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PREDICTING APPLICATION PERFORMANCE FOR CHIP MULTIPROCESSORS

Ryan W. Moore, PhD

University of Pittsburgh, 2013

Today’s computers have processors with multiple cores that allow several applications to execute

simultaneously. The way resources are allocated to an application affects whether performance

objectives, such as quality of service (QoS), are satisfied. To ensure objectives are met, resources

must be carefully but quickly allocated in response to changing runtime conditions.

Traditional approaches to resource allocation take place either purely online or offline. Online

methods do not scale to large, multiple core systems because there are too many allocations to

evaluate at runtime. Offline methods cannot handle unanticipated workloads or changes. A hybrid

approach could combine the lower runtime overhead of offline approaches with the flexibility of

online approaches.

This thesis introduces AUTO, a hybrid solution to perform resource allocation. AUTO dynam-

ically adjusts thread count, core count, and core type. It does so in accordance with a user-provided

policy to meet performance objectives. AUTO’s capabilities come from four prediction techniques.

The first technique builds and uses models that consider CPU contention and application scalability

in order to select co-running applications’ thread counts. The second technique predicts applica-

tions’ preferred thread-to-core mappings. The predictions are thread count independent and are

translated into concrete thread-to-core mappings based on resource availability. The third tech-

nique predicts application performance under thread-to-core mappings. The final technique selects

thread count and core count for applications on a system with cores of different capabilities.

AUTO was tested in several scenarios. In each scenario, it was shown to be an effective,

efficient solution to resource allocation. First, it was used to select the thread count of one or more

co-running applications. Second, it was used to select application thread-to-core mappings. Third,
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it was used to make predictions about application performance under thread-to-core mappings.

Finally, it was used to select both thread count and core type for applications on a computer with

cores of different capabilities. AUTO’s resource allocation and models allow for more effective and

more efficient policies. By using hybrid online and offline techniques, AUTO solves the problem

of allocating threads and cores to meet performance objectives.
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1.0 INTRODUCTION

In today’s computers, multiple processor cores allow multiple instruction streams to execute si-

multaneously [105]. Several hardware contexts per core provide additional parallelism (e.g., up to

64 threads on a Sun UltraSPARC T2) [107]. Manufacturers are expected to build future processors

with even more cores and contexts, supporting large parallel workloads on a single machine.

Applications make use of machine resources, such as CPU time, memory bandwidth, and

cache space. An application’s resource allocation directly affects application behavior and con-

sequently, whether or not it meets performance objectives (e.g., QoS). Furthermore, applications

may compete for the finite resources of a computer. Competition can occur across different appli-

cations and/or between the threads of an application. Resource contention (e.g., “stealing” CPU

time, cache contention) negatively affects performance [26, 71, 120].

Resources must be carefully allocated to applications. Applications differ in how much benefit

they obtain from additional resources (e.g., additional cache space). To achieve the most benefit,

application resource assignments must be performed by leveraging application knowledge and user

objectives.

Furthermore, the applications executing on a system change over time, necessitating changes in

resource allocations. Without notice, new applications may arrive, requiring access to resources.

Additionally, applications may finish, freeing resources. This thesis enables dynamic resource

allocation by enabling policies to efficiently consider the effects of application thread count, core

count, and core type on applications. This thesis also allows for the dynamic adjustment of each

of those parameters. Dynamic resource allocation 1) minimizes the negative effects of resource

contention, 2) more effectively controls application performance (according to user objectives),

3) and more efficiently utilizes the resources of modern chip multiprocessors.

1



Figure 1: Aggregate normalized throughput for BLACKSCHOLES and STREAMCLUSTER as the

number of threads in each is varied

1.1 RELEVANCE

Application threads use machine resources. If no threads exist, the system is idle. Controlling

the number of threads directly affects the use of machine resources and application performance.

To illustrate the importance of the proper selection of thread count, I conducted experiments with

three applications from PARSEC [10]. The experiments executed a pair of applications under dif-

ferent thread configurations (i.e., number of threads in each application) on 24 cores in a multicore

machine. The experiments measured aggregate normalized throughput, which is the sum of the

speedups of each application relative to single-threaded performance on an idle system. Aggregate

normalized throughput is a system-wide, higher-is-better performance metric.

Figures 1 and 2 show the results of these experiments. Warmer (brighter) regions indicate

higher aggregate throughputs. Figure 1 shows the aggregate normalized throughput when BLACK-

SCHOLES is executed simultaneously with STREAMCLUSTER. The optimal configuration uses

21 threads for BLACKSCHOLES and 3 threads for STREAMCLUSTER, resulting in an aggregate

normalized throughput of 14.34.

2



Figure 2: Aggregate normalized throughput for BLACKSCHOLES and SWAPTIONS as the number

of threads in each is varied

Using a naı̈ve thread configuration results in less performance. For example, 12 threads for

each application (24 threads total) will result in a aggregate throughput of 9.27 (35% less than

optimal). An alternative, but still naı̈ve, thread configuration might oversubscribe the system’s

cores by using 24 threads in each application. In this case, aggregate throughput will be 11.27

(21% less than optimal).

However, if the system executes SWAPTIONS instead of STREAMCLUSTER, as shown in Fig-

ure 2, the best configuration uses 1 thread for BLACKSCHOLES and 24 threads for SWAPTIONS.

This optimal configuration results in an aggregate throughput of 22.50. If each application has

12 threads, the system will achieve an aggregate throughput of 18.51 (18% less than the optimal

throughput). With 24 threads in each application, the system achieves a throughput of 16.52 (27%

less than optimal).

These results show that carefully selecting thread count based on corunners achieves signif-

icantly better performance than configurations which are chosen without consideration for the

workload (i.e., application-agnostic thread configurations). The best thread configurations for one

workload may differ greatly from the best configurations for another workload. Furthermore, the

3



best thread count assignment is not intuitive; naı̈ve policies (e.g., 12 threads to each, or 24 threads

to each) significantly under perform. If the objective is to maximize aggregate normalized through-

put, then how can the system automatically choose the best configuration?

The number of threads created by an application is just one parameter that may need to be

adjusted in order to manage resource utilization and maximize performance. A second required

parameter is the number of cores an application can use. A third parameter is the selection of

cores that an application may use. The choice of cores given to an application may, for example,

facilitate faster inter-thread communication by sharing one or more levels of cache. Cores may also

differ in the amount of performance they can extract from an instruction stream (e.g., asymmetric

cores). Application threads should be mapped to appropriate core types.

These three configuration parameters—number of threads, number of cores, and core choice—

define a complex configuration space. To choose the best configuration, inter-thread and intra-

thread behavior must be considered, along with physical hardware properties, application proper-

ties, and user objectives. As any of these considerations may change dynamically, configuration

must also be done dynamically.

1.2 APPROACH

This thesis develops the AUTO framework. An overview of AUTO is shown in Figure 3. AUTO

generates models for use in performance prediction. The models are used by an allocation policy

to choose a resource allocation. The models enable allocation policies to take into account the

effects of resource allocation. Models are built from profile data. The profile experiments and

model-construction techniques depend on the control knobs used to change resource allocation.

To evaluate each technique, allocation policies are evaluated. These policies take advantage of

AUTO’s predictions to 1) determine the number of threads in each application, 2) determine the

number of cores available to each application, and/or 3) determine the choice of cores that each

application may use. My hypothesis is that using performance prediction to dynamically allocate

the number of threads, the number of cores, and the choice of cores can effectively maximize

performance as compared to traditional allocation techniques without performance prediction.
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Figure 3: AUTO overview

AUTO is shown to enable policies that boost system performance according to a variety of

metrics. This thesis’s method of resource allocation requires capabilities not found in traditional

systems. Application threads cannot in general be started or stopped without adversely affecting

application correctness. Therefore, the framework works in collaboration with applications to

adapt their thread counts.

1.3 ASSUMPTIONS

This thesis makes several assumptions about the applications and host system that it targets. These

assumptions are necessary to focus the thesis.

This thesis considers CPU-bound and/or memory-bound applications. Applications which

block (e.g., due to I/O) are not addressed. Blocking due to lock contention (i.e., poor scalabil-

ity) is acceptable. It is permissible for an application to perform I/O in serial setup and shutdown
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phases. Applications must always be ready to do work (e.g., work queues are never empty). This

thesis assumes that applications are trusted and do not disregard framework directives. For exam-

ple, an application should eventually destroy a thread if instructed to do so. This assumption is

reasonable in shared, trusted computing environments.

The host system must be able to execute multiple threads simultaneously via multiple cores

and/or hardware contexts. This thesis therefore targets chip multiprocessors (CMPs). Systems

that cannot simultaneously execute multiple threads do not benefit. Additionally, the host machine

must have enough RAM for all applications. Otherwise, the operating system might perform page

swapping due to low memory availability. An application whose pages are swapped to disk is

I/O-bound, not CPU-bound. Additionally, a host’s cores must be instruction-set compatible.

This thesis assumes that each thread executes on its own context (core). If the system is over-

subscribed (i.e., more threads than cores) then the assumption is broken. CPU-bound threads

cannot benefit from oversubscription when cores are idle.

1.4 CHALLENGES

Dynamic resource allocation involves multiple challenges. One challenge lies in making per-

formance predictions. Application interactions and contention for shared resources (e.g., cores,

caches) are inherently complex. Making useful, accurate predictions about the performance of

the system is difficult. Therefore, machine learning and statistical techniques are used to build

performance models. This challenge is the primary challenge addressed by this thesis.

The second challenge is how to dynamically change an application’s thread count. Creating

and destroying application threads must be done in an application dependent way. The developer

is responsible for adding this functionality. For a particular class of applications, there may exist

multiple ways to change the application’s thread count. Modification guidance is provided for

various classes of applications, including a discussion of the advantages and disadvantages of each

(e.g., flexibility versus developer effort).

The third challenge lies in framework evaluation. Once performance predictions can be made

by a model, the model must be shown to be useful. Each of AUTO’s techniques is evaluated
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through the use of a policy, demonstrating the utility of AUTO. The evaluated policies consider

application work or instruction throughput (e.g., to maximize performance, or ensure a minimum

performance is met). These metrics are typical performance metrics on chip multiprocessors.

1.5 CONTRIBUTIONS

This thesis makes the following contributions:

1. A framework, AUTO, that predicts the effects of resource allocation (i.e., number of threads,

core count, choice of cores) on applications according to various performance metrics;

2. A technique to build a model to predict application normalized throughput in the presence of

one or more CPU-intensive corunners;

3. Techniques to models to select an application’s preferred affinity;

4. A technique to build models to make application performance predictions across core types

and with varying thread counts; and,

5. Evaluation of policies that use AUTO, in order to validate its techniques and accuracy;

1.6 ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 covers background and related work.

Chapter 3 introduces the AUTO framework, necessary application support, and a discussion of

how programmers might modify their applications for use with AUTO. In Chapter 4, the use of

AUTO to dynamically select thread count in the presence of corunners is detailed. Chapter 5

shows the use of AUTO to choose application affinities in two ways. First, AUTO can predict

the preferred affinities of an application. Second, the performance of the application executed

with an affinity can be directly predicted. Chapter 6 shows how the framework can be used to

simultaneously select application thread count and core type in a system with different capability

cores. In each of chapters 4 through 6, one or more sample policies are evaluated to demonstrate

AUTO’s utility. A summary of this work, conclusions, and future work are in Chapter 7.
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2.0 BACKGROUND AND RELATED WORK

This chapter groups related work into five inter-related categories. First, Section 2.1 explores gen-

eral application adaptation techniques. Second, Section 2.2 shows works about general resource

allocation. Third, Section 2.3 examines asymmetric computing. Fourth, knowledge of applica-

tion behavior is discussed in Section 2.4. Last, Section 2.5 shows related work in the areas of

performance modelling and runtime policies.

2.1 GENERAL ADAPTATION

This thesis is about building a device that manages itself. A self-managing system has several

advantages as compared to a system which cannot control itself. By not requiring regular manual

adjustments, employee costs are reduced or eliminated. More importantly, the system can react

faster and more appropriately than a human ever could. Naturally, others have worked to build self-

monitoring, self-modifying systems in the past. This thesis uses a set of reconfiguration parameters

(i.e., thread count, core count, core choice) that others have not. Nevertheless, existing work in

autonomic and adaptive computing may illuminate the limitations and/or promise of this thesis’s

work.

Some previous work has looked at how to adapt already existing systems and applications.

Parekh et al. examine how to give autonomic capabilities to existing systems [76]. Their approach

is generic and primarily reactive. This thesis targets a problem that requires a proactive solution.

The configuration space (i.e., number of threads, core count, choice of cores) is too large to be

explored and reacted to without serious lapses in performance (e.g., QoS). Diwan et al. present a

programming environment within which reactive, high performance applications can be built [28].
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Their work is on large, distributed systems. This thesis’s focus is on a smaller granularity (i.e., a

single CMP computer). This thesis could be used to coordinate applications within a computer,

while their work coordinates applications across computers.

Cho et al. introduced MAESTRO, a framework for managing multicore systems [20]. They

demonstrate the applicability of their approach. However, their work does not focus on how to

build models for making predictions. This thesis’s focuses is on the models. Without models, a

predictive framework like theirs is limited.

Ramirez et al. provided valuable guidance (i.e., design patterns) for creating adaptive sys-

tems [86]. Dustdar et al. provide ways of “thinking” about the capabilities of autonomic sys-

tems [31]. Often, self-adapting work, like AutoMate, requires that applications be built on top of

a specific framework or platform [1]. While this thesis does propose a framework, care has been

made to ensure that application developers have nearly complete freedom in how they develop their

applications. For example, developers can use their choice of programming language or parallel

programming paradigm. Developers must be sure only to provide a way for the system to request

a thread count increase or decrease. The implementation is left to the programmer, although this

thesis provides some guidance.

Zhang et al. show how to modify applications to better share caches [118]. With their tech-

niques, applications can have improved baseline performance and scalability. Chandra et al. pre-

sented a runtime to dynamically perform adaptive mesh refinement [14]. Similarly, Cleary et al.

showed how scalability can be improved even in the presence of runtime lock contention [21].

Cleary’s work uses message passing to alleviate lock and cache contention. Zhang’s, Chandra’s,

and Cleary’s techniques can be used to develop how high-performance, adaptive applications.

Programming languages might intrinsically give applications the ability to dynamically adapt

their thread count. If so, they would free the developer from having to add this capability. For

example, X10 [15] and Cilk++ [57] extend existing languages (Java and C++ respectively) to add

fine-grained, explicit parallelism. X10 is intended for non-uniform cluster environments, while

Cilk++ is for individual multicore computers. By explicitly adding information about parallelism,

the programming language’s runtime could automatically react to thread increase/decrease com-

mands. Additional techniques to enable a changeable thread count include Lee et al.’s Thread Tai-

lor [56]. Thread Tailor dynamically combines threads at runtime. Using offline analysis, Thread
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Tailor takes into account thread communication patterns. If an application or its programming

language does not allow for a changing thread count, then one solution would be to have the appli-

cation create as many threads as there are cores. Next, Thread Tailor could be used to dynamically

change application thread count.

Zhang et al. introduced a lightweight layer for streaming applications [117]. Their layer ab-

stracts streaming tasks away from how the tasks are performed at runtime. Their layer can then

make better resource allocations at runtime. Similarly, Phothilimthana et al. show how the same

application can provide various algorithm implementations [80]. At runtime, the system can use

the algorithm implementations that perform best given the current resource allocation. Applica-

tions can benefit from the ability to automatically adapt to runtime conditions.

Rahman et al. demonstrated how scientific applications can be automatically adapted to op-

timize for both performance and power [85]. Their techniques use the compiler to find the set

of optimizations that are appropriate. The best performing set of compilation flags may dramati-

cally increase power usage. Instead, they find a compiler-optimization that has great performance

without poor power consumption. Their techniques could be used to automatically compile appli-

cations in accordance with runtime power or performance requirements. They require that each

version be executed so that power consumption can be measured. This thesis’s aims to be able

to near-instantly predict and apply configuration changes. Future work could consider compiler-

based techniques to perform further optimizations.

In general, the more information about a workload there is, the better the resource allocation

can be. This thesis introduced the concept of application behavior “sketches” to inform resource

allocation. Others have had similar ideas. Majo et al. added to OpenMP directives that hint at

thread communication patterns [62]. These directives can be used to guide thread placement.

Reduced communication latencies result in better performance and scalability.

2.2 RESOURCE ALLOCATION

Once the system is capable of reconfiguring and/or adapting applications, it must be able to enact

changes. This thesis changes application thread count, core count, and choice of core. Existing

10



work has looked at allocating resources to applications.

Nesbit showed how to grant machine resources to individual applications through the use of vir-

tual private machines [74]. Nesbit’s solution uses microarchitectural-level allocations and requires

hardware support. This thesis uses commodity hardware. Nikolopoulos et al. allow for application-

specific hypervisor policies to control, for example, how virtual machine cores are scheduled to-

gether [75]. Their work relies on manually generated scheduling hints, does not adapt thread count,

and does not consider application affinity. Ahmad developed an adaptive non-contiguous proces-

sor allocation strategy [2]. His algorithm assigns cores to processes in large, shared distributed

systems.

Other work has also examined how to do microarchitectural resource allocation. Duong et al.

manage caches by sampling loads and stores to calculate reuse distances [30]. They allocate cache

lines based on predicted reuse distances. McFarlin et al. and Hameed et al. examined theoretical

application performance and inefficiencies in modern processors [40, 67]. Both works show that

smarter resource allocation at the functional unit level and instruction set level can result in much

lower power usage, smaller chip areas, and better application performance. Guo et al. show how to

allocate resources to meet QoS constraints [38]. Their techniques require that applications know,

in advance, what resources they require to meet QoS (e.g., a maximum cache miss rate). They

present several policies to coschedule applications and distribute resources to applications. Unlike

this thesis, they require microarchitectural support.

Wu et al. consider the prefetcher’s effects on the LLC cache [113]. They derive policies to

control the LLC prefetcher and reduce cache pollution if the prefetcher is mispredicting. As a

result, application IPC is increased (5% on average).

This thesis is concerned with resource allocation above the microarchitectural level and yet

below the level of a distributed system. The above techniques are therefore orthogonal.

Terboven et al., Blagodurov et al., and Dashti et al. examined NUMA contention manage-

ment [12, 25, 103]. Terboven’s OpenMP hints allow threads to control memory placement. Blago-

durov introduced a NUMA aware policy to reduce memory contention. Dashti additionally man-

ages contention through dynamic page migration. Dashti also allows page duplication across

NUMA nodes to reduce bandwidth bottlenecks. Each authors’ techniques result in decreased

memory access latency. This thesis must take into account memory behavior across sockets, be-
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cause it may affect performance, but does not consider page placement as a runtime control knob.

Therefore, these works are complementary.

Like this thesis, Fengguang et al.’s work considers the effects of affinity on runtime perfor-

mance [95]. Their techniques make use of memory traces to discover data sharing between threads.

From this information, they can rank application affinities based on how well the affinity supports

the application’s sharing patterns. Their work does not consider private thread footprints. Memory

traces can be very large and their solution requires approximation algorithms due to the complexity

of the problem. This thesis uses faster methods of selecting application affinity.

Cui et al. address lack of application scalability by monitoring lock contention and migrating

critical threads to a set of dedicated cores [24]. Ebrahimi et al. also monitor lock contention

and change the memory scheduling policy to assist threads which most constrain the scalability

of a application [33]. Resource allocation techniques like this are orthogonal to this thesis. This

thesis assumes that, once an application’s affinity has been selected, applications manage how their

threads perform their work.

Perhaps most similar to this thesis are works by Kumar Pusukuri et al. [53], Xiang et al. [115],

and Bhadauria [8]. Kumar Pusukuri et al. introduce a framework to coschedule applications.

They schedule threads on a coarse socket basis (i.e., on a socket basis). They also do not change

thread counts. Xiang et al. use traces gathered at runtime to drive scheduling decisions. Traces

can introduce relatively large performance overheads (up to 31%). They do not consider multi-

threaded applications. Bhadauria et al. use hardware performance counters to measure application

behavior. Applications are profiled with a high thread count (one thread per core) at launch on an

idle machine. Applications which scale well are, in turn, given exclusive access to the machine.

Applications which do not scale well are forced to share CPU access with other poor-scaling appli-

cations. Their techniques do not adjust thread count and are designed only to maximize throughput

per watt.

Juggle, by Hofmeyr et al., balances thread CPU access even if the number of threads and cores

is imbalanced [41]. This thesis makes use of dynamic thread count changes to ensure that there is

never more than one thread per core. Therefore, Juggle would not be necessary to use with AUTO.

Ding et al. proposed Balanced Work Stealing (BWS) [27]. BWS alleviates CPU contention that

occurs if work stealing applications have no work to do. This thesis removes the need for BWS by
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ensuring that resources are not overcommitted or application thread counts are too high.

Pusukuri et al.’s Thread Reinforcer determines the number of threads an application should

use at runtime [82]. Thread Reinforcer does a good job selecting thread counts, but assumes the

machine is not shared by CPU intensive processes. This thesis handles a system with more than 1

CPU intensive process.

2.3 ASYMMETRIC COMPUTING

One of the control knobs that this thesis considers is core type. Processor architects have always

had to make design-time trade-offs due to limitations in, for example, manufacturing technology,

power, heat dissipation, or area. A relatively recent trend is to incorporate ISA-compatible cores

with different capabilities into the same chip or CMP system. Asymmetric systems are able to

make power and performance tradeoffs better than traditional systems [51, 52]. Up to an order of

magnitude improvement in energy consumption is possible [36]. These devices are available in

commodity hardware (e.g., cell phones) [35, 37, 42, 68, 87]. “Dark silicon” will enable further

variety in the performance capabilities and power consumption of cores [34, 36, 108, 109].

The “trick” to efficient computation on asymmetric systems is to map the workload to the

most appropriate core. As the workload changes, remapping may be required to ensure that per-

formance objectives are met. Measuring application performance on all core types is one ap-

proach [7, 51, 52]. As more core types are added, the cost of sampling becomes excessive. Analytic

and experimental models avoid trying all core types [3, 17, 22, 49, 49, 77, 81, 91, 96, 106]. Never-

theless, they do not also consider application thread count: a critical factor in modern application

performance.

The ability to change thread count allows for additional flexibility in meeting performance

goals (e.g., QoS). For example, many threads running on small, low performance cores may be

able to deliver the same performance as a few threads running on power-hungry, out-of-order cores.

However, only one of those solutions will be optimal (e.g., the most power efficient solution).

The additional flexibility creates a larger configuration space. Purely online techniques to select

thread count and core type will waste time and energy exploring the large configuration space.
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The disadvantages to online techniques are expected to grow, as architects create systems with

increasingly more core types and counts.

2.4 APPLICATION KNOWLEDGE

To ensure good performance, a dynamically configurable system must react in an application-

specific way. A single policy is unlikely to work well. Instead, the system must take into account

application behavior and application resource needs. Only with application knowledge can the sys-

tem find the best configuration. This section describes the diverse ways that others have gathered

application knowledge.

Application knowledge may be embedded in the source code (potentially extracted later) [4, 15,

57, 70]. Knowledge may also come in the form of programmer inserted hints or static information,

runtime-derived information, or profiling [16, 44, 66, 98]. Kandemir et al. use compiler-provided

hints to manage shared caches [48]. Leung et al. allocate processes given their task graphs [58].

Wang et al. use machine learning to choose affinities [110]. Their approach requires a special

compiler or dynamic binary instrumentation to extract features. Their offline approach requires a

single-threaded profile of an application. Fengguang et al. also use dynamic binary instrumenta-

tion to choose affinities [95]. They use an analytical model and gathered information to predict

application performance in various thread settings. Tian et al. model how an application’s input

affects runtime behavior [104].

Tam et al. use hardware performance counters to decide thread affinity settings [100]. Phadke

et al. also use hardware performance counters, but they classify applications based on the type

of memory that they prefer (e.g., low latency or high bandwidth) [78]. Xiang et al. give theory

on various cache miss metrics and their relationships [116]. They show how to convert between

different metrics using differentiation and integration.

Klug et al. propose Autopin, a tool to choose thread affinities [50]. Autopin uses a trial-and-

error approach to eventually reach well-performing affinity settings. Radojković et al. have a sim-

ilar approach (e.g., resource monitoring, trial and error) but focus on network applications [84].

Mars et al. and Jiacheng et al. profile an application’s susceptibility to different types of mem-
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ory interference [64, 119]. Profile information is useful online when predicting the effects of a

co-scheduling on application performance.

The above works could be used to further inform AUTO’s resource allocation process by sup-

plementing profile-derived knowledge. The proper set of techniques may vary from system to

system, or application to application. For example, a technique which requires a task graph should

only be used on applications whose task graph is easily extractable. This thesis primarily uses

profiling to extract application knowledge, because profiling is readily applicable across a variety

of workloads.

2.5 PERFORMANCE MODELLING AND ALLOCATION POLICIES

Runtime policies use application knowledge and dynamic resource changes to meet performance

objectives. The objectives may come from a system administrator or users. Objectives may be

expressed in a variety of metrics (e.g., power, performance, response time). This thesis builds a

general framework to meet diverse metrics.

Existing work considers the applications on a system and adjusts them to meet performance

criteria (e.g., QoS, utilization without significant performance degradation) [63, 101, 111, 119].

This thesis primarily differs from past work in terms of setting (CMP systems) and configuration

capabilities.

AbouGhazaleh et. al use machine learning to build a runtime policy that examines hardware

performance counters. Their work is applied to embedded single-core systems and focuses on

optimizing energy-delay product [84].

Application knowledge can be used to build utility models and to make configuration decisions.

Machine learning approaches and statistical approaches are a natural fit for building predictive

models that respond to application knowledge [65]. Barnes et al. [6], Ipek et al. [43], and Lee

et al. [55] used a variety of machine learning techniques (e.g., regression, neural networks) to

predict application performance in large dedicated clusters. Moseley et al. used linear regression

and recursive partitioning to make performance predictions about co-scheduled threads on SMT

contexts [72]. This thesis considers dozens of contexts on a single, shared CMP.
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Scheduling techniques have been proposed for asymmetric CMPs to select the core type that

an application should be executed on. Many scheduling approaches gather online information

to predict application performance on various core types. Some directly measure runtime and/or

power [51, 52], while others use hardware counters [88, 106].

