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ABSTRACT 

 

The purpose of this study is to develop appropriate statistical methods and procedures for 

dealing with parameter uncertainty and for improving the computational efficiency of sensitivity 

analysis in a large-scale agent-based model of infectious disease. An agent-based model is a rule-

based computational simulation model that can keep track of the dynamical activities of all 

agents and their interactions within an environment and analyze the course of a disease through 

the population and evaluate interventions. Sensitivity analysis is a method for quantifying 

uncertainty in a complex model by systematically changing inputs (parameters and initial 

conditions) of the model and quantifying the consequences for the output of the model. 

Sensitivity analysis and uncertainty analysis are used for agent-based model to analyze the 

uncertainty in the model. 

The specific aims of the study are to (1) develop specific procedures and criteria to 

determine impor tant input parameters in the FRED agent-based influenza model; (2) develop 

specific procedures and criteria to determine high sensitivity parameters in the FRED agent-

based influenza model via local sensitivity analysis; (3) improve the computational efficiency of 

sensitivity analysis by comparing two sampling procedures for probabilistic sensitivity analysis 
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in agent-based models: simple random sampling and Latin Hypercube sampling; and (4) apply 

uncertainty analysis procedures to evaluate the cost-effectiveness for different school closure 

intervention strategies as well as the reliability of the uncertainty analysis in the FRED agent-

based influenza model. 

This study emphasizes the important role of sensitivity analysis, uncertainty analysis and 

statistical analysis in making better use of simulation results for decision-making in the control 

of infectious disease. In this study, the FRED (Framework for Replicating Epidemic Dynamics) 

influenza model is used to produce all the simulation results from sensitivity analysis. The 

methods and procedures that are developed in this study can be generalized to all kinds of 

disease models under the FRED framework.  

In public health practice, this study will help to provide timely responses for decision-

making when there is a public health crisis. It also provides important information for public 

health policy makers about how certainly the FRED framework can provide reliable intervention 

comparison results for decision-making. 
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CHAPTER 1 INTRODUCTION 

Sensitivity analysis is a method for quantifying uncertainty in any type of complex model by 

systematically changing inputs (parameters and initial condi tions) of a model and quantifying the 

resulting change to the outputs. This study addresses the important role of sensitivity analysis, 

uncertainty analysis and statistical analysis in making better use of agent-based simulation 

models for decision-making in the control of infectious disease. An agent-based model is a rule-

based computational simulation model that can keep track of the dynamical activities of all 

agents and their interactions within an environment and analyze the course of a disease through 

the population and evaluate interventions. Since an agent-based model is a stochastic simulation 

model that usually involves a number of input parameters with estimated values, it requires 

sensitivity analysis and uncertainty analysis to analyze the uncertainty in the model. 

This chapter introduces the background in modeling infectious disease (Section 1.1) and 

agent-based model (Section 1.2), reviews previous studies that used agent-based model in 

infectious diseases (Section 1.3), presents the background in the FRED framework (Section 1.4), 

introduces the background in uncertainty in the simulation model (Section 1.5), sensitivity 

analysis (Section 1.6) and sampling procedures (Section 1.7). The objectives of this research are 

stated in Section 1.8, and an outline of the remainder of the thesis is given in Section 1.9. A list 

of key definitions and acronyms used in this study is provided in Section 2.0. 
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1.1 MODELING INFECTIOUS DISEASES 

Infectious diseases are passed between individuals by direct or indirect transmissions. The 

primary risk factor of infectious diseases is the presence of infectious cases in the local 

population. Due to the variety of transmission types and the dynamics of pa thogen, infectious 

diseases with their complex epidemiological behaviors comprise the disease dynamics that 

require qualitative descriptions of disease dynamics from individual-level dynamics to 

population-scale epidemic as well as models that deal with variability in infection profiles, 

parameter values, and timescales (1). 

The primary goal of studying infectious diseases is to improve control and reduce the 

infection in the population. In infectious diseases research, models provide a powerful tool for 

optimizing the use of limited resources, for planning the use of intervention measures more 

efficiently and therefore limiting the disease spread. In epidemiology, models not only provide 

translational information from a know n set of conditions or from various scales of behaviors, but 

also allow us to predict the population-level epidemic dynamics from individual-level dynamics 

and elucidate how an infectious disease spreads in the real world. However, models also have 

limitations in their accuracy due to uncertainty of parameters(1). 

There are some widely used epidemiological models in the studies of infectious diseases. 

The simple epidemic models are built based on the fundamental infection classifications: 

susceptible, exposed, infectious, and recovered (SEIR). SEIR and its reduced model SIR 

(ignoring exposed class) describe host-pathogen systems with lifelong protection after infection. 

There are some other reduced models from SEIR: SI (leading to death, usually in fatal infectious 

diseases), SIRS (immunity is not permanent), and SIS (susceptible after infection, usually in 

sexually transmitted infections). These models are usually deterministic compartmental 
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modelsthat assign individuals in the population to different subgroups or compartments, and each 

of compartments represents a specific stage of the epidemic (2). Since individuals in 

deterministic models are studied as groups, this kind of model may be less realistic than 

stochastic dynamic model, which depends on the chance variations in risk of exposure, disease 

and other illness dynamics. However, stochastic dynamic model may only be good for small 

population or rare diseases (1). 

1.2 AGENT-BASED MODELS 

Studies of infectious diseases, such as flu transmission, usually require a large pop ulation and 

dynamical network among individuals. Previous studies have usually used one of two main 

approaches to understand the spread of infectious diseases: theory and experiment. However, 

these two approaches may have limitations when studying a large population and the dynamical 

network among this population, because this system would be too complex to be captured by 

analytical expressions or experiments, or  the extensive computation time would be too expensive 

to conduct such experiments (3). In recent years, a computational approach for simulating the 

actions of agents that interact within an environment is becoming more commonly used. This 

approach is called an agent-based model (ABM). An agent-based model is a rule-based, discrete-

time, discrete-event computational modeling methodology. Rule-based is defined as using rules 

to make decisions, choices, or movements; discretetime is defined as measuring variables of 

interest at each separate time step; discrete-event is defined as a discrete sequence of events, each 

event occurs at a particular time period and makes a change to the system. In other words, an 

agent-based model may provide explanatory insight into the actions and interactions of agents 
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obeying certain rules in discrete time periods with a discrete sequence of events. In this work, 

agents in our model represent individuals in a population living in a specific geographic region. 

Each agent has recorded demographic information, activities and behavior strategies during an 

infectious disease breakout. Simulations are run based on above recorded information and the 

dynamic activities of all agents in the model. Those simulation results can be used to analyze the 

course of an infection through the population and to evaluate possible interventions. Like other 

simulation models, agent-based model requires sensitivity analysis and other methods for 

quantifying the uncertainty in the model. Some advantages of agent-based model include 

features in stochasticity, spatiality and heterogeneity. Stochasticity means that an agent-based 

model allows us to estimate the effects of random variations in events over time; spatiality means 

that agents and their actions are referenced to particular locations; heterogeneity means that 

agents differ from each other, for example, in age, sex, race or income level(3). Agent-based 

model also have advantages including the ability to measure precisely things that could not be 

measured in the real world, such as who infects whom, the ability to systematically vary the 

probability distributions of input parameters representing the estimates of model, coherence 

(agents’ activities follow the ordinary rules for probability calculations and consistent decisions 

can be obtained from these probabilities) and explicit representation of process that introduces 

agent actions and interactions directly into an environment(3, 4). If large-scale computer 

resources such a supercomputer are used, the simulation procedure of agent-based model require 

short time to complete and provide timely results in response to crisis (5). 
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1.3 CURRENT PRACTICES IN AGENT-BASED MODELS 

In previous studies, agent-based simulation models were used to study infectious disease 

transmission, and the effects of vaccination strategies or school closure interventions on 

pandemics. Epstein (6) stated that agent-based computational models can capture complex social 

networks and the direct contacts between individuals, adapt their behaviors based on disease 

prevalence in confronting H1N1 influenza pandemics. In Epstein’s summary of modeling to 

contain pandemics, agent-based models helped to shape H5N1 flu policy and design containment 

strategies for smallpox. Burke et al. (7) developed an large-scale agent-based computational 

model to evaluate eight response scenarios at two epidemic scales for smallpox. They found that 

mass reactive vaccination of either 40% or 80% of the total population provided some additional 

protection of the population, reduced the mean number of infected people, and shortened the 

mean epidemic duration. However, school closure interventions without mass vaccination 

appeared to have little additional protection. The results indicated the importance of contact 

tracing and vaccination in smallpox epidemic and revealed that the agent-based simulation model 

provided to be a valuable tool in crafting policy in response to outbreak. Similar results were 

found in the study by Longini et al. (8) based on a discrete-time, stochastic simulation model of 

smallpox spread within a structural population. Halloran et al. (9) developed three stochastic, 

spatially structured, agent-based discrete time simulation models to access the effectiveness of a 

set of potentially feasible intervention strategies, such as quarantine, isolation, school  closure, 

community and workplace social distancing etc., in influenza pandemic. The results showed that 

timely initiation of measure and school closure played an important role, and timely 

implementation of a combination of targeted household antiviral prophylaxis and social 

distancing measures could substantially lower the illness attack rate. Two similar studies 
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conducted by Lee et al. (10, 11) developed a set of computer simulation models to evaluate the 

economic impact of vaccination for older adults (65 years and older). The results showed that 

vaccination is more cost-effective than no vaccination, and the timing of annual influenza 

vaccination makes a difference. Both studies also discussed that such agent-based simulation 

models were simplifications of reality and may not be able to account for every possible factor or 

interaction. However, those agent-based simulation model provided useful information to 

decision makers about possible scenarios and relationships. 

Previous studies also used agent-based simulation models to evaluate vaccination 

strategies and school closure intervention strategies for the 2009 H1N1 influenza pandemic. Shi 

(12) developed an agent-based simulation model and used data from the state of Georgia to 

investigate the effects of viral mutation and seasonality on the course of an influenza pandemic. 

The results showed that the time an epidemic started and the time viral mutations introduced had 

different impacts on seasonality and the initial wave’s peak prevalence, respectively.  Two 

studies conducted by Lee et al. (13, 14) employed an agent-based simulation model of the greater 

Washington, DC, metropolitan region to compare several vaccination strategies and determine 

the effects of employee vaccination to mitigate the 2009 H1N1 influenza pandemic. The results 

indicated that children should receive highest priority for vaccination when vaccine supply was 

limited. The conclusions supported adherence to the ACIP (Advisory Committee on 

Immunization Practices) prioritization recommendation. Results also revealed that timely 

vaccination of at least 20% of the large company workforce was as effective in mitigating the 

epidemic as vaccinating all workplaces. Previous studies on school closure strategies showed 

that individual school closures were more effective than entire school system closures, and 

longer duration of school closure (e.g., 8 weeks) provided additional time to implement a second 
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most effective intervention such as vaccination (15). A study showed that longer duration of 

school closure was more cost-effective than short duration of school closure, which suggested 

that school closure strategy that is targeted to school-aged children should be combined with 

interventions that target other age populations to yield a more effective intervention strategy for 

mitigation (5). 

1.4 THE FRED FRAMEWORK 

In this study, a large-scale agent-based framework of infectious diseases developed by the 

University of Pittsburgh Public Health Dynamics Lab (PHDL) will be used. This framework is 

an open source, object-oriented system called FRED (Framework for Replicating Epidemic 

Dynamics)(16). In the FRED framework, each agent represents an individual person living 

within a population (e.g., Allegheny County, Pennsylvania). Each agent has its demographic 

information (e.g., age, gender etc.), health information (e.g., current health status, date of 

infection, level of symptoms, length of being symptomatic, infectiousness, susceptibility, etc.), 

location of social activity (e.g., household, neighborhood, school or workplace etc.), and health-

related behaviors (e.g., probability of staying home when sick, probability of getting a vaccine, 

contact rate at different locations etc.). The FRED framework can be used to generate a large 

number of different disease models by setting specific sets of parameters.. In this study, we will 

focus on the FRED influenza model. However, all the methods and procedures developed in this 

study apply to any FRED model. 

In the FRED influenza model, there are three important sets of input parameters: natural 

history parameters, transmission parameters and health related behaviors, and two main sets of 
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intervention parameters: the school closure intervention strategies and vaccination intervention 

strategies. The model outputs include attack rate, clinical attack rate, reproductive ratio, number 

of cases, etc. The FRED model can be used to compare different intervention strategies for an 

influenza pandemic. One adva ntage of using such simulation model is that we can include no-

treatment intervention option in the analysis since it is difficult and unethical to obtain the no-

treatment samples from real world health care trials. 

Initially, the FRED model initializes an epidemic by inserting some number of infected 

cases into a population. For each run of the simulation, the model will consider the dynamical 

activities within the whole population and their consequent effects on the model outputs, and 

provide the details of model outputs for each day of the full period of epidemic outbreak. The 

time required to complete one run of the simulation depends on the size of population chosen in 

the model and the processing speed (CPU) of the computer. For example, it would take about 

one minute to run a simulation of Allegheny County, PA with a population of about 1.2 million 

people in a quad-core 2.8 GHz i7 computer, while it would take about 15 seconds to simulate a 

small county such as Washington County, PA with 200,000 population in the same computer. 

For each set of input parameters, repeated runs (e.g., 20 runs) of simulations will be performed to 

obtain a stable and reliable mean model outputs. The FRED model could computationally be 

very intensive when dealing with large sets of samples from input parameters with several 

intervention conditions. Long running time is a very important issue because longer time of 

simulation runs could be very expensive, especially in large-scale simulation models. We address 

the appropriate approaches for improving the computational efficiency of sensitivity analysis in 

this study.. Computational efficiency is defined as reduced sample size and simulation time with 

the same or better accuracy of the outputs. 
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1.5 UNCERTAINTY IN SIMULATION MODELS 

Input parameters for most mathematical models have a limited degree of certainty because of 

natural variation, or a lack of current techniques to measure them. A commonly used algorithm 

for dealing with the uncertainty in computational models is Monte Carlo simulation, which 

includes the technique of statistical sampling to solve quantitative problems. A Monte Carlo 

simulation uses random numbers sampled from probability distributions to perform multiple 

model evaluations that can be used to both determine the uncertainty in model output and 

perform sensitivity analysis (17). 

There are two main types of uncertainty: model uncertainty and parameter uncertainty. 

Model uncertainty refers to uncertainty about the basic assumptions made and abstractions used 

to build the model. Model uncertainty reflects that fact that the model can only express an 

approximation to reality. Parameter uncertainty is defined as the degree to which the exact values 

of parameters are unknown. While model uncertainty is perhaps more difficult to evaluate, 

parameter uncertainty can be addressed through a process called sensitivity analysis.  

Sensitivity analysis is a method for quantifying uncertainty in any type of complex model 

by systematically changing inputs (parameters and initial conditions) of a model and quantifying 

the resulting change to the outputs. Previous studies have shown that sensitivity analysis not only 

plays an important role in model verification and validation throughout the course of model 

development and refinement(18), but also provides insight into the robustness of model results 

for decision making (19, 20).The general procedure of performing sensitivity analysis involves 

the following steps (21):First, identify key input parameters and define distributions to 

characterize the uncertain parameters. Second, use a sampling procedure (random sampling, 

importance sampling, and Latin Hypercube sampling etc.) to generate the samples of the 
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uncertain parameters. Third, propagate the samples to generate the responses from the model. 

Fourth, perform statistical methods such as regression analysis or analysis of variance to assess 

the impact of the uncertain parameters on the model output. More details of the procedures of 

performing sensitivity analysis will be discussed in Chapter 3 and 4. 

1.6 SENSITIVITY ANALYSIS 

Sensitivity analysis is a technique for systematically changing inputs (parameters and initial 

conditions) of a model and quantifying the changes in the outputs. It allows one to study the 

relationships between inputs and outputs, and identify the most significant factors or variables 

affecting the model outputs (22). Methods of sensitivity and uncertainty analyses are based either 

on deterministic or statistical concepts. The traditional approach used for sensitivity measure is 

computing numerical values for input parameters in multiple simulations. Other approaches such 

as probabilistic sensitivity analysis is encoding probability distributions rather than point 

estimates for key model parameters (17, 21). 

There are two types of sensitivity analyses: local sensitivity analysis and global 

sensitivity analysis. Local sensitivity analysis studies how the model behaviors when varying 

each input parameter one at a time. Global sensitivity analysis varies all parameters over their 

full ranges and looks at several different output measures to understand the full range of model 

behavior.  

Based on the techniques used in the analyses, there are three main classes of sensitivity 

analysis methods : (1) mathematical methods, (2) statistical methods, and (3) graphical methods 

(19). Mathematical methods assess the sensitivity of a model output by a range of variation of an 
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input. Mathematical methods are used for local sensitivity analysis in deterministic models. 

Those methods include nominal range sensitivity analysis, difference in log-odds ratio method 

etc(19). For example, nominal range sensitivity is used to evaluate the effects of how a model 

output affected by individually varying one of the model inputs across its entire possible range of 

values while controlling for the other inputs at base levels or average values. It is relatively 

simple and easily applied, and works well with linear models. The difference in log-odds ratio 

method is similar to nominal range sensitivity analysis but is more useful when the model output 

is a probability. Both methods have limitations to correlated inputs, nonlinear interactions and 

the combinational explosion of possible cases, but are efficient for verification and validation of 

linear models (19, 23).  

