoking history is 

considered in the analysis. This means that when smoking bias is estimated by the relationship 

between COPD/heart disease mortality and AN exposure and then removed via Richardson’s 

method, there was very little effect on the RR for lung cancer mortality. This seems to indicate that 

smoking was not a confounding variable in the relationship between lung cancer death and AN 

exposure. In the last three rows, however, the RRs computed for respiratory disease deaths differ 

from 1.00 by a greater amount. When the bias for smoking is accounted for using respiratory 

disease deaths and removed using Richardson’s method, the risk of dying from lung cancer when 

exposed to acrylonitrile is increased. In this analysis, however, we have assumed that there is no 
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relationship between AN exposure and respiratory disease mortality which may not be an 

appropriate assumption. 

 

 

3.0    DISCUSSION 

 

3.1    COMPARISON OF FIRST AND SECOND METHOD 

 

In this thesis, we analyzed the impact of adjusting for confounding by smoking on the results of the 

AN exposure study by Marsh et al (1999) using two different methods, Monte Carlo simulation  of 

the smoking data and bias adjustment via Richardson’s method. These methods yielded disparate 

results. 

 

The results of the Monte Carlo simulation revealed what was expected, as we initially believed that 

smoking habits were positively confounding the RRs. It is well known that smoking is a major risk 

factor in lung cancer mortality. Thus, smoking should be an important potential confounder when 

analyzing a relationship between AN exposure and lung cancer. The smoking information in the 

original cohort was not consistent with this previously known association between smoking and 

lung cancer as the RR for lung cancer mortality given smoking history was 1.08. A Monte Carlo 

simulation allowed us to adjust the data to create a more realistic balance of ever/never smokers in 

the cohort. After running the simulation, we found that the mean RRs of lung cancer death given 

differing levels of AN exposure decreased after adjusting for the simulated smoking data. 

Moreover, a larger increase in smoking to lung cancer RRs was correlated with a larger drop in the 
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exposure vs. lung cancer RRs. In other words, the risk of dying from lung cancer due to exposure to 

acrylonitrile in the Lima cohort decreased slightly after accounting for positive confounding by 

smoking in the model. 

 

In Richardson’s method, possible confounding by smoking was removed by using Richardson’s 

method. Here, we removed the bias created by a relationship between AN exposure and smoking. 

Any association between AN exposure and deaths from COPD and heart disease represented a 

relationship between exposure and smoking history because the two causes are not associated with 

AN exposure. After running the computations using Richardson’s method, the RRs for lung cancer 

mortality given AN exposure changed very little. This method, then, suggests the association 

between lung cancer death and AN exposure is not confounded by smoking. In the original Lima 

cohort, removing the possible bias due to smoking did not change the risk of dying from lung 

cancer. However, this method was limited by the small number of observed deaths for lung cancer, 

COPD, and heart disease, and the proper implementation Richardson’s method was not possible. 

 

In the Monte Carlo simulation, we concluded that adjusting for confounding by smoking slightly 

decreases the apparent relationship between dying from lung cancer and exposure to acrylonitrile 

(even at the highest level of exposure), but in Richardson’s method suggested that confounding 

from smoking was not an issue in the original analysis. However, given this data set and the limited 

number of cases, the Monte Carlo method provides more meaningful results than the analysis using 

Richardson’s method.  
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3.2    LIMITATIONS AND STRENGTHS 

 
We conclude that the Monte Carlo simulation method was more meaningful compared to the 

Richardson method for analyzing the effect of confounding from smoking for this data set. In the 

Monte Carlo method, we were able to account for the small number of observed deaths by running 

many simulations and reassigning different smoking histories for the cases and controls. Also, this 

method is supported by Bayesian theory in that we assumed there was already a relationship 

between lung cancer and smoking history thereby incorporating a prior distribution within the 

analysis. When Steenland and Greenland compared the results of MC sensitivity analysis to 

Bayesian analysis, the results were “similar”. For example, they concluded that the “Monte Carlo 

sensitivity analysis, adjusting for possible confounding by smoking, led to an adjusted standardized 

mortality ratio of 1.43 (95% Monte Carlo limits: 1.15, 1.78). Bayesian results were similar (95% 

posterior limits: 1.13, 1.84).” These techniques are further addressed and supported in the paper by 

Steenland and Greenland (2004). 