Like this thesis, several researchers have used statistical models to predict performance of core

types [17, 22, 49, 81]. Analytic models have also been developed that use online performance

counters to guide migration decisions between core types [106]. A “signature” of an application’s

use of architectural resources has been used to select models that predict performance of different

core types [91]. Recent work extended PIE for ARM big.LITTLE with compiler assistance to

estimate cycles per instruction [81]. Those works do not address scalability for multithreaded

applications.

Some works have considered modelling scalability. Wu et. Taylor model application scalability

on large clusters [114]. Their models primarily consider available memory bandwidth and assume

weak scaling. Ju et al. use queueing theory to analytically model application performance [47].

Their techniques require detailed programmer-provided information.

Some existing works detect and accelerate lagging threads in an asymmetric system by placing

threads onto faster cores [9, 13, 54]. Other work detects and accelerate scalability bottlenecks

caused by a thread’s behavior [45, 99]. Joao et al. accelerate multithreaded applications, thus

improving their scalability, by detecting lagging and/or bottleneck threads [46]. Their techniques

accelerate threads by appropriately placing them on larger, more powerful cores. Those works

help an application take advantage of a resource allocation. This thesis focuses on making the

correct resource allocation, and lets applications use the resources however they may. Therefore,

this thesis complements those techniques.

Tang et al. use a classifier and hardware performance counters to select application affinities

at runtime [102]. Majo et al. consider NUMA systems and use hardware performance counters to

consider both the costs of remote accesses and the costs of sharing a LLC [61]. Their policy can

then migrate, as needed, a process to another NUMA node to improve performance. Pusukuri et al.

developed Thread Tranquilizer to automatically reduce performance variation [83]. Dwyer et al.

and Xiang et al. show how to predict performance degradation using hardware performance coun-

ters and dynamic binary translation respectively [32, 115]. Xiang does not consider multithreaded
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applications. Chen et al. model application characteristics using compiler-derived analyses (e.g.,

data flow) [18].

Sasaki et al. use hardware performance counters and statistical models to select DVFS settings

at runtime [89]. Another work by Sasaki et al. monitors CPU usage to dynamically adjust applica-

tion affinities and force poor scaling applications (i.e., those that block due to lock contention) to

give cores to better scaling applications [90]. They model application scalability using Amdahl’s

law. Their work does not adjust thread count.
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3.0 AUTO: A FRAMEWORK FOR CORE AND THREAD ALLOCATION

This chapter introduces the AUTO framework, its components, and the application support nec-

essary to enable it. The AUTO framework predicts the effects of resource allocation. AUTO

considers application thread count, core count, and choice of cores through the use of predictive

models. An allocation policy will use AUTO’s predictions to find the best resource allocation.

The AUTO framework is shown in Section 3.1. Section 3.2 discusses the framework’s required

application support. Section 3.3 discusses how programmers can modify their applications to fully

enable dynamic resource allocation. Section 3.4 concludes.

3.1 OVERVIEW

Multicore CMP machines can be used for diverse purposes. For example, system administrators

may want a machine to automatically maximize workload performance, meet quality of service

goals, or minimize energy usage. An administrator may even want the machine to satisfy two or

more objectives simultaneously (e.g., meet quality of service while minimizing energy usage).

To allow the machine to meet its performance goals (e.g., maximize workload performance),

a system-wide coordination effort is needed. The AUTO framework is the primary component

necessary to enable the coordination. AUTO considers dynamically changing thread count, core

count, and/or core type.

In general, threads can only be created and destroyed in application-specific ways. AUTO

therefore can make a wider range of predictions and policies can enact a wider range of allocations

if applications can create or destroy threads in response to its decisions. The dynamic creation and

destruction of application threads is called inflation and deflation respectively.
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Figure 4: Framework usage and thesis focus

Figure 4 shows the use of AUTO. This thesis’s focus is emphasized. AUTO uses an offline

profiling step to gather application behavior. The profile data is processed. Machine learning

techniques are used to build policy-informed models. The models are used by the allocation policy

to make allocation decisions. Models can be updated online as runtime information is gathered.

The system architecture of my thesis is shown in Figure 5. A new layer, the Runtime Configu-

rator , controls application resource allocation through communication with a new component, the

Application Resource Manager. The Runtime Configurator is a dedicated layer above the operating

system, to allow for a separation of concerns and easier runtime replacement or modification.

As in traditional systems, the operating system (OS) is the lowest software layer. However, in

an AUTO-using system, the OS serves a narrow purpose: to control application access to hardware

by following the Runtime Configurator’s resource allocation. The operating system also provides

usual services (e.g., file I/O). My thesis requires no operating system changes, as typical operating

systems (e.g., Linux) already provide the services that the Runtime Configurator requires.
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Figure 5: System architecture

Applications are required to have an Application Resource Manager or they will not be ad-

mitted onto the system. This component is subservient to the Runtime Configurator. It changes

the number of threads in a running application as directed by the Runtime Configurator. Because

each application has unique behavior and resource needs, Application Resource Managers will be

unique to each application.

3.2 INFLATE/DEFLATE PROGRAMMING MODEL

Inflation of an application is when a core is given to the application, and the application creates a

thread to execute on that core. Deflation is when a thread is shutdown, so that the thread’s core can

be returned to AUTO. Inflation/deflation is a necessary mechanism to enable dynamic resource al-

location. If applications on a system are not capable of dynamic inflation and/or deflation, AUTO’s

reconfiguration capabilities will be limited. The resource allocation and system performance will

be suboptimal.
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Table 1: Situations where inflate/deflate can be used for self-adapting applications

Situation Inflate Core? Deflate Core?
1. a core has failed 5 3

2. power consumption rate is too high 5 3

3. quality of service easily being met (over-provisioned) 5 3

4. a core has come online 3 5

5. an application has exited or freed cores 3 5

6. cores have different capabilities 3 3

7. allocation policy 3 3

Table 1 lists some examples where inflate/deflate can be used in response to changes in cores.

These examples are likely to necessitate a change in resource allocation. The figure also shows

possible Runtime Configurator responses. The Runtime Configurator might inflate an application

(give it a core) and/or deflate (take away a core).

The first three examples in Table 1 require deflation. The first two cases require deflation due to

a core either failing or the system exceeding power constraints. In these cases, application threads

must be moved off the cores to ensure that the system can continue to function. In the third case,

the application is exceeding QoS constraints. The application could stop using one or more cores

and still meet QoS. The newly-freed cores could be given to other applications.

The fourth and fifth examples benefit from inflation. In the fourth example, a new core has

come online. Applications may now use it. In the fifth example, an application has exited, conse-

quently freeing cores. The newly available cores may now be used by other applications.

The sixth and seventh situations may require both inflation and deflation. In the sixth situation,

the system’s cores are asymmetric. The threads in the system’s applications may be more suited

to some cores than others. The Runtime Configurator may take away a core from one application

(deflation) to give the core to another application which can make better use of that core (inflation).

In the seventh situation, the allocation policy may inform core assignments. For example, if the

system is idle except for one application, the allocation policy may give all cores to that application.

If another application starts, the allocation policy may take half of the cores away from the existing

application in order to give them to the new application.
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3.3 ADDING APPLICATION SUPPORT FOR INFLATE/DEFLATE

.

Traditional applications do not support inflate/deflate. Therefore, traditional applications are

unable to respond to Runtime Configurator requests. Yet, this functionality is necessary to exercise

the full range of resource allocations. To ensure proper allocation, the application developer must

add this functionality.

To maximize inflation/deflation benefits, application-level knowledge must be utilized. If an

application is granted a core, the application should take full advantage of it. Similarly, applications

should properly respond to the loss of a core (e.g., by shutting down that core’s thread).

Consider a multi-threaded, work-stealing application. At times, it will be granted a core or

have a core taken away. The application should, upon receiving a core, create a thread to execute

on that core. If assigned enough cores, the application might use a different algorithm to complete

its work. For example, an algorithm which scales well may be used if many cores are assigned

to the application. Applications might have limits to how much parallelism their algorithms can

exploit (e.g., due to lock contention). If an application is unable to adequately utilize a core, the

allocation policy will determine whether the Runtime Configurator will revoke the core.

The Runtime Configurator may also retrieve a core from an application (i.e., an application is

forced to give up a core). It may be necessary for the application to prepare for the removal of

the core. Additional time may be necessary to ensure that the application’s threads remain in an

acceptable state. For example, a thread may need time to commit its work before the thread can be

shutdown and its core returned.

3.3.1 Programming Model

Applications must respond appropriately when granted or revoked resources. Figure 6 shows ex-

ample pseudocode for what is expected for application developers to write. Application developers

possess application-level knowledge, which can be leveraged for adaptation. Programming lan-

guage constructs, such as those proposed, can allow developers to express application knowledge

without undue burden.
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1 def main(argv):
2 resources = requestFromSystem(FAST + MULTIPLE + LENIENT + CORE)
3
4 inParallel {
5 for resource in resources:
6 spawnThread(workerThreadFunc, resource)
7 waitForWorkDone()
8 } onInflate(CORE, newResources) {
9 for resource in newResources:

10 spawnThread(workerThreadFunc, resource)
11 } onDeflate(CORE, removedResources) {
12 #Signal the thread to quit (freeing the resource)
13 #when convenient.
14 for resource in removedResources:
15 getThreadAssignedTo(resource).signal(SHUTDOWN)
16 } onDeflate(CONTENTION, coresWithContention) {
17 if (CONTENTION.type == CACHE && CONTENTION.value >= HIGH):
18 #Signal threads to change how they compute.
19 for resource in coresWithContention:
20 thread = getThreadAssignedTo(resource)
21 thread.signal(USE_LOW_FOOTPRINT_ALGORITHM)
22 }

Figure 6: Example pseudocode for an inflate/deflate-capable application

Figure 6’s pseudocode introduces two important concepts. First, the figure introduces the

concept of a “sketch” of resources. A sketch is a specification of resources that a code section

requires. Secondly, the pseudocode describes the application’s reaction to various requests or

commands.

Application developers, being familiar with the application, have high-level algorithmic knowl-

edge. For example, the developer may know that an application computes large arrays of floating

point values. This suggests that the application would benefit from fast cores with large caches.

Another application, such as a static content web server, may not benefit from large caches.

The developer may also know other useful, low-level information. For example, a pipelined

scientific process, in addition to using floating point operations, periodically communicates be-

tween threads in adjacent stages (i.e., one stage’s output is another stage’s input). Here, the pro-
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grammer has some insight about thread communication but may not know the precise communi-

cation patterns and behaviors that manifest at runtime.

One purpose of the inflate-deflate model is to allow the developer to easily and succinctly

express high-level application knowledge to the Runtime Configurator. By allowing the developer

to easily express this knowledge, the system can more accurately predict the effects of resource

allocation. Sketches, without being burdensome, allow the programmer to express their application

knowledge. Application knowledge may also be obtained offline from the compiler, via profile

information, or learned online.

On line 2 of Figure 6, the application requests multiple fast cores (FAST + MULTIPLE +

CORE). It additionally indicates that its request is lenient (LENIENT). In this example, the applica-

tion can make use of a wide range of cores, although it prefers multiple, fast ones. This is an exam-

ple of a sketch. The sketch provides hints to the Runtime Configurator. Cores that match the sketch

description are granted by the Runtime Configurator to the process (requestFromSystem).

With its granted cores, the application performs computation (lines 4 - 21).

The inParallel construct is first executed. It creates threads to work on the cores. Once all

cores have a thread assigned to them, the application waits until its worker threads have signaled

that all work is done (waitForWorkDone, line 7). When the system grants the application a

core, the application responds by spawning a new thread on the newly assigned core (onInflate,

line 8). Similarly, when the application is told to return a core (onDeflate, line 11), it signals

the thread assigned to that core to terminate early.

The application in Figure 6 can respond to changes in cache contention (onDeflate, line

15). The application checks to see if the core cache contention is high. The meaning of “high

cache contention” is determined by the Runtime Configurator and depends on the system’s cores

and workload. If cache contention is high, the application threads will be signaled to reduce cache

usage (line 20). Threads will receive the signal and utilize a different algorithm to reduce their

cache footprint (not shown).

The difficulty of creating inflate/deflate-capable applications depends on how the original ap-

plication was written. Some existing applications are already written in ways which allow for

inflation/deflation. For example, queues between pipeline stages allow worker threads to be obliv-

ious about which threads produced their stage’s input. Work stealing approaches (e.g., Intel R©
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Thread Building Blocks[79]) abstract the production of work and the assignment of threads to the

jobs that consume the work.

If all executing applications support inflate/deflate, the gamut of allocation changes is made

possible. The Runtime Configurator can consequently make performance predictions and follow

the allocation policy. Next, some remaining inflate/deflate challenges, and possible solutions, are

discussed.

3.3.2 Inflate/Deflate Challenges

There are several challenges for the inflate/deflate programming paradigm. The challenges are:

1. how to handle underspecification of requested resources,

2. how to handle over-specification of requested resources,

3. time bounds on requests,

4. how to measure current state quality,

5. making accurate predictions, and

6. dealing with deceptive processes,

The first challenge is how to handle underspecification of requested resources. In Figure 6,

the sketch dictating what type of resources an application desires is a high-level request (FAST +

MULTIPLE + LENIENT + CORE, line 2). For example, what it means for a core to be fast is

not clear. High-level sketches simplify the developer’s task of describing which cores an applica-

tion needs. High-level sketches may leave the Runtime Configurator unable to reason about how

applications differ with regards to their resource requirements and performance under possible re-

source allocations. For example, on a multicore asymmetric system running two multi-threaded

applications, the first application may benefit from fast floating point operations, while the other

application may benefit from fast memory access. A lack of sketch detail may be due to pro-

grammer error or limitations on sketch expressiveness. Fortunately, offline profiling solves this

challenge. Offline profiling can automatically determine the behavior of an application. Predictive

models can fill in the “holes” left by unprofiled behaviors.

The second challenge is how to handle over-specification. The developer may request a re-

source that may not easily, if at all, be granted. Some over-specified requests may be impossible
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to be met on a specific system (e.g., a request for a core with 128 KiB of L1 cache space). Should

the system ignore such a request? What if the request is necessary for the application to func-

tion correctly? One way to address this challenge is to have the Runtime Configurator lie about

resource properties, while making a best effort to meet application requirements. As with the so-

lution to underspecified sketches, automatically constructed models help inform the true needs of

an application.

The third challenge is how to deal with time bounds on requests. Requests can be from the

Runtime Configurator to an application (e.g., to retrieve a resource), or from an application to

the Runtime Configurator (e.g., for an additional resource or change of resource). Quickly com-

plying with requests allows both the Runtime Configurator and applications to react quickly and

reason more accurately about system behavior. The Runtime Configurator and Application Re-

source Manager should quickly comply to commands and queries. However, this may not always

be possible. For example, if a thread is signaled to shutdown, it must do so in a way that ensures

application correctness. Terminating the thread immediately could put the application in an incon-

sistent state. If the application does not comply within a reasonable amount of time, what should

the system do? Should the request or command be ignored? Should the application be punished for

not complying in a timely manner? This thesis assumes that AUTO is used in a semi-cooperative

environment. Therefore, a best effort approach is suitable.

The fourth challenge is how to accurately monitor performance. What metrics should be used?

Given a current configuration and resource assignment, is the system in a good or bad state?

Should the system switch to a different, predicted-to-be-better configuration? Hardware perfor-

mance counters can be used to record low level performance metrics, such as IPC. Application-

specific counters can also be used (e.g., work units per second). Because applications are trusted,

both counters are acceptable. In this thesis, the users of the system set the allocation policy. The

policy determines which allocation techniques and performance objectives will be used. The policy

also determines if and when AUTO should change configurations.

The fifth challenge is how to ensure that the Runtime Configurator’s performance predictions

are accurate. The Runtime Configurator and applications possess an incomplete understanding of

system behavior, due to the inherent complexity of modern CMPs, application behavior, and ap-

plication interactions. Figure 6’s application can reduce cache contention. Ideally, an application
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would be able to predict how much it can reduce cache contention. Often however, such a capa-

bility is practically impossible. Fortunately, online learning, hardware performance counters, and

offline profiling can be used to measure and predict different aspects of system behavior.

The sixth and last challenge is that an application may be deceptive. For example, a multi-

threaded application may request a minimum of four cores at all times. This may be a legitimate

request (e.g., if the application is hard-coded to create four threads). However, the application

may lie in order to gain more resources than it would normally be given, to let itself execute

faster. A deceptive process may be a result of a malicious programmer or programmer error. The

applications running on a system are assumed to be semi-cooperative. Thus, deceptive applications

are only possible due to programmer error, not maliciousness.

3.3.3 Demonstration Implementations

Two use cases are explored to show whether or not adaptation is beneficial: energy conservation

and pipeline balancing. Each use case evaluated a multi-threaded application from the PARSEC

benchmark suite[10] (BLACKSCHOLES and DEDUP). The evaluation also serves to demonstrate

how to create inflate/deflate-capable applications.

3.3.3.1 Energy Conservation Use Case (Data Parallel Workload) Consider a scenario where

a server continuously performs batch work and runs two applications: a multi-threaded application

(BLACKSCHOLES) and a single-threaded application, referred to as the side process (described

later). BLACKSCHOLES calculates European options pricing using Black-Scholes partial differ-

ential equation. The goal of this exploration is to demonstrate that inflate/deflate enables efficient

sharing of cores.

Suppose the system administrator has instituted a policy to dynamically restrict the number of

usable cores in a chip multiprocessor, to correspond with changing electricity prices. The Runtime

Configurator is used to implement this policy.

Figure 7 shows the sample policy for the use case’s test machine. Electricity costs vary

throughout the day. To reduce power costs, the number of cores used by the machine will also

be varied. If the only goal was to limit how many cores are active at any given time, no application
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Figure 7: Sample core usage policy

modification would be necessary. A mechanism like Linux’s sched setaffinity could be

used to restrict which cores the threads are allowed to execute on.

However, restricting the scheduling of threads has several disadvantages. To make full use

of all the system’s cores (e.g., as desired late at night) there must be as many threads as there

are cores. Yet, when fewer cores are available (e.g., in the afternoon when electricity prices are

highest), fewer threads are necessary. The BLACKSCHOLES application cannot change thread

count at runtime. This limitation can lead to a mismatch between the number of CPU-bound

threads and the number of usable CPU cores.

On a system with more cores than threads, cores will be idle and performance will suffer. A

system with more threads than cores may cause threads to be starved for CPU time. More threads

than cores can also increase the cost of context switching; thread working sets are likely to be

evicted caches due to context switching.

A better system would feature adaptable processes. As the number of usable cores is decreased,

multi-threaded applications should use fewer threads until the system is no longer oversubscribed.

Each application has at least one active thread. As the number of usable cores is increased, ap-

plications should create worker threads until the system is no longer underutilized. This policy

avoids over-subscription and unnecessarily high context switching overhead, while also ensuring

good performance.

BLACKSCHOLES cannot dynamically change its thread-count. It accepts a thread-count pa-
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Table 2: Inflate/deflate BLACKSCHOLES modifications

Modification: Lines of Source Code Changed:
Work unit data structure 5
Work units initialization 9
Worker thread code changes 14
Main thread inflate response ability 7
Main thread deflate response ability 7
Support code to listen to inflate/deflate requests 13
Total changes 55

rameter on the command line. The input array is read from file and stored in an array of length

workUnits . The desired number of threads is created. Each thread is given an identification num-

ber which is used to evenly divide the work among threads. Threads compute a result for each

entry in the workload array. The main thread waits at a barrier for all worker threads to finish. The

main thread then writes the results to a file.

To support the dynamic addition and removal of worker threads, BLACKSCHOLES was mod-

ified. A shared, thread-safe linked list stores tuples of the form 〈i , j 〉 where 0 ≤ i < j <

workUnits . List initialization is done by the main thread. Worker threads execute a loop, popping

a tuple from the work list on each iteration. Threads compute results for the elements in the array

between the tuple’s i and j indices. The modification of the work thread code was straightforward

and required little modification, as shown in Table 2.

How quickly an application reacts to a message can be adjusted by changing the size (range)

of work units. The size of work units is controlled by an environment variable. Larger work units

cause messages to be checked less often, but may cause less lock contention in the work unit queue.

Smaller work units cause quicker responses to thread messages but may incur locking overhead.

Before obtaining a new work unit, a thread checks to see whether it should exit prematurely. If no

work units are available, the worker thread exits. Other modifications to BLACKSCHOLES include

adding the code to connect to the Runtime Configurator, a function to create new threads, and a

function to signal the shutdown of worker threads.
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Table 3: Test system properties

System Property Value
Processors Intel R© Xeon R© E5335 @ 2.00GHz
number of cores 4
RAM 8 GiB
OS Linux (kernel 2.6.29.6)

3.3.3.2 Energy Conservation Experimental Results The energy conservation policy was ap-

plied, and the throughput of both versions of BLACKSCHOLES and the throughput of the side

process were observed. Experiments with the original sample policy (Figure 7) would be 24 hours

in length. Instead, a miniaturized policy is used. Experiments are divided into seven five-minute

periods. To ensure an execution time of at least 35 minutes, the BLACKSCHOLES input is pro-

cessed multiple times. The first period allows only one core to be active. Each period thereafter

allows one more core than the previous period. In period four, four cores are allowed, which is the

number of cores in the test system. Subsequent periods use one less core than the previous one. In

period seven only one core is active. The test system runs BLACKSCHOLES and the side process.

Table 3 shows the properties of the test system.

At the end of each of the periods, the number of work units computed by each version of

BLACKSCHOLES and the side process are measured. A BLACKSCHOLES work unit is one array

entry calculation. The side process performs memory and arithmetic operations to calculate a

value (single-threaded, CPU bound). A side process work unit is one completed calculation. Work

units for each application are normalized to the maximum number of work units completed by that

application, in any period.

With the inflate/deflate-version of BLACKSCHOLES, the side process is always given exclu-

sive access to a core, except when both applications are constrained to execute entirely on one core

(as scheduled by the OS). The unmodified BLACKSCHOLES uses four threads, regardless of how

many cores are available in a period.

Figure 8 shows the results of this experiment. The height of the first two bars in each period is

the number of work units completed by the unmodified BLACKSCHOLES (BS) and inflate/deflate-
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Figure 8: Work units completed by BLACKSCHOLES and the side process

capable BLACKSCHOLES (ID-C BS), respectively. Each BS has a similar pattern: as the number

of cores increases, so does the rate of work unit completion. Consistently, the unmodified BS

completes slightly more work units than ID-C BS.

The unmodified BS performs better than the ID-C BS because it uses more threads and hence

can obtain more CPU time (i.e., by stealing CPU time from the side process). Additionally, threads

in BS do not make use of a shared work unit queue. This design avoids linked list contention.

Figure 8 also shows the relative number of work units completed by the side process when

executed alongside the unmodified and inflate/deflate-capable versions of BLACKSCHOLES (third

and fourth bars respectively). In general, the number of work units completed by the side process

increases as the policy allows more cores to be used in each period. However, its corunner has a

dramatic effect on the number of work units completed. When the number of cores is low (periods

one, seven), the side process executed with ID-C BS completes more than twice as many work

units than if executed with BS. When the allocation policy allows all cores to be used (period four)

the side process executing with ID-C BS completes 23% more more work units than if executed

with an unmodified corunner. When more than one core is available (periods two through six) the

side process running with ID-C BS always performs nearly at its maximum.
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Table 4: Efficiency of the energy conservation experiment

Period Efficiency (unmodified) Efficiency (ID-C) % Increase in Efficiency
1 44.0 66.8 51.8%
2 45.1 64.6 43.2%
3 47.3 54.4 15.0%
4 45.0 48.7 8.2%
5 48.9 54.6 11.7%
6 44.5 65.0 46.1%
7 44.3 67.1 51.5%

Table 4 shows an efficiency comparison between the unmodified system and the inflate/deflate-

capable system. Efficiency is the sum of normalized work units completed by both processes within

a period, divided by the number of cores used in that period. The inflate/deflate-capable system

(third column) is always more efficient than the unmodified system (second column), especially

when core resources are few (e.g., the first and last period). The inflate/deflate-capable system

shows efficiency increases from 8.2% to 51.8%. Increased efficiency is a direct consequence of the

fairer, more efficient use of system resources.

In conclusion, the inflate/deflate-capable BLACKSCHOLES, combined with a power conser-

vation policy, causes cores to be utilized more fairly and efficiently across processes. Fairer uti-

lization allows the system to execute with fewer active processors while still maintaining good

performance, enabling power savings.

3.3.3.3 Balanced Pipeline Use Case This use case evaluates a multicore system in which the

number of available cores changes dynamically, as cores come online and go offline without warn-

ing1. The maximum number of cores is also unknown (e.g., cores may be hot pluggable).

A process on this system should respond to core availability to maximize performance regard-

less of the number of cores available. In this use case, we evaluate DEDUP. DEDUP was modified

to take advantage of such a system. DEDUP performs data stream compression using both global

and local compression.

1Processes are given adequate time to migrate their work from soon-to-be-offline cores.
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Figure 9: DEDUP’s initial pipeline with three cores

DEDUP uses a multi-stage pipeline. The modified DEDUP supports dynamic insertion and

removal of threads in each parallel pipeline stage. Stages are instrumented to calculate the flow

of work units through them. The instrumentation allows the identification of bottleneck and over-

provisioned stages. The changes to enable dynamic thread creation and destruction are discussed.

Second, the modified and unmodified versions of DEDUP are evaluated with regards to their per-

formance and ability to handle changing resource availability.

The base version of DEDUP is a five stage pipeline, as shown in Figure 9. In the first stage, the

application loads an input file before spawning threads. This step reduces I/O bottlenecks during

the parallel phase. Next, three thread pools are created: one for each of the middle stages of the

pipeline. The main thread waits for the middle stages to finish their work. After the middle stages

are done, the last stage’s work is performed (outputting the results to a file). The time when the

middle three stages do their work is the region of interest (ROI). The third stage may bypass the

fourth stage and send work units directly to the fifth stage.