The second class of sensitivity analysis methods consists of statistical method.  For 

example, probabilistic sensitivity analysis, which is also called uncertainty analysis, involves 

running simulations based on samples of inputs from anassigned probability distributions and 

assessing the effect of variances from inputs on the outputs. This method is usually used in 

global sensitivity analysis for accessing the uncertainty of a set of input parameters. Statistical 

methods are used for probabilistic models, for example regression analysis and analysis of 

variance (ANOVA). Regression analysis is performed on an independent sample of data and fits 

the linear relationship of inputs and outputs. It can also be used for some nonlinear cases where 

the nonlinear models can be transformed into linear models in the case of generalized linear 

models (GLMs) such as logistic regression models and Poisson regression models (24). The 

advantage of using regression analysis is that it allows to evaluate sensitivity of individual model 

inputs while taking into account the simultaneous effects of other model inputs on the outputs 

(19, 23). However, regression analysis may not work well when its normality and independence 
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assumptions are violated. If the relationships between the input parameters and the responses are 

nonlinear, the regression model will perform poorly. The analysis of variance (ANOVA) also 

assumes that the output is normally distributed. It can address categorical inputs and groups of 

inputs. However, it may become computationally intensive if there are a large number of inputs. 

In such case, a nominal range sensitivity analysis can be used for screening out low sensitivity 

inputs and reducing the number of inputs before performing an analysis of variance (19, 25).  

The third class of sensitivity analysis methods is graphical methods, which provide the 

sensitivity in the form of graphs, charts, or  surfaces. Graphical methods are used for probabilistic 

models(19). Since graphical methods provide the means to qualitatively visualize sensitivity, 

they are used as either a screening method at the beginning of model building or a complement 

result for mathematical and statistical methods. A commonly used graphical method is scatter 

plot, which visually assesses the effects of inputs on outputs and identifies potentially complex 

dependencies between inputs and outputs. It is frequently used as a first step before performing a 

regression analysis. However, it may not work well when there are a lot of inputs and outputs 

(19). 

More details about local sensitivity analysis and probabilistic sensitivity analysis will be 

discussed in Chapter 3 and 4, respectively. 

1.7 SAMPLING PROCEDURES 

In order to perform sensitivity analysis more efficiently, a reasonable and appropriate sampling 

procedure should be considered carefully. There are several sampling procedures that can be 

used to sample the values of input parameters. For example, simple random sampling procedure 



 13 

is commonly used to randomly draw samples from the sample space without any restrictions of 

the samples. This method is the simplest way for simulation models but may less efficient in 

obtaining reliable results for complex simulation models because it may require large sample 

size. Another commonly used sampling procedure is the stratified random sampling method, 

which will weight the samples from different strata and provide more precise estimates for 

population means and variances. An alternative method to the stratified random sampling is 

unequal-probability sampling procedure, which will draw stratified samples based on different 

probability in each stratum and reduce the sampling variance from strata. For sampling the 

values of input parameters, two methods are commonly used, systematic sampling and Latin 

Hypercube sampling. A systematic sample consists of equally spaced units, and will perform 

analysis from all spaced units. This method would be good for input parameters with small 

ranges. The Latin Hypercube sampling method splits parameter space into equal probability 

intervals and samples from each interval without replacement. This method is recommended for 

parameters with wider ranges to reduce the sample sizes of input values and improve the 

computational efficiency of the sensitivity analysis process(26). More details about sampling 

procedures will be discussed in Chapter 4. 

1.8 RESEARCH OBJECTIVES 

The purpose of this study is to develop appropriate statistical methods and procedures for 

dealing with parameter uncertainty and improving the computational efficiency of sensitivity 

analysis in a large-scale agent-based model of infectious disease. In particular, this study uses 

local sensitivity analysis, probabilistic sensitivity analysis (uncertainty analysis), statistical 
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sampling procedures, and statistical methods to develop specific procedures and criteria to (1) 

determine important input parameters in the FRED influenza model, (2) improve the 

computational efficiency of sensitivity analysis by comparing two sampling procedures: simple 

random sampling and Latin Hypercube sampling, and (3) apply the developed procedures to 

evaluate the effects and the cost-effectiveness for different influenza intervention strategies. 

This study emphasizes the impor tant role of sensitivity analysis, uncertainty analysis and 

statistical analysis in computer simulation models and the use of those analyses in such models 

to improve the computational efficiency of sensitivity analysis. The results of this study will 

promote the improved use of simulation models for decision-making by making clear the level of 

uncertainty in the reported results. This study also considers the public health aspects of using 

agent-based models to prevent and manage diseases, evaluate public health interventions and 

provide more accurate information for public decision-makers. 

1.9 THESIS OUTLINE 

Chapter 2 presents the results of a literature review on previous studies to determine the 

reference values and distributions for potential important parameters in the FRED influenza 

model. Chapter 3 focuses on the local sensitivity analysis approach for identifying high-priority 

input parameters for future research in FRED model. Chapter 4 compares simple random 

sampling and Latin hypercube sampling procedures in probabilistic sensitivity analysis 

(uncertainty analysis) to improve the computational efficiency of sensitivity analysis. Chapter 5 

applies the procedures developed in chapter 4 to evaluate several different intervention strategies 

of school closure. Chapter 6 contains general conclusions and discussions of this study. 
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1.10 LIST OF KEY DEFINITIONS AND ACRONYMS 

Table 1 provides a list of key definitions and acronyms used in this study. 

Table 1. List of key definitions and acronyms 

Term Definition Acronym Section 

Agent-based model A rule-based, discrete-time, discrete-event 
computational modeling methodology 
 

ABM 1.2 

FRED framework An open source, object-oriented agent-
based modeling system for different 
diseases. FRED stands for Framework for 
Replicating Epidemic Dynamics 
 

FRED 1.4 

Uncertainty analysis The process of obtaining the probability 
associated with a policy decision based on 
a model, given the probability distributions 
of the input parameters of the model 
 

 1.5, 5.1 

Sensitivity analysis A method for quantifying uncertainty in 
any type of complex model by 
systematically changing inputs (parameters 
and initial conditions) of a model and 
quantifying the resulting change to the 
outputs 
 

 1.5, 1.6 

Local sensitivity analysis Studies how the model behaviors when 
varying each input parameter one at a time 
 

LSA 1.6, 3.1 

Global sensitivity analysis Varies all parameters over their full ranges 
and looks at several different output 
measures to understand the full range of 
model behavior 
 

 1.6, 4.1 

Probabilistic sensitivity 
analysis 

The process of obtaining the probability 
distribution of the responses of a model 
given the probability distributions of the 
input parameters of the model 
 

PSA 4.2 

Random sampling A subset of individuals (a sample) chosen 
from a larger set (a population), each 
individual is chosen randomly and entirely 
by chance 

 1.7, 4.3 
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Table 1 continued 

Term Definition Acronym Section 

Latin Hypercube sampling A sampling procedure that splits parameter 
space into equal probability intervals and 
samples from each interval without 
replacement 
 

LHS 1.7, 4.3 

Attack rate Cumulative incidence of infection in a 
population observed over a period of time 
during an epidemic 
 

 Chapter 3-5 

Cumulative distribution 
function 

A function describes the probability that 
the random variable X takes on a value less 
than or equal to a value x 
 

CDF 3.3 

Probability density 
function 

A function that describes the relative 
likelihood for the random variable X to 
take on a given value x 

PDF 3.3 
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CHAPTER 2 KEY PARAMETERS IN FRED INFLUENZA MODEL 

This chapter presents the results of literature review for natural history parameters (Section 

2.1.1), transmission parameters (Section 2.1.2) and health related behavior parameters (Section 

2.1.3) in FRED influenza model. A summary of reference parameter values is present in Section 

2.2, followed by discussions and conclusions in Section 2.3. This chapter provides literature 

review for reference parameter values that will be used in Chapter 3-5. 

2.1 LITERATURE REVIEW FOR PARAMETERS IN FRED INFLUENZA MODEL 

In the FRED framework, there are three categories of important epidemiological parameters that 

are used to generate models of particular diseases: natural history parameters (such as latent 

period, symptomatic period, symptomatic rate, mortality rate etc.), transmission parameters (such 

as the probability of transmission, asymptomatic infectivity etc.), and health related behavior 

parameters (such as the probability of staying home when sick, contact rate at different locations 

etc.). This Section describes the results of a literature review to identify the reference values and 

distributions for some important epidemiological parameters in FRED model. All the reviews for 

parameters in FRED model are mainly focused on influenza H1N1 pandemic. 
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2.1.1 Natural history parameters 

In FRED model, the natural history parameters for influenza pandemic include latent period, 

asymptomatic period, symptomatic period, symptomatic rate, immunity loss rate, and mortality 

rate. Latent period is defined as the interval between the receipt of infection and the onset of the 

first symptoms of the illness. Mortality rate for seasonal flu is vary widely from year to year and 

is also differed by the type of influenza. Symptomatic period is defined as the period of being 

infectious and symptomatic. In contrast, asymptomatic period is defined as the period of being 

infectious but asymptomatic. Symptomatic rate in influenza pandemic is defined as the 

probability that infected persons will be symptomatic. Table 2 summarizes the definitions of 

natural history parameters in FRED model. 

Table 2. Definitions of natural history parameters in FRED model 

Parameter Definition 

Latent period The interval between the receipt of infection and the onset of the first 

symptoms of the illness 

Symptomatic period The period of being infectious and symptomatic 

Asymptomatic period The period of being infectious but asymptomatic 

Symptomatic rate The probability of infected persons will be symptomatic 

Immunity loss rate Rate at which a person loses immunity after recovering from infection 

Mortality rate The probability of an infected person dying 

In this Section, we will focus on identifying the reference values for latent period, 

symptomatic period, and symptomatic rate. 
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2.1.1.1 Latent period and symptomatic period 

A literature review was performed to ascertain the reference assumptions on latent period and 

symptomatic period in influenza pandemic. The literature search was carried out using the 

PubMed database with the keywords “influenza” (all fields), “latent period” (all fields), or 

“symptomatic period” (all fields). A review to the bibliographies of published studies was also 

performed to find additional related articles. The search was limited to English-language articles. 

A total of 6 articles were found which were published between 1990 and 2013 (Figure 1). Those 

articles were filtered with selection criteria, that only the ones that clearly stated the assumptions 

for latent period and symptomatic period in influenza pandemic have been selected. The total 

number of articles reviewed was five. 

 

Figure 1. Identification of eligible articles for latent period and symptomatic period 

The details of reviewed articles are described as follows: 

Carrat et al. (27) performed systematic review on 56 published studies on human 

influenza from PubMed database (1965 to 2005) and reported an average of latent period at 1.1 

days and the mean duration of symptoms at 4.4-5 days for H1N1 influenza, 3.7 days for H3N2 

Potentially relevant articles 
identified and screened for 

retrieval (n = 6)

Included in the review
(n = 5)

Excluded – Infectious diseases other 
than influenza A; no abstract; no 

access to full article (n=1)
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influenza, 4.6 days for H2N2 influenza and 4.1 days for influenza B. Cori et al. (28) reported an 

average of 1.63 days of latency period for influenza with a standard deviation 0.26 days using the 

same data from Carrat et al. (27). Tuite et al. (29) studied laboratory confirmed H1N1 cases in 

Ontario and estimated that the incubation periods followed a log-normal distribution with mean 

at 4.3 days and a 95% confidence interval at 2.6-6.6 days. They also estimated that the duration 

of symptoms followed a log-normal distribution with mean at 9.3 days and a 95% confidence 

interval at 2.6-24.2 days. Lessler et al. (30) performed systematic review of 38 publications with 

data from PubMed database (no time limits - 2009) and fitted a log-normal distribution for 

incubation period for influenza A with mean at 1.4 days and a 95% confidence interval at 1.3-1.5 

days. Baguelin et al. (31) used a realistic generation time distribution and estimated that average 

latency period for H1N1 influenza was 1.40 days with a 95% confidence interval of [0.19–3.90]. 

Table 3 summarizes the data sources and reference values for latent period and 

symptomatic period in reviewed articles. 

Table 3. Summary of data sources and reference values for latent and symptomatic periods 

Articles Data sources Reference values 

Carrat et al. (27) Systematic reviewed papers from 

PubMed (1965-2005) 

Symptoms: 4.4-5 

(influenza A) 

Cori et al. (28) Data from Carrat et al. (27) Latency: 1.63 

Tuite et al. (29) Laboratory confirmed H1N1 cases in 

Ontario 

Latency: 4.3 (2.6, 6.6) 

Symptoms: 9.3 (2.6, 24.2) 

Lessler et al. (30) Systematic reviewed papers from 

PubMed (no time limits - 2009) 

Latency: 1.4 (1.3, 1.5) 

Baguelin et al. (31) Epidemiological modeling (realistic 

generation time distribution) 

Latency: 1.4 (0.19, 3.90) 
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2.1.1.2 Symptomatic rate 

A literature review was performed to ascertain the reference assumptions on symptomatic rate in 

influenza pandemic. The literature search was carried out using the PubMed database with the 

keywords “influenza” (all fields), “symptomatic” (all fields), or “asymptomatic” (all fields). A 

review to the bibliographies of published studies was also performed to find additional related 

articles. The search was limited to English-language articles. A total of 739 articles were found 

which were published between 1990 and 2013 (Figure 2). Those articles were filtered with 

selection criteria, that only the ones that clearly stated the assumptions for symptomatic rate in 

influenza pandemic have been selected. The total number of articles reviewed was six.  

 

Figure 2. Identification of eligible articles for symptomatic rate 

The details of reviewed articles are described as follows: 

Longini et al. (32) assumed that the probability that an infected person will be 

symptomatic is 0.67 based on population-level influenza cohort studies in United States. 

Stilianakis et al. (33) assumed that an average of 50% of infected persons become sick with 

clinical symptoms. Papenburg et al. (34) identified the probability of infected persons will be 

Potentially relevant articles 
identified and screened for 

retrieval (n = 739)

Included in the review
(n = 6)

Excluded – Infectious diseases other 
than influenza A; no abstract; no 

access to full article (n=733)
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symptomatic is 0.67 by the secondary attack rates within household based on the data of the 

2009 Pandemic A/H1N1 Influenza. Mathews et al. (35) used the data from 1918 H1N1 influenza 

pandemic to calculate an average of 0.38 symptomatic rate with 95% confidence interval 

between 0.28 and 0.60. Kuster et al. (36) conducted a systematic review and meta-analysis from 

OVID MEDLINE (1950 to 2010) and EMBASE (1947 to 2010), and estimated an average of 

0.69 symptomatic rate in the annual incidence of influenza among healthy adults and healthcare 

workers. Carrat et al. (27) reviewed 56 published studies on human influenza from PubMed 

database (1965 to 2005) and reported an average of 0.669 symptomatic rate for all types of 

influenza and 0.708 for H1N1 influenza by GEE estimates.  

Table 4 summarizes the data sources and reference values for symptomatic rate from 

reviewed articles. 

Table 4. Summary of data sources and reference values for symptomatic rate 

Articles Data sources Reference values 

Mathews et al. (35) Reported cases for H3N2 in Tristan da Cunha in 1971 0.38 (0.28, 0.60) 

Longini et al. (32) Experts’ assumption based on natural history of 

influenza 

0.67 

Stilianakis et al. (33) Experts’ assumption 0.50 

Papenburg et al. (34) Prospective observational study for 2009 pH1N1 

pandemic in Quebec City, Canada 

0.67 

Kuster et al. (36) Systematic reviewed papers from OVID MEDLINE 

(1950-2010) and EMBASE (1947-2010) 

0.689 

Carrat et al. (27) Systematic reviewed papers from PubMed (1965-2005) 0.669 (0.583, 0.745) 

0.708 (0.504, 0.852) 
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2.1.2 Transmission parameters 

In FRED model, transmission parameters include asymptomatic infectivity, transmissibility and 

transmission probability. Asymptomatic infectivity is defined as the proportion of an infected 

and asymptomatic person transmits an infection to an infected and symptomatic person transmits 

an infection. Transmissibility is defined to describe an infectious disease in its overall number of 

illnesses and deaths in the population during an epidemic. In FRED model, transmissibility is set 

by calibration, and will not be discussed in this chapter. Transmission probability is defined as 

the probability that a contact transmits an infection per contact per unit time (e.g., per day). In a 

given place type, the transmission probability generally depends on the age of the infectious 

person and the susceptible person. The definition of transmission probability in the references 

was very vague, and some references referred secondary attack rates to transmission probability. 

It is probably because this parameter may or may not be able to be measured in real life. In this 

Section, the term of transmission probability is reviewed with the referred unit time scale to 

make those reference values comparable. Table 5 summarizes the definitions of transmission 

parameters in FRED model. 

Table 5. Definitions of transmission parameters in FRED model 

Parameter Definition 

Asymptomatic 
infectivity 

The proportion of an infected and asymptomatic person transmits an 

infection to an infected and symptomatic person transmits an infection 

Transmission 
probability 

The probability that a contact transmits an infection per contact per 

unit time 

Transmissibility Overall number of illnesses and deaths in the population during an 

infectious disease pandemic 
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In this Section, the results of a literature review will be used to identify the reference 

values of transmission probability. 