 

One issue with the Monte Carlo method is the difficulties in displaying and interpreting the results 

of the simulations. We calculated 500 different RRs in the simulation, and the correct descriptive 

statistic must be chosen to aptly convey the appropriate relationship. Here, the mean was chosen, 

but the median or any of the 500 individual RRs may have been more appropriate for summarizing 

the results. Additionally, in any simulation, conclusions are not founded on observed results but 

rather on simulated data. Therefore any interpretation of the results depends on many assumptions 

made prior to the analysis. In our simulation, we addressed only the most extreme scenario of 

misclassification in which every lung cancer case except one was reassigned as a smoker. Finally, 
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the small data set and inadequate number of lung cancer deaths was an issue. This limited the level 

of simulation possible as there were only 15 cases to reassign. 

On the other hand, Richardson’s method is much easier to perform, especially if one is not familiar 

with simulations and the necessary coding. Additionally, the calculations are quick and easy to 

interpret. However, these seem to be the only advantages of the Richardson’s method when 

applying to our data example. Our analysis was limited, as above, by the small number of lung 

cancer cases in the original study, so we were unable to run the analysis as Richardson originally 

recommended. Additionally, there were very few cases of COPD death in the data set. This forced 

us to include other causes of death to model the association between smoking and AN exposure. 

These other health issues do not necessarily have the known correlation with smoking and the 

absence of a relationship with AN exposure. 

4.0 CONCLUSIONS 

In summary, the Monte Carlo method is more meaningful for analyzing a possible effect of 

confounding due to smoking in the Lima cohort. In this method, we concluded that smoking did 

indeed confound the relationship between AN exposure and lung cancer death. After adjusting for 

the well-known relationship between smoking and lung cancer and the observed relationship 

between AN exposure and smoking, the RRs for lung cancer death related to acrylonitrile exposure 

decreased in the Lima cohort, and we observed somewhat less evidence of a relationship between 

AN exposure and lung cancer. 



28 

APPENDIX A: Figure & Tables 

Figure 1: Comparison of Relative Risk Results using Simulated Lima, OH Cohort Data 
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Table 1: Original Lima, OH Cohort Data-- Lifetime Cigarette Smoking History by AN 
                    Exposure  a.  

 

a. Reported by Marsh et al. (1999)  
 
 
 

Table 2: Original Lima, OH Cohort Data—Summary of Relative Risk Regression Analysis 
(Univariate Models) for Lung Cancer Mortality a. 

 

Variable Category Observed 
Deaths RR (95% CI) Global Test      

p-value 

Smoking History 
Never 
Ever 

Unknown 

3 
10 
2 

1.00 
1.08 (0.26-6.18) 
1.18 (0.09-11.44) 

0.999 

Duration of AN 
Exposure 

Unexposed 
>0-4.9 

5.0-13.9 
14+ 

6 
3 
3 
3 

1.00 
1.71 (0.25-8.94) 
2.28 (0.35-11.38) 
2.15 (0.34-10.70) 

0.598 

Cumulative AN 
Exposure 

Unexposed 
>0-7.9 

8.0-109.9 
110+ 

6 
2 
4 
3 

1.00 
1.97 (0.18-12.04) 
2.15 (0.43-9.33) 
1.97 (0.31-9.42) 

0.645 

Average Intensity 
of AN Exposure 

Unexposed 
>0-4.9 

5.0-11.9 
12.0+ 

6 
3 
3 
3 

1.00 
1.97 (0.31-9.54) 
1.70 (0.26-8.26) 
2.64 (0.42-12.67) 

0.513 

a. All RRs are adjusted for age and calendar time via risk set matching
b. Reported by Marsh et al. (1999) 

AN_Cum 
(ppm-years) 

Number 
of Cases 

Ever Smoked Never Smoked Unknown 

Number 
of Obs. 

% of Total 
Cohort 

Number 
of Obs. 

% of Total 
Cohort 

Number 
of Obs. 

% of Total 
Cohort 

Unexposed 6 258 54.4 155 32.7 61 12.9 
Ever Exposed 9 280 54.0 203 39.2 35 6.8 
   >0-7.9 2 89 43.2 99 48.1 18 8.7 
   8.0-109.9 4 130 55.1 91 38.6 15 6.4 
   110+ 3 61 80.3 13 17.1 2 2.6 
TOTAL 15 538 54.2 358 36.1 96 9.7 
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Table 3: Original Lima, OH Cohort Data—Summary of Relative Risk Regression Analysis 
(Bivariate Models a.) for Lung Cancer Mortality b.c. 