A command line argument (tc) specifies the thread count for each pool. With tc threads per

pool and three pools, 3 · tc threads are created. To maximize performance, all n cores should have

schedulable threads. To guarantee this constraint, the base version of DEDUP must spawn 3 · n

threads2.

DEDUP’s static thread creation oversubscribes the system. When a stage has no more work to

perform, that stage’s threads will exit. Oversubscription is lessened only as the application finishes

stages of work. Oversubscription may starve other processes for CPU time, or cause overhead

due to unnecessary context switching or lock contention. Furthermore, once DEDUP’s threads are

created, no more threads may be created. If new cores become available, DEDUP cannot create

2In the worst case, only the fourth stage is unfinished.
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Table 5: Inflate/deflate DEDUP modifications

Modification: Lines of Source Code Changed:
Tracking pipeline flow and bottlenecks 81
Worker thread code changes 111
Main thread inflate response ability 49
Main thread deflate response ability 32
Support code to listen to inflate/deflate requests 14
Miscellaneous changes 32
Total changes 319

Figure 10: DEDUP’s pipeline after inflate (four cores)

more threads to use the additional resources.

To enable dynamic pipeline adaptation, DEDUP was modified to measure work unit flow. Flow

indicates the fastest and slowest stages. These changes required adding profiling code and counters,

as shown in Table 5. When a core becomes unavailable, a thread corresponding to the stage with

the highest throughput will be shutdown. Bottleneck stages are assigned threads as cores come

online. These changes took 81 lines of changes. An example of dynamic thread creation is shown

in Figure 9. In the figure, the fourth stage has the lowest flow. DEDUP detects this and creates

another thread to do the fourth stage’s work. The result is the inflated version in Figure 10. In the

inflated version, the new bottleneck is the third stage. If another core was offered to DEDUP, the

third stage would be granted another thread/core.

3.3.3.4 Balanced Pipeline Experimental Results The unmodified and modified versions of

DEDUP are evaluated to determine: 1) Whether the modified DEDUP performs work more ef-

ficiently than the unmodified version given the same resources, and 2) how well the modified
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Figure 11: DEDUP experimental results

DEDUP responds to resources that dynamically come online.

DEDUP’s native input is processed in approximately 30 seconds. To conduct longer experi-

ments, a 3 GiB file is used. All experiments were performed on the machine described in Table 3.

The first experiment is to determine how much more quickly the modified DEDUP executes

as compared to the unmodified DEDUP. Each version is executed on a separate set of cores. Both

versions are forced via Linux’s taskset command to execute on three distinct sets of cores. The

time required to execute DEDUP’s region of interest (ROI) is measured. The unmodified DEDUP

to spawn three threads per pipeline stage (nine threads total), as recommended for a system with

three cores available.

The second experiment starts like the first. However, after 60 seconds in the ROI, an unused

core becomes available (four cores total). The modified DEDUP creates a thread on it. The

unmodified DEDUP is unable to respond to the availability of a new core; performance is the same

as in the first experiment.

Figure 11 shows the results of these experiments. The y-axis is the time spent in the ROI. Lower

is better. The first bar shows the unmodified DEDUP’s results (DD). The unmodified DEDUP
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Table 6: Suggested modification strategies for to create inflate/deflate-capable applications

Application Type: Application Change:
Data Parallel Work stealing computation
Fork/Join Work stealing computation
MapReduce Work stealing computation
N-Dimensional Simulation Redistribute N-dimensional space on thread count change
Pipeline Parallel Monitor work units/second of each stage, add threads to stage with slowest

throughput, remove from stages with fastest throughput
Stream processing Work stealing computation, or, see pipeline parallel application type
Unmentioned Work stealing computation
Last resort Time multiplexing by OS

processes the input file in 132 seconds. The second bar shows the inflate-deflate capable DEDUP’s

ability to process the workload (ID-C DD). It processes the input file in 120 seconds. The third bar

shows the results of giving the modified DEDUP process an additional core after 60 seconds; the

workload is processed in 110 seconds (17% speedup versus the unmodified version).

With the first two bars of Figure 11, both DEDUP versions are only given 3 cores yet the

inflate-deflate capable DEDUP (ID-C DD) is 12 seconds faster. With ID-C DD, each thread is

always schedulable. No thread has to wait for a core to become available. Threads will not be con-

text switched out. This causes their working sets to remain across scheduling quanta. Additionally,

with fewer threads, lock contention is reduced.

In conclusion, the modified version of DEDUP responds as available resources change. The

source code modifications made were significantly more involved than the modifications made to

BLACKSCHOLES. However, DEDUP is also significantly more complex than BLACKSCHOLES.

These methods and results are expected to be applicable to other pipeline-parallel applications.

3.3.4 Guide for Application Developers

Most applications are not inflate/deflate-capable. Table 6 provides guidance to developers about

how to make their applications inflate/deflate-capable. This reference table tells developers how

they should rewrite their application to become inflate/deflate-capable. The guidelines take into

account current application design. For example, the table shows that data parallel applications

36



should be rewritten to become work stealing. A work stealing application naturally supports in-

flate/deflate as worker threads can be created or destroyed on demand. At least one compute thread

per application is guaranteed by AUTO.

Work stealing is often the recommended solution. Work stealing is the most flexible model

and is well suited for inflate/deflate. Other solutions, though less flexible, may have better cache

locality and therefore better performance. For example, N-dimensional simulations (e.g., N-body

molecular simulation) can have excellent cache locality if each thread works on a subspace of the

N-dimensional space. Work stealing could cause cache thrashing for such applications.

As a last resort, AUTO can resort to time multiplexing an application’s threads instead of

creating or destroying threads. This approach can result in poor performance (e.g., if multiple

threads are scheduled onto one core). If this approach is used, the application should be launched

with as many threads as there are online or offline cores. With as many threads as cores, resources

can never be underutilized.

3.4 CONCLUSION

This chapter introduced the AUTO framework. The system administrator provides an allocation

policy and specifies control knobs to AUTO. AUTO will then make predictions about resource

allocation, thus enabling the policy. To dynamically adjust thread count, the inflation/deflation

programming model was introduced.

Inflation/deflation allows for dynamic application adaptation and resource allocation. To ex-

plore the difficulty and potential of creating applications which are inflate/deflate-capable, two

PARSEC applications were modified: BLACKSCHOLES and DEDUP. Each application was tested

in a use case.

BLACKSCHOLES was tested in a scenario where a power usage policy was in effect. BLACK-

SCHOLES shared the system with another workload. The inflate/deflate-capable BLACKSCHOLES

achieved good throughput without sacrificing performance of the other application, resulting in

increased efficiency (8.2% increase in the worst case, 51.8% increase in the best case). An

inflate/deflate-capable version of DEDUP was tested in a scenario where compute cores dynami-
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cally arrive and leave. DEDUP completed work faster than the unmodified version (9% faster) and

dynamically adapted itself to core availability at runtime (17% faster). Modification of BLACK-

SCHOLES and DEDUP to support inflate/deflate was nontrivial but worthwhile. Based on the

modification difficulty (or lack thereof) and experiments, inflate/deflate is a viable way to create

autonomic applications and systems, like AUTO. Pulling from the experiences learned while modi-

fying these applications, guidance was given to application developers to help create inflate/deflate-

capable applications.

With inflate/deflate-capable applications, the full range of AUTO resource allocations can be

made (i.e., thread count, core choice, core type). In the following chapters, AUTO’s techniques for

performance prediction are shown and evaluated.
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4.0 AUTO-TC: MODELS PARAMETERIZED BY THREAD COUNT

As applications launch and terminate, demand for cores changes, perhaps radically. Too many

threads in an application can cause harmful contention with other application threads (e.g., thread

migrations, poor cache locality, stealing CPU time). Too few threads may underutilize the system.

The choice of how many threads to use for an application, i.e. thread count, should be influ-

enced by the number of cores, number of threads in other applications, and the allocation policy.

Coordination of thread count across applications ensures that applications meet performance goals,

while not unnecessarily competing or underutilizing the system. This chapter introduces AUTO-

TC, a technique to dynamically control thread count. AUTO-TC uses profiling to build predictive

models and therefore enable policies that adjust thread count.

A solution like AUTO-TC is necessary because manual coordination of thread count among

applications is burdensome and slow to react to quickly changing workloads. Even automatic

methods to coordinate the creation of threads when an application is launched have limitations: As

other applications come and go, the ideal number of compute threads, according to the allocation

policy, for each application may vary.

The thread configuration of an application is the number of threads used by an application.

Choosing a configuration requires considering each application’s scalability, in addition to the

effects of contention and interaction.

Application models can be used dynamically to choose thread configurations. A model predicts

the performance of an application under a particular resource allocation. AUTO-TC automatically

builds application models. The models consider inter-process contention, without a priori knowl-

edge of the workload. The models are constructed offline and used at runtime. The effectiveness

of this approach is demonstrated by a policy, DYCA (Dynamic Cooperative Allocation). DYCA

uses AUTO-TC to maximize performance while ensuring that applications meet QoS.
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Table 7: AUTO-TC characteristics

Property: Value:
Model Function Mprogram(tcprogram , tccorunners)
AUTO Control Knob thread count
Profile Space O(n2), where n is the number of cores

Table 8: Overview of steps to use AUTO-TC

Step: Description: Offline? Online?
1 Select sampling budget (p) X
2 Select sampling method X
3 Use sampling method to determine profile points X
4 Profile X
5 Use linear regression techniques to build model X
6 Use allocation policy to determine thread counts X

This chapter makes the following contributions:

1. AUTO-TC: a technique to automatically build models for multithreaded CPU-bound or memory-

bound applications;

2. Sampling techniques that reduce the time to build a model;

3. Experimental evaluation of sampling and model accuracy; and,

4. Experimental evaluation of the techniques in a policy, DYCA, and comparison to conventional

resource allocations.

4.1 OVERVIEW OF APPROACH

AUTO-TC’s characteristics are shown in Table 7. Models are application-specific and consider the

effects of changing application thread count. Applications are not admitted into the system unless

they have a model. In the worst case, the profiling is quadratic in the number of cores.
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An overview of using AUTO-TC is shown in Figure 8. AUTO-TC builds models to make pre-

dictions about application performance. To prevent exhaustive profiling, the user selects a budget

and sampling method. The sampling method will determine which profile experiments must be

performed. Profiling records multithreaded application performance across thread counts of the

application and a CPU-intensive, microbenchmark corunner. The performance metric is selected

by the allocation policy (e.g., IPC). The profile data is used by linear regression to generate an

application model.

The model predicts application performance given the thread count of the profiled application

and the thread count of one or more corunners. The allocation policy will use AUTO-TC’s models

and, examining the model predictions, the policy will manipulate application thread counts.

The allocation policy is consulted if the workload changes. When a new application enters the

system, it will create threads to obtain CPU time. Existing applications may be forced to respond

to the arrival of the new application (e.g., by decreasing their thread count). Similarly, when an

application exits, CPU time may become available. As a result, the number of threads in the

remaining applications might be increased.

4.2 OFFLINE PROFILING AND MODEL GENERATION

Profiling is used to observe application performance across thread counts. We also consider a

second parameter, the number of other CPU-bound threads in the system1, in order to observe

and model the effects of CPU contention on application performance. A multithreaded syn-

thetic benchmark (described in Section 4.4) varies CPU contention. The profiling space is three

dimensional:〈tcprogram , tccorunners , z〉. tcprogram is the number of CPU-bound threads in the appli-

cation. tccorunners is the number of other CPU-bound threads. z is the ratio of the application’s

performance with tcprogram threads, sharing the system with tccorunners CPU-bound threads, over

the application’s performance with one thread on an idle system. Profiling determines z.

Ideally, the profiling step should examine an application’s performance at every value of

tcprogram and tccorunners . However, exhaustive profiling is prohibitively expensive. If an appli-

1For brevity, the term “CPU-bound threads” refers to both memory-bound threads and CPU-bound threads.
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RANDOMSAMPLE(numcpus , numpoints)

1 // Return a set of two-dimensional points, each a different profiling experiment.

2 testPoints = {〈1, 0〉}

3 while |testPoints| < numpoints

4 otherThreads = UNIFORMRANDOM(0, numcpus)

5 appThreads = UNIFORMRANDOM(1, numcpus)

6 testPoints = testPoints ∪ {〈appThreads , otherThreads〉}

7 return testPoints

Figure 12: Algorithm for performing random sampling of the profile space

cation is allowed to use between 1 and n threads on an n CPU system, a complete profiling run

would require n2 + n data points (n application thread counts · (n + 1) other CPU-bound thread

counts). As shown in Figure 2 of this thesis’s introduction, it can be beneficial to use more than n

application threads on an n-CPU system.

Two sampling methods are used to reduce the amount of profiling required: 1) random sam-

pling and 2) stepwise sampling. These methods determine the set of points that are profiled. The

number of points to profile, known as the budget, depends on how much time the user can for

the model to be produced. The trade-off between accuracy and profile budget is evaluated in Sec-

tion 4.4.

4.2.1 Random Sampling

Random sampling, shown in Figure 12, uses a discrete uniform distribution to choose profile

points. The random sampling algorithm accepts two parameters: 1) the number of cores (numcpus)

and 2) the number of profile points (numpoints).

The algorithm generates tuples in the form 〈tcprogram , tccorunners〉, ensuring that one of the
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STEPWISESAMPLE(numcpus , appStep, otherStep)

1 // Return a set of two-dimensional points, each a different profiling experiment.

2 testPoints = ∅

3 for appThreads = 1 to numcpus step appStep

4 for otherThreads = 0 to numcpus step otherStep

5 appThreadsInt = ROUND(appThreads)

6 otherThreadsInt = ROUND(otherThreads)

7 testPoints = testPoints ∪ {〈appThreadsInt , otherThreadsInt〉}

8 return testPoints

Figure 13: Algorithm for performing stepwise sampling of the profile space

profile points is 〈1, 0〉 (i.e., the point in which the application is executed with a single thread on

an idle system). This point determines baseline application performance.

Random sampling is flexible, and can readily determine a set of profile points that meets the

specified budget. Because the profile points are chosen randomly, the quality of a model built

from those points may vary. In Section 4.4, the quality of models built via random sampling is

examined.

4.2.2 Stepwise Sampling

Stepwise sampling selects profile points at regular intervals (i.e., steps) from one another. The step

distances of each dimension can be different.

Figure 13 shows the stepwise sampling algorithm. The algorithm accepts three parameters:

1) the number of cores (numcpus), 2) the step distance of the application thread count (appStep),

and 3) the step distance of the other CPU-intensive thread count (otherStep). Step distances may

be any real number greater than or equal to 1.
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shift(perf , appThreads , otherThreads , n) =
perf ·max(appThreads + otherThreads , n)

n

shift−1(perf , appThreads , otherThreads , n) =
perf · n

max(appThreads + otherThreads , n)

Figure 14: The shift transformation compensates for CPU contention

Starting at the point 〈1, 0〉, the algorithm varies the number of application threads between 1

and numcpus , incrementing by appStep. For each setting of the thread count, the algorithm varies

the number of other CPU-intensive threads between 0 and numcpus , incrementing by otherStep.

Depending on the values of appStep and otherStep, some points will not lie on integer coordinates.

As thread counts must be integers, the stepwise algorithm rounds non-integer thread counts to the

nearest integer.

The number of selected profiling points is approximately bnumcpus
appStep

c · b n+1
otherStep

c. Increasing

a step value results in fewer profile points, but diminishes the amount of information about an

application’s performance. For example, increasing appStep gives fewer application-thread-count

settings, which may make it more difficult for a model to capture scalability trends as application

thread count is changed.

For a given budget, there may be several settings of appStep and otherStep that meet that

budget. In Section 4.4, appStep and otherStep are varied to observe how the best settings of each

depend on the application and budget.

4.2.3 Building an Application Model

After sampling chooses the profile points, AUTO-TC profiles applications to observe their per-

formance in the selected configurations. An application model is then built from the profile data,

capturing the trends in the performance information.

Application performance often grows non-linearly due to a lack of access to cores (e.g., if the

system is overcommitted) and inherent scalability limitations. Modeling a non-linear phenomenon
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(e.g., by using polynomials of degree 2 or higher) is possible, but subject to overfitting and may

require burdensome amounts of training data. Predicting a plane (i.e., with multivariate linear

regression) requires less training data and is less inclined to overfitting. Therefore, linear regression

is preferable if the phenomenon is linear.

A post-processing transformation is used to account for the non-linear growth in performance

and to enable linear regression: the shift transformation. The shift transformation is shown in

Figure 14. This transformation accounts for the fact that if more threads than cores are created,

the threads will compete for CPU time. The transformation compensates for contention by scaling

performance proportional to how much the system was overcommitted. For example, if three

applications each create 12 threads (36 threads total) on 24 cores, then each application effectively

has access to only 8 cores—not 12 cores. After the transformation, the profile data is better suited

to linear regression. At runtime, if the model is consulted to make a prediction about performance,

the inverse is done (also in Figure 14).

Given the set of three-dimensional profiling points after the shift, multivariate linear regression

finds the three-dimensional plane that best fits the observed performance of the application. An

application often has linear growth as thread count increases (at least for a while), and thus, a plane

captures performance as thread count and corunner(s) thread count are varied.

An accurate model must incorporate scalability limitations of the application. Applications

may not scale linearly beyond a specific thread count. The range of thread counts in which an

application’s performance does not scale is referred to as the performance plateau.

FINDPLATEAUMODEL in Figure 15 shows how to determine the model’s performance plateau.

The plateau is found by building many candidate models, each with a different performance

plateau. The candidate model that best fits the profile data is chosen.

Figure 16 shows BUILDMODEL, used by FINDPLATEAUMODEL, to construct a model with a

specified performance plateau. Because performance stops increasing once the application’s thread

count is beyond the plateau point, the procedure ignores profile data where the application’s thread

count is greater than the plateau point. Linear regression finds the plane that fits the remaining

data. Because the data is three-dimensional, the plane has 3 components: an offset and two slopes.

One slope, the scalability factor, captures how performance is affected by changing thread count.

The other slope, the interference factor, captures how performance is affected by the presence of
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FINDPLATEAUMODEL(trainingData, plateauPoints)

1 // Evaluate many models by varying the plateau setting. Return the best one.

2 bestModel = ∅, bestModelError =∞

3 for p ∈ plateauPoints

4 model = BUILDMODEL(trainingData, p)

5 error = TESTMODEL(model , trainingData)

6 if error < bestModelError // A better fitting performance plateau.

7 bestModel = model

8 bestModelError = modelError

9 return bestModel

Figure 15: Algorithm for determining an application’s performance plateau

BUILDMODEL(trainingData, plateauPt)

1 confPts = ∅, perfPts = ∅

2 for point ∈ trainingData

3 if point .threadConfiguration.appThreads ≤ plateauPt

4 confPts .append(point .threadConfiguration)

5 perfPts .append(point .result)

6 model .plateauPt = plateauPt

7 model .linearModel = REGRESSION(confPts , perfPts)

8 return model

Figure 16: Algorithm for building an application model

other CPU-intensive threads.
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Figure 17: Visualization of an example CANNEAL model

Figure 17 shows a sample model for CANNEAL [10]. The model shows that if CANNEAL’s

thread count is greater than 20, its performance stops increasing. This flat region is due to CAN-

NEAL’s inability to scale past 20 threads (i.e., CANNEAL’s performance plateau). The reduction

in performance as the number of other threads increases, shows that CANNEAL is susceptible to

contention (i.e., its interference factor is negative). This characteristic can be seen by observing

that CANNEAL’s performance decreases as additional corunner threads are used. CANNEAL scales

well (i.e., it has a good scalability factor): if executed with 20 or more threads on an idle system,

CANNEAL achieves a speedup of about 12.

Figure 18 shows the algorithm to query a model (CONSULTMODEL). Intuitively, an applica-

tion using zero threads has no throughput. If the model is queried about the application’s perfor-
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CONSULTMODEL(model , conf )

1 if conf .appThreads == 0

2 return 0

3 originalAppThreadCount = conf .appThreads

4 if conf .appThreads > model .plateauPt

5 // Application model says performance does not scale past model .plateauPt .

6 conf .appThreads = model .plateauPt

7 prediction= model .offset + model .scalabilityFactor · conf .appThreads+

8 model .interferenceFactor · conf .otherThreads

9 prediction = SHIFT−1(prediction, originalAppThreadCount , conf .otherThreads)

10 if prediction < 0

11 // Prevent nonsensical predictions.

12 prediction = 0

13 return prediction

Figure 18: Algorithm for consulting a model to make a performance prediction

mance at the performance plateau, the procedure makes a prediction about the performance at the

start of the plateau. To make a prediction, the procedure uses the multivariate linear regression

model. The inverse of the SHIFT function (SHIFT−1), is then used (Figure 14).

A model captures application behavior as revealed through profiling. AUTO-TC assumes that

application behavior (e.g., scalability) is nearly consistent across inputs. For many modern multi-

threaded scientific applications (e.g., the majority of PARSEC) this assumption holds [11]. Once

the model is constructed, it can be used across many invocations of the application. If an appli-

cation’s input does significantly affect behavior, methods exist to ascertain the input’s effect(s) on

application scalability and susceptibility to interference [104]. The effects could then be merged

with the application’s model.
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CHOOSECONFIGURATION(models , systemPolicy , possibleConfigurations)

1 // Consider each possible configuration in possibleConfigurations ,

2 // and return the best configuration according to the systemPolicy .

3 bestConfiguration.policyMetric = −∞

4 for conf ∈ possibleConfigurations

5 conf .policyMetric = systemPolicy(conf ,models)

6 if conf .policyMetric > bestConfiguration.policyMetric

7 bestConfiguration = conf

8 return bestConfiguration

Figure 19: Algorithm to find the best configuration (thread counts) for applications given their

models

4.3 ONLINE CONFIGURATION

The model for an application can be used to select a system configuration (number of threads in

each application). Figure 19 shows the algorithm to choose a system configuration. The algorithm

accepts three parameters: 1) a model for each application, 2) an evaluation function to judge the

quality of a configuration (i.e., an allocation policy), and 3) the configurations to evaluate. In

Section 4.4.2, AUTO-TC is used in a policy to maximize performance while meeting QoS goals.

With n cores, applications can use between 1 and n threads. With m applications there are

nm possible configurations. This algorithm uses brute force examination of each possible config-

uration. Because consulting a model is fast, a brute force approach is reasonable. For example, it

takes less than 0.05 seconds to consider 245 configurations on the evaluation machine. That is, for

5 applications and 24 cores, a configuration can be chosen in 0.05 seconds. A brute force approach

is also amenable to parallelization.

AUTO-TC selects a configuration when an application starts or stops execution. Application
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behavior may change while the application executes, necessitating that reconfiguration take place

more often. Handling phase changes is expected to be a natural extension: each phase of an

application can correspond to a different model, as opposed to the current approach that has one

model for the whole execution of the application.

4.4 EXPERIMENTAL EVALUATION

This section examines how the models capture the behavior of the full profiling space, make accu-

rate predictions of normalized application throughput, and enable an allocation policy. The evalu-

ation uses a subset of the PARSEC suite: BLACKSCHOLES (BS), BODYTRACK (BT), CANNEAL

(CN), STREAMCLUSTER (SC), and SWAPTIONS (SW) [10]. In addition, LUXRENDER (LX), a

physically accurate multithreaded raytracer, is also used [60]. The applications were modified to

track their throughput (work units per second). If multiple implementations of an application are

available, the pthread implementation is used. Some applications from PARSEC are not used

due to limitations in available inputs and/or thread configuration flexibility (e.g., requiring thread

counts to be a power of 2).

For each workload, applications are suspended to RAM once fully initialized. Once all ap-

plications are ready to start their parallel work, they are simultaneously released to create worker

threads. This methodology ensures maximal CPU contention. Throughput measurements are taken

while all applications perform their parallel work.

The corunner is a multithreaded benchmark developed for use in profiling experiments. Each

corunner thread performs integer arithmetic on a private array that fits within an L1 cache. The

threads do not share data. In Section 4.5, corunners which generate various amounts of memory

traffic are considered.

All experiments were done on the machine described in Table 9. Due to the number of experi-

mental configurations, it is infeasible to perform full experiments on all 48 cores (4 sockets) of the

machine. Experiments are instead performed on 24 cores (2 sockets). The reduction in available

cores is enforced with Linux’s taskset command. To provide more model flexibility, and there-

fore, better capture application behavior, performance plateau points can be any multiple of 0.025
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Table 9: AUTO-TC experimental machine

Machine Component Component Details
Processors 4 AMD Opteron 6164 HE sockets (48 cores total)
Socket 2 NUMA nodes
NUMA Node 1 L3 cache (LLC)
L3 Cache 5 MiB cache, 6x cores
Core 1.7 GHz, private L1 $ (64 KiB), private L2 $ (512 KiB)
Operating System Linux 2.6.39.1

between 1 and 24.

4.4.1 Model Accuracy

In this section, the advantages and disadvantages of each sampling method (random and stepwise)

are evaluated. Each sampling method is evaluated with four time budgets: 15, 30, 60, and 120

minutes. These budgets capture a range of delay that a developer would be willing to experience

before he/she can make use of the application model. Each profiling experiment takes 2.5 minutes.

Therefore, the time budgets correspond to 6, 12, 24, and 48 profile points.

Each profiling experiment consistently takes 2.5 minutes. 1.5 minutes is allowed for applica-

tion initialization. Many of the applications take less time to initialize (e.g., LUXRENDER and

STREAMCLUSTER start their parallel work within 10 seconds of application launch). For experi-

mental simplicity, all applications are treated as requiring 1.5 minutes of startup time.

At the end of the initialization period, the application parallel region-of-interest is started. At

the end of the minute, throughput is measured and the application is stopped. The relative increase

of application throughput compared to single-threaded throughput is the speedup.