2.1.2.1 Asymptomatic infectivity 

In literature review, very few studies discussed asymptomatic infectivity. Some studies assumed 

that infectious but asymptomatic people usually have reduced infectivity compared with 

infectious and symptomatic people. For example, Longini et al. (32) and Yang et al. (37) 

assumed that an asymptomatic infection is only 50% as infectious as a symptomatic infection. 

Patrozou et al. (38) assumed that the proportion of transmission by asymptomatic individuals is 

one-third to one-half that of influenza-infected symptomatic individuals.  

2.1.2.2 Transmission probability 

A literature review was performed to ascertain the reference assumptions on transmission 

probability in influenza pandemic. A literature search was carried out using the PubMed database 

with the keywords “influenza” (all fields), “transmission probability” (all fields). A review to the 

bibliographies of published studies was also performed to find additional related articles. The 

search was limited to English-language articles. A total of 736 articles were found which were 

published between 1990 and 2013 (Figure 3). Those articles were filtered with selection criteria, 

that only the ones that clearly stated the assumptions for transmission probability in influenza 

pandemic have been selected. The total number of articles reviewed was eight.  
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Figure 3. Identification of eligible articles for transmission probability 

The details of reviewed articles are described as follows: 

To estimate the household and community probabilities of transmission, Longini et al. 

(39, 40) have suggested that it is possible to estimate them from the distribution of the final 

number of cases in households at the end of the epidemic. The authors described a final-size 

distribution for transmission probability in household and community, and estimate the daily 

probability in household at 0.044 and the probability in community at 0.144 during the course of 

epidemic by the Asian influenza epidemic household data previously examined by Sugiyama 

(41). Reed et al. (42) reviewed data from past influenza seasons and pandemics, and 

characterized severity and transmissibility in both low-moderate and moderate-high levels as 

well as in a 7-scale measurement. For example, the authors estimated that the transmissibility 

rates in 2009 H1N1 influenza pandemic were 0.13 in household and 0.20 in the community. Piso 

et al. (43) reported a low transmission rate of H1N1 influenza at 0.019 during a long-distance 

public bus trip from Spain to Switzerland. Klick et al. (44) found the transmission probability 

was at 0.18 for H1N1 influenza among children in Hong Kong, and was at 0.06 among adults. 

Potentially relevant articles 
identified and screened for 

retrieval (n = 736)

Included in the review
(n = 8)

Excluded – Infectious diseases other 
than influenza A; no clear statement for 
transmission probability; no abstract; no 

access to full article (n=730) Additional articles identified by 
searching the reference list of 

papers selected (n=2)
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Merl et al. (45) used Monte Carlo simulation to explore the distributions of numbers of 

susceptible, infected, recovered individuals, and the total accrued cost, as functions of time. The 

estimates by Murray (46) were that the transmission rate 0.00218 and recovery rate 0.4. Then the 

authors estimated their negative binomial transmission function and implied that disease 

transmission occurs followed a Poisson process with a gamma distributed encounter rate. 

Table 6 summarizes the data sources and reference values for transmission probability 

from reviewed articles. 

Table 6. Summary of data sources and reference values for transmission probability 

Articles Data sources Reference values Unit 

Longini et al. (39, 40) 

Sugiyama (41) 

Asian influenza epidemic household 

data in 1960 

Household: 0.044 

Community: 0.144 

Daily 

Epidemic 

Reed et al. (42) Published influenza pandemic data 

in 2009, 1968,1957,1918 and non-

pandemic influenza seasons in 1978-

79, 2006-07, 2007-08 

Household: 0.13 

Community: 0.20 

Epidemic 

 

Piso et al. (43) Collected 2009 H1N1 influenza 

pandemic data in European public 

transportation systems 

Community: 0.019 About a day 

Klick et al. (44) Recruited and collected household 

data for influenza pandemic in Hong 

Kong in 2008-09 

Children: 0.18 

(0.12, 0.25) 

Adults: 0.06 

(0.03, 0.11) 

Epidemic 

Merl et al. (45) 

Murray (46) 

Previous studies Transmission rate: 

0.00218 

unknown 
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2.1.3 Health related behavior parameters 

One of impor tant health-related behavior parameters in FRED model is the probability of staying 

home when sick. It is defined as the probability of withdrawal from work or school due to 

symptoms appearance. Another important health behavior parameter is contact rate. Contact rate 

is defined as the rate at which persons meet persons, and is measured as individuals per unit 

time, for example, number of contacts per day. Contact rate could take place in several locations: 

household, community, school and workplace. Table 7 summarizes the definitions of health 

related behavior parameters in FRED model. 

Table 7. Definitions of health related behavior parameters in FRED model 

Parameter Definition 

Probability of staying 
home when sick 

The probability of withdrawal from work or school due to 

symptoms appearance 

Contact rate The rate at which persons meet persons, and is measured as 

individuals per unit time 

In this Section, focus will be given to identify the reference values for the probability of 

staying home when sick and contact rate. 

2.1.3.1 The probability of staying home when sick 

A literature review was performed to ascertain the reference assumptions on the probability of 

staying home when sick in influenza pandemic. A literature search was carried out using the 

PubMed database with the keywords “influenza” (all fields), “absenteeism” (all fields) or “sick 
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leave (all fields)”. A review to the bibliographies of published studies was also performed to find 

additional related articles. The search was limited to English-language articles. A total of 390 

articles were found which were published between 1990 and 2013 (Figure 4). Those articles 

were filtered with selection criteria, that only the ones that clearly stated the assumptions for the 

probability of staying home when sick during influenza pandemic have been selected. The total 

number of articles reviewed was fourteen. 

 

Figure 4. Identification of eligible articles for the probability of staying home when sick 

The details of reviewed articles are described as follows: 

Chan (47) studied the data from 2004-2005 seasonal influenza in Hong Kong and found 

that 55% of people with influenza-like illness took sick leave from work. The proportion would 

be lower if the person received vaccine treatment (30.3%). Schanzer et al. (48) conducted a 

Canadian labor force survey and confirmed that the estimates of absenteeism from workplace 

due to seasonal influenza typically ranged from 5% to 20% given the range of clinical attack rate 

from 15% to 35%. Mikolajczyk et al. (49) observed 49.3% absenteeism due to influenza-like 

illness for school children in Germany. Lau et al. (50) reported an approximate of 75% 

absenteeism for elementary school  students due to influenza-like illness. Considine et al. 

Potentially relevant articles 
identified and screened for 

retrieval (n = 390)

Included in the review
(n = 14)

Excluded – Infectious diseases other than 
influenza A; no abstract; no access to full 

article (n=376)
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(51)reported that 57% of health care workers with influenza-like illness took sick leave during 

the 2009 H1N1 influenza pandemic in Australia. Campbell et al. (52) conducted a prospective, 

non-randomized, non-placebo control trial in six North Carolina textile plants and found that 31 

out of 64 unvaccinated people who had influenza-like illness missed work (48.4%), compared to 

15 out of 26 vaccinated people missed work due to influenza-like illness (57.7%). Neuzil et al. 

(53) observed an approximate of 63% absenteeism for school children during influenza season. 

Rousculp et al. (54) reported that 29.1% of employees with influenza-like illness took sick leave 

in 2007-2008 season. Turnberg et al. (55) examined annual influenza vaccination and sick leave 

practices and perceptions among health care workers and found only 31% of respondents 

routinely took sick leave when they had influenza-like symptoms.  Study conducted by Tora et 

al. (56) for comparing absence due to sickness for 2009 H1N1 influenza indicated that women 

had a higher proportion of sickness absence due to influenza-like illness (52.2% in Catalonia and 

49.7% in Andalusia). Nichol et al. (57) conducted a double-blind, placebo-controlled trial in 

healthy working adults in 1994 -1995 season to investigate the effectiveness of vaccination 

against influenza, and found that 40.9% of placebo recipients and 35.6% of vaccine recipients 

took sick leave. Similarly, Bridges et al. (58) conduct randomized controlled trial to evaluate the 

effectiveness and cost-benefit of influenza vaccine among healthy working adults in 1997-1998 

season and 1998-1999 season. They found that 39% of unvaccinated persons took sick leave 

from work due to influenza-like illness compared with vaccinated persons at 28% in 1997-1998 

season. In 1998-1999 season, 54% of unvaccinated persons had workday loss due to influenza-

like illness compared with vaccinated persons at 55%. Seale et al. (59) conducted cross-Sectional 

survey for health care workers in Sydney and reported that 81.2% of respondents would not 

present to work if they had influenza-like illness, and the proportion would be lower at 58.6% 
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during a severe staff shortage. Blendon et al. (60) repor ted that in the nation-wide survey for 

investigating the population behaviors in a pandemic, surprisingly 94% of the population stated 

that they would be  able to stay home if they had influenza-like illness.  

Table 8 summarizes the data sources and reference values for the probability of staying 

home when sick from reviewed articles. 

Table 8. Summary of data sources and reference values for the probability of staying home 

when sick 

Articles Data sources Reference values 

Chan (47) 2004-05 seasonal influenza data in Hong Kong 0.50 

Schanzer et al. (48) Canadian labor force survey for seasonal and 

pandemic influenza between 1998 and 2009 

(0.33-0.57) 

Mikolajczyk et al. (49) Collected data from 24 primary schools in 

Germany in 2004 in form of questionnaire 

0.493 

Lau et al. (50) Cohort study from 2 Chicago public elementary 

schools in 2009-10 

0.75 

Considine et al. (51) Electronic survey for emergency nursing and 

medicine in Australia in 2009 

0.57 

Campbell et al. (52) Prospective control trial in six North Carolina 

textile plants in 1997 

0.484 

Neuzil et al. (53) Prospective survey study in an elementary school 

in Seattle in 2000-01 

0.63 

Rousculp et al. (54) Prospective study of employees from three US 

employers with access to FSLPs 

0.291 
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Table 8 continued 

Articles Data sources Reference values 

Turnberg et al. (55) Self-report questionnaire in Washington for health 

care workers in 2005 

0.31 

Tora et al. (56) Surveillance data reported in Andalusia and 

Catalonia in the period 2007-2009 

0.522 (Catalonia) 

0.497 (Andalusia) 

Nichol et al. (57) Subjects were recruited from Minneapolis–St. Paul 

area in 1994 

0.409 

Bridges et al. (58) Data collected from full-time employees of Ford 

Motor Co, Michigan during 1997-98 and 1998-99 

0.39 (1997-98) 

0.54 (1998-99) 

Seale et al. (59) Cross-Sectional investigation of health care 

workers in 2007 in Sydney, Australia 

0.812 

Blendon et al. (60) Questionnaire survey conducted by Harvard School 

of Public Health in 2006 

0.94 

 

2.1.3.2 Contact rates 

A literature review was performed to ascertain the reference assumptions on contact rate in 

influenza pandemic. A literature search was carried out using the PubMed database with the 

keywords “influenza” (all fields), “household contact” (all fields), or “social contact” (all fields). 

A review to the bibliographies of published studies was also performed to find additional, related 

articles. The search was limited to English-language articles. A total of 198 articles were found 

which were published between 1990 and 2013 (Figure 5). Those articles were filtered with 
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selection criteria, that only the ones that clearly stated the assumptions for contact rate in 

influenza pandemic have been selected. The total number of articles reviewed was seven. 

 

Figure 5. Identification of eligible articles for contact rate 

The details of reviewed articles are described as follows: 

Mikolajczyk et al. (49) conducted a survey about the social contacts of school children in 

Germany and found a total mean number of contacts per day at 32.7 with 95% confidence 

interval from 1 to 78, while the mean number with children was 25.1 and with adults was 7.5. 

They also suggested the negative binomial distribution to estimate the number of contacts at 

school with a shifted mean of 12.0 and a variance of 77.3. Chen et al. (61) found the mean 

number of contacts for elementary school children was ranging from 9.44 to 11.18 per day in 

Taiwan, and was lower for middle school children and high school children at 5.66 with a 

standardize deviation of 6.23 per day. Mossong et al. (62) conducted a population-based 

prospective survey of mixing patterns in eight European countries (POLYMOD study) to quantify 

contact patterns relevant for infections transmitted by the respiratory and reported the mean 

number of household contacts per day was ranging from 8.9 to 17.7 based on the household size. 

Potentially relevant articles 
identified and screened for 

retrieval (n = 198)

Included in the review
(n = 7)

Excluded – Infectious diseases other 
than influenza A; no abstract; no 

access to full article (n = 191)
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Towers and Chowell(63) used the contact data from Mossong et al. (62) and assumed the 

average number of child-to-child contacts per day was 8.9, child-to-adult was 5.5, adult-to-child 

was 1.9, and adult-to-adult was 9.3. Potter et al. (64) used the data from the POLYMOD study in 

eight European countries of social contact behavior and estimated the conditional probability of 

age-specific contact network for household. Wallinga et al. (65) used the data from a cross-

Sectional survey conducted in the Netherlands to estimated the matrix of the number of age-

specific social contacts among all age groups. Eames et al. (66) conducted internet-based survey 

for measuring dynamic social contact patterns during 2009 H1N1 influenza pandemic and 

reported age-specific matrix of number of conversational contacts and physical contacts during 

school term time and school holidays.  

Table 9 summarizes the data sources and reference values for contact rate from reviewed 

articles. 

Table 9. Summary of data sources and reference values for contact rate 

Articles Data sources Reference values 

(number per day) 

Mikolajczyk et al. (49) Collected data from 24 primary schools in 

Germany in 2004 in form of questionnaire 

Children: 25.1 

Adults: 7.5 

Chen et al. (61) 274 diary-based questionnaires collected from 

schools in Taiwan in 2010 

Elementary: (9.44, 11.18) 

Middle and High: 5.66 (6.23) 

Mossong et al. (62) POLYMOD study: cross-Sectional surveys 

conducted in 8 European countries in 2005-06 

Household: (8.9, 17.7) 

Towers et al (63) POLYMOD study: cross-Sectional surveys 

conducted in 8 European countries in 2005-06 

Child-to-child: 8.9 

Child-to-adult: 5.5 

Adult-to-child: 1.9 

Adult-to-adult: 9.3 
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Table 9 continued 

Articles Data sources Reference values 

(number per day) 

Potter et al. (64) POLYMOD study: cross-Sectional surveys 

conducted in 8 European countries in 2005-06, 

but only used the Belgian data 

Probability distribution of 

contact networks among 

children and adults 

Wallinga et al. (65) Cross-Sectional survey conducted in the 

Netherlands in 1986 

See table 10 

Eames et al. (66) Internet-based social contact survey completed 

by a cohort of participants in 2009-10 in UK 

See table 11 

Table 10. Age-specific social contacts estimated by Wallinga et al. (65) 

Age 1-5 6-12 13-19 20-39 40-59 60+ 

0-5 12.26 2.28 1.29 2.50 1.15 0.83 

6-12 2.72 23.77 2.80 3.02 1.78 1.00 

13-19 2.00 3.63 25.20 5.70 4.22 1.68 

20-39 11.46 11.58 16.87 25.14 16.43 8.34 

40-59 3.59 4.67 8.50 11.21 13.89 7.48 

60+ 1.94 1.95 2.54 4.25 5.59 9.19 

Table 11. Age-specific social contacts estimated by Eames et al. (66) 

Period School term time School holidays 

Contact Conversational Physical Conversational Physical 

 Children Adults Children Adults Children Adults Children Adults 

Children 34.9 19.1 12.3 7 20.9 19.4 8.5 7.5 

Adults 5 24.5 1.8 5.5 4.1 23.2 1.5 6.1 
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2.2 REFERENCE PARAMETER VALUES FOR THE FRED INFLUENZA MODEL 

When considering the reference values for parameters in FRED model from literature reviews, 

articles that used systematic review and meta-analysis methods were preferable. For example, the 

reference values for latent period and symptomatic rate were chosen from the results of 

systematic review by Lessler et al. (30) and Carrat et al. (27), respectively. When articles that 

used systematic review were not found, the reference value was chosen by the average value of 

reviewed articles (e.g., the probability of staying home when sick). Parameters with a range 

between 0 and 1 (e.g., symptomatic rate) will choose beta distribution, other parameters will 

choose truncated normal distribution based on their ranges. 

For natural history parameters, the reference value of symptomatic rate follows a beta 

distribution with mean at 0.669 and standard deviation at 0.271(27). The latent period follows a 

normal distribution with a mean of 1.4 days and a standard deviation of 0.49(30). The 

symptomatic period follows a normal distribution with mean at 4.7 days and standard deviation 

at 0.9. Since asymptomatic period is difficult to measure and there were few studies about it in 

the literature, we assume that asymptomatic period has the same distribution as symptomatic 

period in this study. Therefore, the asymptomatic period follows a normal distribution with mean 

at 4.7 days and standard deviation at 0.9. 

For transmission parameters, since there were very few articles that had assumptions for 

asymptomatic infectivity and those articles assumed an average of 50% for asymptomatic 

infectivity with a possible range between 0.33 and 0.67.  
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For health related behavior parameters, the reference value for the probability of staying 

home when sick follows a beta distribution with mean at 0.543 and standard deviation at 0.179. 