 

Variable Category Observed 
Deaths RR (95% CI) Global Test      

p-value 

Duration of AN 
Exposure 

Unexposed 
>0-4.9 

5.0-13.9 
14+ 

6 
3 
3 
3 

1.00 
1.25 (0.17-7.03) 
1.82 (0.26-9.66) 
2.20 (0.34-11.24) 

0.713 

Cumulative AN 
Exposure 

Unexposed 
>0-7.9 

8.0-109.9 
110+ 

6 
2 
4 
3 

1.00 
1.27 (0.10-8.94) 
1.60 (0.29-7.57) 
2.19 (0.34-10.70) 

0.723 

Average Intensity 
of AN Exposure 

Unexposed 
>0-4.9 

5.0-11.9 
12.0+ 

6 
3 
3 
3 

1.00 
1.18 (0.16-6.84) 
1.46 (0.22-7.29) 
2.91 (0.46-14.13) 

0.514 

a. Models adjusted for time since first employment (< 20, 20-30, 30+) 
b. All RRs are adjusted for age and calendar time via risk set matching
c.  Report by Marsh et al. (1999)  

 

 

 

Table 4: Summary of Simulated External Odds Ratios using the Original Lima, OH Cohort  

Scenario 
Number of Cases 

Identified as 
“Ever Smoked” 

Number of Cases 
Identified as “Never 

Smoked” or 
“Unknown” 

Smoking 
Prevalence 

Among Cases 

Odds 
Ratio 

Fisher’s Exact  
P-Value 

Original 10 5 66.7% 0.985 1.00 
1 11 4 73.3% 1.355 0.417 
2 12 3 80.0% 1.971 0.408 
3 13 2 86.7% 3.202 0.164 
4 14 1 93.3% 6.898 0.028* 

      *Statistically significant at 0.05 level 
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Table 5: Original Lima, OH Cohort Data—Risk Set Details Used in Monte Carlo Simulations  

Case 
Number 

Number of 
Controls 

Ever Smoked 
Case, Control 

Never Smoked 
Case, Control 

Unknown 
Case, Control 

1 22 1, 3 0, 16 0, 3 
2 166 0, 40 1, 111 0, 15 
3 47 1, 14 0, 30 0, 3 
4 91 0, 22 1, 62 0, 7 
5 123 1, 27 0, 86 0, 10 
6 52 1, 13 0, 34 0, 5 
7 114 1, 27 0, 78 0, 9 
8 119 1, 30 0, 77 0, 12 
9 62 0, 15 1, 41 0, 6 

10 78 1, 20 0, 51 0, 7 

11 27 1, 5 0, 20 0, 2 
12 7 0, 0 0, 4 1, 3 
13 79 1, 21 0, 51 0, 7 
14 29 1, 7 0, 19 0, 3 
15 5 0, 1 0, 4 1, 0 

TOTAL 1,021 10, 245 3, 684 2, 92 
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Table 6: Summary of Conditional Logistic Regression Results using Simulated Lima, OH Cohort Data 

1  Reported by Marsh et al. (1999) 
2  Adjusted for time since first employment 
3  Simulated results are based on 500 models 

Model Original Univariate 1 Original Final Model  1,2 

Summary 
Statistics 

Smoking 
History RR Confidence Interval AN Exp RR Confidence Interval 

Never 
Ever 

1.00 
1.08 (0.28-6.18) 

Unexposed 
>0 - 4.9 
5.0 -11.9 

12.0 + 

1.00 
1.18 
1.46 
2.91 

(0.16-6.84) 
(0.22-7.29) 

(0.46-14.13) 

Model Scenario 4A 2,3 Scenario 4B 2,3 Scenario 4C 2,3 

Summary 
Statistics Category Mean 

RR Std. Dev (Min, Max) Category Mean 
RR Std. Dev (Min, Max) Category Mean 

RR Std. Dev (Min, Max) 

Smoking 
History 

Never 
Ever 

1.00 
1.48 0.43 (0.48, 2.96) 

Never 
Ever 

1.00 
2.48 0.47 (1.31, 4.34) 

Never 
Ever 

1.00 
2.92 0.40 (2.04, 4.37 

AN 
Exposure 

Unexposed 
>0 - 4.9 
5.0 -11.9 

12.0 + 

1.00 
1.17 
1.47 
2.99 

0.04 (0.97, 1.24) 
0.05 (1.27, 1.69) 
0.08 (2.80, 3.39) 

Unexposed 
>0 - 4.9 
5.0 -11.9 

12.0 + 

1.00 
1.12 
1.37 
2.75 

0.06 (0.87, 1.26) 
0.07 (1.12, 1.60) 
0.14 (2.44, 3.31) 

Unexposed 
>0 - 4.9 
5.0 -11.9 

12.0 + 

1.00 
1.07 
1.22 
2.52 

0.05 (0.91, 1.19) 
0.06 (0.99, 1.45) 
0.11 2.30, 2.88) 
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Table 7: Original Lima, OH Cohort Data— Summary of Bivariate Conditional Logistic 
Regression Results 