For each combination of budget, application, and sampling method, the models are built and

compared. First, models are compared with regards to their ability to capture the behavior of the

full, unsampled profiling space. Second, models are compared based on their ability to predict

individual application and system performance.
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Table 10: Comparison of the sampling techniques with a 15 minute budget (6 points)

Application Average Random Best Stepwise Best Stepwise
Sampling Test MSE Sampling Parameters Sampling Test MSE

BLACKSCHOLES 0.43 (12.0, 9.5) 0.18
BODYTRACK 3.84 (11.75, 11.0) 1.72
CANNEAL 3.48 (12.0, 10.25) 1.42
LUXRENDER 0.99 (12.0, 8.75) 1.43
STREAMCLUSTER 1.06 (12.0, 8.25) 1.11
SWAPTIONS 2.99 (12.0, 9.5) 0.82

Table 11: Comparison of the sampling techniques with a 30 minute budget (12 points)

Application Average Random Best Stepwise Best Stepwise
Sampling Test MSE Sampling Parameters Sampling Test MSE

BLACKSCHOLES 0.22 (10.25, 7.0) 0.15
BODYTRACK 2.13 (10.75, 7.5) 1.46
CANNEAL 1.91 (6.5, 10.25) 1.16
LUXRENDER 0.48 (7.25, 11.75) 0.31
STREAMCLUSTER 0.67 (6.5, 9.5) 0.52
SWAPTIONS 1.52 (7.5, 11.75) 0.77

Table 12: Comparison of the sampling techniques with a 60 minute budget (24 points)

Application Average Random Best Stepwise Best Stepwise
Sampling Test MSE Sampling Parameters Sampling Test MSE

BLACKSCHOLES 0.19 (7.25, 4.25) 0.14
BODYTRACK 1.55 (4.25, 6.5) 1.34
CANNEAL 1.35 (4.0, 6.5) 1.08
LUXRENDER 0.37 (3.25, 8.75) 0.29
STREAMCLUSTER 0.53 (4.0, 6.25) 0.41
SWAPTIONS 0.91 (4.5, 7.5) 0.69

4.4.1.1 Sampling Behavior For evaluation purposes, all profiling data is gathered. A model is

built for each application, sampling method, and budget. Each model is used to predict the profile

points not used for training. The mean squared error (MSE) of each model at predicting the unseen

profile points is compared. This MSE is the test MSE. Tables 10–13 show these results. Table 14

shows the overall average.
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Table 13: Comparison of the sampling techniques with a 120 minute budget (48 points)

Application Average Random Best Stepwise Best Stepwise
Sampling Test MSE Sampling Parameters Sampling Test MSE

BLACKSCHOLES 0.17 (3.25, 4.25) 0.14
BODYTRACK 1.40 (3.25, 4.25) 1.28
CANNEAL 1.12 (2.0, 6.5) 1.01
LUXRENDER 0.33 (3.25, 4.25) 0.29
STREAMCLUSTER 0.47 (2.0, 6.75) 0.40
SWAPTIONS 0.73 (2.0, 7.5) 0.67

Table 14: Overall comparison of the sampling techniques across profiling budgets

Budget Random Sampling Stepwise Sampling Stepwise Sampling
Test MSE, σ Parameters Test MSE, σ

6 points 2.13, 1.34 (12.0, 10.25) 1.21, 0.54
12 points 1.16, 0.73 (7.25, 9.5) 0.77, 0.47
24 points 0.82, 0.50 (4.5, 6.75) 0.69, 0.43
48 points 0.70, 0.44 (3.25, 4.25) 0.65, 0.40

Because stepwise sampling can meet a single budget in multiple ways2, the best setting, in

terms of error, is shown. The parameters to the stepwise sampling are shown in the “Best Stepwise

Sampling Parameters” column in the form of (appStep,otherStep).

Random sampling is, by definition, unpredictable. It may accidentally select very useful or

useless profile points. Across the evaluated budgets, it takes no more than 22 models built with

random sampling before average prediction converges to within 5% of the previous prediction

(i.e., the models “settle” on a prediction once there is, at most, 22 models). For the models pre-

dicting BLACKSCHOLES’s, LUXRENDER’s, and STREAMCLUSTER’s throughputs, the models

settle once there are 12 or fewer models. To provide additional confidence that the randomly built

models agree, 50 models are built and their average prediction is used. The average prediction is

an expected prediction. In practice, a model built with random sampling (i.e., not the average-case

prediction) may make better or worse predictions.

Table 10 shows the results for the smallest budget (15 minutes, 6 points). Stepwise sam-

2I.e., multiple settings of appStep, otherStep can result in the same number of profile points being selected.

53



pling outperforms random sampling, except for STREAMCLUSTER and LUXRENDER. The poor

models generated by stepwise sampling in these two cases are due to the low budget. Stepwise

sampling uniformly chooses profile points, and thus a low budget may fail to reveal crucial perfor-

mance trends. With a larger budget, stepwise sampling consistently outperforms random sampling.

With a 15 minute budget, some applications are more easily predicted than others. Regardless

of sampling method, BLACKSCHOLES has a much lower test MSE than BODYTRACK. There

is little variation among the best parameters to the stepwise sampling method: due to limited

flexibility with such a small budget, all applications prefer an appStep of about 12.

The second smallest budget (30 minutes, 12 points) results are shown in Table 11. Both sam-

pling methods have improvement with 12 profile points versus the previous budget of 6 points.

However, models built with stepwise sampling have less improvement than random sampling,

which is due to the already good stepwise sampling results with a 6 point budget. The best stepwise

parameters for each application are now different. For example, BLACKSCHOLES prefers an

appStep of 10.25, resulting in BLACKSCHOLES being trained on thread counts of 1, 11, and 22.

STREAMCLUSTER prefers an appStep of 6.5 (thread counts of 1, 8, 14, and 21). Examination

of the full profile data reveals that BLACKSCHOLES’s performance scales linearly. Therefore,

experiments that vary its thread count reveal little additional information. The profile budget is

better used to vary the number of other CPU-intensive threads (a smaller value of otherStep).

Using a 60 minute budget (24 points) results in better models, although the relative improve-

ment in MSE diminishes. These results are in Table 12.

The biggest budget results (120 minutes, 48 profile points) are shown in Table 13. Like the

60 minute results, the 120 minute budget continues to improve a small amount. It is interesting to

note that the best application model generally prefers appStep to be half the value of otherStep.

The relationship between appStep and otherStep suggests that for each corunner thread setting to

be profiled, two different application thread settings should be profiled.

Table 14 shows overall MSE averages for each sampling policy and budget. Also shown is the

standard deviation and the best average stepwise sampling parameters. This figure shows which

sampling policy, on average, produces a model that best matches application behavior under full

training data. In this regard, stepwise sampling is clearly more accurate than random sampling.

On average, it produces better, more consistent models. For all sampling methods, larger budgets
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produce better models but with dwindling returns. The model design inhibits overfitting, so MSE

will never be zero.

4.4.1.2 Sampling Accuracy Analysis Although Section 4.4.1.1 showed that stepwise sam-

pling was better than random sampling, those experiments only examined the models in reflecting

application behavior with a known corunner. It is also necessary to consider the behavior with one

or more unknown corunners.

Experiments were conducted with all sets of 1 to 4 applications. Application thread counts

were taken from {1, 8, 16, 24}. System configurations with more than 48 CPU intensive threads are

disregarded, as the system is overloaded by more than a factor of 2. The evaluation of an overloaded

system serves as a stress test of AUTO-TC. There were over 3,000 experiments conducted.

In each experiment, actual application throughput is measured and compared to the model

predictions (one model per application per sampling method per budget, in addition to models

built without sampling).

For random sampling at a given budget, the average prediction from 50 models to produce an

expected prediction. The previous section determined the single set of parameters that gave the

overall best performance across applications. Therefore, those parameters are used (Table 14).

Results are averaged based on how many applications were executed simultaneously (Ta-

bles 15–18). In each figure, the first column is the sampling method and budget. The next six

columns show application average MSEs. The overall MSEs is in the eighth column and the ninth

column shows the overall MSE of experiments not involving CANNEAL or SWAPTIONS due to

their unusual behavior (discussed later).

Table 15 shows the model accuracy summaries for experiments with 1 application. Generally,

using more sampling points leads to better accuracy due to more information. Stepwise sampling

on average (whether the overall average or average without CANNEAL and SWAPTIONS) slightly

outperforms random sampling. Some applications exhibit unusual behavior as sampling budget

is increased. The extremely low MSE of BLACKSCHOLES’s (0.02 MSE) when using stepwise

sampling (6 points) is an uncharacteristic result. The expected error is 0.14 (MSE of 0.02 is

a mean error of 0.14). LUXRENDER performs poorly (9.22 MSE) under stepwise sampling (6

points) because its performance is overestimated at 24 threads (a normalized throughput of 19.78
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Table 15: Average model accuracy using 1 application

Sampling BS BT CN LX SC SW Overall No CN, SW
Method MSE MSE MSE MSE MSE MSE MSE Overall MSE

None (All Points) 0.71 2.98 10.39 0.66 0.22 1.67 2.77 1.14
Random (6 Points) 1.23 0.20 10.27 0.45 0.92 2.49 2.59 0.70
Random (12 Points) 0.77 0.58 10.48 0.33 0.40 1.86 2.40 0.52
Random (24 Points) 0.68 1.19 9.57 0.48 0.28 1.62 2.30 0.66
Random (48 Points) 0.56 1.80 9.94 0.55 0.24 1.52 2.44 0.79
Stepwise (6 Points) 0.02 1.76 5.06 9.22 1.83 0.22 3.02 3.21
Stepwise (12 Points) 0.31 0.60 8.77 0.45 0.34 1.09 1.93 0.42
Stepwise (24 Points) 0.13 1.46 6.68 0.26 0.11 1.07 1.62 0.49
Stepwise (48 Points) 0.33 1.40 9.03 0.54 0.06 1.03 2.06 0.58

versus 13.75). Other experiments show that models for LUXRENDER generally perform well.

BODYTRACK, CANNEAL, and SWAPTIONS have counterintuitive results. CANNEAL and

SWAPTIONS are sensitive to the choice of profile points. For CANNEAL and SWAPTIONS mod-

els built with stepwise sampling, more profile points results in worse models due to the selected

profiling points.

BODYTRACK’s error comes from how the model-building process builds trends from the pro-

file data. BODYTRACK scales well (slope of 1) for 1 to 4 threads, then its scalability drops, curving

but never flattening. As more profile points are observed, the models “notice” the area of sharp

performance increases and try to account for it. Without more information and flexibility3, they

overestimate performance for low thread counts and overestimate performance for higher thread

counts. Nevertheless, BODYTRACK’s MSE is reasonable (under 3.00). This behavior is also ex-

hibited in experiments with corunners.

Table 16 shows model accuracy in experiments with two applications. Applications may con-

tend for CPU time and/or processor resources (e.g., cache space). The total number of CPU-

intensive threads may exceed the number of cores. In general, the models have more prediction

error due to application interactions on a shared, potentially overloaded system (about 40% higher

MSE). Overall averages show that stepwise sampling consistently outperforms random sampling,

but not drastically so. The advantage of stepwise sampling is a result of relatively simple system

3Models are limited to a single area of linear growth, followed by an optional area of no-growth.
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Table 16: Average model accuracy using 2 applications

Sampling BS BT CN LX SC SW Overall No CN, SW
Method MSE MSE MSE MSE MSE MSE MSE Overall MSE

None (All Points) 2.27 3.74 4.60 3.18 0.49 8.27 3.76 2.12
Random (6 Points) 2.46 2.57 4.21 2.92 0.59 9.49 3.71 1.88
Random (12 Points) 2.22 2.56 3.80 2.78 0.42 8.90 3.45 1.73
Random (24 Points) 2.24 2.77 3.79 2.95 0.39 8.53 3.44 1.81
Random (48 Points) 2.16 3.11 4.14 3.05 0.39 8.38 3.54 1.89
Stepwise (6 Points) 1.82 2.43 3.02 4.20 1.12 5.89 3.08 2.36
Stepwise (12 Points) 2.30 2.56 3.73 3.27 0.33 7.95 3.36 1.81
Stepwise (24 Points) 2.07 2.96 3.67 3.10 0.34 8.31 3.41 1.81
Stepwise (48 Points) 2.06 2.94 3.97 3.02 0.49 7.86 3.39 1.82

Table 17: Average model accuracy using 3 applications

Sampling BS BT CN LX SC SW Overall No CN, SW
Method MSE MSE MSE MSE MSE MSE MSE Overall MSE

None (All Points) 2.86 4.01 3.29 3.84 0.42 9.08 3.92 2.34
Random (6 Points) 2.92 2.61 2.56 3.63 0.60 8.49 3.47 2.06
Random (12 Points) 2.77 2.59 2.36 3.35 0.41 8.59 3.34 1.92
Random (24 Points) 2.83 2.89 2.53 3.58 0.35 8.61 3.47 2.03
Random (48 Points) 2.74 3.33 2.86 3.70 0.35 8.87 3.64 2.12
Stepwise (6 Points) 2.43 3.12 2.26 3.76 0.68 6.57 3.14 2.33
Stepwise (12 Points) 3.15 2.78 2.38 4.22 0.47 8.09 3.52 2.25
Stepwise (24 Points) 2.80 3.42 2.92 3.70 0.37 9.45 3.77 2.18
Stepwise (48 Points) 2.67 3.19 2.86 3.70 0.46 8.70 3.60 2.10

contention as compared to evaluations with three or four applications.

For two applications at once, models for CANNEAL show a significant reduction in MSE as

compared to predictions for performance when executed alone. The improvement in accuracy is

due to the models underestimating CANNEAL’s performance when not sharing the system. Models

for SWAPTIONS have the opposite tendency. They predict SWAPTIONS’s performance relatively

accurately if SWAPTIONS is executed alone, but consistently underestimate performance on a

shared system.

Tables 17 and 18 show results with three and four applications executing at once. Overall MSEs

are not significantly worse than two applications at once. Disregarding two outliers (CANNEAL,
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Table 18: Average model accuracy using 4 applications

Sampling BS BT CN LX SC SW Overall No CN, SW
Method MSE MSE MSE MSE MSE MSE MSE Overall MSE

None (All Points) 2.32 3.55 2.68 3.40 0.34 7.59 3.31 1.97
Random (6 Points) 2.30 2.19 1.86 3.20 0.64 6.67 2.81 1.72
Random (12 Points) 2.23 2.23 1.82 2.91 0.37 6.99 2.76 1.59
Random (24 Points) 2.30 2.54 2.04 3.15 0.28 7.05 2.90 1.69
Random (48 Points) 2.22 2.95 2.32 3.26 0.27 7.35 3.06 1.78
Stepwise (6 Points) 2.05 2.93 1.98 3.18 0.48 5.50 2.69 1.95
Stepwise (12 Points) 2.73 2.47 1.91 3.90 0.48 6.63 3.02 2.01
Stepwise (24 Points) 2.37 3.08 2.57 3.26 0.30 8.03 3.27 1.85
Stepwise (48 Points) 2.18 2.84 2.38 3.30 0.39 7.30 3.06 1.77

and SWAPTIONS), stepwise sampling generally leads to models with lower error as the budget is

increased. This effect is due to additional interference information.

For three or more applications, stepwise sampling is no longer the best sampling method:

random sampling almost always has slightly better MSE. Random sampling is now better because

it is better at predicting interference across multiple running applications. Random sampling picks

profile points uniformly at random. In these experiments, stepwise sampling’s parameters are hard-

coded to vary the number of application threads about twice as much as the number of corunner

threads (Table 14).

Random sampling results in models that on average work about as well as stepwise sampling.

Due to the random selection of sampling points, a single model may behave better or worse than

the average model. To get an expectation, the average prediction of 50 randomly produced models

was computed.

Across trials and sampling methods, AUTO-TC’s models often predict application perfor-

mance quite well (e.g., MSEs of less than 3). Even if an application does not perform as well

as desired (e.g., CANNEAL, SWAPTIONS), the models still capture general trends.

Further testing was performed with all pairs of applications across all thread counts. Models

built with stepwise sampling and a 6 point budget select configurations that achieve on average

90% of the available system performance. This indicates that the models do a good job maximizing

system performance across diverse workloads.
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Based on the results in this section, stepwise sampling with a budget of 6 points is the preferred

sampling technique and budget. Models built in this way achieve a good balance between accuracy

and the time necessary to build them. Using a larger sampling budget can result in slightly better

predictions but the additional profiling cost may double (or more) the time required to build a

model.

4.4.2 DYCA: A Policy to Meet Quality of Service Constraints

To demonstrate the utility of the models, the Dynamic Cooperative Allocation policy (DYCA) pol-

icy is implemented and evaluated. DYCA makes use of the AUTO-TC models to meet QoS. Its

secondary objective is to maximize system throughput. DYCA is useful in, for example, shared

scientific-computing environments (e.g., a shared university machine). It allows applications to

utilize idle resources, while still respecting individual user needs. The model building techniques

are expected to enable additional policies that work with other performance metrics.

In Section 4.4.1.2, stepwise sampling with a budget of 6 points was selected as the best way to

build models. Table 19 contains the parameters of the models used by DYCA4.

Figure 20 gives the algorithm for DYCA. The policy uses the models to quantify the quality of

a configuration (i.e., a prediction of how many applications will meet QoS). Configuration quality

is equal to the number of applications that are expected to meet QoS. This number is multiplied by

a large constant, as meeting QoS is the primary goal. To break ties, the expected system throughput

is added5. The configuration that best meets QoS while maximizing aggregate system performance

will be applied by DYCA.

The effectiveness of the DYCA is compared to three static policies: 1) Free-for-All (FRE-

FORA), 2) “Uniform Partition” (UNIPAR), and 3) “Application Maximum” (APPMAX). FRE-

FORA grants each application as many threads as cores. It ensures that the system is fully utilized,

at the risk of overcommitting cores. UNIPAR considers that multiple applications will be executed.

It grants each application an equal share of cores (i.e., if there are m applications and n cores then

each is allowed to create n
m

threads). This policy avoids overcommitting the system.

APPMAX takes into account limits in scalability. Each application is granted as many threads

4A performance plateau at∞ indicates expected continued scaling.
5The constant large number should be greater than any possible expected system throughput.
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Table 19: QoS experiment application models

Application Offset Interference Scalability Performance
Factor Factor Plateau

BLACKSCHOLES 0.66 -0.02 0.50 ∞
BODYTRACK 1.62 -0.12 0.66 ∞
CANNEAL 1.85 -0.13 0.57 ∞
LUXRENDER 0.55 -0.03 0.80 ∞
STREAMCLUSTER 0.59 0.02 0.21 ∞
SWAPTIONS 1.04 -0.09 0.85 ∞

DYNAMICCOOPERATIVEALLOCATIONEVALUATOR(configuration,models)

1 // Return a metric signifying the quality of configuration . Prioritize meeting quality of
2 // service goals. As a tie breaker the configuration that maximizes system performance
3 // will be selected.
4 prediction = FINDPREDICTEDBEHAVIOR(configuration,models)
5 metric = prediction.QoSGoalsMet ∗ LARGE CONSTANT + prediction.SystemThroughput
6 return metric

Figure 20: Algorithm for Dynamic Cooperative Allocation

as necessary to ensure that it reaches its performance plateau on an idle system. For this policy,

performance plateaus were determined with full profiling data, without a training corunner, and the

FINDPLATEAUMODEL algorithm. Therefore, this policy requires a profiling step. With multiple

applications, it may overcommit the system. This policy has BLACKSCHOLES and SWAPTIONS

use 24 threads. BODYTRACK and CANNEAL use 19 and 20 threads. LUXRENDER uses 16

threads and STREAMCLUSTER uses 5.

To compare the policies, the system executes 1 to 4 applications simultaneously. Each applica-

tion is assigned a QoS, Q. A QoS of Q means that the application should execute at least Q times

faster than if executed with a single-thread. Q should be chosen by the user after considering min-

imum performance requirements and application scalability. We select Q from the set {2, 5, 8}.

These Q values represent a range of priorities from low to high. All valid combinations of applica-
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Figure 21: Percentage of QoS met, across number of concurrent applications

Table 20: Percentage of QoS met, across workloads using a specific application

Application FREFORA UNIPAR APPMAX DYCA
QoS Met QoS Met QoS Met QoS Met

BLACKSCHOLES 48.5% 56.1% 48.0% 72.0%
BODYTRACK 52.6% 59.3% 53.8% 72.2%
CANNEAL 52.1% 60.4% 53.7% 71.9%
LUXRENDER 54.0% 61.3% 53.6% 74.4%
STREAMCLUSTER 46.3% 53.9% 49.4% 68.0%
SWAPTIONS 53.0% 61.5% 51.8% 74.0%
across all applications 53.8% 60.5% 54.2% 73.7%

tions and QoS settings are evaluated (over 1,700 experiments). STREAMCLUSTER scales poorly

and cannot achieve a Q of 8 on the evaluated machine, so it is evaluated for Q ∈ {2, 5}.

4.4.2.1 Achieved QoS Figure 21 shows the average number of times QoS is met, divided into

categories based on how many applications executed at once. Executing a single application,
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regardless of policy, results in QoS being met 94% of the time. QoS is not 100% due to STREAM-

CLUSTER. As shown in Figure 1, STREAMCLUSTER’s behavior has several local maxima and

minima. Although STREAMCLUSTER can, in the right circumstances, meet a QoS goal of 5, none

of the evaluated policies select a thread count which does so.

For 2 applications executing at once, the static policies perform nearly the same, meeting QoS

about 85% of the time. However, DYCA meets QoS 92% of the time (about 8% more often than

the next best policy) because it considers application scalability and susceptibility to interference.

Executing 3 or 4 applications at a time, all policies have a more difficult time meeting QoS.

The increased difficulty is due to more applications contending for the same cores. Once again, the

static policies perform worse than DYCA. With 3 applications, the best static policy (FREFORA)

meets QoS 63% of the time. DYCA meets QoS 79% of the time (25% more often). With 4

applications, it meets QoS 68% of the time, which is 23% better than UNIPAR, the next best static

policy. As the average results columns show, regardless of the number of applications, DYCA

meets QoS 22% more often than the next best static policy, UNIPAR.

Because applications exhibit diverse behavior, experiments are summarized to reveal how the

application itself affects the ability of the policies to meet QoS. Table 20 shows the results grouped

in this way. For example, a system executing LUXRENDER, among other applications, allows

DYCA to more easily meet QoS (74%). LUXRENDER scales well and can meet the toughest QoS

constraint (Q = 8) with a low thread count (9), leaving cores available for other applications. How-

ever, if executing STREAMCLUSTER, DYCA meets QoS 68% of the time. STREAMCLUSTER

scales poorly, causing other applications to be unable to meet QoS due to limited CPU availability.

4.4.2.2 System Performance In addition to examining how well each policy meets QoS, it is

also important to consider overall system throughput. The policies may conservatively meet QoS

rather than maximize throughput while also meeting QoS. Figure 22 shows the average system

aggregate throughput as a function of how many applications execute together.

For a system with a single application, each policy, except for APPMAX, achieves a throughput

of 15. APPMAX achieves a throughput of about 14. It may underestimate how many threads an

application requires to reach maximum performance.

If multiple applications are executed, performance differences become apparent. With two ap-
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Figure 22: System performance for each policy, across number of concurrent applications
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Table 21: System performance for each policy, across workloads using a specific application

Application FREFORA UNIPAR APPMAX DYCA
Throughput Throughput Throughput Throughput

BLACKSCHOLES 17.7 18.6 17.9 20.0
BODYTRACK 19.4 19.5 19.9 20.5
CANNEAL 19.0 19.8 19.6 20.5
LUXRENDER 19.2 19.6 19.7 20.6
STREAMCLUSTER 17.6 17.5 18.9 19.8
SWAPTIONS 19.8 20.1 20.0 21.3
across all applications 18.7 19.1 19.3 20.3

plications, DYCA and APPMAX essentially tie, outperforming FREFORA and UNIPAR by about

5%. If three applications are executed, DYCA has slightly better system performance, achieving

19.8 versus the next best policy at 19.2 (APPMAX). For four applications, DYCA continues to

outperform the other policies. It achieves an average system throughput of 20.9 versus 19.5 for

APPMAX. Policies that consider application performance at various thread counts, like DYCA,

have a distinct advantage over purely static policies. AUTO-TC clearly enables such policies.

Table 21 shows the average aggregate system throughput separated into categories based on
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Figure 23: Example dynamic workload scenario showing system throughputs and whether QoS

goals of applications are met. Numerical subscripts indicate QoS goals.

whether an experiment used a particular application. There is some variation to be observed, sug-

gesting that certain applications help or hinder a policy to maximize system performance. For

example, experiments with SWAPTIONS have the highest average system throughput across all

policies. This fact suggests that SWAPTIONS behaves “well” and allows policies to maximize

throughput. Experimental data shows that SWAPTIONS scales very well and can achieve a through-

put of 21.6 if using 24 threads. Perfect linear scaling (slope of 1) would achieve a throughput of

24. Experiments involving STREAMCLUSTER have the worst average system throughput due to

STREAMCLUSTER’s poor scalability.

A representative scenario is examined, wherein the workload is changed throughout multiple

intervals (Figure 23). The system throughput and QoS achieved by DYCA and APPMAX are

shown. The workload in each interval is shown. Numeric subscripts indicate target QoS. The

height of the lines indicates normalized system aggregate throughput across each policy (higher is

better). Whether an application met QoS during an interval is shown near the x-axis. A X indicates
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QoS was met. A × indicates the application did not meet QoS constraints.

In the first interval, both policies achieve identical system throughput and QoS by giving

BLACKSCHOLES 24 threads. The second interval again shows that both policies meet QoS, but

DYCA chooses a configuration that improves system performance. APPMAX assigns 24 threads

to BLACKSCHOLES and 20 threads to CANNEAL. DYCA assigns 4 and 20 threads respectively.

In the third interval, with 3 applications executing, both policies fail to achieve all QoS constraints.

However, DYCA achieves better system throughput and meets 2 out of 3 QoS goals. APPMAX

only meets 1 QoS goal. It assigns 24, 20, and 5 threads to BLACKSCHOLES, CANNEAL, and

STREAMCLUSTER respectively. This assignment overloads the system (i.e., more CPU inten-

sive threads than cores). DYCA assigns 4, 19, and 1 threads. BLACKSCHOLES’s desired QoS

is low (Q = 2) and therefore needs only four threads to meet QoS. The remaining cores are

not overcommitted by DYCA. CANNEAL, which scales the best, is given the majority of cores.