For transmission probability, the definitions in reviewed papers are not very consistent, 

and transmission probability is associated with different location. In FRED influenza model, the 

transmission probability is set as a calibration number. Therefore, it may be difficult to use any 

reference value of transmission probability from reviewed papers, and we decide to keep the 

default value of transmission probability in FRED influenza model. 

For contact rate, all the reviewed papers stated that it is associated with age, and it would 

very different between child-to-child and child-to-adult. In FRED influenza model, contact rate 

is set as a single value. Due to the structure conflict, contact rate will also use the default value in 

FRED influenza model. 

Table 12 summarizes the reference values and distributions of parameters from literature 

review. 

Table 12. Reference values and distributions of parameters from literature review 

Parameter Reference value(range) Distribution 

Latent period 1.4 (0-2) days nor mal 

Symptomatic period 4.7 (3-6) days nor mal 

Asymptomatic period 4.7 (3-6) days nor mal 

Symptomatic rate 0.669 (0-1) beta 

Asymptomatic infectivity 0.5 (0.33-0.67) beta 

Transmission probability 0.00218 – 0.25 Unknown 

Probability of staying home when sick 0.543 (0-1) beta 

Contact rate by age  Fixed value 
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2.3 DISCUSSIONS AND CONCLUSIONS 

It is worth mentioning that there are interactions among above parameters. For example, 

Stilianakis et al. (33) stated that infected persons with clinical symptoms might show reduced 

contacts if they are sufficiently ill to be confined to bed. The probability of staying home when 

sick is associated with demographic background (gender, age etc.) and economical 

considerations (47, 51-55, 57-59). The number of social contacts varies by the day of the week 

(49, 62), and is associated with the contact age and household size (61-66).Studies also showed 

interactions among epidemiological parameters. For example, the clinical attack rate of influenza 

was affected by prior immunity and mixing patterns in population, and by the asymptomatic rate 

in pop ulation (35). 

In summary, this chapter performed a literature review to identify important parameter 

values in the FRED influenza model: latent period, symptomatic period, symptomatic rate, 

asymptomatic infectivity, transmission probability, the probability of staying home when sick, 

and contact rates. The reference values and distributions concluded from this chapter will be 

used in the following chapters for sensitivity analysis. 
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CHAPTER 3 LOCAL SENSITIVITY ANALYSIS 

This chapter gives an overview of the background on local sensitivity analysis (Section 3.1), 

proposes the details of performing local sensitivity analysis in FRED model (Section 3.2), 

develops algorithms and R programs that quickly create input values for some parameters with 

the input format of discrete cumulative distribution function (Section 3.3), then conducts local 

sensitivity analysis to ten selected parameters in FRED model (Section 3.4). The summary, 

discussions and conclusions are present in Section 3.5. This chapter uses the results of reference 

parameters values from Chapter 2 to perform local sensitivity analysis to identify high sensitivity 

parameters in FRED model. The results of this chapter will be used in Chapter 4 and 5. 

3.1 LOCAL SENSITIVITY ANALYSIS 

Generally, sensitivity analysis has been classified into local sensitivity analysis and global 

sensitivity analysis. In local sensitivity analysis, the model responses are obtained by changing 

the values of input parameters one at a time, while the remaining parameters are set to their 

default values. It also assumes that the relationships between input parameters and model outputs 

are linear. Since in local sensitivity analysis one parameter is changed at a time, it may not be 

able to detect interactions among parameters. In contrast, global sensitivity analysis deals with 
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the entire ranges of input parameters to understand the full range of model behavior. It can detect 

the impacts of both individual parameters and their interactions (22, 67). 

The general procedure of performing sensitivity analysis involves the following steps 

(21): First, identify input parameters and define distributions to characterize the uncertain 

parameters. Second, use one of the sampling procedures (random sampling, stratified sampling, 

and Latin Hypercube sampling etc.) to generate the samples of the uncertain parameters. Third,  

propagate the samples to generate the responses from the model. Fourth, perform statistical 

methods  such as regression analysis or analysis of variance to assess the impacts of the uncertain 

parameters on the model output.  

In local sensitivity analysis, a sensitivity measure, S, is used to identify high sensitivity 

factors or variables in the model. The simplest sensitivity measure S is defined as the derivative 

of the model function.  

For example, let , where Y is the output of model, and  are k-

independent inputs. Then the sensitivity measure S is defined as 

 

A simplified calculation of sensitivity measure is using the parameter’s reference value 

(P), then vary it by dP (for example, ). Then the sensitivity measure S is 

 

Parameters with low sensitivity may not be important in the model and may be left out of 

the model from further research. Some parameters may have low sensitivity but high uncertainty, 

and may not be simply left out by a single sensitivity measure. Parameter uncertainty is defined 

as the exact values of parameters are unknown and are difficult to be controlled in models or 
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experiments. Therefore, it needs to pay more attention on parameters with high uncertainty in the 

model(67). In this chapter, we will determine the important parameters based on both uncertainty 

in the references and sensitivity measure from local sensitivity analysis. 

3.2 PROCEDURES OF PERFORMING LOCAL SENSITIVITY ANALYSIS IN FRED 

MODEL 

The following criteria and steps are used to evaluate the input parameters and compare the 

consequence outputs to identify important factors in FRED model. 

Step 1: identify input parameters and define distributions to characterize input 

parameters, use the reference values from literature review for each parameter. In this step, ten 

important parameters will be used in local sensitivity analysis: latent period, symptomatic period, 

asymptomatic period, symptomatic rate, asymptomatic infectivity, the probability of staying 

home when sick, household contact rate, neighborhood contact rate, school contact rate and 

workplace contact rate. Those ten parameters will use the default values in FRED model or the 

reference values determined from Chapter 2. 

Step 2: generate the responses from the model using the values from step 1, one at a time, 

vary the input values of parameters by dP (for example, , but also depends on the range 

of the parameter) and generate the corresponding model simulations.  

The expected model output is the attack rate. Attack rate is defined as the cumulative 

incidence of infection in a population observed over a period of time during an epidemic. There 

are also other output variables in FRED model, such as number of new cases by day, 

reproductive rate by day, etc. We choose attack rate as the model output because it is easy to 



 41 

obtain the overall mean attack rates from the model and also easy to interpret for a simulated 

influenza pandemic. Besides, in Chapter 5, attack rate is used to calculate the cost-effectiveness 

of different school  closure intervention strategies.  

Some parameters are set as discrete cumulative distribution function in FRED model. To 

make small changes in these input values for the use of performing local sensitivity analysis, the 

algorithms described in Section 3.3 will be used. 

Step 3: calculate sensitivity measure for each input parameter using the following 

formula: 

 , e.g.,  

Step 4: summarize the results and draw conclusions on the sensitivity of parameters. 

Parameters with low sensitivity might be left out of the model from further research. 

3.3 ALGORITHMS FOR VARYING DISCRETE CUMULATIVE DISTRIBUTION 

FUNCTION INPUTS OF PARAMETERS 

This Section addresses a technical issue in how to vary input parameters that are specified by 

distributions. In FRED model, three input parameters are specified as discrete cumulative 

distribution functions: latent period, symptomatic period and asymptomatic period. For example, 

the latent period ranges between 1 day and 2 days with assigned probability for each day; the 

symptomatic period and the asymptomatic period range from 3 days to 6 days with assigned 

probability for each day. In other words, when an infection occurs in FRED, each infected agent 

is independently assigned a latent period, a symptomatic period and an asymptomatic period 



 42 

based on the discrete distributions of those parameters, but the overall means of those parameters 

are determined by the initial input values of the parameters. In this Section, we develop 

algorithms and R programs that quickly create input values of discrete cumulative distribution 

function from an assigned overall mean. 

Assume the parameter follows the following discrete probability density function (PDF) 

and discrete cumulative distribution functions(CDF) with mean u: 

Parameter value   …   …  

PDF   …   ...  

CDF   …   …  

while any 0ip > , and the mean u is defined as  

Assume that . To change the CDF and PDF slightly to 

achieve the mean at m while , we will increase the probability of , and 

decrease the probability of . To make the changes easier in FRED model, we will 

change the same value of p to each . In other words, the mean m is defined as  

 

while  

then  

The small value p that will be used to change the PDF of the parameter is calculated as 
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The new input values for the parameter follows the following discrete PDF and CDF: 

Parameter value   …   …  

PDF 
  

… 
 

 …  

CDF 
  

…   …  

Similarly, to achieve the mean at n while , the change of p is calculated as 

 

The new input values for the parameter follows the following discrete PDF and CDF: 

Parameter value   …   …  

PDF 
  

… 
 

 …  

CDF 
  

…   …  

Note that, above algorithms and formulas are applied only to the positive  in the PDF. 

If , we will keep the zero probability as it is, and calculate the small p based on the rest of 

positive , and change the values of a and k based on the number of positive . 

In some circumstances, after calculated the small p from the formula, we might find out 

that  is less than zero, or  is less than zero. In such cases, we will convert the 

negative  or  to zero, and rearrange and divide the value of  or 
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to its nearest non-negative  or . Then repeat above procedure until all the values 

of probability become non-negative. The algorithm of this procedure is described below. 

For , assume that the new PDF is calculated as following table. Assume 

 for , convert the probability of  to zero, then the new mean 

. The value of  will be divided into the probabilities of  

and , which will satisfy the following equations: 

  

while  and  

Thus, the revised PDF with the zero probability for  is as follows: 

Mean  …   …    …  

m  …   …    …  

  …   …  0  …  

m  …   … 
 

0 
 

…  

For , the probability of  will be converted to zero, and the value of 

 will be divided into the probabilities of  and , which will satisfy the 

following equations: 
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while  and  

The revised PDF with the zero probability for  is as follows: 

Mean  …   …    

m  …   …   0 

Similarly, for , assume that the new PDF is calculated as following table. Assume 

 for , convert the probability of  to zero, then the new mean 

.The value of  will be divided into the probabilities of  and 1rd +

, which will satisfy the following equations: 

 

while  and  

The revised PDF with the zero probability for  is as follows: 

Mean  …    …  …  

n  …    …  …  

  …  0  …  …  

n  …  0  …  …  
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For , the probability of  will be converted to zero, and the value of 

 will be divided into the probabilities of  and , which will satisfy the following 

equations: 

 

while  and  

The revised PDF with zero probability for  is as follows: 

Mean    …   …  

n 0   …   …  

The following is an example for applying above algorithms. For example, the following 

table is the default discrete cumulative distribution function for symptomatic period with a mean 

of 4.7 in FRED model.  

Mean Symptomatic period 0 1 2 3 4 5 6 

4.7 CDF 0.0 0.0 0.0 0.1 0.4 0.8 1.0 

 PDF 0.0 0.0 0.0 0.1 0.3 0.4 0.2 

To achieve a mean of 5.6,  , the new PDF is as follows: 
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Mean Symptomatic period 0 1 2 3 4 5 6 

5.6 PDF 0.0 0.0 0.0 -0.05 0.15 0.25 0.65 

Note that the probability of day 3 becomes negative in the PDF for the mean of 5.6. We 

will convert it to zero, and recalculate the probabilities of day 4 and day 5 as follows: 

 

 

The revised PDF and CDF are as follows: 

Mean Symptomatic period 0 1 2 3 4 5 6 

5.6 PDF 0.0 0.0 0.0 -0.05 0.15 0.25 0.65 

 Revised PDF 0.0 0.0 0.0 0.0 0.15-0.1=0.05 0.25+0.05=0.30 0.65 

 CDF 0.0 0.0 0.0 0.0 0.05 0.35 1 

3.4 MODEL OUTPUTS AND SENSITIVITY MEASURES 

In this Section, ten parameters are selected for using in local sensitivity analysis. Those ten 

parameters are reviewed in Chapter 2 with reference values and distributions. Those ten 

parameters are also of interests and important in FRED model. 

In FRED model, Allegheny County, PA is selected as the population for all the 

simulation runs in local sensitivity analysis. Each condition of input parameters will generate 

20repeated simulation runs and the mean attack rate of those 20 simulation runs will be 
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presented as the model output of each condition of input parameters. The number of simulation 

runs is determined by a preliminary study in FRED model (please see Appendix A for more 

details). 

3.4.1 Latent period 

The parameter, “latent period”, is defined as a discrete cumulative distribution function for the 

number of days between becoming exposed and becoming infectious. In FRED model, the 

default CDF of latent period is as follows: 

Latent period 0 1 2 

CDF 0.0 0.6 1.0 

PDF 0.0 0.6 0.4 

The mean of latent period is  

To achieve about  change of the reference value of latent period (1.3 and 1.5, 

respectively), the small change p is calculated as  

We choose  change for latent period because in the literature review, latent period 

has a narrow range from 1.3 to 1.5, and it is easy to the calculate and display the discrete 

cumulative distribution functions for this narrow range.
 

The input values for the discrete cumulative distribution function are the follows: 

Mean Latent period 0 1 2 

1.3 CDF 0.0 0.7 1 

1.5 CDF 0.0 0.5 1 
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Table 13 shows the mean attack rates by the reference value of latent period (1.4) and by 

the of the reference value of latent period (1.3 and 1.5, respectively). 

Table 13. Local sensitivity analysis results for latent period 

 Latent period 

 1.3 1.4 1.5 

Attack rate 55.607 55.594 55.5675 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 7% of input value of latent period, the 

corresponding sensitivity measures of mean attack rates are -0.182 and -0.371, respectively. 

3.4.2 Symptomatic period 

The parameter, “symptomatic period”, is defined as a discrete cumulative distribution function 

for the number of days the agent is infectious and symptomatic. In FRED model, the default 

CDF of symptomatic period is as follows: 

Symptomatic period 0 1 2 3 4 5 6 

CDF 0.0 0.0 0.0 0.1 0.4 0.8 1.0 

PDF 0.0 0.0 0.0 0.1 0.3 0.4 0.2 

The mean of symptomatic period is  

To achieve  change of the reference value of symptomatic period (4.465 and 4.935, 

respectively), the small change p is calculated as 
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The input values for the discrete cumulative distribution function are the follows: 

Mean Symptomatic period 0 1 2 3 4 5 6 

4.465 CDF 0.0 0.0 0.0 0.15875 0.5175 0.85875 1 

4.935 CDF 0.0 0.0 0.0 0.04125 0.2825 0.74125 1 

Table 14 shows the mean attack rates by the reference value of symptomatic period (4.7) 

and by the of the reference value of symptomatic period (4.465 and 4.935, respectively). 

Table 14. Local sensitivity analysis results for symptomatic period 

 Symptomatic period 

 4.465 4.7 4.935 

Attack rate 53.4335 55.594 57.705 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of symptomatic 

period, the corresponding sensitivity measures of mean attack rates are 43.21 and 42.22, 

respectively. 

3.4.3 Asymptomatic period 

The parameter, “asymptomatic period”, is defined as a discrete cumulative distribution function 

for the number of days the agent is infectious and asymptomatic. In FRED model, the default 

CDF of asymptomatic period is as follows: 
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Asymptomatic period 0 1 2 3 4 5 6 

CDF 0.0 0.0 0.0 0.1 0.4 0.8 1.0 

PDF 0.0 0.0 0.0 0.1 0.3 0.4 0.2 

The mean of asymptomatic period is  

To achieve  change of the reference value of asymptomatic period (4.465 and 4.935, 

respectively), the small change p is calculated as 
 

Similar to the symptomatic period, the input values for the discrete cumulative 

distribution function of asymptomatic period are the follows: 

Mean Asymptomatic period 0 1 2 3 4 5 6 

4.465 CDF 0.0 0.0 0.0 0.15875 0.5175 0.85875 1 

4.935 CDF 0.0 0.0 0.0 0.04125 0.2825 0.74125 1 

Table 15 shows the mean attack rates by the reference value of asymptomatic period (4.7) 

and by the  of the reference value of asymptomatic period (4.465 and 4.935, respectively). 

Table 15. Local sensitivity analysis results for asymptomatic period 

 Asymptomatic period 

 4.465 4.7 4.935 

Attack rate 54.5545 55.594 56.6275 

The sensitivity measure is calculated as follows: 

or  
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The results show that by decreasing or increasing 5% of input value of asymptomatic 

period, the corresponding sensitivity measures of mean attack rates are 20.79 and 20.67, 

respectively. 

3.4.4 Symptomatic rate 

Table 16 shows the mean attack rates by the reference value of symptomatic rate (0.669) and by 

the  of the reference value of symptomatic rate (0.70245 and 0.63555, respectively). 

Table 16. Local sensitivity analysis results for symptomatic rate 

 Symptomatic rate 

 0.63555 0.669 0.70245 

Attack rate 55.3745 55.594 55.7845 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of symptomatic rate, 

the corresponding sensitivity measures of mean attack rates are 4.39 and 3.81, respectively. 

3.4.5 Asymptomatic infectivity 

Table 17 shows the mean attack rates by the reference value of asymptomatic infectivity (0.5) 

and by the  of the reference value of asymptomatic infectivity (0.475 and 0.525, 

respectively). 
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Table 17. Local sensitivity analysis results for asymptomatic infectivity 

 Asymptomatic infectivity 

 0.475 0.5 0.525 

Attack rate 54.572 55.594 56.5775 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of asymptomatic 

infectivity, the corresponding sensitivity measures of mean attack rates are 20.44 and 19.67, 

respectively.
 