Table 8: Original Lima, OH Cohort Data—Summary of Univariate Conditional Logistic 
Regression Results 

Outcome Variable Number of Cases Independent 
Variable RR 95% Confidence 

Interval 

Lung Cancer Death 15 

AN Exposure 
   Never 
   Ever 

1.00 
1.035 (0.97,1.11) 

Smoking History 
   Never 
   Ever 
   Unknown 

1.00 
1.10 
1.18 

(0.30, 4.05) 
(0.18, 7.73) 

Outcome Variable Number of Cases Independent 
Variable RR 95% Confidence 

Interval 

Lung Cancer Death 15 
AN Exposure 
   Never 
   Ever 

1.00 
1.034 (0.96, 1.09) 

COPD/ Heart 
Disease Death 13 

AN Exposure 
   Never 
   Ever 

1.00 
0.99 (0.97, 1.03) 

Respiratory 
Disease Deaths 9 

AN Exposure 
   Never 
   Ever 

1.00 
0.80 (051, 1.26) 
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Table 9: Summary of Adjusted Estimated Relative Risks for Lung Cancer Mortality Using 
Richardson’s Method 

Bias Variable ln(RR1)-ln(RR2) 
Change 
in RR 

95% Confidence 
Interval 

COPD/HD Deaths 
(Relative Risk) 1.035 0.0 (0.964, 1.106) 

COPD/HD Deaths 
(Lower Limit of 95% Confidence Interval) 1.07 -0.035 (0.143, 1.497) 

COPD/HD Deaths 
(Upper Limit of 95% Confidence Interval) 1.00 0.035 (0.88, 3.192) 

Respiratory Disease Deaths 
(Relative Risk) 1.292 0.257 (0.136, 2.448) 

Respiratory Disease Deaths  
(Lower Limit of 95% Confidence Interval) 2.03 -0.995 (0.668, 2.480) 

Respiratory Disease Deaths  
(Upper Limit of 95% Confidence Interval) 0.82 0.215 (0.426, 1.238) 
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APPENDIX B: STATA Code 

Scenario 4A – Least Extreme 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 0 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 0 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3
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reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 0 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.67) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 0 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 
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Scenario 4B - Moderate 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.8) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.7) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 0 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.8) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.7) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 0 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 
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replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.8) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.7) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 0 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.8) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.7) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 0 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.8) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.7) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.3) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 
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*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 0 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 
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Scenario 4C – Most Extreme 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.95) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.9) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.1) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.05) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 0 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.95) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.9) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.1) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.05) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 0 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 
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replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.95) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.9) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.1) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.05) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 0 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.95) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.9) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.1) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.05) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 

*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 1 in 1036 

replace smk01 = 0 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 

program define neverTOever10 

drop smk smk1 smk01 _Ismk1_1 _Itsfe_2 _Itsfe_3 _Iaie_1 _Iaie_2 _Iaie_3

reshape wide  casecontrol aie tsfe, i(  recordnumber) j( casenumber) 

generate smk=ever_smk 

replace smk=rbinomial(1, 0.5) if smk==9 & ever_case==0  

generate smk1=1 if smk==1 

replace smk=0 if smk==9 

replace smk1=rbinomial(1, 0.95) if smk==0 & ever_case==0 & ever_3==1 

replace smk1=rbinomial(1, 0.9) if smk==0 & ever_case==0 & ever_2==1 

replace smk1=rbinomial(1, 0.1) if smk==0 & ever_case==0 & ever_1==1 

replace smk1=rbinomial(1, 0.05) if smk==0 & ever_case==0 & never==1 

reshape long 

sort  casecontrol aie tsfe 

drop in 1037/5850 
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*gen smk01=rbinomial(1, 0.67) if smk==0 & ever_case==1

replace smk1=1 if smk1==. & casecon==0 

gen smk01= 1 if casecon==1 & smk==1 

sort caseco smk01 

replace smk01 = 0 in 1036 

replace smk01 = 1 in 1035 

replace smk01 = 1 in 1034 

replace smk01 = 1 in 1033 

replace smk01 = 1 in 1032 

replace smk1=smk01 if casecon==1 

*replace smk1=ever_smk if caseco==0 & ever_smk==0

xi:clog caseco i.smk1 , group(casenumber) or 

xi:clog caseco i.smk1 i.aie i.tsfe, group(casenumber) or 

end 

simulate _b _se, reps(100): neverTOever10 
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