STREAMCLUSTER scales poorly and DYCA “gives up” on it, as it is expected to be unable to

meet QoS.

In the following interval, both applications satisfy QoS, although APPMAX results in marginally

better system throughput. APPMAX statically gives 20 threads to CANNEAL and 24 threads to

STREAMCLUSTER. DYCA gives 5 threads to CANNEAL and 19 threads to STREAMCLUSTER. In

this interval, DYCA behaves conservatively, missing an opportunity for slightly increased system

performance.

In the final interval, both policies tie (24 SWAPTIONS threads). Overall, DYCA was better

able to meet QoS and maximize system aggregate throughput than APPMAX.

Across all experiments, on average, DYCA achieves an average system throughput of 20.30.

The next best static policy is APPMAX, which achieves an average system throughput of 19.3.

However, system performance is secondary to QoS. Even though DYCA meets QoS 22% more

often, it also improves system performance by about 6% (DYCA’s 20.3 average system throughput

versus UNIPAR’s 19.1 average system throughput).
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4.5 SENSITIVITY TO MEMORY SUBSYSTEM INTERFERENCE

Multithreaded applications contend for memory resources (e.g., shared caches and memory buses)

in addition to CPU access. Memory contention could significantly degrade application perfor-

mance. This section evaluates the use of DYCA models built with a memory intensive corunner.

Recommendations are provided about the choice of corunner to use when building application

models.

Three memory intensive corunners are considered. Each corunner thread operates on a private

10 MiB array of integers. The corunners use different array access patterns. The first corunner

reads and writes each integer (stride of 1), the second corunner operates on every 8th integer (stride

of 8), and the last corunner does the same to every 16th integer (stride of 16). On the evaluation

machine, every 16th integer lies on a new L3 cache line.

The access patterns capture a range of memory behavior, from good locality (stride of 1) to

poor locality (stride of 16: each read and write occurs on a new cache line). Application models

are built using the new memory intensive corunners and the best sampling procedure (stepwise

sampling with 6 points). The use of new corunners creates three model variants, each of which is

evaluated under DYCA: DYCA+Mstride1 , DYCA+Mstride8 , and DYCA+Mstride16 .

Table 22 shows the percent of experiments that met QoS constraints, across each model variant.

The more locality there is in the training corunner, the better the policy is able to meet QoS.

DYCA+Mstride1 meets QoS more often than DYCA+Mstride8 (16% more often). DYCA+Mstride8 is

slightly better than DYCA+Mstride16 (meeting QoS about 3% more often). The original corunner’s

working set fits within each core’s L1 cache. Therefore, it has excellent locality. The original

corunner achieves QoS more frequently than any other policy (71.2% of the time versus the second

best policy’s 70%). These results show that the original corunner results in more accurate models

and that its interference is more similar to that of the evaluated applications.

Table 23 shows the average system throughput achieved by the policies. The best policy is

still the base one with the CPU-intensive corunner (DYCA). DYCA+Mstride1 and DYCA+Mstride8

on average perform the same. For experiments involving BLACKSCHOLES, DYCA+Mstride1 per-

forms slightly better than DYCA+Mstride8 . However, in experiments involving BODYTRACK,

STREAMCLUSTER, and SWAPTIONS, DYCA+Mstride8 performs better than DYCA+Mstride1 . The
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Table 22: Percentage of QoS met under the DYCA policy across workloads for a specific applica-

tion, as the corunner is varied

Application DYCA+Mstride1 DYCA+Mstride8 DYCA+Mstride16 DYCA
QoS Met QoS Met QoS Met QoS Met

BLACKSCHOLES 68.7% 65.1% 63.2% 72.0%
BODYTRACK 69.2% 65.0% 63.3% 72.2%
CANNEAL 67.9% 63.0% 60.4% 71.9%
LUXRENDER 69.6% 64.9% 62.4% 74.4%
STREAMCLUSTER 63.9% 60.2% 58.1% 68.0%
SWAPTIONS 70.2% 66.3% 64.5% 74.0%
across all applications 70.0% 66.0% 63.8% 73.7%

Table 23: Average system aggregate throughput under the DYCA policy across workloads for a

specific application, as the corunner is varied

Application DYCA+Mstride1 DYCA+Mstride8 DYCA+Mstride16 DYCA
Throughput Throughput Throughput Throughput

BLACKSCHOLES 19.8 19.7 19.4 20.0
BODYTRACK 20.2 20.3 20.1 20.5
CANNEAL 20.3 20.3 20.0 20.5
LUXRENDER 20.3 20.3 20.1 20.6
STREAMCLUSTER 19.1 19.4 19.1 19.8
SWAPTIONS 21.1 21.2 21.0 21.3
across all applications 20.0 20.0 19.8 20.3

policy that uses the models trained on the most memory intensive corunner, DYCA+Mstride16 , al-

ways performs worst.

DYCA+Mstride8 is occasionally better than DYCA+Mstride1 at maximizing throughput because

of the policy and the effects of the training corunners on the application models. Across experi-

ments, it predicts that it will meet 8% fewer QoS goals compared to DYCA+Mstride1 . Conse-

quently, it has more freedom to maximize system throughput. However, the quality of models built

with the stride8 corunner varies across applications, resulting in DYCA+Mstride8 only occasion-

ally surpassing DYCA+Mstride1 in throughput.

The model accuracy directly affects whether DYCA can choose a configuration that meets QoS

and maximizes throughput. The original DYCA performed best: It met QoS more often while also
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achieving better performance. Based on this evidence, the use of a non-memory-intensive corunner

for these applications is better than using a memory intensive one.

Because the non-memory intensive corunner resulted in better models, we conclude that the

evaluated applications are not memory intensive. Although the PARSEC applications and LUXREN-

DER contend for memory subsystem resources, they do not contend enough to need a memory in-

tensive training corunner. In fact, training with a memory intensive corunner leads to less accurate

models. Consequently, the decisions made by a policy using the models may harm performance.

Furthermore, some modern processors, like those in the evaluation system, use hardware tech-

niques to avoid unnecessary cache interference [23].

For applications which do cause significant memory interference with each other, it may be

beneficial to build the models with a memory intensive corunner (i.e., the models should be trained

with corunners that are similar to the future expected corunners). Regardless of the corunner used,

all policies achieved better QoS and performance than the best static policy: Even training with

a “wrong” corunner (e.g., a corunner that is significantly more or less memory intensive than the

runtime applications) will benefit the users of the system by enabling dynamic allocation policies.

4.6 CONCLUSION

This chapter introduced AUTO-TC, an automated technique to construct performance models,

make performance predictions, and dynamically adjust thread count to meet performance goals.

Its models take into account the thread count of the application, the number of other CPU-bound

threads, and number of cores. Sampling methods were introduced to reduce the number of training

points to build a model. The models were evaluated in two ways. First, their prediction accu-

racy was examined. Second, their ability to predict application performance with untrained-for

corunners was tested.

After performing those evaluations, a preferred sampling technique (stepwise sampling) and

budget (6 profile experiments) were chosen. Models built using this preferred technique and budget

were used by a policy, DYCA, to dynamically select application thread counts, maximize system

performance, and meet QoS. Compared to static policies which do not consider the dynamic work-
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load, our models and dynamic configuration policy increased system throughput (6% higher) and

better met application QoS (22% more often). Therefore, using AUTO is a viable solution to

dynamically configure thread counts on shared CMP machines.
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5.0 AUTO-FINITY: MODELS PARAMETERIZED BY AFFINITY

This chapter shows the importance of selecting affinity (i.e., thread-to-core mappings), the chal-

lenge involved in selecting affinty, and how AUTO enables choosing affinity to improve application

performance. Two techniques to choose application affinity are introduced and evaluated. These

techniques together constitute AUTO-FINITY.

The first technique determines an application’s preferred affinity via a thread-count indepen-

dent model. It is discussed in Section 5.2. The second technique predicts application performance

given an affinity via models built for a particular thread count. It is shown in Section 5.3. Both

techniques can be updated online.

This chapter:

1. Shows the importance of choosing application affinities;

2. Presents AUTO-FINITY, a set of techniques to select application affinity;

3. Evaluates a policy, MAGNET, which uses AUTO-FINITY’s first technique to minimize exe-

cution times across applications and thread counts; and,

4. Evaluates a policy, COMPASS, which uses AUTO-FINITY’s second technique to predict the

performance of affinities and select affinities that minimize execution time.

5.1 MOTIVATION

Today’s computers for scientific and server workloads are multisocket, multicore machines, capa-

ble of massive amounts of parallelism. Cores share multiple resources, such as caches, memory

controllers, and interconnects. For a multithreaded application, core allocation decisions can be
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Figure 24: Execution times of STREAMCLUSTER’s region-of-interest for different affinities on a

48-core machine (8 threads)

Program Affinity
85

90

95

100

105

110

115

120

125

R
eg

io
n-

of
-I

nt
er

es
tE

xe
cu

tio
n

T
im

e
(s

)

Figure 25: Execution times of SWAPTIONS’s region-of-interest for different affinities on a 48-core

machine (8 threads)

made for whether threads share data caches. Alternatively, threads can be given exclusive access to

resources. Because resource allocation impacts performance, it must be performed carefully and

in response to runtime conditions, such as core availability and workload demand.

It is well known that there is often single “best” application affinity. For example, Figure 24
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shows STREAMCLUSTER’s region-of-interest (ROI) execution time when executed with different

affinities with 8 threads on a 48-core machine (machine described in Table 25) [10]. The ROI is

the application’s parallel section where the “work” is done.

For STREAMCLUSTER (Figure 24) the first 5% of affinities achieve an execution time of

around 150 seconds. Beyond this point, quality diminishes, resulting in an execution time of about

200 seconds (33% slower). The remaining execution times steeply increase: The worst affinity has

an execution time of over 450 seconds! Because so few affinities are good, it is unlikely that a

randomly chosen affinity will result in good performance.

In contrast, SWAPTIONS (Figure 25) is relatively insensitive to affinity [10]. The majority of

possible affinities have nearly identical execution times. If an affinity was randomly selected, the

resulting execution time would likely be good because most affinities performed well. However,

some affinities cause SWAPTIONS to perform poorly. The worst affinity has an execution time of

124 seconds (45% slower than the best one). Even in this affinity-insensitive application, it can be

beneficial to select affinity because there are some mappings that should be avoided.

It is important to understand why STREAMCLUSTER and SWAPTIONS behave so differently

(Figure 24 and 25). Certain affinities allow applications to communicate more quickly by sharing

cache space. However, sharing caches among threads can reduce effective cache capacity, causing

the working set to overflow the cache. Other affinities give a thread more cache space by spreading

threads across sockets and caches at the cost of communication speed. Cache and communication

demands of an application directly influence which affinities are best.

STREAMCLUSTER makes frequent use of barriers [10]. Because affinity affects communi-

cation, and thus, the speed at which threads reach and pass through barriers, STREAMCLUSTER

is affected dramatically by affinity. SWAPTIONS does not use many barriers or locks [10]. Fur-

thermore, SWAPTIONS’s working set is relatively small: Each thread’s working set can fit in the

experimental machine’s private L2 cache. Thus, SWAPTIONS is more resilient to affinity choice.

If one affinity worked well across applications, then selecting application affinity would be

trivial. Unfortunately, this is not the case. Figures 26 and 27 show CANNEAL and STREAM-

CLUSTER’s performance across affinities [10]. In these graphs, performance is normalized to

the slowest performance for that application (higher is better). Applications are not executed si-

multaneously. In Figure 26, affinities are sorted by CANNEAL’s corresponding performance. In
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Figure 26: Performance across affinities, sorted by CANNEAL’s preference (16 threads)
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Figure 27: Performance across affinities, sorted by STREAMCLUSTER’s preference (16 threads)

Figure 27, affinities are sorted by STREAMCLUSTER’s performance. As better affinities are used

for one application, the other application may or may not have better performance under that affin-

ity. There is no sorting of affinities that works across applications. Therefore, affinities must be
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Table 24: Non-isomorphic affinities for one application across thread counts, available sockets

Number of Affinities
Thread Count 1 Sockets 2 Sockets 3 Sockets 4 Sockets

2 2 3 3 3
4 3 8 10 11
6 4 16 27 32
8 3 26 57 80

10 2 34 105 174
12 1 38 168 339
14 n/a 34 231 585
16 n/a 26 280 912
18 n/a 16 300 1,282
20 n/a 8 280 1,632
22 n/a 3 231 1,884
24 n/a 1 168 1,979

Table 25: AUTO-FINITY experimental machine

Machine Component Component Details
Processors 4 AMD Opteron 6164 HE sockets (48 cores total)
Socket 2 NUMA nodes
NUMA Node 1 L3 cache (LLC)
L3 Cache 5 MiB cache, 6x cores
Core 1.7 GHz, private L1 $ (64 KiB), private L2 $ (512 KiB)
Operating System Linux 2.6.39.1

selected on a per application basis.

Affinity selection is made even more difficult due to the large number of affinity choices.

Table 24 shows the number of affinities for various thread counts and available sockets for the

machine described in Table 25. Only non-isomorphic affinities are considered. For certain thread

counts, there are nearly 2,000 affinities to select from! Furthermore, the number of affinities can

greatly increase if affinity is also considered for a corunner. An exhaustive online evaluation of all

affinities to find the best one is too costly.

As these figures show, application behavior varies across affinities. Automated techniques are
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Table 26: Characteristics of AUTO-FINITY’s affinity preference classification

Property: Value:
Model Function M (HPC Values)
AUTO Control Knobs affinity, thread count
Profile Space O(t · a), where t is a number of training trials for a applications

needed to select affinity. AUTO-FINITY provides models to guide an allocation policy.

5.2 AFFINITY PREFERENCE CLASSIFICATION

The characteristics of AUTO-FINITY’s first technique to selecting application affinity are shown

in Table 26. The primary goal of this technique is to support unknown application and select

application affinity with only one sample of hardware performance counters (HPCs). A secondary

goal is to handle runtime resource constraints (e.g., an unavailable socket). This technique assumes

that machine resources (e.g., sockets) are statically partitioned to provide strong isolation between

processes.

AUTO-FINITY’s first technique automatically builds a model that selects a affinity hint that

will maximize a user-defined performance metric. An affinity hint is a set of possible affinities that

will result in good application performance. A hint is independent from thread count. The model is

consulted at runtime by an allocation policy. Training data for this technique comes from running

applications under different affinities. The training applications are not necessarily those used at

runtime.

Figure 28 shows the steps to build a model. First, AUTO-FINITY profiles training applications

for a range of affinities (step 1). This step gathers data that indicates how well particular affinities

behave. The behavior is recorded by hardware performance counters (HPC) during an application’s

ROI. The HPC sampled. Each sample is timestamped to facilitate the examination of cross-affinity

application behavior (e.g., two samples each from the beginning of an application’s execution). A

sample observes application behavior over a fixed amount of time. As such, multiple consecutive
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Figure 29: Model usage steps

sample periods capture the full ROI behavior.

The samples are analyzed and transformed into an action table (step 2). The action table is

built to maximize a policy-defined performance metric (e.g., IPC). A row in the action table states

what affinity hint should be used if an application exhibits a particular behavior at runtime. The

samples are also archived in a behavior database to build future policies or update existing ones.

Machine learning is used to condense and summarize the rows of the action table, turning it

into a model. Machine learning will also handle contradictory or missing table information (step

3). Machine learning resolves the conflicts and “holes” through statistical analysis.

The generated model is used at runtime to select an affinity hint. Figure 29 shows this pro-
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cess. To use the policy, the application’s thread count must be known. The thread count can be

discovered on the command line, in an environment variable, or by monitoring syscalls.

With the thread count, the behavior database is consulted. If the application and thread count

have been previously observed then the behavior database gives the application’s affinity hint (step

1). Otherwise, the model is consulted to obtain the application’s affinity hint. To consult the model,

application behavior must be observed. A starting affinity will be used and the application’s HPC

behavior will be observed. The application’s behavior is examined once, during a single sample

period (step 2). Continuous sampling and adjustment are naturally supported by this technique,

but require a separate model to predict the costs of thread migration.

The sampled HPC values are used by the allocation policy to select an affinity hint (step 3). The

HPC values and selected hint are saved into the behavior database. The affinity hint can be used to

choose a new application affinity. To use an affinity hint, the Runtime Configurator considers the

hint and allocates cores, ultimately choosing an application affinity for the application (step 4).

Because AUTO-FINITY continuously records application behavior, it can generate a new pol-

icy as application information is accumulated (e.g., when the behavior database has grown by some

threshold). If a stored affinity hint corresponds to an out-of-date policy, the hint will be removed.

5.2.1 Affinity Hints

Application affinities explicitly define which cores an application may use (e.g., cores 0–3 and 5–

7). For a particular thread count, there may be thousands of possible affinity choices. It is difficult

to directly pick an appropriate affinity, and selecting an affinity is made harder by supporting dif-

ferent thread counts. To reduce the number of affinity options that must be considered, application

affinities are generalized into classes, called affinity hints.

An affinity hint suggests a relationship between cores (e.g., cores should be distributed across

different caches). The generalization enables techniques that work across thread counts. Using a

hint, the allocation policy will select an affinity based on available resources (e.g., sockets) and

number of active threads.

There are two requirements for affinity hints. First, affinity hints should not be overly specific:

A hint should be realized at runtime, even under runtime resource constraints (e.g., an unavailable
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Table 27: Affinity hint parameters

Affinity Hint Parameter Parameter Description Values Symbol
spreadAcrossSockets Prefer use of many sockets {True, False} S
spreadAcrossLLCs Prefer to not share LLCs {True, False} L
socketOptionGetsPriority Socket preference is priority {True, False} P

processor socket). Second, affinity hints must capture the effects of core assignments on thread:

a) cache space, b) communication, and c) access to main memory (DRAM).

Threads may benefit from a large effective cache space (e.g., to hold their private working set).

The space available may be negatively impacted by the presence of one or more threads in the same

last-level cache (LLC). However, sharing LLCs also allows threads to more quickly communicate.

Regardless of whether cores share one or more levels of cache, a thread will occasionally suffer

cache misses. It is important to consider the impact of affinity on NUMA access. For example,

applications may better exploit memory bandwidth if spread across NUMA domains.

To meet these requirements, affinity hints have three boolean parameters, leading to eight

possible hints (Table 27). The first parameter dictates whether threads should be distributed across

sockets (spreadAcrossSockets , symbol: S). The use of multiple sockets may allow greater memory

bandwidth, by simultaneously employing memory banks. On the contrary, assigning threads to

the same sockets allows better communication in the same memory domain, potentially avoiding

remote accesses.

The second parameter, spreadAcrossLLCs (symbol: L), controls whether threads should be

assigned to cores that share a LLC. Threads that share a cache may communicate with each other

more quickly or may prefetch data for sharers. However, sharers may contend for cache space.

The third parameter (socketOptionGetsPriority , symbol: P) captures whether the sharing sockets

or sharing LLCs parameter is more important.

The three parameters define eight hints. Boolean notation is used to represent each hint.

For example, SLP specifies spreadAcrossSockets = True, spreadAcrossLLCs = False, and

socketOptionGetsPriority = False. This hint dictates that application threads share as few
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Figure 30: Algorithm for selecting an application affinity

GETAFFINITY(resources, threadCount , spreadAcrossSockets, spreadAcrossLLCs,
socketOptionGetsPriority)

1 affs = ALLAFFINITIES(resources, threadCount)
2 if spreadAcrossSockets
3 socketSortFunc = PRIORITIZEBYLARGERUSEDSOCKETCOUNT

4 else
5 socketSortFunc = PRIORITIZEBYSMALLERUSEDSOCKETCOUNT

6 if spreadAcrossLLCs
7 LLCSortFunc = PRIORITIZEBYSMALLERLLCOCCUPANCY

8 else
9 LLCSortFunc = PRIORITIZEBYHIGHERLLCOCCUPANCY

10 if socketOptionGetsPriority
11 prioritizedAffs = SORT(affs, socketSortFunc THEN BY LLCSortFunc)
12 else
13 prioritizedAffs = SORT(affs,LLCSortFunc THEN BY socketSortFunc)
14 return HIGHESTPRIORITY(prioritizedAffs)

LLCs as possible (L)1. The hint also prefers LLCs that do not share sockets (S). The priority in

this example hint is to pack threads onto as few LLCs as possible (P).

Once the allocation policy is given an affinity hint, it can select an affinity while also taking

into account resource availability. This process is shown in Figure 30. GETAFFINITY takes a list

of available cores and the amount needed (threadCount). A list of affinities for the available cores

is obtained (line 1). Only affinities that use as many cores as threads are considered. The value

of spreadAcrossSockets prioritizes potential affinities (lines 2–5). If threads should be spread

across sockets then affinities which utilize more sockets are preferred; otherwise, affinities that

use fewer sockets are selected. In lines 6–9 spreadAcrossLLCs is similarly processed. A hint

that states that threads should spread across LLCs will prioritize affinities accordingly. Next, the

available affinities are sorted based on socketOptionGetsPriority’s value (lines 10–13). Ties are

broken by the secondary priority. The highest priority affinity is the one that best matches the

affinity hint. This affinity will be returned (line 14)2.

1There is at most one thread per core.
2Multiple affinities may tie for the same priority. In this case, the affinities will be isomorphic and one will be
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BUILDACTIONTABLE(observations ,condense, leeway)

1 possibilities = ∅, actionTable = ∅

2 for application ∈ observations

3 for samplePeriod ∈ application

4 for aff ∈ samplePeriod

5 behavior = aff.observedPerformanceCounters

6 for destAff ∈ samplePeriod

7 perf = destAff.perf

8 possibilities [behavior ][aff ][destAff ].append(perf )

9 for behavior ∈ possibilities

10 for aff ∈ behavior

11 for destAff ∈ aff

12 affinityHints = AFFINITYHINTFROMCONF(destAff , leeway)

13 if affinityHints = NONE

14 continue // Configuration does not map to an affinity hint.

15 consequence = condense(possibilities [behavior ][aff ][destAff ])

16 // An affinity may map to > 1 affinity hints (e.g., due to leeway).

17 for hint ∈ affinityHints

18 actionTable[behavior ][aff ][hint ] = consequence

19 for behavior ∈ actionTable

20 for aff ∈ behavior

21 bestAffinityHint = MAX(actionTable[behavior ][aff ])

22 WRITETRAINACTION(behavior , bestAffinityHint)

Figure 31: Algorithm for building the action table

5.2.2 Action Table Generation

chosen arbitrarily.
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AUTO-FINITY analyzes application behavior (i.e., hardware performance counters) and per-

formance across affinities. This information is used to generate a model that predicts at runtime

which affinity hint is best for an application. This process consists of two steps: 1) building the

action table and 2) condensing the table into a policy.

The action table contains observed application behavior and the affinity hint(s), that will im-

prove the user-defined performance metric in those situations. It is built with initial training data:

applications in various affinities have their behavior (HPC values) recorded. Additional behaviors

can be gathered online.

Figure 31 shows BUILDACTIONTABLE. This function condenses performance information

(observations) into an action table. BUILDACTIONTABLE has two more parameters: condense (a

function) and leeway (an integer). Condense resolves different performance values coming from

similar HPC samples across multiple applications. This phenomenon is expected to occur occa-

sionally, as applications may have similar behavior (e.g., cache misses) but different performance.

For a fixed thread count, GETAFFINITY selects one configuration per affinity hint. Each of the

eight affinity hints correspond to a best match affinity (eight affinities total). Leeway is introduced

to allow training on affinities which almost would be selected by GETAFFINITY. Leeway allows

an affinity hint to correspond to affinities that are not the affinity hint’s best match. A leeway of 0

means that only the best match affinities are considered.

Leeway is the maximum edit distance between two affinities. A leeway of l allows an appli-

cation affinity to be considered as belonging to an affinity hint if, by rearranging up to l threads

across LLC domains, the affinity becomes identical to that affinity hint’s best match affinity. The

rearrangement of threads across LLC domains may also transfer threads across sockets. Therefore

leeway also places a limit on affinity similarity in terms of socket usage.

For example, an affinity that has six threads sharing a LLC might be selected as best corre-

sponding to the hint SLP (for 6 threads). With a leeway of 1, the affinity which causes 5 threads

to share a LLC while putting another thread on a separate socket, would still be considered as

corresponding to SLP. These two affinities are considered equivalent because only 1 thread was

transferred to make the affinity equivalent to the best match affinity.

In Figure 31 the first loop nest (lines 2–8), build a table, possibilities , which stores the affin-

ity (aff ) and associated behavior (HPC values). For each sample, alternate affinities with the
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same thread count and corresponding to the same time stamp are considered. These are affinities

(destAff ) that the application could have been executed under. For each alternative affinity, the

performance metric of the application in that sample period affinity is recorded (perf ).

Applications may exhibit similar behavior, and therefore, the first loop nest accumulates a

list of multiple performance metrics (line 8). List items are reduced into one entry using the

condense function (lines 9–18). BUILDACTIONTABLE also converts destination affinities to their

corresponding affinity hint(s), with AFFINITYHINTFROMCONF (the inverse of GETAFFINITY).

After this step, the action table contains a list of affinities and associated behaviors, affinity hints

that could have applied, and the consequent performance for the affinity hints.

Finally, the action table is written. In lines 19–22 the action table’s behaviors are examined.

For each type of behavior seen under each affinity, BUILDACTIONTABLE finds the best affinity

hint. These results are written as a series of rules (WRITETRAINACTION). Each rule states an

affinity that should be used if a particular behavior is observed. Contradictions between rules are

expected, and may be due to noise and/or different applications exhibiting similar behavior, yet

operating best in different affinity hints. The rules are transformed into an affinity hint model,

described next.

5.2.3 Building the Affinity Hint Model

WEKA’s JRIP is used to convert the action table to a model that can be consulted at runtime [39].