3.4.6 Probability of staying home when sick 

Table 18 shows the mean attack rates by the reference value of the probability of staying home 

when sick (0.543)  and by the  of the reference value (0.51585 and 0.57015, respectively). 

Table 18. Local sensitivity analysis results for probability of staying home when sick 

 Probability of staying home when sick 

 0.51585 0.543 0.57015 

Attack rate 57.408 55.594 53.7965 

The sensitivity measure is calculated as follows: 

or  
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The results show that by decreasing or increasing 5% of input value of probability of 

staying home when sick, the corresponding sensitivity measures of mean attack rates are -36.28 

and -35.956, respectively. 

3.4.7 Household contact rate 

Table 19 shows the mean attack rates by the reference value of household contact rate (0.198) 

and by the  of the reference value of household contact rate (0.188 and 0.208, respectively). 

Table 19. Local sensitivity analysis results for household contact rate 

 Household contact rate 

 0.188 0.198 0.208 

Attack rate 54.692 55.594 56.4145 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of household contact 

rate, the corresponding sensitivity measures of mean attack rates are 18.04 and 16.41, 

respectively.
 

3.4.8 Neighborhood contact rate 

Table 20 shows the mean attack rates by the reference value of neighborhood contact rate 

(42.479) and by the  of the reference value of neighborhood contact rate (40.355 and 

44.603, respectively). 
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Table 20. Local sensitivity analysis results for neighborhood contact rate 

 Neighborhood contact rate 

 40.355 42.479 44.603 

Attack rate 54.1025 55.594 57.056 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of neighbor hood  

contact rate, the corresponding sensitivity measures of mean attack rates are 29.83 and 29.24, 

respectively. 

3.4.9 School contact rate 

Table 21 shows the mean attack rates by the reference value of school contact rate (14.320) and 

by the  of the reference value of school contact rate (13.604 and 15.037, respectively). 

Table 21. Local sensitivity analysis results for school contact rate 

 School contact rate 

 13.604 14.320 15.037 

Attack rate 55.361 55.594 55.8145 

The sensitivity measure is calculated as follows: 

or  
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The results show that by decreasing or increasing 5% of input value of school contact 

rate, the corresponding sensitivity measures of mean attack rates are 4.66 and 4.41, respectively. 

3.4.10 Workplace contact rate 

Table 22 shows the mean attack rates by the reference value of workplace contact rate (1.589) 

and by the  of the reference value of workplace contact rate (1.510 and 1.669, respectively). 

Table 22. Local sensitivity analysis results for workplace contact rate 

 Workplace contact rate 

 1.510 1.589 1.669 

Attack rate 55.0215 55.594 56.108 

The sensitivity measure is calculated as follows: 

or  

The results show that by decreasing or increasing 5% of input value of workplace contact 

rate, the corresponding sensitivity measures of mean attack rates are 11.45 and 10.28, 

respectively. 

3.5 DISCUSSIONS AND CONCLUSIONS 

Table 23 summarizes above ten parameters considered above in increasingly order of their 

sensitivity measures. From these results, we can identify five parameters (asymptomatic 

infectivity, asymptomatic period, neighborhood contact rate, probability of staying home when 
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sick and symptomatic period) that have high sensitivity in the FRED model. The other five 

parameters have relatively low to medium sensitivity in the FRED model. We will consider the 

highest sensitive parameters (asymptomatic infectivity, asymptomatic period, neighborhood 

contact rate, probability of staying home when sick and symptomatic period) for further research. 

Table 23. Local sensitivity analysis results for ten selected parameters 

 Sensitivity Measure (Standardized) 

Parameter -5% +5% 

Latent period -0.182 -0.371 

Symptomatic rate 4.39 3.81 

School contact rate 4.66 4.41 

Workplace contact rate 11.45 10.28 

Household contact rate 18.04 16.41 

Asymptomatic infectivity 20.44 19.67 

Asymptomatic period 20.79 20.67 

Neighborhood contact rate 29.83 29.24 

Probability of staying home when sick -36.28 -35.956 

Symptomatic period 43.21 42.22 

As mentioned in Chapter 2 Section 2.3, the reference value of contact rate is a format of 

matrix by different age groups. However, in FRED model, all the contact rates are assigned as 

fixed values. It will be difficult to convert the reference matrix values into FRED. Due to 

complicated input formats and the variety of the reference values, the contact rates in household, 

neighborhood, school, and workplace will use the default fixed values in FRED for further 

analysis. 
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The identification of high sensitivity input parameters provides important information for 

users of the FRED model, such as public health policy makers, about what factors may have the 

most influence in mitigating the spread of an infectious disease during an epidemic. For example, 

the probability of staying home when sick has high sensitivity in the FRED influenza model, 

suggesting that pol icy makers may wish to target this factor in their risk communications, 

encouraging symptomatic people to stay at home and help to limit the spread of disease. Our 

analysis also shows that reducing neighborhood or community contacts may also play a 

significant role to limit disease spread.  This, the local sensitivity analysis may help policy 

makers to be more efficient for proper planning, monitoring, and decision-making. 

In summary, this chapter uses local sensitivity analysis to identify high sensitivity 

parameters in FRED influenza model, and four parameters (asymptomatic infectivity, 

asymptomatic period, probability of staying home when sick and symptomatic period) will be 

used in Chapter 4 and 5 for probabilistic sensitivity analysis (uncertainty analysis). 
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CHAPTER 4 PROBABILISTIC SENSITIVITY ANALYSIS 

This chapter introduces the background on global sensitivity analysis (Section 4.1), probabilistic 

sensitivity analysis (Section 4.2), and sampling procedures (Section 4.3), proposes the details of 

performing probabilistic sensitivity analysis in FRED model (Section 4.4), states the research 

hypotheses to compare two sampling procedures in FRED model (Section 4.5), then performs 

probabilistic sensitivity analysis with four selected parameters in FRED model and presents the 

results of statistical analysis (Section 4.6), followed by the discussions and conclusions in 

Section 4.7. This chapter uses the results from chapter 2 and 3 to perform probabilistic sensitivity 

analysis to compare two sampling procedures. The results of this chapter will be used for chapter 

5 in an example of policy comparison question. 

4.1 GLOBAL SENSITIVITY ANALYSIS 

Global sensitivity analysis varies all parameters over their full ranges and looks at several 

different output measures to understand the full range of model behavior. It has advantages over 

local sensitivity analysis in that it can deal with the entire ranges of input parameters to 

understand the model behavior. Mishra et al. (68) applied stepwise rank regression analysis, 

mutual information analysis and classification tree analysis in conjunction with Monte Carlo 

simulation-based probabilistic analyses to identify key contributors of inputs to output variance 
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and determine the strength of input-output association. They stated that global sensitivity 

analysis performed better than local sensitivity analysis, because global analyses provided 

information not only regarding the sensitivity of each individual input parameters but also about 

which parameter was mos t influential to the model. However, global sensitivity analysis can be 

extremely time-consuming to run a vast number of combinations of parameter values. To 

overcome the time-consuming issue, one approach is using Monte Carlo simulation method to 

generate random samples from the predetermined ranges and distributions to evaluate the model 

for each element of the samples and estimate the effects of each factor on the model outputs. 

There are two main procedures for performing global sensitivity and uncertainty analysis. 

One is sampling-based method. It obtains values of input parameters from selected ranges or 

distributions for model simulations and usually involves statistical analysis such as regression to 

estimate the impacts of input parameters on model outputs. Another procedure for global 

sensitivity analysis is ANOVA-like decomposition, which is a variance based method developed 

from Sobol’ indices (69) to estimate the influence of individual variables or groups of variables 

on the model outputs.  

One limitation of global sensitivity analysis is that the ranges of model outputs might be 

usually unrealistically wide if many input parameters are perturbed together. Such limitation can 

be overcome by treating the input parameters as random variables with specific distributions, 

which is known as probabilistic sensitivity analysis (uncertainty analysis)(70). 
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4.2 PROBABILISTIC SENSITIVITY ANALYSIS 

Probabilistic sensitivity analysis is performed to quantify the impact of uncertainties in input 

parameters on the uncertainty in model outputs. The main task of probabilistic sensitivity 

analysis is to obtain the probability distribution of the model responses given the distributions of 

the input parameters (71). One of advantages of using probabilistic sensitivity analysis is that it 

can deal with a large set of random input parameters with the consideration of their 

correlations(72). It is especially useful when the relationships between the input parameters and 

the model outputs are nonlinear. 

In probabilistic sensitivity analysis, one of the most challenging issues is the intensive 

computational demand for assessing the impact of probabilistic variations. Complex models are 

extremely time-consuming for computation and are impractical for use. An efficient approach to 

probabilistic sensitivity analysis is using optimized sampling procedures or statistical approach 

such as Bayesian method to improve the computational efficiency of sensitivity analysis(70, 71). 

4.3 SAMPLING PROCEDURES 

There are several sampling procedures that can be used to select the values of input parameters in 

probabilistic sensitivity analysis. First, systematic sampling could be used in the range of each 

input parameter. This procedure would be the simplest way to do sampling and may require a 

large number of simulation runs. Second, stratified random sampling can be used to generate a 

full factorial sampling for all input parameters. This procedure can evaluate the input parameters 

and their interactions to the model features. However, it may require a large number of 
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simulation runs when there are many strata for each input parameter. Third, Gaussian sampling is 

commonly used in simulation models(73). This procedure draws sample values near a point by 

using Gaussian distribution and biases the samples close to that poi nt. Fourth, Latin Hypercube 

sampling procedure can be used. This procedure is a form of stratified sampling, can draw 

samples from equally space from all input parameters without replacement. Latin Hypercube 

sampling method was first introduced by McKay et al. (74) for computer experiment. This 

stratified sampling method ensures that all portions of sample space are sampled, and each of 

those components of sample space is represented in a fully stratified manner, no matter which 

components might turn out to be important.  

The computational efficiency improvement of uncertainty analysis is highly dependent on 

the choice of sampling directions (75). Previous studies have proved that Monte Carlo 

simulations with the Latin Hypercube design produced more stable results and required fewer 

samples than random sampling method for the same accuracy for estimating statistics of a 

performance function (75, 76). 

In this chapter, two sampling methods will be used and compared in the probabilistic 

sensitivity analysis: random sampling method a nd Latin Hypercube sampling method.  

4.4 PROCEDURES OF PERFORMING PROBABILISTIC SENSITIVITY ANALYSIS 

IN FRED MODEL 

The following criteria and steps are used to perform probabilistic sensitivity analysis in FRED 

model (Figure 6): 
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Simple Random Sampling Latin Hypercube Sampling 

 

Use R to generate samples and create sample files 

 

Create FRED parameter files and executable files 

Run FRED model with repeated runs and calculate mean attack rates of repeated runs 

 

Repeat above steps for to obtain mean and standard deviation of repeated experiments 

 

Conduct statistical analysis to compare two sampling procedures 

Figure 6. Procedures of performing probabilistic sensitivity analysis in FRED model 

Step 1: perform simple random sampling procedure to select samples of the four 

parameters (asymptomatic infectivity, asymptomatic period, probability of staying home when 

sick and symptomatic period) from predetermined distributions in Chapter 2 and 3 (please see 

Appendix B.1 for R codes). In this sampling procedure, five sets of samples will be selected, 

each set contains four parameters and a sample size at 50, 100, 250, 500 and 1000, respectively. 

Step 2: perform Latin Hypercube sampling procedure to select samples of the four 

parameters (asymptomatic infectivity, asymptomatic period, probability of staying home when 

sick and symptomatic period) from predetermined distributions in Chapter 2 and 3 (please see 
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Appendix B.2 for R codes). Each parameter will be divided into same number of regions with 

equal probability, and one sample will be randomly selected from each region. The sample size 

for each parameter is the total number of regions in its sample space. In this sampling procedure, 

four sets of samples will be selected, each set contains four parameters and a sample size at 50, 

100, 250 and 500, respectively.  

Step 3: in FRED model, use scripts to create parameter files for each sampling procedure 

from the data files obtained from Step 1 and Step 2 and create executable files to run the 

simulations for each sampling procedure under each condition of parameter files (please see 

Appendix B.3 and B.4 for the details of these scripts). Each condition of parameter files will 

have 20 repeated runs. Calculate the mean attack rates of 20 repeated runs under each condition 

of parameter files for each sampling procedure at each sample size and save the outputs of mean 

attack rates into a data file.  

Step 4: repeat Step 1, 2 and 3 for n times (for example, n=20) to obtain the experiment 

errors of mean attack rates for both random sampling and Latin Hypercube sampling. 

Step 5: summarize and report the results from step 3. Calculate the mean and standard 

deviation for each sampling procedure at each sample size. Use statistical methods to compare 

the results between two sampling procedures as well as the means among all sample sizes. Make 

conclusions based on the statistical results and choose the most efficient sampling procedure and 

sample size for further research. 
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4.5 RESEARCH HYPOTHESES 

To compare random sampling method and Latin Hypercube sampling method, three hypotheses 

will be tested by two-sample t test: 

1. Latin Hypercube sampling procedure produces smaller standard deviation than simple 

random sampling. 

2. Latin Hypercube sampling procedure produces unbiased estimates as the simple 

random sampling. 

3. The 20 repeated experiments in each sampling procedure at each sample size 

procedure 20 unbiased estimates as a large sample size (the gold standard, for example, 

N=10000). 

4.6 RESULTS AND STATISTICAL ANALYSIS 

To obtain the simulation results quickly, we choose Washington County, PA with 200,000 

people as the population in FRED model. The time of running simulation in Washington County, 

PA takes much less time than Allegheny County, PA with about 1.2 millions people. Each 

condition of samples will take 20 repeated runs. For each sampling procedure and each sample 

size, we will generate 20 independent sample sets and run those 20 sample sets in FRED model. 

Therefore, the outputs for each sampling procedure and each sample size will be the mean attack 

rates and standard deviations of 20 repeated experiments from 20 independent sample sets. 

Table 24 summarized the means and standard deviations of attack rates of 20 repeated 

experiments for each sampling procedure at each sample size. 
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Table 24. Means and variances of attack rates for each sampling procedure by sample size 

 Sampling Procedure 

Sample size Random 

mean (standard deviation)  

Latin Hypercube 

mean (standard deviation) 

50 53.134 (1.602) 52.505 (1.542) 

100 52.801 (1.085) 53.106 (1.191) 

250 52.893 (0.725) 52.829 (0.745) 

500 52.786 (0.610) 52.920 (0.404) 

1000 52.952 (0.437) - 

For hypothesis 1, the standard deviations between random sampling procedure and Latin 

Hypercube sampling procedure at each sample size was compared by two-sample t test. The null 

hypothesis is . The alternative hypothesis is .  

 

 

Table 25 and Figure 7 summarized the results from two-sample t tests. 

Table 25. Two-sample t test results of comparing standard deviations of attack rates 

between sampling procedure at each sample size 

Sample size Sampling Procedure p value 

Random Latin Hypercube 

50 1.602 1.542 0.7907 

100 1.085 1.191 0.3539 

250 0.725 0.745 0.6777 

500 0.610 0.404 0.0001 

1000 0.437 (compared with 0.404) 0.0464 
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Figure 7. Standard deviation of mean attack rate by sample size 

From the test results, there are no statistical differences in standard deviation between 

random sampling and Latin Hypercube sampling at sample size 50, 100 and 250. However, Latin 

Hypercube sampling at sample size 500 produces significantly smaller standard deviation than 

random sampling at sample size 500 (p<0.0001) and 1000 (p<0.05). It suggests that at sample 

size 500, Latin Hypercube sampling is preferable to random sampling using both 500 and 1000 

samples. 

For hypothesis 2, the mean attack rates between random sampling procedure and Latin 

Hypercube sampling procedure at each sample size was compared by two-sample t test. The null 

hypothesis is , the alternative hypothesis is .  
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Table 26 summarized the results from two-sample t tests 

Table 26. Two-sample t test results of comparing mean attack rates between sampling 

procedure at each sample size 

 

Sample size 

Sampling Procedure  

p value Random 

mean (standard deviation) 

Latin Hypercube 

mean (standard deviation) 

50 53.134 (1.602) 52.505 (1.542) 0.0480 

100 52.801 (1.085) 53.106 (1.191) 0.0595 

250 52.893 (0.725) 52.829 (0.745) 0.3330 

500 52.786 (0.610) 52.920 (0.404) 0.0001 

From the test results, there is a borderline significant difference between the two 

sampling procedures at sample size 50 (p=0.048), and significant difference at sample size 500 

(p<0.0001). However, there are no significant differences between two sampling procedures at 

sample size 100 and 250. 

For hypothesis 3, a two-sample t test was used to compare the mean from each 

experiment in each sampling procedure at each sample size to the mean of a larger sample size 

(the gold standard). For each sampling procedure and sample size, there were 20 experiment 

means that were each compared with the gold standard. Here we choose a sample size of 10000 

from rando m sampling as the gold standard for comparisons. The null hypothesis for each 

sampling procedure is , the alternative hypothesis is , while i= 50, 

100, 250, 500 and 1000, j=1, 2, …, 20.  

versus  (i= 50, 100, 250, 500 and 1000; j=1, 2, …, 20) 
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The overall mean and standard deviation from the gold standard are 52.928 and 12.950, 

respectively. Table 27 summarizes the proportions of unbiased mean attack rates from above 

results, showing the percent of the 20 experiments for which the experimental mean was 

significantly different from the mean of the gold standard. The results show that one of 20 means 

from 20 experiments is statistically significantly different from the gold standard at sample size 

50 and 100 for both two sampling procedures. At sample size 250 and 500, none of the 20 means 

from 20 experiments in Latin Hypercube sampling are significantly different from the gold 

standard. However, for random sampling at sample size 250 and 500, one of 20 means from 20 

experiments is significantly different from the gold standard. At sample size 1000, all the 20 

means from 20 experiments in random sampling are not significantly different from the gold 

standard.  

Table 27. Certainty of unbiased mean attack rates as the gold standard (10000 samples from 

random sampling) 

 

Sample size 

Sampling Procedure 

Random Latin Hypercube 

50 95% 95% 

100 95% 95% 

250 95% 100% 

500 95% 100% 

1000 100% - 

The above results show the probability of producing the same unbiased mean attack rates 

as the gold standard among 20 repeated experiments for each sampling procedure at each sample 

size. For Latin Hypercube sampling, there are no statistical differences in mean attack rates 
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among repeated 20 experiments when the sample size is equal to 250 or higher. But for random 

sampling, the minimum sample size to produce 100% of unbiased mean attack rates is 1000. The 

results may suggest that the minimum sample size we can choose for further study is 250 from 

Latin Hypercube sampling. 

4.7 DISCUSSIONS AND CONCLUSIONS 

Since FRED is a stochastic simulation model, in this chapter, we considered two orders of 

uncertainty in the results via probabilistic sensitivity analysis. The first-order uncertainty was 

addressed by repeated simulation runs for each condition of sample sets. Here, we used 20 

simulation runs. The second order uncertainty was addressed through repeated experiments for 

each sample size. We generated 20 independent sample sets (20 experiments) to obtain and 

analyze experiment errors. In other words, the means and standard deviations in Table 24 were 

obtained from 20 repeated experiments for each sampling method (random sampling and Latin 

Hypercube sampling) at each sample size, and each experiment included 20 repeated simulation 

runs for each component of sample sets. The two-order control in uncertainty in stochastic 

simulation model by repeated measures can help to reduce the experiment errors and obtain 

unbiased estimates. 

As shown in Section 4.6, Latin Hypercube sampling can produce significant smaller 

experiment errors in estimating the mean attack rate than random sampling in the FRED model. 

The certainty analysis using the unbiased mean attack rates using 10000 samples from random 

sampling as the gold standard shows that Latin Hypercube sampling can produce 100% unbiased 

mean attack rates at a smaller sample size (250) than random sampling (1000). From the above 
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results we will choose 250 samples from Latin Hypercube sampling for next chapter in an 

intervention comparison study. 

There are several factors that may affect the choice of minimum sample size. For 

example, a smaller number of initial infected cases could result in more variation in the outputs 

of the FRED model. The demographic features associated with the initial infected cases (such as 

age) could also affect the outputs of the FRED model when the number of initial infected cases is 

very small (see Appendix A for more details). Therefore, it is recommended to follow the 

procedures in Section 4.4 and use consistent initial settings to determine the minimum sample 

size for different initial settings before conducting further research in intervention strategies in 

the FRED model. 

The results in this chapter may have an impor tant impact on pol icy makers who use 

simulation models for decision-making. All the results in here are about the computational 

improvement in running probabilistic sensitivity analyses on the FRED simulation model. In 

practice, these improvements of computational efficiency mean that it will now be feasible to 

perform uncertainly analysis for our models more quickly, thereby improving the quality of the 

results in the simulation model. We believe that more extensive uncertainty analysis will increase 

the trust-worthiness of simulation models, and will improve the advice provided to policy 

makers. For example, rather than provided a single estimate of a model’s output, we will now be 

able to describe the likely range of outputs in a systematic way. 

In summary, this chapter provides a detailed procedure to perform probabilistic 

sensitivity analysis and to compare simple random sampling and Latin Hypercube sampling with 

repeated measures for controlling uncertainty in stochastic model. The procedure is used to 

determine the optimal sample size and sampling procedure for the uncertainty analysis of the 
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FRED system. The procedure and relative conclusions provide the foundation for the next 

chapter, where we will apply probabilistic sensitivity analysis to a sample policy comparison 

question. 
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CHAPTER 5 UNCERTAINTY ANALYSIS OF AN EXAMPLE OF SCHOOL 

CLOSURE INTERVENTION STRATEGIES 

This chapter gives an overview of the background on uncertainty analysis and school closure 

intervention strategies in pandemic (Section 5.1), proposes the procedure of uncertainty analysis 

in school  closure intervention strategies in FRED model (Section 5.2), states the research 

hypotheses to compare different school closure intervention strategies in FRED model (Section 

5.3), then presents the results of uncertainty analysis and statistical analysis for comparing 5 

different school closure intervention strategies in FRED model (Section 5.4), calculate the cost-

effectiveness for different school closure intervention strategies (Section 5.5), followed by the 

discussions and conclusions in Section 5.6. This chapter uses all the results from previous 

chapters (Chapter 2-4) to perform uncertainty analysis to compare different school closure 

intervention strategies and calculate the cost-effectiveness for decision-making. 

5.1 INTRODUCTION 

Uncertainty analysis is defined as quantifying the uncertainties of input parameters and making 

technical contributions to decision-making problems in models or experiments. It is usually 

addressed through sensitivity analysis (for example, probabilistic sensitivity analysis). In 

literature, probabilistic sensitivity analysis and uncertainty analysis and are closely related but 



 74 

with different main tasks: probabilistic sensitivity analysis is the process of obtaining the 

probability distribution of the responses of a model given the probability distributions of the 

input parameters of the model, while uncertainty analysis is the process of obtaining the 

probability associated with a policy decision based on a model given the probability distributions 

of the input parameters of the model. In this chapter, uncertainty analysis is performed through 

probabilistic sensitivity analysis to access the uncertainty of the length of school closure 

intervention strategy. 

School closure is defined as closing of a school and sending of all the children and staff 

home. It is different from class dismissal while a school remains open with administrative staff 

but most children stay home. The trigger for closure is defined as the number of cases that 

triggers a school to be closed, and it is very crucial. Since school can be closed for many reasons, 

in this study, we only consider school  closure as a mitigation strategy for an epidemic. 

School closure could limit community spread of the disease, protect particularly 

vulnerable students, and respond to staff shortages or student absenteeism. In 2009 H1N1 

influenza pandemic, school closures were used as mitigation policies in communities or schools. 

Cauchemez et al. (77) estimated the impact of school closure on influenza transmission from 

sentinel data and showed that holidays prevent 18-21% of seasonal influenza cases in children 

and prolonged school closure during a pandemic might reduce the cumulative number of cases 

by 18-23% in children and peak attack rates by 47-52% in children. Heymann et al. (78) examed 

1.86 millions children aged between 6 and 12 years old in Israel in Maccabi Healthcare Services 

and found out a significant drop in respiratory infection during a 2-week school closure period 

from 44.0/1000 infected children to 24.7/1000 infected children, and an increase to 30.8/1000 

infected children after school closure period. Lee et al. (15) discussed that entire school system 
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closures were not more effective than individual school closures, and relatively short school 

closures (i.e., 2 weeks or less) may slightly increase the overall attack rate because susceptible 

students were sent back into schools in the middle of the epidemic. 

The effect of school closure is associated with some factors of influenza pandemic, such 

as the transmission rate, the reproductive rate R0, and the contact rate etc. For example, 

Cauchemez et al. (79) showed that school closures may have an important effect on disease 

spread if 50% of transmissions occur in schools, however, if only 20% of transmissions happen 

in schools, school closure may have a much smaller effect. Vynnycky and Edmunds (80) studied 

the 1957 Asian influenza pandemic in the United Kingdom and showed that if the reproductive 

rate R0 is high (e.g. 2.5 or 3.5), school closure can reduce the epidemic size by a very small 

amount (<10%); and if the reproductive rate R0 is low (e.g. 1.8), school closure can reduce the 

epidemic size by a modest amount (e.g. 22%). Their studies indicated that R0 is an important 

factor in an epidemic. Halder et al. (81) reported that 8-week school closure intervention could 

reduce the illness attack rate from 33% to 19% in the community for an influenza pandemic with 

R0 at 1.5; for R0at 2.0 or higher, 8-week school closure intervention would be less effective 

(from 50% to 41%).Studies also showed that individuals made substantially fewer contacts when 

they were ill than when they were well or in holidays and weekend than during weekdays, 

suggesting that school closure can have a substantial impact on the spread of an infectious 

disease transmitted via close (non sexual) contacts (82, 83). 

The values and impacts of school closures for mitigating influenza pandemic are 

associated with some related issues, such as economic costs, ethical concerns and operational 

issues etc. For example, Klaiman et al. (84) showed that school closure is relevant to its timing, 

nature, and duration. The unclear rationales for closure can challenge the effectiveness of school 
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closure intervention. Brown et al. (5) reported that closing schools resulted in substantially 

higher net costs than not closing school s. The median cost per influenza case averted for 8-week 

school closure would be as high as $53,461 for R0 at 2.0.Sander et al. (85) estimated a high 

economic cost of school closure about $2.7 million per 1000 population per work (6% of GDP). 

Berkman (86) showed that school closures may raise serious ethical concerns such as lack of 

evidence of the efficacy of school closures, the impacts of school closures to vulnerable 

populations, cost-benefit of school closures, and the equitable distribution of intervention etc. 

Johnson et al. (87) conducted a questionnaire survey to 201 households in North Carolina and 

found that short-term school closure would not cause substantial hardship for parents. Similarly, 

Gift et al. (88) surveyed 214 households in Pennsylvania after a 1-week elementary school 

closure because of the 2009 H1N1 influenza pandemic and found that 79% of households 

reported that adults missed no days of work to watch children.  

In a systematic review study conducted by Jackson et al. (89) for reviewing the effects of 

school closures on pandemic and seasonal influenza outbreaks, the authors concluded that school  

closures played an important role in reducing influenza transmission, but the optimal strategy for  

school closure such as ideal length and timing of closure was still unclear, and other implications 

of school closure such as ethical and economic considerations should also be considered in 

policy decisions.  

To address the question of the optimal strategy for school  closure such as ideal length, the 

uncertainty analysis could be used to compare different length of school closure intervention 

strategies as well as their cost-effectiveness of different length of school closure intervention 

strategies. In this chapter, uncertainty analysis is performed via probabilistic sensitivity analysis. 
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5.2 PROCEDURES OF PERFORMING UNCERTAINTY ANALYSIS TO COMPARE 

DIFFERENT SCHOOL CLOSURE INTERVENTION STRATEGIES IN FRED MODEL 

In this section, Washington County, PA with about 200,000 people is used as the population in 

FRED model. Five scenarios of school closure intervention strategies will be used in uncertainty 

analysis: none, 2-week, 4-week, 6-week, and 8-week. The number of triggers for triggering a 

school closure intervention strategy is 10. In other words, once there are 10 cases of infected 

persons in school in a day of epidemic, the FRED model will start the school closure intervention 

strategy on that day, then simulate and calculate the consequence results. The default 

reproductive rate R0 is 1.5 in the FRED model. The Latin Hypercube sampling procedure with a 

sample size 250 will be used in this chapter. The outputs are the mean attack rates for each 

scenario of school closure intervention strategies. 

The following criteria and steps are used to perform uncertainty analysis to compare 

different school closure intervention strategies in FRED model (Figure 8): 

Step 1: perform Latin Hypercube sampling procedure to select samples of the four 

parameters (asymptomatic infectivity, asymptomatic period, probability of staying home when 

sick, and symptomatic period) from predetermined distributions specified in Chapter 2 and 3 

(please see Appendix B.2 for R codes). Each parameter will be divided into same number of 

regions with equal probability, and one sample will be randomly selected from each region. The 

sample size for each parameter is 250.  

Step 2: in FRED model, create parameter files for each sampling procedure from the data 

files obtained from Step 1 and create executable files to run the simulations under 5 different 

scenarios of school closure intervention strategies: none, 2-week, 4-week, 6-week, and 8-week 

(please see Appendix B.3 and B.4 for the details of above scripts). Each scenario of school 
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closure intervention strategies includes 250 samples to run in the FRED model. Then calculate 

the mean attack rates for each condition of parameter files and save the outputs of mean attack 

rates into a data file.  

Step 3: summarize and report the results from Step 2. Calculate the mean and variance for 

each scenario of school closure intervention strategies. Use statistical methods to compare the 

results among all scenarios of school closure intervention strategies. Make conclusions based on 

the statistical results for uncertainty analysis of school closure intervention strategies 

comparison. 

Latin Hypercube Sampling (250 samples) 

 

Use R to generate samples and create sample files 

 

Create FRED parameter files and executable files with 5 interventions: 

No closure; 2-week; 4-week; 6-week; 8-week 

Run FRED model and calculate mean attack rates 

 

Conduct statistical analysis to compare school closure intervention strategies 

Figure 8. Procedures of performing uncertainty analysis to compare different school closure 

intervention strategies in FRED model 
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5.3 RESEARCH HYPOTHESES 

To compare all scenarios of school closure intervention strategies, two directions of hypotheses 

will be tested by using paired two-sample test: 

1. Compare to the no school closure intervention strategy, school closure intervention 

strategies reduce the mean attack rates. 

2. Compare to the longest school  closure intervention strategy (8-week), shorter duration 

of school closure intervention strategy can produce the same reduction in mean attack rates. 

5.4 RESULTS AND STATISTICAL ANALYSIS 

Table 28 shows the proportions of reduced mean attack rates from longer duration of 

school closure to shorter duration of school closure. For example, in all 250 samples, 99.6% of 

mean attack rates in 4-week school closure intervention strategy are lower than the mean attack 

rates in 2-week school closure intervention strategy. The proportions shown in Table 28 reflect 

the reliability of FRED model in running simulations under different intervention strategies using 

the same sample set. For example, using the same sample set, 99.6% of mean attack rates are 

lower in 8-week school closure intervention strategy than in 6-week school closure intervention 

strategy. The overall proportions for all school closure intervention strategies are 99.6% and 

higher, which showing reasonable reliability of FRED model in running simulations under 

different conditions by using same sample set. 

Table 28. Proportions of reduced mean attack rates in longer duration of school closure 

compared to shorter duration of school closure 
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 School closure 

School Closure None 2-week 4-week 6-week 8-week 

2-week 100.0% -    

4-week 100.0% 99.6% -   

6-week 100.0% 100.0% 100.0% -  

8-week 100.0% 100.0% 100.0% 99.6% - 

For hypothesis 1, use the no school closure intervention strategy as the baseline, the null 

hypothesis is  , the alternative hypothesis is . 

Table 29 shows the results from paired two-sample t test between no school closure 

intervention strategy and school closure intervention strategies. 

Table 29. Paired two-sample t test results of comparing mean attack rates among school 

closure intervention strategies 

School closure Attack rate p value 

No closure 53.170 (12.738) baseline 

2-week 50.086 (13.223) 0.0082 

4-week 47.577 (12.784) 0.0001 

6-week 45.986 (12.398) 0.0001 

8-week 45.033 (12.499) 0.0001 

From the results, there are significant differences in mean attack rates between no school 

closure intervention strategy and school closure intervention strategies. In other words, school 

closure intervention strategies can reduce the mean attack rates significantly as short as 2-week 

closure. This conclusion is not consistent with all previous studies. For example, Heymann et al. 
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(78) found out a significant drop in respiratory infection during a 2-week school closure period 

and an increase in infection after school closure period. However, Lee et al. (15) reported that 

relatively short school closures (i.e., 2 weeks or less) may slightly increase the overall attack rate 

because susceptible students were sent back into schools in the middle of the epidemic. One 

possible reason is that school closure intervention strategy is associated with many factors during 

an epidemic, the different environment settings (for example, different infectious disease settings, 

population settings) in the model could lead to slight different results. However, the FRED 

influenza model is stable in simulation results for the same environment. 

For hypothesis 2, use the longest school closure intervention strategy (8-week) as the 

baseline, the null hypothesis is  , the alternative hypothesis is 

. 

 

 

Table 30 shows the results from paired two-sample t test among school closure 

intervention strategies. 

Table 30. Paired two-sample t test results of comparing mean attack rates among school 

closure intervention strategies 

School closure Attack rate p value 

2-week 50.086 (13.223) 0.0001 

4-week 47.577 (12.784) 0.0249 

6-week 45.986 (12.398) 0.3925 

8-week 45.033 (12.499) baseline 
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From the results, there are statistically significant differences in mean attack rates 

between 8-week closure and 2-week, and 8-week and 4-week, respectively. However, there is no 

statistically significant difference between 6-week and 8-week, indicating that longer duration of 

school closure intervention strategy (8-week) might not reduce the mean attack rates 

significantly lower than shorter duration of closure (6-week). 