JRIP is an implementation of Repeated Incremental Pruning to Produce Error Reduction (RIP-

PER), a propositional rule learner that produces a series of rules for classification. Each rule is a

set of conditions joined by and operators. RIPPER fills in “holes” due to incomplete data (i.e.,

combinations of HPC values that were not observed). It also prunes rules that are statistically

insignificant. RIPPER is used because it creates rules for missing data, produces simple, human-

readable policies. Furthermore, the rules are easily converted into a code implementation to use at

runtime. WEKA’s default JRIP settings are used.

An example policy produced by JRIP is shown in Figure 32. This policy is used by SWAP-

TIONS in Section 5.2.4. For readability, numeric values have been replaced with constants. The

policy’s parameters are the values of four HPCs. The selection of these counters is discussed later
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AFFINITYHINTPOLICYSWAPTIONS(dCacheAccesses , invalidDCacheLinesEvicted ,

exclusiveReadRequestsToL3CacheFromAnyCore, retiredUops)

1 if retiredUops ∈ (BOUNDLOWER0,BOUNDUPPER0]

2 if dCacheAccesses < BOUND1 and invalidDCacheLinesEvicted < BOUND2

3 return SLP

4 if invalidDCacheLinesEvicted < BOUND3 and

dCacheAccesses ∈ (BOUNDLOWER4,BOUNDUPPER4] and

exclusiveReadRequestsToL3CacheFromAnyCore < BOUND5

5 return SLP

6 return SLP

Figure 32: Example affinity hint policy

(Section 5.2.4.1). Depending on the values of these counters, one of three affinity hints will be

selected (SLP, SLP, or SLP). In this policy, there is no fourth affinity hint. As more performance

data is obtained and the model is rebuilt, additional hints may become available.

5.2.4 MAGNET: A Policy to Select Application Affinity

This section examines AUTO-FINITY’s ability to determine an application’s preferred affinity.

Results are gathered on a set of applications and thread counts. AUTO-FINITY’s usefulness in a

sample policy, MAGNET, is examined. MAGNET aims to minimize application execution time

across a range of thread counts through the proper selection of application affinity.

All evaluations were performed on the machine described in Table 25. The machine is a 48-

core AMD Opteron 6164 NUMA system. Each of the four sockets has 2 NUMA domains (8

NUMA domains total). Each NUMA domain has 6 cores that share an L3. The cores have private

L1 and L2 caches. Applications are executed on an otherwise idle system.

The 18 benchmarks are from PARSEC 2.1 [10], OmpSCR 2.0 [29], and the NAS Parallel
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Benchmark Suite (NPB) 3.3.1 [73]. The PARSEC benchmarks use the largest input size (“native”)

and the NPB benchmark uses the “A” input size. Because OmpSCR does not provide official inputs,

applications in that suite were configured to execute for a similar amount of time as PARSEC (one

to two minutes with eight threads).

The following PARSEC applications are used: BLACKSCHOLES (BS), BODYTRACK (BT),

CANNEAL (CN), DEDUP (DD), FACESIM (FS), FLUIDANIMATE (FA), FREQMINE (FM), RAY-

TRACE (RA), STREAMCLUSTER (SC), SWAPTIONS (SW), VIPS (VP), and X264 (X). From

OMPSCR, C FFT (FT), C FFT6 (FT6), C LU (LU), C MANDEL (MN), and C MD (MD) are

used. Lastly, DC (DC) from NAS is evaluated. Some applications (e.g., PARSEC’s FERRET)

were not used due to compilation errors, framework incompatibilities, or short execution times.

MAGNET maximizes instructions per second (IPC), consequently minimizing application ex-

ecution time. This metric is used because it captures the rate of application progress and is easy to

obtain via hardware performance monitoring. As later shown, choosing IPC works well to reduce

execution time.

Before using MAGNET, that application’s data is removed from the training data. This causes

the application to be treated as a never-before-executed application. The AUTO-FINITY model is

built on the remaining applications’ data (leave-one-out cross-validation).

To evaluate the quality of the generated policy, applications are launched in a fixed affinity.

The HPC values are sampled once (as shown in Figure 29). The AUTO-FINITY model uses the

HPC values to predict a best-performance affinity hint. An affinity is selected from the hint. The

application with that affinity is then started and ROI runtime is observed. Average performance is

calculated by computing the geometric mean of each application’s execution time.

By default, previously unseen applications and thread counts are executed with a distributed

affinity. A distributed affinity allows the AUTO-FINITY model to make better affinity hint pre-

dictions. A distributed affinity spreads an application’s threads across sockets and LLCs. It is

equivalent to the affinity hint SLP.

5.2.4.1 Choosing and Gathering Hardware Performance Counters Before an AUTO-FINITY

model can be used, it must be built. This requires profiling applications using HPCs. Feature se-

lection automatically chooses appropriate counters. The counters are measured during the initial

84



training period as well as online. To determine the counters, HPC values of 60 manually selected

counters were periodically collected across a subset of evaluated applications.

The comprehensive HPC measurements required 15 runs of each application, as the experi-

mental machine can only record 4 counters at a time. Additional counters bring dwindling returns

in terms of utility. The machine learning algorithm (i.e., RIPPER) will ignore counters and/or

counter values that are statistically insignificant.

WEKA’s CfsSubsetEval feature selection algorithm chooses four performance counters

that best correlate with the objective metric, IPC. This method evaluates features by considering

the individual predictive ability of each feature along with the degree of redundancy between them.

Features were selected with greedy search.

Out of the 60 counters considered, the selected counters were the following: 1) data cache

accesses, 2) invalid data cache lines evicted, 3) exclusive read requests to a LLC from any core,

and 4) retired micro-ops.

The first counter indicates the memory demands of an application. The second counter tracks

how frequently cache lines become invalid due to modification by another core. Larger values

indicate thread communication or data sharing. The third counter correlates with thread commu-

nication and memory demand. A cache line in the exclusive state may become shared if another

thread accesses that line. Exclusive LLC read requests may also allow one thread to prefetch

another’s data. The last counter tracks the number of operations completed. The experimental

machine, an x86-64 processor, executes instructions that decode into one or more RISC-like oper-

ations. Therefore, this metric correlates with IPC.

To ensure that the techniques work on many thread counts and sampling period lengths, perfor-

mance counter values are normalized relative to thread count and number of seconds over which

the counter was gathered.

The selected counters and IPCs for each application were gathered. The applications are ex-

ecuted with 8 threads. The counters are recorded for 78 different affinities (8 threads). This step

gathers initial training data.

5.2.4.2 Selecting a Discretization Method To build the action table, the training data must be

put into discrete bins. Two methods are used to discretize the data:
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Table 28: Impact of the discretization method on average application execution time

Method Geo. Mean
equal-width 79.4
equal-frequency 83.1

Table 29: Impact of the condense function on average application execution time

Function Geo. Mean
AVERAGE 80.6
GMEAN 80.6
HMEAN 80.6
MAX 81.5
MEDIAN 79.4
MIN 83.1
SUM 80.6

1. Equal-width binning: Each bin corresponds to a constant range over the possible values of a

HPC. Equal-width binning uniformly covers the range of observed counter values.

2. Equal-frequency binning: Bin widths are uneven to allow higher resolution where HPC values

are most concentrated. Bins have the same item counts.

Five bins for each discretization method worked well, without making individual bins too

wide or small. WEKA’s equal-width discretization supports automatic adjustment of bin count to

be data appropriate. The adjustment is influenced by the number of requested bins. This feature

was enabled. Equal-frequency binning does not support this option.

Cross-validation is used to evaluate the discretization method. The geometric mean of the ap-

plication execution times is computed. Because discretization method is not the only adjustable

parameter, the other parameters (e.g., the condense function) are fixed to their best values, de-

scribed later.

Table 28 shows the results of varying the discretization method. The results show that equal-

width binning improves the geometric mean by approximately 5% (a mean of 79.4s versus 83.1s).

Equal-width binning does better because equal-frequency binning creates very wide bins to allow
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for occasional narrow bins. However, a model built with equal-frequency binning may be unable

to later differentiate between HPC values which, though the difference between them is large, are

grouped into the same wide bins.

5.2.4.3 Selecting a Condense Function Multiple condense functions are evaluated. The con-

dense function combines performance measurements from similar samples gathered for the same

affinity. Other parameters are set to their best values. Evaluated condense function are: a) arith-

metic mean (AVERAGE), b) geometric mean (GMEAN), c) harmonic mean (HMEAN), d) MAX,

e) MEDIAN, f) MIN, and g) SUM.

For example, suppose that application a is similar to b (i.e., both have similar counter values).

After analyzing performance in different affinities, it is determined that both applications execute

fastest with affinity hint h. However, due to differences in behavior, a will obtain an IPC for h of

2, whereas b will obtain an IPC of 1.5.

During action table construction, AUTO-FINITY must consider expected IPC of an unknown

application, c, that is similar to a and b. In hint h, the action table could predict c to have a runtime

of 2 (MAX), 1.5 (MIN), or 1.75 (AVERAGE). The condense function determines the expected value.

Table 29 shows the results of varying the condense function. The best function, MEDIAN, has

a geometric mean of 79.4s. The worst condense function is MIN, with a geometric mean of 83.1s,

about 5% worse than MEDIAN’s result. MIN results in the worst performance because it creates

a pessimistic policy. It penalizes types of behavior which are exhibited by multiple applications:

If three applications exhibit the same behavior, the worst performing one is the only one whose

performance will be considered.

Although MIN makes a pessimistic policy, and MAX makes an overly optimistic one, MEDIAN

is balanced and works the best. The other means also had good behavior.

5.2.4.4 Selecting Other Parameters There are three remaining AUTO-FINITY parameters.

The first one is whether to normalize IPCs. IPC can be normalized to the smallest IPC recorded

for an application. This allows for easier comparison of IPC across applications. For example, if

using a particular affinity hint can boost an application’s IPC by 0.1, then this performance increase

may be minor (e.g., 3% if the original IPC is 3.0) or relatively major (e.g., 10% if the original
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IPC is 1.0). Normalization allows these trends to be captured. Using the best parameter settings

for the other model parameters (e.g., the best condense function, the best discretization method)

causes normalization to have no significant benefit. Nevertheless, IPCs are normalized because,

for suboptimal parameter settings, normalization resulted in better models.

The second parameter is whether affinity-insensitive applications are included in the training

data. Affinity-insensitive applications are applications whose standard deviation of performance is

less than 1% of average performance across affinities. Intuitively, an application that is insensitive

to affinity contains no useful information to guide affinity selection. Potentially, the data from

insensitive applications may dilute important information. As with IPC normalization, using the

best possible parameter settings causes the removal or inclusion of affinity-insensitive applications

to make little difference (less than 1%). However, the removal of affinity-insensitive applications

was occasionally beneficial for less optimal settings. Therefore, in the performance evaluation,

applications that are affinity insensitive are removed from training data.

The last remaining parameter is leeway. Leeway equal to 2 was experimentally determined to

have good flexibility while still only considering affinities similar to their best match affinity. For

8 threads, this value resulted in 31 affinities to train on.

5.2.4.5 Application Behavior Coverage Exposure to diverse application behavior allows the

action table and policy to appropriately respond to unseen applications. To gain insight into this

diversity, application behavior across all possible affinities for 8 threads is analyzed.

An application exhibits a behavior, b, if during the training process it produces a discretized

HPC sample that is equal to b. Each application, a, produces a set of unique behaviors, Ba, where

Ba = {b0, b1, ...}. Examining the discretized behaviors, the diversity of an application (|Ba|) and

whether other applications exhibit the same number of behaviors can be examined. An application

behavior examination can also reveal whether some applications have more diverse behavior than

others (i.e., whether |Bai | < |Baj |), and the effect of an application’s behavior on the cumulative

training information.

Figure 33 shows how coverage is influenced by the applications. The x-axis is sorted by the

number of unique behaviors in each application. The figure has two lines. The “+” line shows the

number of unique behaviors in each application, while the “·” line shows the number of cumulative
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Figure 33: AUTO-FINITY cumulative and per-application discretized behavior coverage

behaviors as applications are added (left to right).

Each application is placed into one of two categories: 1) applications that have few unique

behaviors and 2) applications that exhibit diverse behavior. Approximately half of the applica-

tions, those before and including FM (FREQMINE), have few behaviors, and therefore, exhibit

consistent behavior. This is shown by the low height of the “unique behaviors” line. Even

though 12 applications fall into this category, each with an average of 2 unique behaviors per

application (24 total), there are only 15 unique behaviors between them (i.e., at the point on

the x-axis for FM, the cumulative unique behaviors line has a y-value of 15). Each applica-

tion, therefore, contributes on average only 1.25 unique behaviors to the cumulative training data

(15 behaviors over 12 applications = 1.25 behaviors per application).

The other applications (after FM) have great diversity. This diversity may be due to phases

and/or sensitivity to affinity. These 6 applications contribute 49 unique behaviors to the training

data, for an average of more than 8 unique behaviors per application. C LU has the highest count

of unique behaviors. It exhibits 18 unique behaviors and contributes 15 to the cumulative list.

STREAMCLUSTER has the second highest number of unique behaviors (14). It contributes 5
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unique behaviors to the behavior coverage plot.

From Figure 33’s data, it may be possible to train on only a few, specially selected, applications

(i.e., those that exhibit a range of behavior) to produce a good model.

5.2.5 Performance Evaluation of MAGNET

This section evalutes a policy built from AUTO-FINITY, MAGNET. MAGNET is used to choose

affinity hints for unknown applications in order to minimize execution time. The resulting execu-

tion times are compared against the execution times of applications under affinities chosen by two

static policies:

1. Packed: This policy places threads together, causing them to share LLCs, and preferring to use

few sockets (corresponding affinity hint: SLP).

2. Distributed: This policy distributes threads uniformly to sockets and LLCs (corresponding

affinity hint: SLP).

For MAGNET, AUTO-FINITY uses a leeway of 2. Affinity insensitive applications are re-

moved from the training data. IPCs from an application are normalized to the slowest IPC from

that application. HPC monitoring uses a sample size of 10 seconds for the four counters described

in Section 5.2.4.1. The condense function is MEDIAN.

5.2.5.1 Fixed Thread Count Evaluation The runtime of each application with 8 threads un-

der the evaluated policies is compared. Training data consisted of applications with 8 threads.

Figure 34 shows these results.

The y-axis is ROI execution time (lower is better). The x-axis shows each application, with the

geometric mean at the far right. Subscripts indicate thread count. For each application, three bars

are shown. The first bar is the runtime under a packed affinity. The second bar is runtime under a

distributed affinity. Finally, the third bar is runtime for the affinity chosen by MAGNET.

Some applications are insensitive to the policy. BLACKSCHOLES, FREQMINE, C MANDEL,

C MD, RAYTRACE, SWAPTIONS, VIPS, and X264 are not significantly affected by affinity. To a

lesser extent, FLUIDANIMATE is insensitive too. However, for most applications, the affinity is

important. Five of the applications prefer a packed affinity (BODYTRACK, CANNEAL, DEDUP,
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Figure 34: Packed, distributed, and MAGNET ROI execution times for 8 threads (lower is better)

C FFT , STREAMCLUSTER). The threads in these applications communicate and/or share data.

For BODYTRACK, DEDUP, and C FFT , MAGNET selects an affinity that performs nearly as

good or just as good as the best static policy.

MAGNET selects a poor affinity hint for STREAMCLUSTER (SLP). The result is due to

STREAMCLUSTER’s unique behavior. As shown in Figure 33 (discussed in Section 5.2.4.5),

STREAMCLUSTER has the second highest number of unique behaviors. Due to this fact, AUTO-

FINITY did not build an appropriate rule. Additional training data (e.g., from STREAMCLUSTER

or applications which exhibit behavior like it) would allow MAGNET to make better affinity hint

selections.

DC, FACESIM, C FFT6, and C LU prefer a distributed affinity. These applications have large

memory footprints, as evidenced by the distributed preference. For DC, C FFT6, and C LU,

MAGNET chooses an affinity hint and application affinity which performs just as well as the

distributed policy.
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In 7 out of 9 cases involving affinity sensitive applications, MAGNET chose an application

affinity which performed nearly as well or just as well as their preferred static policy. The geomet-

ric mean (last set of bars in Figure 34) shows that it has a slight runtime advantage over either static

policy. The advantage of MAGNET is that the user does not have to manually select the proper

affinity: It can automatically select the best affinity to use.

MAGNET is also compared against an oracle policy that was built through exhaustive experi-

mentation. On average, MAGNET achieved 96% of the oracle’s performance. For three applica-

tions, it tied with the oracle (DC, C FFT6, C LU).

5.2.5.2 Varying Thread Count The utility of MAGNET across a range of affinities is now

examined (4, 8, 16, and 24 threads)3. Training data was obtained only for a thread count of 8. To

test MAGNET on an application, that application is removed from the training data before building

the model.

As thread count is changed, many applications do show a wide variety of behavior. Affinity

insensitivity is even sometimes thread count dependent. Applications under a thread count that

have at least a 20% ROI runtime difference between their packed and distributed affinities, are

referred to as interesting cases. Interesting cases have a potential for bad or good affinity choice.

To focus the discussion, only interesting cases across thread counts are shown and discussed. There

are 15 interesting cases.

Figure 35 shows the interesting cases. The x-axis shows the application’s name with subscripts

indicating thread count. The y-axis is the runtime of the application’s ROI (lower is better). The

first bar is the runtime for the packed affinity, the second bar is the runtime for the distributed

affinity, and the third bar is the runtime for the affinity chosen by MAGNET.

The figure is annotated to indicate whether MAGNET chooses an affinity that is within 1% of

the best static policy. Wins (i.e., within 1%) are marked by “X.” If performance is not within 1%

of the best static policy, the graph is marked with “!.”

DEDUP (DD) appears 3 times (4, 8, and 16 threads). Each time, DEDUP does best under

a packed affinity. Because it is a pipeline parallel application, there is communication between

threads as data is passed from stage to stage [10]. Therefore, it is natural that DEDUP would benefit

3FACESIM and FLUIDANIMATE do not support executing with 24 threads.
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MAGNET

Figure 35: Packed, distributed, and MAGNET ROI execution times for interesting cases across

applications and thread counts

from packed affinities, which cause threads to share cache space. In each case, MAGNET chooses

an appropriate application affinity, and thus allows DEDUP to execute quickly even though the

policy was not built on data obtained from observing DEDUP.

DC also appears 3 times in Figure 35 (4, 8, 16 threads). Each time, it prefers a packed affinity.

If DC is executed with 4 threads, MAGNET chooses an affinity hint that performs better than the

best static affinity (SLP).

STREAMCLUSTER (SC) is another interesting case. If executed with 8 threads (SC8), it bene-

fits from a packed affinity. Unfortunately, MAGNET chooses an affinity whose runtime is similar

to the distributed affinity runtime. If using 16 threads (SC16), STREAMCLUSTER prefers a dis-

tributed affinity. MAGNET chooses an affinity which performs almost like (in terms of execution

time) the preferred distributed affinity, but it is not within 1%. Therefore, it is not classified as a

win. If 24 threads are used (SC24), STREAMCLUSTER still prefers a distributed affinity. MAGNET
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actually beats both the packed and distributed policies and chooses an affinity hint that performs

better than either (SLP).

Finally, in FACESIM (FS16) the packed affinity is almost 75% slower than the distributed affin-

ity. Unfortunately, MAGNET chooses an affinity hint that behaves like the packed affinity. Addi-

tional behavior data would potentially improve hint selection.

Overall, MAGNET, a policy enabled by AUTO-FINITY, chooses high performance affinities

in most cases (12 out of 15 cases). It even beats the distributed and packed static policies in two

cases. These results across thread counts show that affinity hints and models which use AUTO-

FINITY’s first technique for affinity selection work well.

5.3 AFFINITY PERFORMANCE PREDICTION

This section discusses AUTO-FINITY’s technique to build models that make performance pre-

dictions given affinity. This technique quantitatively predicts the performance of an affinity. In

comparison, AUTO-FINITY’s first technique predicted which class of affinities would be best to

use. The disadvantage to this technique is that each affinity must be considered, so that the best

can be selected. This technique’s characteristics are shown in Table 30.

The models in this section are application- and thread-count specific. Models are trained offline

using statically derived aspects about affinities, called features (e.g., average number of threads

sharing each L3), to make online predictions.

Models are built in two steps. First, feature selection determines which features are most useful

to predict performance across applications. Second, applications are profiled and a performance

model is constructed. These steps are described next, followed by an example use of the models.

5.3.1 Feature Selection

The choice of features directly affects the quality of the models. Features need to capture aspects

about affinities that contribute to, or, detract from application performance. This offline process

needs to be done once per machine. The selected features will be used in all subsequent models on
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Table 30: Characteristics of AUTO-FINITY’s affinity performance prediction

Property: Value:
Model Function Mprogram,tc(aff )
AUTO Control Knob affinity
Profile Space O(p), where p is the user-specified budget

Mprogram,tc(aff ) =β0F0(aff ) + β1F1(aff ) + β2F0(aff )F1(aff ) + β3F1
2(aff )

Figure 36: An example model for AUTO-FINITY’s second affinity selection technique

that machine.

Features are functions which take an affinity as their parameter. They return the feature value

for that affinity. To determine the best features, for a subset of applications their performance across

a range of affinities was gathered. Regression models were built with many different combinations

of features. Generated models are then compared based on how well they predict performance.

The best performing features are selected.

Feature selection is an automated process. Features are statically derived from affinities.

Therefore, new features and combinations of features can be considered without increasing profil-

ing time or redoing profile experiments. Features were generated by me. The feature generation

process will select the features that work best (discussed in Section 5.3.4).

5.3.2 Model Training

Models are trained on a subset of affinities. To ensure that the models make accurate predictions

in such a large space, affinities are selected such that they uniformly cover the range of features.

The optimal set of these training affinities is computationally infeasible to find4.

4There would be
(
a
t

)
combinations to evaluate.
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Instead, multiple sets of affinities are randomly selected. The set of affinities that have the

highest average distance from one another are used as the training affinities. The chosen affinities

approximate a uniform distribution of affinities across the feature space.

Application performance is normalized to the worst observed performance. Models predict

application speedup relative to the worst observed performance. Least squares multivariate linear

regression is used to find the importance of each feature and the feature’s effect (i.e., feature coef-

ficients) on application performance. An example model is shown in Figure 36. The figure shows

that the application’s performance is affected by two features: F0 and F1. The value of a coefficient

reflects how important a feature is to the application’s performance.

5.3.3 Model Usage

After training, the model is ready for performance prediction. The time to consult a model is

nearly instantaneous, as models are simply a linear combination of products between feature values

and coefficients. Feature values do have to be computed for each affinity that must be evaluated.

However, this process is fast due to the static features (e.g., number of L3s used by an affinity).

Feature values could also be precomputed and looked up on demand.

The allocation policy can consult each application model and determine the affinity that is

best. For example, a policy might be designed to improve average performance relative to their

worst performance. Another policy might give higher priority to a specific application, preferring

affinities that improve that application’s performance to the detriment of corunners.

5.3.4 Evaluation

The models and feature selection were implemented on the machine described in Table 25. All

applications were compiled with GCC 4.6.3. From PARSEC, BLACKSCHOLES, BODYTRACK,

CANNEAL, FACESIM, STREAMCLUSTER, and SWAPTIONS were evaluated [10]. Additionally,

experiments were performed with DETBFS, KNN, and RAYCAST from PBBS [93]. When appli-

cable, the pthreads version of each application was used.
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For feature selection, application performance on a variety of affinities was gathered (8 threads).

After building a model for each application, predictions are compared with the observed perfor-

mance according to the R2 and ρ2 values. R2 measures linear correlation. Spearman’s rank corre-

lation coefficient (ρ) is used to measure the dependence between two variables (i.e., to what extent

one is a function of the other).

To aggregate model quality during feature selection, the highest, smallest, and average cor-

relation measure across models are computed. Feature selection chooses the set of features that

maximizes the aggregate measures. Features selected via each method are shown in Figure 31.

Some common features include bandwidth facilitation2, socket imbalance2, and L3s. Band-

width facilitation2 measures the average number of threads on each socket. Socket loads are

squared to more heavily account for sockets with more active threads. Socket imbalance2 mea-

sures the average difference between the number of threads on each L3 of a socket. Differences

are squared to place more emphasis on larger imbalances. Finally, L3s is the number of L3 caches

whose cores have at least 1 thread assigned.

5.3.4.1 Evaluation of Model Construction Models can be trained on as many points as the

user is willing to profile. In this evaluation, the time in minutes, T , to train p training point is given

by T (p) = (1 + SerialSetupTime) · p where, for the evaluated applications, SerialSetupTime

ranges from 0 seconds (i.e., the application instantly starts performing parallel work) to 2 minutes.

The application executes its parallel section for 1 minute, its performance is observed, and then

the application is terminated. This process is automated. Models are built with 10 and 20 training

points. In many contexts (e.g., scientific computing), the cost of training is small compared to the

benefits that the models provide over the application’s lifetime.

Once the training data is gathered, the time required to build a model is minimal. Regression

is fast and the number of training points is relatively small and has few dimensions (tens of points,

5 dimensions).

Figure 37 shows an example model for STREAMCLUSTER (16 threads). The model is shown

with two features due to the complexity of visualizing models with additional features (dimen-

sions). The figure shows STREAMCLUSTER’s performance as the number of L3s is varied along

with the average thread distance. Average thread distance is how “far” threads are away from each
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Figure 37: Visualization of a model which predicts STREAMCLUSTER performance given an

affinity. The model’s has two inputs: Number of L3s and average thread distance

other. Threads sharing an L3 are closer than threads on a different L3 on the same socket, which

are further away than threads on separate sockets. The model predicts that decreasing the number

of L3s in use while increasing the average thread distance increases STREAMCLUSTER’s perfor-

mance5. Intuitively, the models predict that STREAMCLUSTER’s threads should be packed onto

as few L3s as possible and that the L3s chosen should span sockets. Such configurations help de-

crease the communication cost while increasing available memory bandwidth. Some points on the

surface do not correspond to valid affinities (e.g., those points that correspond to a large negative

performance).

5.3.4.2 COMPASS: A Policy to Maximize Application Performance The use of the models

is evaluated. Models are used to improve system-level performance objectives. In these exper-

iments, a AUTO-FINITY policy, COMPASS, is built to maximize average application speedup.