Some other factors, such as the conditions that trigger a school  to closure, may also play a 

role in school closure intervention strategies. For example, the number of triggers that triggers a 

school to be closed. In this section, we used 10 triggers for all school closure intervention 

strategies. However, school closure intervention strategies may produce different model outputs 

in mean attack rates depending on the settings of number of triggers. Table 31 shows the mean 

attack rates assuming different number of cases as triggers and different durations of school 

closure intervention strategies while other input parameters remain their default settings in 

Allegheny County, PA in FRED model. 

Table 31. Mean attack rates by number of triggers and duration of school closure 

intervention strategies 

 

Triggers 

Duration (week) 

None 1 2 4 6 8 

1 33.001 32.53 32.298 31.856 31.527 31.26 

5 33.001 32.31 31.958 31.242 30.73 30.412 

10 33.001 32.022 31.417 30.376 29.696 29.465 

The regression results show that there is significant difference in mean attack rates by 

different number of triggers (p<0.001) especially for longer duration of school closure 

intervention strategies. 
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5.5 COST-EFFECTIVENESS OF SCHOOL CLOSURE INTERVENTION 

STRATEGIES 

In this section, a simple cost-effectiveness calculation is provided to access the uncertainty of the 

different scenarios of school closure intervention strategy in terms of cost-effectiveness. The 

cost-effectiveness of school closure intervention strategies is defined as follows (5): 

 

Assume the weekly cost for school closure is W, the total population is P, then the cost 

per influenza case averted is defined as: 

 

For example, the cost-effectiveness of school closure between 8-week and no closure is  

 

Table 32 shows the calculation results of overall cost-per-case-averted of school closure 

intervention strategies. 

Table 32. Cost-per-case-averted of school closure intervention strategies 

School closure 2-week 4-week 6-week 8-week 

Cost-per-case-averted     
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From the cost-per-case-averted calculation results, we found that longer duration of 

school closure strategy is not cost-effective compared with shorter duration of school closure 

strategy. 

To assess the uncertainty of the cost-effectiveness in school closure intervention 

strategies, we calculated the cost-per-case-averted for all 250 samples for each school closure 

intervention strategy. We compare the cost-per-case-averted between two school closure 

intervention strategies. Table 31 shows the proportions of the cost-per-case-averted of shorter 

duration of school  closure is lower than the cost-per-case-averted of longer duration of school 

closure. For example, among all 250 samples, 90.0% of the cost-per-case-averted of 2-week 

school  closure is lower than the cost-per-case-averted of 8-week school closure. The proportions 

shown in table 33 can provide the information about how certainly one intervention strategy is 

more cost-effective than another one. 

Table 33. Certainty of the cost-per-case-averted of shorter duration of school closure 

(labeled at the top of each column) is lower than the cost-per-case-averted of longer duration of 

school closure (labeled in each row) 

School closure 2-week 4-week 6-week 8-week 

4-week 66.4%    

6-week 76.8% 99.6%   

8-week 90.0% 100.0% 96.8% - 

From the results, only 66.4% of the cost-per-case-averted of 2-week school closure is 

lower than the cost-per-case-averted of 4-week school closure, while the proportions are much 

higher from 4-week of school closure to 6-week of school closure (99.6%), and from 6-week of 

school closure to 8-week of school closure (96.8%). 
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Figure 9 displays the cost-effectiveness acceptability curve for the cost-per-case-averted 

of different school closure intervention strategies among all 250 samples in term of dollar cost. 

 

Figure 9. Cost-effectiveness acceptability curve for different school closure strategies 

In the cost-effectiveness acceptability curve, we assume the weekly net cost for school 

closure is about $50 million, as estimated in Brown et al. (5) with adjustments based on 

population for Washington County, PA. The total population in Washington County, PA is 0.2 

million. The overall means of cost-per-case-averted for 2-week, 4-week, 6-week and 8-week of 

school closure are $162.25, $179, $209 and $245.75, respectively. 

The cost-effectiveness results are not exactly consistent from previous studies. For 

example, in a similar study conducted by Brown et al. (5), they used an earlier version of the 

FRED model to evaluate different school closure intervention strategies in Allegheny County, 

PA, and found that the cost-per-case-averted increased at 2-week school closure compared with 

1-week school closure and was most cost-effective at 8-week school closure. A possible reason 
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for the differences may be that we use a simplified calculation for the weekly cost of school 

closure. On the other hand, i n Brown et al.’s (5) study, they only used a single point estimates for  

the input parameters in FRED model while we sampled a wider range of input parameters from 

their probability distributions. Therefore, one could expect some differences in the two sets of 

simulation results. 

5.6 DISCUSSIONS AND CONCLUSIONS 

This chapter provides a detailed procedure for applying previous results from Chapter 4 to 

compare intervention strategies in the FRED model. Uncertainty analysis is performed through 

probabilistic sensitivity analysis to systematically investigate the effects of variation in uncertain 

input parameters and access the uncertainty of intervention comparison through probabilistic 

sensitivity analysis, statistical analysis and cost-effectiveness analysis. From the results, school 

closure strategies significantly reduce the mean attack rates compared with no school closure 

strategy, and longer duration of school  closure intervention strategy (8-week school closure) can 

reduce the mean attack rates significantly lower than shorter duration of school  closure 

intervention strategy (except 6-week school closure). However, cost-effectiveness analysis 

showed that longer duration of school  closure is not cost-effective compared to shorter duration 

of school closure. 

Certainty results between two school closure intervention strategies are provided in both 

mean attack rates and cost-effectiveness calculation. The proportions of reduced mean attack 

rates and proportions of lower cost-effectiveness between two school closure intervention 

strategies provide information for the reliability of the FRED model in running the same sample 
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set under different intervention strategies and the certainty of one intervention is more cost-

effective than another, respectively. 

This chapter provides policy makers with the intervention comparison results in FRED 

model. All the analyses are performed based on the solid foundations and computational 

optimizations from previous chapters. Therefore, the results illustrate that uncertainty analysis is 

feasible even in large-scale agent-based simulation models such a FRED. Simulations can be 

used not only to provide timely responses to intervention comparison questions, but can also 

quantify the degree of certainty associated with the comparison. We believe that providing this 

additional information about the expected range of results will help to improve the confidence in 

the modeling process among policy makers. In public health practice, the procedures and 

methods developed here will help provide efficient tools for policy makers to make decision 

when there is a crisis. 
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CHAPTER 6 DISCUSSIONS AND CONCLUSIONS 

This chapter presents the contributions and implications of this study (Section 6.1)  and 

limitations of this study (Section 6.2), summarizes the conclusions with two perspectives: (1) 

how other FRED model users apply our study results in future research (Section 6.3); (2) how 

policy makers benefit from our study results (Section 6.4).Possible future work that should be  

considered is also discussed in Section 6.5. 

6.1 CONTRIBUTIONS AND IMPLICATIONS 

The purpose of this thesis is to develop appropriate statistical methods and procedures for 

dealing with parameter uncertainty and improving the efficiency of sensitivity analysis in a 

large-scale agent-based model of infectious disease, and to apply those procedures in an example 

of policy evaluation question. This study emphasizes the important role of sensitivity analysis, 

uncertainty analysis and statistical analysis in computer simulation models and the use of those 

methods in such models to improve the computational efficiency of sensitivity analysis, and 

make great use of simulation results for decision-making. As stated in Chapter 1, the FRED 

model could computationally be very intensive when dealing with large sets of samples from 

input parameters. Time-consuming is a very impor tant issue because longer time of simulation 
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runs could be very expensive, especially in large-scale simulation models. Therefore, it is 

importance to improve the computational efficiency of analysis. 

The intensive computational issue is addressed through the approach of probabilistic 

sensitivity analysis and optimal sampling procedure. Before conduct probabilistic sensitivity 

analysis, literature review (Chapter 2) and local sensitivity analysis (Chapter 3) are performed to 

identify key parameters in FRED model. The purpose of literature review is to identify the 

reference values and distributions of important parameters in FRED model, and use those results 

for all later chapters. In literature review, systematic review papers with results of meta-analysis 

are preferable to identify the reference values of parameters (for example, latent period, 

symptomatic period, asymptomatic period, and symptomatic rate). When there are no systematic 

review papers available, the reference value will be chosen based on the average of reviewed 

papers (for example, the probability of staying home when sick). Some parameters (for example, 

contact rates and transmission probability) have complicated structure in FRED model, lack 

sufficient evidence from research for use as reference values in FRED model. 

The purpose of local sensitivity analysis is to identify high sensitivity parameters in 

FRED model, and use those selected high sensitivity parameters in probabilistic sensitivity 

analysis. A detailed procedure for performing local sensitivity analysis and calculating sensitivity 

measure in FRED model is provided. The sensitivity measure is used to high sensitivity 

parameters in FRED model, and four parameters (asymptomatic infectivity, symptomatic period, 

probability of staying home when sick, and asymptomatic period) are selected to use in 

probabilistic sensitivity analysis. Some detailed algorithms are developed for varying discrete 

cumulative distribution functions for some parameters in the format of discrete cumulative 

distribution functions in the FRED model. Those algorithms are implemented as R program and 
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used as part of procedure for easily and automate computing samples for use in both local 

sensitivity analysis and probabilistic sensitivity analysis in FRED model. 

The results and conclusions from literature review and local sensitivity analysis are in 

preparation to perform probabilistic sensitivity analysis (Chapter 4). A detailed procedure for 

performing probabilistic sensitivity analysis is provided to compare random sampling and Latin 

Hypercube sampling in FRED model. The procedure of performing probabilistic sensitivity 

analysis is implemented as an automated probabilistic sensitivity analysis script in FRED model. 

In the sampling comparison results, Latin Hypercube sampling produces significant smaller 

standard deviation than random sampling at sample size 500, and has 100% of certainty of 

producing unbiased mean attack rates as the gold standard (10000 samples from random 

sampling). The results suggest a minimum sample size of 250 from Latin Hypercube sampling 

for the same accuracy in estimates as gold standard. In this chapter, the computational efficiency 

of sensitivity analysis is addressed through the sampling comparison. An efficient sampling 

procedure and a reduced sample size are selected for future research with strong confidence from 

repeated experiments. 

All the results and conclusions from literature review, local sensitivity analysis and 

probabilistic sensitivity analysis are in preparation to a school closure intervention comparison 

study (Chapter 5). The results show that school closure strategies can significantly reduce the 

mean attack rates as short as 2-week closure, and 8-week closure can reduce the mean attack rate 

significantly lower than 2-week closure and 4-week closure. However, longer duration of school 

closure strategy is less cost-effective than shorter duration of school  closure strategy. In this 

chapter, we not only provide the comparison results, but also provide certainty results on the 
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reliability of FRED model in running the same sample set under different intervention strategies 

and the certainty of one intervention is more cost-effective than another. 

6.2 LIMITATIONS 

There are some possible limitations of this study. In local sensitivity analysis (Chapter 3), some 

parameters (for example, neighbor hood contact rate) with high sensitivity were not included in 

the probability sensitivity analysis and uncertainty analysis of school  closure intervention 

comparisons due to their complicated input formats in FRED model. Those high sensitivity 

parameters should not be neglected since they have high influence on the model outputs. In 

probabilistic sensitivity analysis (Chapter 4), due to a limited computation time, we only 

generated 5 sets of different sample size for random sampling and 4 sets of different sample size 

for Latin Hypercube sampling. For a better understanding of the differences in producing 

unbiased means and reduced standard deviations of repeated measures between random sampling 

and Latin Hypercube sampling, more sets of sample size should be considered and compared. In 

addition, we selected 10000 samples from random sampling as the gold standard, while a larger 

sample size (for example, 100,000) may be preferable. In the school closure intervention 

comparisons (Chapter 5), we conducted a simplified calculation of cost-effectiveness, which may 

not reflect all real situations of school closure and may lead to different conclusions compared 

with previous studies. Some of above limitations may be overcome by future work (see Section 

6.5 for more details). 
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6.3 HOW OTHER FRED MODEL USERS APPLY OUR STUDY RESULTS IN 

FUTURE RESEARCH 

In this study, a FRED influenza model is used to perform all the analyses. However, there are 

many different FRED models under the FRED framework depending on specific sets of the 

parameters. The methods and procedures that developed in this study can be generalized to all 

kinds of FRED models under the FRED framework. 

All the procedures developed in this study are implemented as R program and automated 

probabilistic sensitivity analysis scripts in FRED model. Therefore it is easy for other FRED 

model users to follow and use those scripts to run in other FRED models. If other FRED model 

users are using the same FRED influenza model as in this study, they can just appl y all the 

computational results (for example, optimal sample size and sampling procedure) in this study to 

different intervention comparison questions. However, if other FRED model users are using 

different FRED model under the FRED framework, they may need to follow all the procedures 

and the automated scripts provided in this study to determine the optimal methods in their FRED 

model to improve the computational efficiency of simulation runs. 

6.4 HOW POLICY MAKERS BENEFIT FROM OUR STUDY RESULTS 

Policy makers and researchers work in very different environments. Policy makers are focused 

on the practical solutions to particular policy issues. They need accessible information to help 

them make decisions or evaluate policy choices. For researchers, it would be a challenge to 
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translate their research findings into policy useful material, and support policy makers in 

identifying appropriate solutions to problems.  

Policy makers may be skeptical of models and the simulation results from those models. 

To increase the trust in the model simulation results in this study, we emphasize the impor tance 

of uncertainty analysis, address the uncertainty analysis through probabilistic sensitivity analysis, 

repeated measures, and statistical analysis to ensure a strong confidence of the results, and 

provide certainty results for the reliability of FRED simulation model. Our results illustrate that 

uncertainty analysis is feasible even in large-scale agent-based simulation models such a FRED. 

The results from uncertainty analysis not only quantify the degree of certainty associated with 

the comparison, but also help to improve the confidence in the modeling process among policy 

makers. For example, in probabilistic sensitivity analysis (Chapter 4), rather than provide a 

single estimate of a model’s output, we will now be able to describe the likely range of outputs in 

a systematic way, which will increase the trust-worthiness of simulation models and improve the 

advice provided to policy makers. 

On the other hand, we also interpret some results with consideration in public health 

practice. For example, in local sensitivity analysis (Chapter 3), policy makers may pay more 

attention to those factors that may have the most influence in mitigating the spread of an 

infectious disease during an epidemic, and make proper solutions to control those parameters in 

practice for limiting the disease spread. In school  closure intervention comparison study (Chapter 

5), policy makers may use the comparison results in both mean attack rates and cost-

effectiveness to make timely responses for a crisis. The information provided from model 

outputs may help policy makers to be more efficient for proper planning,monitoring, and 

decision-making. 
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In summary, the methods and procedures developed from this study in FRED model will 

help provide efficient tools for policy makers to make decision when there is a public health 

crisis. It also provides important information for public health policy makers about how certainly 

the FRED framework can provide reliable results of intervention strategy comparisons and cost-

effectiveness comparisons for decision-making. 

6.5 FUTURE WORK 

Though the objectives of this study were met, the work has led to a number of new questions that 

should be considered in future work in this area. Future studies might address the inclusion of 

other high sensitivity parameters, such as contact rates associated with different social activities, 

in the probabilistic sensitivity analysis and uncertainty analysis. These contact rates are currently 

being estimated through other projects within the Public Health Dynamics Laboratory. It is also 

the subject of future work to extend the developed methods and procedures to guide the 

assessment of the full FRED model for other diseases, where the common parameters across 

different FRED models and correlation of model outputs will need to be addressed. 

 



 95 

APPENDIX A 

A PRELIMINARY STUDY 

This section presents the results from a preliminary study for determining the minimum number 

of seed (initial cases) and simulation runs in FRED influenza model. Table 34 shows the mean 

attack rates by number of seed (initial cases) and age of seed (initial cases) in Allegheny County, 

PA with other input parameters set as default in FRED model. Table 35 shows the regression 

results to compare the differences among different number of seed (initial cases) by age. 

Table 34. Mean attack rates by number of seed (initial cases) and age of seed (initial cases) 

   Age   

Seed 0-4 5-17 18-64 65+ all 

1 22.4454 39.9244 17.2336 18.1422 22.503 

5 42.8116 45.092 42.042 39.279 44.0706 

10 44.4274 45.0918 44.4506 42.6024 44.27 

20 45.0748 45.0922 45.0992 45.1014 45.0988 

50 45.0904 45.0896 45.0956 45.0814 45.0944 

100 45.0834 45.1176 45.1036 45.1034 45.1006 

1000 45.1128 45.1038 45.1364 45.1474 45.1276 
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Table 35. Regression results for number of seed (initial cases) and age 

Seed Coefficients Standard Error p value 

1 -0.0878966 0.033851 0.009 

5 -0.0056637 0.0149841 0.705 

10 -0.00649 0.0094023 0.490 

20 0.0001749 0.0017413 0.920 

50 0.0000292 0.0017311 0.987 

100 0.0000345 0.0017424 0.984 

1000 0.0002281 0.0017294 0.895 

Table 36 shows the mean attack rates by number of simulation runs and number of seed 

(initial cases) in Allegheny County, PA with other input parameters set as default in FRED 

model. Regressions are performed to compare if there is any difference among different number 

of simulation runs.  