Equal weight is given to each application. Pairs of applications are executed on two of the avail-

able four sockets of the evaluation machine, in order to force 100% utilization. For each pair of

5These objectives can conflict for certain affinities.
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Figure 38: COMPASS’s performance versus the best application-agnostic policy’s performance

(Maximum Separation)

applications, two cases are considered. In the first case, the alphabetically first application has 8

threads (tc0 = 8) and the second application has 16 (tc1 = 16). In the second case, the alphabeti-

cally first application has 16 threads (tc0 = 16) and the second application has 8 (tc1 = 8).

The models are compared against an application-agnostic scheduling policy: maximum sep-

aration. Maximum separation was the best performing application-agnostic allocation policy. It

isolates applications from one another.

These results are shown in Figure 38. Models are evaluated with a different number of training

points (p = 10 and p = 20) and four sets of features (max R2, max ρ2, min R2, min ρ2), for eight

comparisons in total. These four features sets proved to be the best performing features.

For the “max” features, the feature selection maximizes the single largestR2 or ρ2 value across

application models. In effect, this metric chooses the features that resulted in the best single model.

For the “min” feature sets, the feature selection tried to maximize the single smallestR2 or ρ2 value

across application models. This feature selection goal chose the features that most helped the worst

performing model.

The models regularly beat the best static policy. Naturally, the choice of features greatly im-

pacts the ability of the models to make accurate predictions. Additional training (i.e., a higher
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value of p) results in better performance.

The best set of features to use depends on application thread count. This is a result of changing

cache and memory subsystem behavior. For some thread counts, communication speed may be a

bottleneck. In others cases, cache space becomes the bottleneck. Consequently, the features used

to predict and select application performance might also change to reflect the causes of application

slowdown.

The policy increases performance by taking advantage of per-application nuances in best-

performing affinities. Some pairs of applications prefer to be spread out across L3s and sockets,

whereas others perform best when packed tightly together on the same sockets. An application-

agnostic policy, like maximum separation, cannot adjust to individual application preferences. The

results in Figure 38 show that the models can make the correct thread-to-core mapping decisions.

5.4 CONCLUSION

Application affinity can have a large impact on performance. It is important to select the “right”

affinity to maximize performance. This chapter showed AUTO-FINITY’s two techniques to auto-

matically select application affinities.

The first technique predicts performance for an untrained-for application using a potentially

untrained-for thread count. From training data, AUTO-FINITY uses machine learning to derive

thread-count-independent models. Using AUTO-FINITY’s models, a policy, MAGNET, was built.

MAGNET minimizes application runtime via affinity selection.

MAGNET was used on untrained-on applications across a range of thread counts. In 12 of

15 cases where affinity has a significant impact on performance, MAGNET’s selection performs

within 1% of or better than fixed assignments that do not consider application behavior. In two of

these cases, MAGNET outperforms the fixed assignments.

The second technique quantitatively models application performance given affinity. The gen-

erated models rely on statically derived information and offline profiling. The models allow for the

fast examination of performance across the large number affinities possible on modern multicore,

multiprocessor machines. The second technique was used to build a policy, COMPASS. COM-
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PASS can be used to predict and improve application performance (up to 39% improvement) as

compared to the best static policy.
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6.0 AUTO-GENEOUS: MODELS PARAMETERIZED BY CORE TYPE AND THREAD

COUNT

Today’s mobile and server computers execute a range of workloads under varying quality-of-

service (QoS) and power (energy) requirements. To satisfy these requirements, asymmetric chip

multiprocessors (ACMPs) are emerging that employ multiple core types. The cores are instruction-

set compatible but optimized for different objectives. This architecture style allows a careful bal-

ance between performance and power by mapping the workload to the most appropriate number

of threads and core type, given workload properties, QoS, and power/energy requirements.

In an ACMP, a power-efficient core type typically has a relatively low clock frequency and

simple microarchitecture, while a performance core type has a high clock frequency and so-

phisticated out-of-order microarchitecture to extract instruction- and memory-level parallelism

(ILP/MLP). Multiple cores of each type are usually available. For example, ARM’s big.LITTLE

architecture has two core types: a “big” Cortex-A15 for performance and a “little” Cortex-A7

for power efficiency [19, 37]. Initial products using ARM big.LITTLE have 2 to 4 cores of

each type. NVIDIA, Samsung, TI, MediaTek, Renesas and others are all pursuing asymmet-

ric CMPs [35, 42, 68, 69, 87]. The trend toward asymmetry, with possibly dozens of cores

of different types in a single ACMP, will continue and likely accelerate as “dark silicon” takes

hold [34, 36, 108, 109].

This chapter describes AUTO’s modeling technique, AUTO-GENEOUS, to predict application

performance under different mappings in ACMPs. An overview of the technique is shown in

Table 32. AUTO-GENEOUS automatically creates estimation models to help the allocation policy

choose both thread count and core type. Models predict performance scalability curves that are

parameterized by core type and thread count. AUTO-GENEOUS is the first approach to handle

both parameters for multithreaded applications executed on ACMPs.
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Table 32: AUTO-GENEOUS characteristics

Property: Value:
Model Function Mprogram(tc, ty)
AUTO Control Knobs core type, thread count
Profile Space O(tc + |inductees| · inflection points)

Profile data is used to build the models. To minimize this data, a projection function transforms

a scalability curve for one core type to another target core type without full training for the target

core. AUTO-GENEOUS updates the models with information gathered during actual application

execution to increase prediction accuracy. This reduces a priori profiling and ensures models are

portable across ACMP architectures.

This chapter makes the contributions:

• Estimation models to capture a multithreaded application’s performance scalability when exe-

cuted on asymmetric core types;

• A technique, AUTO-GENEOUS, to create and use estimation models;

• Algorithms to select the best modeling methods;

• Algorithms to transform a model for one core type to another core type with minimal additional

profile data; and,

• An extensive evaluation of a sample policy, QoST, to show AUTO-GENEOUS’s effectiveness.

The rest of this chapter is organized in the following way. Motivation and an overview of

AUTO-GENEOUS are presented in Section 6.1. The overall modeling technique is described in

Section 6.2. Detailed approaches are in Section 6.3. An evaluation of AUTO-GENEOUS and a

sample policy, QoST, is described in Section 6.4. The conclusion is in Section 6.5.
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6.1 MOTIVATION AND OVERVIEW

Thread count and core type affect the performance of a multithreaded application in an asymmetric

CMP, influencing whether quality-of-service is met (e.g., performance is in some range under a

power cap). The relationship of these parameters is complex, depending on both software and

hardware properties.

The best thread count choice is affected by communication and synchronization (software scal-

ability) and the hardware resources (core type) allocated to the application. Core type can change

the relationship between application behaviors, including the ratio of time spent in critical sections

versus non-critical sections, the time spent on computation versus communication, wait time at

synchronization points (e.g., at a barrier), etc. For example, using a fast core type may cause an

application to spend less time in critical sections, scaling better due to less lock contention. Thread

count also has interactions with hardware factors, such as cache and memory subsystem pressure.

With more threads and better scaling, there can be more resource demand on the hardware. This

increased demand may be satisfied by using big cores with large caches. Alternatively, the de-

mand may even limit inherent application scaling on little cores due to small caches. Similarly, an

application that does not scale may be unable to take advantage of hardware resources of big cores.

In addition to thread count, the way individual threads use core resources affects performance.

Specifically, big cores are designed to extract instruction- and memory-level parallelism: For a

thread to “run fast” on a big core, it needs to exhibit both ILP and MLP—in fact, the thread may

execute as fast on a small core as a big core, if it is memory-bound and lacks sufficient ILP to mask

memory operations [106]. ACMPs may cluster resources, such as big cores that share a large L2

cache [37]. For an application with a large working set (i.e., cache footprint), this cluster might

achieve better performance than a cluster with little cores and a small shared cache.

There can even be multiple configurations of thread count and core type that have equivalent

performance, further compounding the challenge of the mapping problem. Figure 39 demonstrates

this behavior. The figure gives a histogram of performance bins for several multithreaded applica-

tions (see Section 6.4 for experimental details) on three core types. The x-axis shows uniformly-

spaced bins of instructions per nanosecond (IPN). This metric is aggregate instructions per cycle

(across all threads) scaled by core clock frequency. IPN measures both microarchitecture and
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Figure 39: Effect of thread count and core type on performance

clock frequency differences among core types. Work unit throughput could also be used to mea-

sure application performance. For the evaluated applications, IPN is expected to correlate strongly

with throughput. In the figure, there are three core types: Gaineshamlet (a slow, narrow pipeline;

shown in green), Gainesvillage (a moderately fast, medium width pipeline; shown in purple) and

Gainestown (a fast, ILP/MLP-oriented pipeline; shown in orange).

The results in the figure reflect several factors. First, some applications do not scale well re-

gardless of core type. For example, in CANNEAL’s (CN) histogram, all thread count and core type
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configurations are found in the lowest performance bins (left side). Other applications have better

scalability, such as BLACKSCHOLES (BS), where all bins have at least one configuration. Second,

the choice of core type influences scalability. In X264, performance is limited on Gaineshamlet:

scaling stops after the fifth bin. The application scales better on the larger core types (Gainesvil-

lage and Gainestown), as the configurations are more widely distributed in the bins. on scalability.

Finally, different thread count and core type configurations often have similar performance. The

call-out for X264 demonstrates this behavior, which shows the fifth bin’s detail. In this bin, a con-

figuration with 12, 14 or 16 threads mapped to Gaineshamlet (little core) is performance equivalent

to 4 or 5 threads mapped to Gainestown (biggest core). Although certain thread count–core type

configurations may be performance equivalent, their power/energy may differ. The availability and

number of core types may also vary; e.g., in a clustered ACMP architecture, only clusters of cores

may be powered on/off, influencing the relative cost of one core type versus another. The selection

of a specific thread count and core type, within a performance bin, is driven by these issues external

to performance requirements.

All of these factors should be balanced in mapping the application to an ACMP to achieve QoS.

Thus, the allocation policy should consider the relationship between thread count and core type

during mapping. AUTO-GENEOUS assists in determining the mapping. AUTO-GENEOUS’s

estimation models predict an application’s performance scalability. The models are parameter-

ized by thread count and core type, enabling the Runtime Configurator and allocation policy to

simultaneously consider both parameters to pick a mapping. The models can be used to identify

performance equivalent configurations during mapping; external requirements on other important

factors, including power, energy and thermal behavior, can then drive the selection of a specific

configuration within the set of performance equivalent ones.

For the models to be most useful, they must be accurate and automatically portable across

ACMP architectures. For this purpose, AUTO-GENEOUS’s approach empirically constructs mod-

els from profiling data to expose the interaction between an application’s properties (scalability,

ILP and MLP) and ACMP architecture (core types and caches). From the profile data, models are

automatically built, with regression analysis, to estimate performance for different mappings of

thread count and core type. Automatic portability is desirable due to the expected range of ACMP

architectures enabled by dark silicon. It is also necessary to ensure the approach is feasible since
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Figure 40: Overview of AUTO-GENEOUS

an application’s model is bound to a specific processor.

Similar to other experimental approaches, the time to profile (train) and build a model is a

concern. To gather full profile data would require multiple application runs using different thread

counts on each core type available in the target ACMP. For example, the eight applications in

Figure 39 would take approximately 20 hours (total) to train and build the models for an ACMP

with three core types. Instead, as explained in the next section, AUTO-GENEOUS builds a model

for the basis core type from available profile data and projects it to the other core types in ACMP.

The basis core is the fastest core in the ACMP to improve profiling speed. Available basis profile

data is augmented with selected data for each additional core type in the target ACMP. These

additional types are called induction cores (or, simply “inductee”). A model is built by projecting

performance on the basis to the inductee types. This allows constructing models in-situ on the

target ACMP to best capture thread count–core type relationship with low profiling cost.
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6.2 MODELING PERFORMANCE ON ACMPS

The approach, AUTO-GENEOUS, to build and use a model is depicted in Figure 40(a). It has three

steps: 1) basis, 2) induction, and 3) model update and use. Each step is described in the following

sections.

6.2.1 Basis Model

In the first step, a basis function is created for the fastest, largest core type. This function estimates

an application’s performance on the biggest core as thread count is changed. The basis function

has the form B(tc) = perf , where perf is performance according to the allocation policy. tc is

the thread count of the application on the basis core type. In essence, this function defines an

application’s performance scalability curve across thread count on the biggest core.

B must accurately estimate performance because it is used to make mapping decisions for big

cores and to approximate scalability for inductee (little) cores. Profile data about application exe-

cution on the basis type is used to create B. Profiling can be done during application development

or installation. The profile can be partial: Missing data can be gathered online during actual ap-

plication execution to improve basis function accuracy. Typical usage of AUTO-GENEOUS will

gather hardware counters (e.g., instructions retired, cycles) for multiple thread counts. Application-

specific metrics can also be profiled. From this data, AUTO-GENEOUS generates B using adap-

tive regression analysis to select among different function forms and parameters to represent basis

performance.

6.2.2 Induction Model

In the second step, functions are created to estimate performance scalability on the induction (lit-

tle) core types from the basis core. These functions are projections that transform B to fit expected

application scalability for the inductee cores. A projection function for a core type, Pinductee, is de-

rived from basis training with a small amount of additional profiling on the inductee. Figure 40(b)

illustrates the concept. In this figure, the basis function is transformed by a projection to match

scalability for the induction core. There is one projection per induction core type.
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Figure 41: Performance for 1-16 threads on three core types

To get P for each inductee, AUTO-GENEOUS uses regression analysis between basis and

inductee types. Thus, performance is estimated for each induction core using B in P . The analysis

requires training on some profiled thread counts for each induction core type. These thread counts

are called inflection points. For example, there are two counts used in Figure 40(b). This process

minimizes overall profiling because only partial data is used for induction types. The check for

inflection can use fewer or more thread counts to trade accuracy versus training cost.

This approach works because the actual scalability curves of the induction core types typically
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follow the basis core type. Figure 41 shows performance as thread count is changed for eight

multithreaded applications on the Gainestown, Gainesvillage, and Gaineshamlet core types. The

y-axis is observed IPN at the thread count on the x-axis; the curves were generated by running all

applications on each core type for 1 to 16 threads with full evaluation data. These curve shapes

capture the expected range of behavior for most applications.

As the figure shows, in general, the curve shapes for an application are similar across core

types. For example, in BODYTRACK, the shape of the curves match one another, except IPN is

shifted down for smaller core types relative to bigger cores. Likewise, in X264, the curves have

similar shapes, despite many “ups and downs.” The figure also illustrates how many inflection

points are needed. For CANNEAL, two points are necessary to project Gainestown to Gainesvillage

and Gaineshamlet cores. However, in some cases, more inflection points can be beneficial, such

as BODYTRACK where three points are useful to describe the curve’s two segments. X264 has the

most erratic behavior, but even in this case, only four training points are needed. While using more

training points improves projection accuracy, fewer points can be used, if some error is tolerable.

The similarity of performance scaling on basis and induction core types depends on how much

the core types differ. That is, two core types that are quite different may not have similar curves.

In particular, big differences in the cache and memory subsystem may cause this behavior. Despite

this issue, no situation has yet been observed where the curves are so different that the performance

trends for the induction core types are mispredicted enough to harm mapping. This observation

has held even for core types with different size last-level caches, as shown in the experiments.

Together, the basis and projection functions define an estimation model. Figure 42 shows an

example model, MX264, for X264. This model was automatically generated by AUTO-GENEOUS.

The model is parameterized by core type, ty , to select the function to use for a core type. The

model is also parameterized by thread count, tc, which is used by the individual functions to make

a prediction. The functions predict instructions per cycle (IPC) for the basis and inductees. The

IPC is scaled by core clock frequency in the model to account for different core speeds. The basis

function, BGainestown, in this model is piecewise, with a degree 3 polynomial, to fit the “ups and

downs” in X264’s scalability curve. Because scaling on the inductees is similar to the basis, a linear

function is effective for PGainesvillage and PGainestown. Section 6.3 describes the regression process

to generate a model.
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Estimation Model

MX264(tc, ty) =


CGainestown ·BGainestown(tc) if ty = Gainestown,

CGainesvillage · PGainesvillage(tc) if ty = Gainesvillage,

CGaineshalmet · PGaineshamlet(tc) if ty = Gaineshamlet

Basis Function

BGainestown(tc) =


0.707 · tc + 0.886 if tc ∈ [1, 9),

1.641 · tc3 − 51.937 · tc2 + 545.269 · tc − 1890.809 if tc ∈ [9, 13),

−2316.501 · tc3 + 481.250 · tc2 − 33.111 · tc + 0.758 if tc ∈ [13, 16]

Projection Functions

PGainesvillage(tc) = 0.794 ·BGainestown(tc)− ε0

PGaineshamlet(tc) = 0.484 ·BGainestown(tc)− ε1

Figure 42: Example model for X264 (tc is thread count; ty is core type; Cty is clock frequency of

core type)

6.2.3 Model Update and Use

In the third step, the estimation models may be updated and used for mapping. The profile data

for the basis and induction core types is updated as more information becomes available from

more application invocations. Initially, the scalability curves may be sparsely populated, i.e., there

are only a few profiled thread counts used to derive the basis and projection functions. As the

application is executed under more varied situations, including different QoS, corunners, and input

data sets, more profiled thread counts with a range of behaviors are seen. This profile information,

i.e., hardware performance counter values, is passed back to the regression process to improve

model accuracy by taking into account more execution scenarios. With up-to-date information, an
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application’s model is periodically reconstructed. The next time the application is executed, the

updated model is used.

An estimation model allows for performance prediction and identification of configurations

(thread count and core type) that are performance equivalent. A configuration can then be chosen

to meet constraints (e.g., power, energy, thermal, architectural). In many situations, a static (fixed)

mapping of the multithreaded application by itself to the target ACMP is sufficient. For example,

in mobile OSes, like iOS and Android, the foreground application has highest priority and “owns”

the system. Background processes sleep, or have lightweight periodic services that check for crit-

ical events. In this situation, the estimation models are useful to map an application in isolation

since the application effectively runs by itself. In other situations, like data center consolidation,

it may be desirable to consider interference among co-running applications [63, 101]. Although

the models reflect interference through online profiling (i.e., of the application with corunners),

it may be possible to directly include interference in the estimation model to map multiple ap-

plications. Models may also be used for dynamic remapping (i.e., dynamically changing thread

count); whenever remapping is triggered, an application’s model can guide allocation. When to

remap is separate from estimating the application’s performance under a given mapping (which

AUTO-GENEOUS does address).

6.3 GENERATING AN ESTIMATION MODEL

An estimation model has three parts (see the example in Figure 42): the model function (e.g.,

MX264), the basis function, and the projection functions. AUTO-GENEOUS constructs each of

these functions. The model function is straightforward because it simply scales the basis or pro-

jection functions by a core type’s clock speed. This accounts for speed differences of the core

types.

The basis and projection functions are more involved to generate. For this purpose, AUTO-

GENEOUS uses adaptive regression analysis. This analysis identifies an accurate way to estimate

performance with low profiling cost.

The analysis generates a piece-wise basis function, B, with s pieces. Each piece i in B is
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estimated by a polynomial of some degree, xi, where 1 ≤ i ≤ s , xi ≤ maxdegree, and maxdegree

is a fixed limit on the degree. A piece is defined by two inflection points, i.e., a range of thread

counts, [tcin,i, tcin,i+1). tcin,i is the start inflection point for pieces i. As an example, consider

Figure 42. The basis has three pieces at thread counts [1, 9), [9, 13), and [13, 16]. The first piece

is estimated by a degree-1 polynomial and the second and third pieces are estimated by degree-3

polynomials.

There is a trade-off between the choice for s and each xi. A larger s implies B will better

match sharp changes in application scalability. However, with more pieces, there is potentially less

profile data available to fit a higher degree polynomial. There may not even be “enough” profile

points (thread counts) in a piece to build a particular degree polynomial, or the function may over

fit. The number of pieces also affects how much profiling is needed for each induction core type.

With more pieces, more profiling is necessary to project from basis to inductees. Thus, the goal of

the analysis is to minimize s and select each xi to most accurately fit basis training data without

overfitting.

To find the basis function, adaptive regression analysis varies s , tcin,i, and xi to generate a set

of possible candidate functions from which one is selected as B. The analysis proceeds in several

steps:

1. Collect initial profile data for the basis core type by executing the application with different

thread counts. This data may be incomplete but should reflect the expected range of thread

counts for the application.

2. Select a portion of profile data uniformly distributed among available profiled thread counts to

train the basis function.

3. Select s , tcin,i, and xi to maximize basis accuracy without overfitting, while reducing induction

training. This step outputs the best B.

4. For each piece i in B, profile the application on each induction core type at the start inflection

point, tcin,i. For the last piece, profile the application with the first and last inflection point for

the piece. If an inflection point is already available in the profile data, then do not profile it

again.

5. Using B and the induction profiles, generate projections to transform B to fit the profile data.

This step outputs Pinductee for each inductee.
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6. Collect online profiles during application invocation and periodically reconstruct the estimation

model (repeat from step 2).

Figure 43 shows SELECTBASIS, the algorithm to build the basis function. This function is

used in step 3. The algorithm inputs available profile data for an application. The profile is a

database of tuples 〈tc, ty , perf 〉 that record performance (perf ) for different core types (ty) and

thread count (tc) combinations. The profile can be incomplete, containing a mix of thread counts

and core types.

Regression extrapolates performance scalability of an application for the basis core type from

the available profile data. On Line 4 in the figure, profile data for the basis core is extracted to

serve as train data for regression. This portion of the basis profile (TRAINAMT) is selected to

be uniformly distributed (UNIFORM) across available thread counts. To evaluate fitness of a basis

candidate function, the full basis profile data is extracted as test data on line 5.

The algorithm traverses the iteration space of number of pieces (line 7), assignment of thread

counts to inflection points (line 10), and polynomial degree (line 11). The assignment of thread

counts as inflection points defines the start and end points for the s pieces. The assignments, called

“splits”, are determined by SPLITPIECES on line 8. Similarly, all combinations of polynomial

degrees for the splits are computed on line 9. The maximum number of pieces and polynomial

degrees have fixed limits (constants MAXSPLITS and MAXDEGREE) to constrain the size of the

iteration space. On line 12, GENBASIS generates a candidate basis function from the number

of pieces, splits, and polynomial degrees using least squares regression. GENBASIS is shown in

Figure 44.

Some parameter combinations can lead to invalid candidate basis functions. This situation hap-

pens when there are not enough profile points in the train data to allow regression on the function

defined by the parameters. For instance, a large number of pieces (s) and high-degree polynomials

for each piece (degrees) may lead to an underspecified function. GENBASIS returns NULL on

line 12 in Figure 43 in this case.

The fitness of a candidate function is evaluated on lines 15 to 20 by determining a penalty value

of relative benefit to cost. The penalty is computed on line 17. Benefit is measured indirectly as

mean squared error (MSE) on the test data; a larger MSE implies worse accuracy, and therefore,

less benefit. Cost is measured as how many inflection points in the candidate basis function have
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SELECTBASIS(profile)

1 B = NULL // at end, the best basis function

2 minPenalty = +∞

3 // extract train and test data sets for basis

4 train = SELECT(profile, BASIS, TRAINAMT, UNIFORM)

5 test = SELECT(profile, BASIS, ALL)

6 // iterate over pieces, splits of pieces and degrees

7 for n = 1 to MAXSPLITS

8 splits = SPLITPIECES(train, n) // inflection points

9 D = {1, . . . ,MAXDEGREE}n // Cartesian exp.

10 for split in splits

11 for degrees in D

12 candidate = GENBASIS(train, split , degrees)

13 if candidate 6= NULL

14 // evaluate appropriateness of function

15 E = COMPUTEMSE(candidate, test)

16 C = NUMMISSINGPOINTS(split , profile)

17 penalty = E 2 · (C + 1) // penalty function

18 if penalty < minPenalty

19 minPenalty = penalty

20 B = candidate

21 return B

Figure 43: Algorithm to adapt and select basis function

not been previously profiled. The thread count for each unseen inflection point on each inductee

core is executed to get data for projection, and thus, the unseen points impose cost. In the penalty

calculation, the error (E) is weighed more heavily than the cost (C). The penalty is minimized
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GENBASIS(train, split , degrees)

1 candidate = [ ]

2 for i = 1 to NUMSPLITS(split) // number of pieces

3 // extract piece i’s profile data

4 regres = SELECT(train, THREADCOUNT, split [i ])

5 // regression on piece i’s profile data

6 pieceFunc = LSREGRESSION(regres , degrees [i])

7 if pieceFunc == NULL

8 // Underspecified polynomial (not enough data)

9 return NULL

10 // add the piece’s function to basis

11 candidate = APPEND(candidate, pieceFunc)

12 return candidate

Figure 44: Algorithm to generate candidate basis function

(lines 18 to 20) to find B.

Once the basis function is selected, projection functions for the inductees can be generated

(step 5 of adaptive regression analysis). The algorithm to generate a projection function is shown

in Figure 45. The algorithm is invoked for each induction core type in the ACMP. The projection

function “reshapes” the basis function by adjusting it to fit the application’s performance on an

inductee.

Similar to basis generation, GENPROJECTION adapts the projection function based on fit. In

this case, only polynomial degree is changed and a single piece is used. A higher degree polyno-

mial is useful to describe a more complex relationship between basis and induction scalability than

a simple linear shift. As more profile data becomes available about the induction core type, the

accuracy is improved and a higher degree polynomial can be used.