Table 36. Mean attack rates by number of simulation runs and number of seed (initial cases) 

 Simulation Runs Regression 

Seed 10 20 30 40 50 p value 

5 32.925 32.976 31.8873 29.6868 27.7052 0.008 

10 33.004 33.008 33.0083 32.9985 32.992 0.379 

20 33.02 32.996 33.0083 33.0085 33.0122 0.719 

50 32.976 32.9925 32.9967 32.9972 33.0012 0.448 

100 33.008 33.006 32.995 32.9922 32.9864 0.210 

1000 33.075 33.076 33.0657 33.072 33.0672 0.695 
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Above results show that there is no difference if the number of seed (initial cases) is 10 or 

higher, and there is no difference in mean attack rates among different number of simulation 

runs. It suggests that the minimum number of seed (initial cases) is 10 and the minimum number 

of simulation runs is 10. 
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APPENDIX B 

R CODES AND FRED SCRIPTS 

B.1 R CODES FOR RANDOM SAMPLING PROCEDURE 

### Install R packages 
install.packages("msm") 
install.packages("mvtnorm") 
install.packages("lhs") 
install.packages("MASS") 
install.packages("Matrix") 
 
### Load packages 
library(msm) 
library(lhs) 
n<-50 
 
### Generate random samples from truncated normal distributions and beta 
distributions for 5 parameters 
 
### asymptomatic infectivity 
asympinf<-rtnorm(n, mean=0.5, sd=0.1, lower=0.33, upper=0.67) 
 
### symptomatic period 
daysymp<-rtnorm(n, mean=4.7, sd=0.9, lower=3.9, upper=5.1) 
 
### asymptomatic period 
dayasymp<-rtnorm(n, mean=4.7, sd=0.9, lower=3.9, upper=5.1) 
 
### probability of stay home 
prob<-rbeta(n, 3.662424, 3.082372, ncp = 0)  
 
RSoutput<-data.frame(asympinf, daysymp, dayasymp, prob) 
write.table(RSoutput, file = "/Users/Xiaozhi/downloads/RandomSamplingOutput", 
row.names=FALSE, 
col.names=c("AsympInf","DaysSymp","DaysAsymp","ProbStayHome"), sep = " ") 
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### Compute CDF of symptomatic period from generated samples 
 
x<-c(3,4,5,6) 
f<-c(0.1,0.3,0.4,0.2) 
mu<-sum(x*f) 
x1<-ifelse(x<mu,x,0) 
x2<-ifelse(x<mu,0,x) 
sum1<-sum(x1) 
sum2<-sum(x2) 
a<-4-length(x1[x1==0]) 
k<-4-length(x2[x2==0]) 
p<-ifelse(daysymp<=mu, (mu-daysymp)/(sum2-sum1*k/a), -(daysymp-mu)/(sum2-
sum1*k/a)) 
f3<-c(f[1]+p*k/a) 
f4<-c(f[2]+p*k/a+f3) 
f5<-c(f[3]-p+f4) 
daysympCDF<-data.frame(0, 0, 0, f3, f4, f5, 1) 
write.table(daysympCDF, file = "/Users/Xiaozhi/downloads/sympCDF-
RandomSampling", row.names=FALSE, 
col.names=c("day0","day1","day2","day3","day4","day5","day6"), sep = " ") 
 
### Compute CDF of asymptomatic period from generated samples 
 
x<-c(3,4,5,6) 
f<-c(0.1,0.3,0.4,0.2) 
mu<-sum(x*f) 
x1<-ifelse(x<mu,x,0) 
x2<-ifelse(x<mu,0,x) 
sum1<-sum(x1) 
sum2<-sum(x2) 
a<-4-length(x1[x1==0]) 
k<-4-length(x2[x2==0]) 
p<-ifelse(dayasymp<=mu, (mu-dayasymp)/(sum2-sum1*k/a), -(dayasymp-mu)/(sum2-
sum1*k/a)) 
f3<-c(f[1]+p*k/a) 
f4<-c(f[2]+p*k/a+f3) 
f5<-c(f[3]-p+f4) 
dayasympCDF<-data.frame(0, 0, 0, f3, f4, f5, 1) 
write.table(dayasympCDF, file = "/Users/Xiaozhi/downloads/asympCDF-
RandomSampling", row.names=FALSE, 
col.names=c("day0","day1","day2","day3","day4","day5","day6"), sep = " ") 

B.2 R CODES FOR LATIN HYPERCUBE SAMPLING PROCEDURE 

### Install R packages 
install.packages("msm") 
install.packages("mvtnorm") 
install.packages("lhs") 
install.packages("MASS") 
install.packages("Matrix") 
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### Load packages 
library(msm) 
library(lhs) 
n<-50 
 
### Latin Hypercube Sampling from 5 parameters 
 
require(lhs)  
x<-randomLHS(n, 4)  
y<-x  
y[,1]<-rtnorm(x[,1], mean=0.5, sd=0.1, lower=0.33, upper=0.67) 
y[,2]<-rtnorm(x[,2], mean=4.7, sd=0.9, lower=3.9, upper=5.1)  
y[,3]<-rtnorm(x[,3], mean=4.7, sd=0.9, lower=3.9, upper=5.1)  
y[,4]<-rbeta(x[,4], 3.662424, 3.082372, ncp = 0)  
write.table(y, file = 
"/Users/Xiaozhi/downloads/LatinHypercubeSamplingOutput", row.names=FALSE, 
col.names=c("AsympInf","DaysSymp","DaysAsymp","ProbStayHome"), sep = " ") 
 
### Compute CDF of symptomatic period from generated samples 
 
x<-c(3,4,5,6) 
f<-c(0.1,0.3,0.4,0.2) 
mu<-sum(x*f) 
x1<-ifelse(x<mu,x,0) 
x2<-ifelse(x<mu,0,x) 
sum1<-sum(x1) 
sum2<-sum(x2) 
a<-4-length(x1[x1==0]) 
k<-4-length(x2[x2==0]) 
p<-ifelse(y[,2]<=mu, (mu-y[,2])/(sum2-sum1*k/a), -(y[,2]-mu)/(sum2-sum1*k/a)) 
f3<-c(f[1]+p*k/a) 
f4<-c(f[2]+p*k/a+f3) 
f5<-c(f[3]-p+f4) 
daysympCDF<-data.frame(0, 0, 0, f3, f4, f5, 1) 
write.table(daysympCDF, file = "/Users/Xiaozhi/downloads/sympCDF-
LatinHypercubeSampling", row.names=FALSE, 
col.names=c("day0","day1","day2","day3","day4","day5","day6"), sep = " ") 
 
### Compute CDF of asymptomatic period from generated samples 
 
x<-c(3,4,5,6) 
f<-c(0.1,0.3,0.4,0.2) 
mu<-sum(x*f) 
x1<-ifelse(x<mu,x,0) 
x2<-ifelse(x<mu,0,x) 
sum1<-sum(x1) 
sum2<-sum(x2) 
a<-4-length(x1[x1==0]) 
k<-4-length(x2[x2==0]) 
p<-ifelse(y[,3]<=mu, (mu-y[,3])/(sum2-sum1*k/a), -(y[,3]-mu)/(sum2-sum1*k/a)) 
f3<-c(f[1]+p*k/a) 
f4<-c(f[2]+p*k/a+f3) 
f5<-c(f[3]-p+f4) 
dayasympCDF<-data.frame(0, 0, 0, f3, f4, f5, 1) 
write.table(dayasympCDF, file = "/Users/Xiaozhi/downloads/asympCDF-
LatinHypercubeSampling", row.names=FALSE, 
col.names=c("day0","day1","day2","day3","day4","day5","day6"), sep = " ") 
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B.3 FRED SCRIPTS FOR CREATING PARAMETER FILES FROM THE OUTPUT 

FILES OF B.1 AND B.2 

#!/usr/bin/perl 
use strict; 
use warnings; 
my ($dir, $sampling) = @ARGV; 
my $outfile = "$dir/$sampling" . "SamplingOutput"; 
my $asympfile = "$dir/asympCDF-$sampling" . "Sampling"; 
my $sympfile = "$dir/sympCDF-$sampling" . "Sampling"; 
open FH, $outfile or die "ERROR: Can't open file $outfile\n"; 
open AS, $asympfile or die "ERROR: Can't open file $asympfile\n"; 
open SY, $sympfile or die "ERROR: Can't open file $sympfile\n"; 
my $line = <FH>; 
$line = <AS>; 
$line = <SY>; 
my $n = 0; 
while ($line = <FH>) { 
  $n++; 
my $paramsdir = "$dir/PARAMS-$sampling"; 
mkdir $paramsdir if not -d $paramsdir; 
my $paramsfile = "$paramsdir/params.$sampling-$n"; 
chomp $line; 
my ($asympinf, $x1, $x2, $sick_day_prob) = split " ", $line;  
my $days_asymp = <AS>; 
my $days_symp = <SY>; 
open PAR, ">$paramsfile" or die "Can't write to file $paramsfile\n"; 
print PAR "days_asymp[0] = 7 $days_asymp"; 
print PAR "days_symp[0] = 7 $days_symp"; 
print PAR "sick_day_prob = $sick_day_prob\n"; 
print PAR "asymp_infectivity[0] = $asympinf\n"; 
close PAR; 
} 
close FH; 
close AS; 
close SY; 

B.4 FRED SCRIPTS FOR CREATING EXECUTABLE FILES FOR RUNNING 

PROBABILISTIC SENSITIVITY ANALYSIS 

#!/usr/bin/perl 
use strict; 
use warnings; 
useEnv; 
useGetopt::Std; 
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# File: fred_psa 
# Author: John Grefenstette 
# Created: Dec 11, 2012 
my $FRED = $ENV{FRED_HOME}; 
die "$0: Please set environmental variable FRED_HOME to location of FRED home 
directory\n" if not $FRED; 
my $usage = "usage: $0 [-f config_file | -h | -c ]\n"; 
 
# create RESULTS directory if needed 
my $FREDRESULTS = $ENV{FRED_RESULTS}; 
$FREDRESULTS = $ENV{FRED_HOME} if not $FREDRESULTS; 
my $fred_results = "$FREDRESULTS/RESULTS"; 
if (not -d $fred_results) { 
mkdir "$fred_results" or die "Can't create RESULTS directory 
$fred_results\n"; 
} 
 
# create PARAMS directory if needed 
if (not -d "PARAMS_DIR") { 
mkdir "PARAMS_DIR" or die "Can't create PARAMS_DIR directory\n"; 
} 
 
# get command line arguments 
my %options = (); 
getopts("hcf:", \%options); 
if (exists $options{h}) { 
print "$usage"; 
print "Try:\n$0 -c\nto get a sample configuration file.\n"; 
exit; 
} 
 
# print sample file and exit if given -s 
if (exists $options{c}) { 
print_sample_file(); 
exit; 
} 
 
# readconfig file 
my $config_file = $options{f}; 
die $usage if (not $config_file) or (not -e $config_file); 
open FH, $config_file or die "Can't open $config_file\n"; 
my $line; 
 
# find the title line 
get_next_line(1); 
die "$0: expecting title line\n" if $line !~ /FRED Probabilistic Sensitivity 
Analysis Title:/; 
my ($title) = $line =~ /Title:\s*(.*)/; 
die "$0: bad title format\n" if not $title; 
$title =~ s/\s/_/g; 
 
# create baseline params file 
my $paramsbase = "PARAMS_DIR/params.psa-$title-base"; 
open PAR, ">$paramsbase"; 
print PAR "# Probabilistic Sensitivity Analysis Title: $title\n"; 
print PAR "# Created: ", scalar localtime, "\n\n"; 
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# get the fixed parameters 
get_next_line(1); 
die "$0: expecting \"Fixed Parameters:\"\n" if $line !~ /Fixed Parameters:/; 
print PAR "# Fixed Parameters:\n"; 
get_next_line(1); 
while ($line !~ /Sampling Directory:/) { 
print PAR "$line\n"; 
get_next_line(1); 
} 
 
# get the sampling directory 
my $sampling_dir; 
get_next_line(1); 
while ($line !~ /Sampling Method:/) { 
chomp $line; 
  ($sampling_dir) = $line =~ /Sampling Directory = (\S+)/; 
get_next_line(1); 
  # print "line = |$line|\n"; 
} 
 
# get the sampling method 
my $sampling; 
get_next_line(1); 
while ($line !~ /Output Variables:/) { 
chomp $line; 
  ($sampling) = $line =~ /Sampling Method = (\S+)/; 
get_next_line(1); 
  # print "line = |$line|\n"; 
} 
 
# get the output variables 
# print PAR "\n# Output Variables:\n"; 
my @outvars = (); 
get_next_line(1); 
while ($line !~ /Number of Samples:/) { 
chomp $line; 
push @outvars, $line if $line; 
  # print PAR "# $line\n"; 
get_next_line(1); 
} 
# print "@outvars\n"; 
print PAR "\n# Control  Parameters:\n"; 
close PAR; 
 
# get the number of samples 
my ($N) = $line =~ /Samples: (\d+)/; 
die "$0:Bad number of samples\n" if not $N > 0; 
 
get_next_line(1); 
die "$0: expecting \"Experimental Conditions:\"\n" if $line !~ /Experimental 
Conditions:/; 
 
get_next_line(1); 
die "$0: expecting \"Condition Name:\"\n" if $line !~ /Condition Name:/; 
 
my @condnames = (); 
my %condition = (); 
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while ($line =~ /Condition Name:/) { 
my ($name) = $line =~ /Condition Name:\s*(\S+)/; 
die "$0: bad Condition Name on line:\n$line\n" if not $name; 
push @condnames, $name; 
  # print "\n@condnames\n"; 
  $condition{$name} = ""; 
 
  # get the control parameters 
get_next_line(0); 
while ($line !~ /Condition Name:/) { 
chomp $line; 
    $condition{$name} .= "$line;"; 
    # print "cond: #$condition{$name}#\n"; 
get_next_line(0); 
last if ($line =~ /EOF/); 
  } 
last if ($line =~ /EOF/); 
} 
close FH; 
 
print "OK\n"; 
 
# runmake_params 
print "fred_psa_make_params $sampling_dir/$N-samples $sampling\n"; 
system "fred_psa_make_params $sampling_dir/$N-samples $sampling"; 
 
# create parameter files 
for my $paramset (1..$N) { 
my $paramsfile = "PARAMS_DIR/params.psa-$title-$paramset"; 
system "cp $paramsbase $paramsfile"; 
my $sampling_params = "$sampling_dir/$N-samples/Params-
$sampling/params.$sampling-$paramset"; 
die "Can't find sampling params $sampling_params\n" if (not -e 
$sampling_params); 
system "cat $sampling_params>> $paramsfile"; 
 
  # create a parameter file for each condition 
for my $i (0..$#condnames) { 
my $condname = $condnames[$i]; 
my $condfile = "PARAMS_DIR/params.psa-$title-$condname-$sampling-$paramset"; 
system "cp $paramsfile $condfile"; 
my $parlist = $condition{$condname}; 
my @pars = split ";", $parlist; 
for my $par (@pars) { 
      # print "cond = $condnameparlist = |$parlist| par = |$par|\n"; 
my ($name, $value) = $par =~ /(\S+)\s*=\s*(.*\S)/; 
      # print "name = |$name| value = |$value|\n"; 
system "ch \'$name\' \'$value\' $condfile"; 
    } 
system "echo >> $condfile"; 
  } 
unlink $paramsfile; 
} 
 
# make script to run sensitivity analysis 
my $exec = "run_psa.$title-$sampling"; 
open EXEC, ">$exec"; 
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my $date = scalar localtime; 
my $n = 20; 
my $m = 4; 
print EXEC <<EOF; 
#!/bin/sh 
# File: $exec 
# Created: $date 
# run a job for each parameter set 
 
EOF 
for my $i (0..$#condnames) { 
my $condname = $condnames[$i]; 
for my $paramset (1..$N) { 
my $key = "psa-$title-$condname-$sampling-$paramset"; 
my $paramsfile = "PARAMS_DIR/params.$key"; 
print EXEC <<EOF2; 
date 
fred_delete -f -k $key 
fred_job -k $key -p $paramsfile -n $n -m $m 
fred_AR -k $key 
fred_delete -f -k $key 
 
EOF2 
  } 
  # compare all condition pairs                                                                                                                        
for (my $j = 0; $j < $i; $j++) { 
for my $outvar (@outvars) { 
 print EXEC "fred_compare_jobs -j psa-$title-$condnames[$j] -k psa-
$title-$condname -N $N -v $outvar\n\n"; 
      } 
  } 
} 
print EXEC "date\n"; 
close EXEC; 
 
# run script 
system "chmod +x $exec"; 
# system "$exec >&psa_$title.out"; 
exit; 
 
subget_next_line { 
my $no_eof = shift; 
  $line = ""; 
while (not $line) { 
    $line = <FH>;  
if (not defined $line) { 
if ($no_eof> 0) { 
 die "$0: unexpected end of file\n"; 
      } 
else { 
 $line = "EOF"; 
      } 
    } 
chomp $line; 
    $line = "" if $line =~ /^#/; 
  } 
} 
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