In Figure 45, GENPROJECTION extracts profile data for an induction core. This data are tuples
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GENPROJECTION(profile,B , split , inductee)

1 // generate profile data for unseen inflection points

2 for tc in split

3 if not EXIST(profile, inductee, THREADCOUNT, tc)

4 INSERT(profile, tc, RUNPROFILE(inductee, tc))

5 // extract all profile data for inductee

6 train = SELECT(profile, inductee,ALL)

7 regres = [ ] // regression data

8 // create regression data of basis and inductee IPCs

9 for tuple in train

10 INSERT(regres , B(tuple.tc), tuple.ipc)

11 // find highest degree polynomial to fit regression data

12 P = NULL

13 degree = MAXDEGREE

14 while P == NULL

15 P = LSREGRESSION(regres , degree)

16 degree = degree − 1

17 return P

Figure 45: Algorithm to generate projection for an inductee

of thread count and performance (e.g., hardware performance counters). B is used to predict the

IPC of the basis core type, which is mapped by regression to the profile data for the induction

core type. The mapping gives the necessary (x, y) data required by regression. For a given thread

count, B is used to compute the basis aggregate performance as x and the profile data is used

to get performance for the inductee as y. Using the data, the algorithm first tries a high degree

polynomial. If this degree cannot be used (i.e., due to missing data), then the next lowest degree is

tried until a function is generated.
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Table 33: PERF architecture parameters

Core architecture
Gainestown Freq=2.66GHz,Dispatch=4,Window=128,LSQ=10
Gainesvillage Freq=2.4GHz,Dispatch=2,Window=64,LSQ=5
Gaineshamlet Freq=2.2GHz,Dispatch=1,Window=32,LSQ=2

Cache architecture (L1, L2 per core and L3 per processor)
L1 cache private I&D, 32 KB, 4-way, 64 B block
L2 cache private 256 KB, 8-way, 64 B block, 8-cycle hit
L3 cache shared 8 MB, 16-way, 64 B block, 30-cycle hit

Main memory (DRAM)
Config. 45 ns access, 1 controller/proc. w/2 channels

Multiprocessor organization (multiple sockets/clusters)
Processor 3 clusters of each core type, 4 cores per cluster
System 4 processors

6.4 EVALUATION

AUTO-GENEOUS was implemented and evaluated to determine its effectiveness. The evaluation

examined model accuracy as key parameters are varied. Additionally, AUTO-GENEOUS is used

in a policy, QoST, to predict IPC and meet QoS while minimizing the cost (e.g., power) of doing

so.

6.4.1 Methodology

The Sniper CMP simulator, version 5.1 [94], was used to evaluate two ACMPs, PERF and MOBI.

These designs were chosen to study AUTO-GENEOUS on diverse processors. PERF has three

core types, shown in Table 33. This configuration models a performance-oriented multiprocessor

ACMP desktop or server machine; its three core types cover a range of microarchitecture/speed

ratios. PERF has four processors, where each processor has three clusters of each core type, with

four cores per cluster. Within each processor, only one cluster can be powered on at a time, and all

clusters share the last-level cache (LLC) and memory subsystem. The microarchitecture for each

core type differs in ILP and MLP aggressiveness. MOBI is a many-core design for future mobile

systems; the parameters are shown in Table 34. It has 16 cores of two types, Grande and Petite.
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Table 34: MOBI architecture parameters

Core architecture
Grande Freq=1.86GHz,Dispatch=3,Window=64,LSQ=10
Petite Freq=1.36GHz,Dispatch=2,Window=32,LSQ=2

Cache architecture (L1, L2)
L1 cache private I&D, 32 KB, 4-way, 64 B block
Grande L2 cache shared 2 MB, 8-way, 64 B block, 8-cycle hit
Petite L2 cache shared 512 KB, 8-way, 64 B block, 8-cycle hit

Main memory (DRAM)
Latency 45 ns DRAM access, 1 controller/proc. w/1 channel

Processor organization
Processor 2 clusters of each core type, 16 cores per cluster

The cores for each type are clustered. Unlike PERF, the clusters do not share the LLC. The Grande

cluster has a large LLC and the Petite cluster has a small LLC. Most experiments evaluate only

PERF; the trends are similar for MOBI. MOBI is evaluated in the QoS study.

Multithreaded benchmarks were selected to cover a spectrum of MLP, ILP, and scaling. The

benchmarks are executed to completion with the simulator. The applications are: BLACKSCHOLES,

BODYTRACK, CANNEAL, FLUIDANIMATE, STREAMCLUSTER, and X264 from PARSEC [10];

Andersen’s parallel points-to analysis (ANDERSEN) [97]; and, WATER NSQUARED from Splash-

2 [112]. ANDERSEN is a proxy for graph-intensive applications. The benchmarks were compiled

with clang 3.2 (LLVM) and -O3 optimization flag. The same applications are used for PERF and

MOBI to ease comparison between processors. One data set (simmedium) was used to generate the

models, and another one was used for evaluation (simlarge). Unless stated otherwise, the models

were generated from 50% of possible simmedium training data (even thread counts).

Several evaluation metrics are used, including mean relative error, performance, and runtime.

Mean relative error is the absolute value of the difference between a model prediction and actual

performance reported from the simulator for simlarge. Performance is reported as IPN. Runtime

for profiling and analysis is collected by executing AUTO-GENEOUS on a real machine. QoS and

cost (e.g., power) are also evaluated, as described later.
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Table 35: Parameters for models generated by AUTO-GENEOUS for QoST on PERF

Program Pieces Degrees Inflection Points
AND 2 1, 1 1, 9, 16
BS 2 2, 2 1, 11, 16
BT 2 2, 2 1, 7, 16
CN 1 3 1, 16
FA 2 1, 1 1, 5, 16
WTR 3 1, 2, 2 1, 5, 11, 16
STC 2 1, 1 1, 13, 16
X264 1 2 1, 16
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Figure 46: Basis model accuracy

6.4.2 Model Evaluation

Table 35 summarizes the models generated by AUTO-GENEOUS. Typically, the models have

one or two pieces (splits) with low degree. For instance, FLUIDANIMATE scales mostly linear

with a slight inflection; consequently, AUTO-GENEOUS generated a basis function that has 2

pieces, each with degree 1. Interestingly, FLUIDANIMATE’s curve in Figure 41, gathered for

simlarge, has linear scaling, yet a 2 piece function was generated for simmedium. This happened
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as a consequence of using a different and partial data set to generate the model. X264 illustrates this

phenomena as well: The model generated by AUTO-GENEOUS has 1 piece with degree 2, which

follows the “curving” trend in the profile. Because the profile is partial (50% of thread counts),

the “ups and downs” in Figure 41 are not fully seen by adaptive regression analysis. A model

was constructed from X264’s full evaluation data; this “optimal” model is shown in Figure 42

as an earlier example. This model is more complex than the one generated from partial training

due to missing points. As this case illustrates, models can have error depending on data set and

completeness of their profiling. Model error is examined next.

6.4.2.1 Model Accuracy Figure 46 shows mean relative error depending on the core type cho-

sen for generating the basis function. On a per-application basis, the choice of basis core type has

an impact. For example, on FLUIDANIMATE, the basis generated for Gainestown has minimal

error (0.005), whereas for Gaineshamlet, the error is 0.04. FLUIDANIMATE’s behavior varies

from one core type to another. On Gainestown, it scales linearly, while on Gaineshamlet it scales

with a slight curve. Curves are harder to predict than lines, resulting in slightly increased er-

ror. In STREAMCLUSTER’s case, the basis for Gainestown has higher error than the basis for

Gaineshamlet (0.04 versus 0.005). STREAMCLUSTER’s scalability, beyond 12 threads, shifts and

slightly flattens. The flattening is more dramatic for Gainestown due to increased scaling (higher

slope) between 1 and 12 threads. For Gaineshamlet, the drop is less significant, leading to a more

accurate function.

Despite differences for some applications, the choice of basis for PERF has a negligible overall

affect, as the average mean error shows. MOBI has similar behavior. Because the fastest processor,

i.e., Gainestown and Grande, reduces profiling time, it should be used as the basis type. In the rest

of the paper, models use Gainestown for PERF and Grande for MOBI as the basis types.

Next, the accuracy of projections is examined. Figure 47 shows mean relative error, with

Gainestown as the basis. Inflection points were used to build projections for Gainesvillage and

Gaineshamlet. The error of the Gainesvillage projection is consistently smaller than Gainesham-

let’s projection (except ANDERSEN). Because Gainestown is more similar to Gainesvillage than

Gaineshamlet, the error is lower for this projection. Gainesvillage’s characteristics are between

those of Gainestown (the large, aggressive PERF core) and Gaineshamlet (the smallest PERF
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Figure 47: Projection model accuracy

core). Gainesvillage predictions are more accurate because performance of the two core types

are more similar and more easily described by projection given limited training data. Nevertheless,

the Gaineshamlet error is small: On average Gaineshamlet has less than 0.04 relative model error.
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6.4.2.2 Online Updating of Models The amount of profile data to construct the basis function

can have an impact on accuracy. Figure 48 shows change in error with increasing quantity of pro-

file (training) data. This figure indicates how AUTO-GENEOUS’s online profiling can improve

accuracy as more data becomes available. The far left shows 25% profile data (4 thread counts: 4,

8, 12, 16). Additional points are selected uniformly until 75% of the full profile space is used. The

results demonstrate that, as expected, additional training reduces basis function error. ANDERSEN

and BLACKSCHOLES’s basis functions slowly improve with more profile points. BODYTRACK’s

and FLUIDANIMATE’s initial error (0.025 and 0.01, respectively) at 25% profile data is halved

once an additional point is used (31.25%). After this point, the error continues to decrease con-

sistently, although slowly. The error for CANNEAL is steady until 62.5%. At this point, the error

drops, which indicates a training sensitivity to thread count.

The error for STREAMCLUSTER’s basis function alternates up and down as points are added.

The functions generated for each set of profile data do not quite capture STREAMCLUSTER’s scal-

ing trend. Indeed, the accuracy of the basis function in this application strongly depends on the

choice of thread counts for training. A non-uniform training approach, which focuses on areas

where STREAMCLUSTER’s performance changes, could address this issue to improve error. Nev-

ertheless, once STREAMCLUSTER is trained on 68.75% of profile points, the error significantly

drops.

WATER NSQUARED’s error has “plateaus.” At 25% training, the error is high (0.15). Given

one more point (31.25%), the error drops to 0.06 and remains steady. Once 50% training is used,

the error again drops and plateaus. A final drop happens at 75%. Finally, the error is constant

until 62.5%. At this point, the error is below 0.08. X264 has many local minima and maxima, and

requires a relatively large quantity of data to accurately capture and predict performance.

Projection function accuracy, as more profile data is used, was also examined. Because the

scalability curves are similar between core types, the inflection points alone were usually sufficient

to accurately determine a projection. Thus, most applications had minimal improvement (less than

0.01) in projection accuracy as more thread counts beyond the inflection points were used. How-

ever, X264 was, once again, sensitive: The mean relative error varied from 0.07 to 0.15 (average

0.08). A mean relative error of 0.15 was an outlier. This relatively large error occurred if 2 more

points than the inflection points were used for training. With just the inflection points, the error
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Figure 49: QoST versus MultiPie for X264

was 0.08, which is close to the minimum 0.07.

These results show that AUTO-GENEOUS’s methods to gather online profile data is useful to

increase basis function accuracy. It is less important to gather more profile data for the projection

function, but it can help for applications with local peaks and valleys in scaling (e.g., X264).

6.4.2.3 Comparison to PIE To put the mean relative error for AUTO-GENEOUS in context to

other approaches, AUTO-GENEOUS was compared with Performance Impact Estimation [106].

PIE is extended for multithreaded applications and to make predictions between out-of-order cores.

The original PIE supported only in-order to out-of-order and vice versa. This extension is called

MultiPie. Figure 49 shows how AUTO-GENEOUS and MultiPie compare for a representative

application, X264. The model from AUTO-GENEOUS, trained on simmedium, is used to pre-

dict performance for X264 on simlarge for Gaineshamlet. MultiPie is designed to be used online,

therefore it is evaluated on simlarge input data. As the figure shows, the model from AUTO-

GENEOUS smoothly matches X264’s behavior. Sometimes AUTO-GENEOUS over predicts (low

thread counts) and sometimes it under predicts (high thread counts), but it captures the overall
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Figure 50: QoS met by QoST on PERF for cost ratios [1.84, 1.32, 1.0]

trend. On the contrary, MultiPie consistently underestimates performance. Although MultiPie

identifies local minima and maxima for X264, the predictions from the model are inaccurate. The

inaccuracy is due to PIE’s assumption that processors are “balanced”, and in the absence of LLC

misses, the IPC is equal to dispatch width. Other researchers have noted a similar observation for

PIE and pointed out that no commercial processor is balanced [81]. CPI stacks from Sniper reveal

X264 has multiple sources (e.g., floating point, branch misprediction) of slowdown on Gainesham-

let. Similar inaccuracies were found for other applications and core types as well, even for simple

cases, like CANNEAL.

6.4.2.4 Profiling and Adaptive Regression Analysis Runtime The time to profile and con-

struct AUTO-GENEOUS models was examined. Profile runtime depends on number of profile

points; the full space for PERF has 48 points (16 thread counts on 3 core types) per application and

data set. By profiling 50% of the thread counts for the basis core type and only the inflection points

for each induction core type, the number of profiling points is reduced from 48 to 12-16, with an

average of 13.25. To understand how these simulated inputs translate into actual runtime, profile

127



times on a real machine with native data sets were measured. With AUTO-GENEOUS, the profile

runtime was improved by 6.83· (FLUIDANIMATE) to 9.4· (X264), average 8.7·, versus profiling

the full space. Per benchmark, the average profiling runtime was reduced from approximately 2.5

hours to 17 minutes.

The time to generate a model is dominated by building the basis function. Projection models

are built nearly instantaneously since only the number of degrees is varied. Generating the basis,

however, depends on maximum degrees and maximum splits. In the most complex case (16 ba-

sis training points, MAXDEGREE = 3, MAXSPLITS=3), basis generation took approximately 20

seconds. Relative to profile runtime, model generation contributes only a small amount to AUTO-

GENEOUS’s runtime. In conclusion, AUTO-GENEOUS’s runtime is fast enough to build models

as part of normal application development. If small, representative data sets can be used, then the

time could even be fast enough to build models during application installation (e.g., on a mobile

device).

6.4.3 QoST: A Policy to Select Thread Count, Core Type

To evaluate AUTO-GENEOUS’s utility in mapping applications to ACMPs, the models were used

in several execution scenarios. The scenarios had different QoS targets and cost ratios of one

core type to another (e.g., ratio of power between big and little core types). The evaluated policy,

QoST1, tries to satisfy a QoS target and minimize relative cost. QoST uses an exhaustive search

to find the mapping that is predicted to best meet QoS and minimize cost, within a threshold.

This mapping is “scored” against the optimal mapping determined through simulation with the

evaluation data set for all mappings.

Four cost ratios were used. The ratios are derived from a variety of sources to show that AUTO-

GENEOUS is useful in a plethora of situations, regardless of the actual cost model used at runtime.

The ratios were: [1.84, 1.32, 1.0], [3.96, 1.98, 1.0], [2.568, 1.565, 1.0], and [6.0, 3.0, 1.0]. The

first number in a list is the cost of Gainestown (PERF) or Grande (MOBI) types. The last number

is Gaineshamlet or Petite’s cost. The middle value is Gainesvillage’s cost.

These ratios are derived from McPAT power predictions from core microarchitecture and sup-

1QoST = QoS + cost
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ply voltage (the first and second set of ratios), published ARM big.LITTLE relative power con-

sumption (the third set of ratios), and expected dynamic power ratios in asymmetric quad-core

processors (the fourth set of ratios) [5, 59, 92] The ratios give a range of expected relative cost for

ACMPs. The cost for a specific mapping is computed as: COST(tc, ty) = tc · COST(ty).

QoS is specified as a target IPN (instructions per nanoseconds),Qtarget , and a threshold, α. QoS

is satisfied when actual performance meets or exceeds (1−α) ·Qtarget . To test many Qtarget values

for an application, all IPN values for that application are evaluated. Cost is deemed minimized

when it falls within a factor of α of the best mapping. The choice of α is taken from the set

{0.2, 0.1, 0.05} to adjust evaluate different QoS and cost strictnesses.

Figure 50 shows how well the models meet QoS (α = 0.1). The graph shows two bars for

each application; the first bar is the percentage of mappings selected with an application’s model

(for all Qtarget values) that satisfied QoS, and the second bar is the percentage that met QoS and

achieved minimal cost. In most cases, mappings were selected that met QoS (87% on average).

Furthermore, a mapping with the best cost was also typically chosen (55% of cases on average).

ANDERSEN, BODYTRACK, and FLUIDANIMATE achieved 100% of the QoS targets due to very

accurate models. When cost is considered, these models do well. FLUIDANIMATE always lead

to the selection of the best mapping. Using the AUTO-GENEOUS models, QoST always meets

QoS and minimizes costs. Because the application requires power-of-two thread counts, there are

large gaps between mappings, which minimizes the impact of misprediction error on the policy’s

selections. For BODYTRACK, many mappings are performance equivalent (see Figure 39), which

causes sensitivity in selection with cost. Another interesting case is CANNEAL: 60% of the QoS

targets were satisfied, with only 40% having minimal cost. This error is due to a small, consistent

bias toward optimism in predicting performance, which lead to the selection of underperforming

mappings. This same situation happens for STREAMCLUSTER and WATER NSQUARED. Using

profiles gathered online can mitigate this problem.

Figure 51 shows how well QoS and cost are met for different cost ratios, α, and processors.

Also shown are the results for MultiPie. The figure shows the average percentage of mappings

across all applications that achieved QoS and minimized cost. Overall, the models generated with

AUTO-GENEOUS do consistently well and accommodate the cost ratios, QoS targets and core

types. At α = 0.2, for PERF, 97% (average) of QoS targets were satisfied and 73% (average) of
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the QoS and best cost targets were satisfied. For MOBI, the averages were 95% (QoS) and 68%

(QoS and best cost). Even at a very strict target, i.e., α = 0.05, the mappings for PERF satisfy QoS

78% (PERF) and 77% (MOBI) on average, with over 37% (PERF) and 38% (MOBI) of mappings

matching the optimal. Across cost ratios, for all settings of α, the models do better as the cost

ratios increase (increasing from left to right in the figure) due to more “separation” between cores

types, leading to fewer cost-equivalent mappings. This affect is most pronounced for α = 0.05.

In comparison between processors (PERF vs. MOBI), the models for the mobile processor satisfy

the constraints slightly less often. This result is attributed to the different cache hierarchies for the

two processors.

MultiPie meets QoS in 85% of experiments but, as Figure 51 shows, it rarely meets QoS

while also minimizing best cost. MultiPie consistently underpredicts performance, because it does

not take into account non-MLP sources of slowdown (e.g., branch misprediction, lack of ILP).

Therefore, it prefers the more powerful processor on each platform at the detriment of cost.

These results show that AUTO-GENEOUS generates models that are accurate enough to suc-

cessfully guide application mapping, i.e., the selection of thread count and core type, across a

broad range of QoS targets, cost ratios, and ACMP core types.

6.5 CONCLUSION

Asymmetric chip multiprocessors have multiple instruction-set compatible core types to trade per-

formance and power/energy. This chapter describes, AUTO-GENEOUS, a technique that allows

AUTO to automatically construct estimation models that predict a multithreaded application’s per-

formance for different thread count and core type mappings. The approach empirically derives an

estimation model with low training cost. AUTO-GENEOUS is the first technique to consider both

thread count and core type in estimating application scalability for ACMPs. The use of a policy

that uses AUTO-GENEOUS, QoST, shows that model predictions are accurate (0.02 error) and

beneficial for mapping multithreaded applications. The policy met QoS constraints 88% of the

time.
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7.0 CONCLUSION

Today’s computers feature multiple processors with several cores and are capable of huge amounts

of parallel computation. Nevertheless, cores are a finite resource. An improper allocation of

threads, cores, and/or choice of cores to a application will fail to meet performance objectives

(e.g., throughput, QoS). These resources must be carefully and systematically adjusted to ensure

that performance objectives will be met. However, the size of the configuration space is too large

to explore online. Furthermore, the system’s workload and performance objectives are dynamic,

changing constantly and without warning. Even individual application behavior is diverse. Strictly

online or offline techniques do not work due to the complex nature of modern computation.

Therefore, modern systems need to allocate resources dynamically and efficiently. This thesis

introduced AUTO, a resource allocation framework for modern computers. AUTO enables previ-

ously impractical, but always necessary, resource allocation policies. It proposes and makes use of

the inflate/deflate programming model to dynamically adjust application thread counts in response

to the allocation policy and/or user objectives.

This thesis developed three techniques of AUTO: AUTO-TC, AUTO-FINITY, and AUTO-

GENEOUS. AUTO-TC controls application thread counts in the prescence of corunners, AUTO-

FINITY selects application affinities, and AUTO-GENEOUS selects application thread count and

core type on asymmetric systems. Each technique was evaluated and shown to meet QoS and/or

increase system throughput. Results show that AUTO enables diverse resource allocation policies

and efficiently solves the problem of resource allocation on modern CMP computers.
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7.1 SUMMARY OF CONTRIBUTIONS

This thesis made the following contributions:

1. The AUTO framework: This thesis introduced a framework to dynamically adjust resource

allocations: application thread count, core count, and choice of cores. Using automatically

generated models, the framework makes predictions about the effects of resource allocations

on system performance as measured by an allocation policy. Through the use of the framework,

system policies can efficiently evaluate the effects of resource allocations and, consequently,

better meet or exceed user performance objectives.

2. Inflation/deflation-capable applications: This thesis introduced the inflate/deflate program-

ming model. Inflate/deflate allows applications to dynamically change their thread counts

(i.e., in response to a new resource allocation). Existing applications were modified to sup-

port inflation/deflation. The modification experience was discussed, in order to better analyze

inflate/deflate. Developers were also given guidance to help them understand how to modify

their applications and add inflate/deflate support. Adding inflate/deflate support to applications

is worthwhile and can be relatively straightforward.

3. Thread count allocation for one or more co-running applications (AUTO-TC): This thesis

developed and used the AUTO framework to select thread counts for one or more co-running

applications. The framework’s predictive models considered application scalability (or lack

thereof), negative interference, and the importance of the corunner used during model training.

A policy, DYCA, was developed to use the models to maximize system throughput subject to

meeting QoS. Results demonstrate model accuracy and utility: the policy met QoS 22% more

often and had 6% higher throughput than traditional policies.

4. Application affinity selection (AUTO-FINITY): This thesis developed and used AUTO to

select an application’s preferred class of affinity. The lightweight selection process is indepen-

dent of thread count and works without training on the application ahead of time. It requires a

single, short sample of hardware performance counters. AUTO-FINITY was used by a demon-

strative policy, MAGNET, to boost application performance through proper affinity selection.

In 12 of 15 cases, performance was within 1% of or better than the per-application best fixed
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affinities. In two cases, it outperformed the fix assignments. This thesis also introduced a sec-

ond set of techniques to build models that predict application performance given an affinity.

A policy using these models, COMPASS, resulted in application performance being improved

by up to 39% as compared to the best application-agnostic policy.

5. Asymmetric system thread count and core type selection (AUTO-GENEOUS): Asymmet-

ric chip multiprocessors are becoming increasingly popular due to their energy efficiency. This

thesis used AUTO-GENEOUS to select the core count and type that an application’s threads

should be executed on. To minimize training, AUTO-GENEOUS used piecewise basis models

alongside simpler inductee models. The inductee models transform application behavior from

one processor type (the basis processor) to another (the inductee). A comprehensive evaluation

showed AUTO-GENEOUS’s accuracy. When used by a policy, QoST, AUTO-GENEOUS re-

sulted in the system meeting QoS constraints 88% of the time while also minimizing power

costs in 53% of cases.

7.2 FUTURE WORK

Future work for this thesis includes:

1. This thesis proposed inflate/deflate applications and guidelines on how to create inflate/deflate-

capable applications. Nevertheless, future work could further assist developers with modifica-

tion of their application to become inflate/deflate-capable. For example, a library to enable

inflate/deflate applications would reduce modification difficulty and promote acceptance of in-

flate/deflate. The library could provide a class that an application extends. The class could

provide common inflate/deflate functionality. Developers would override such functionality

on an as-needed basis. Because work stealing is the most flexible way to enable inflate/deflate

functionality, the base class would accomplish work via work stealing and could itself be an

extension of existing work-stealing libraries (e.g., Intel Thread Building Blocks [79]).

2. This thesis also introduced the concept of sketches. Sketches are designed to inform the Run-

time Configurator about an application’s behavior (e.g., cache usage, scalability). However,

this thesis did not formally define sketches. This was because, in part, profiling can determine

134



most of the relevant behavior. Although the costs of profiling are acceptable, future work could

examine how to further reduce profiling costs. A formal definition of sketches, their properties,

requirements, and interactions would be a large step towards the reduction or elimination of

profiling.

3. This thesis examined application performance on different core types. Digital voltage and fre-

quency scaling (DVFS) can be represented in AUTO as multiple core types (e.g., a core type

per frequency available). However, the cost of building a model for each core type (frequency

setting) could possibly be reduced by using DVFS-aware models. Identical cores set to dif-

ferent frequencies are more similar than dissimilar (e.g., identical caches, identical functional

units). Future work can examine how to convert between one frequency and another with less

profiling than current approaches.

4. This thesis treated threads within an application identically. Another extension could to add

support for heterogeneous threads within a application. Currently, each thread is treated as

behaving identically to every other thread. While this is acceptable from an application cor-

rectness viewpoint, additional performance could be achieved with more detailed, per-thread

properties. For example, pipeline parallel applications will benefit from stage-aware perfor-

mance predictions. Heterogeneous thread-aware models must consider more allocation possi-

bilities and interactions. Techniques should be developed to take advantage of the similarities

between processors, in order to reduce profiling.

5. This thesis focused on CPU-bound or memory-bound applications. Although these applica-

tions are the type that most benefit from this thesis’s techniques, additional classes of ap-

plications may also benefit, and therefore, could be considered in future work. I/O-bound

applications will require models that consider I/O-contention on a per-device basis (e.g., hard

drive, network). Additional types of parallel applications could also be considered. For ex-

ample, client-server processes might interact and be dependent on each other’s performance.

Some applications might run periodically (e.g., cron jobs). Future work could consider how to

predict system behavior and preemptively, instead of reactively, adapt.

6. This thesis examined the effects of contention on the scalability of CPU-bound or memory-

bound applications given the thread count of corunner(s). Future work could develop tech-

niques to model interference caused by affinity choices and choice of core type.
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