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POLYMER BRUSHES INFILTRATED BY NANOPARTICLES AND APPLICATIONS TO THE

NUCLEAR PORE COMPLEX

Michael G. Opferman, PhD

University of Pittsburgh, 2013

Systems of grafted polymers in the presence of additives are useful in a variety of contexts including

industrial applications, solar cells, organic electronics, drug delivery, and nucleocytoplasmic transport.

In this thesis, we will consider the morphologies that polymer brushes attain when exposed to a solution

of additives (which we generically term “nanoparticles”), particularly when those nanparticles interact

attractively with the polymers. We find that nanoparticles of this type can have a dramatic effect on

the height of the polymer chains above the grafting surface, and they can induce highly non-uniform

morphologies, including ones in which a dense layer of nanoparticles and monomers forms near the

grafting surface. We consider especially the relevance of the system to several experiments performed

on biopolymers in the nuclear pore complex when they interact attractively with transport factors that

regulate nucleocytoplasmic transport. We find that, although these experiments appear to give inconsis-

tent results, the inconsistencies can be reconciled through two simple models: the Alexander-de Gennes

polymer brush, and the Milner-Witten-Cates polymer brush. Our findings should contribute to the under-

standing of the nuclear pore complex in that experiments can be better understood in the context of their

relevant control parameters.
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1.0 INTRODUCTION

1.1 THE NUCLEAR PORE COMPLEX

1.1.1 What is the Nulcear Pore Complex?

In eukaryotic cells, the DNA is located in the nucleus, while the operational machinery of the cell is found

in the cytoplasm. The two are separated by a double lipid bilayer membrane (approximately 35− 40nm

thick in the case of yeast [1]). This compartmentalization of the cell must be accompanied by pores in the

membrane which enable the translocation of cargoes between the nucleus and the cytoplasm. The sole

passageway through the nuclear membrane is the nuclear pore complex (NPC). A typical mammalian

cell contains thousands of NPCs on a single nucleus [2], transporting ∼1 million total macromolecules

per second [3].

The core scaffold of the NPC consists of an hourglass-shaped, eight-fold symmetric rigid framework

embedded in the nuclear membrane that is about 40nm across at its narrowest point [4]. The central

core is anchored into the membrane by rings of proteins called nucleoporins (“nups”) at each end. On

the cytoplasmic side, the nup ring is attached to eight flexible cytoplasmic fibrils that extend into the

cytoplasm, while on the nuclear side, eight filaments extend into the nucleus to form a rigid “nuclear

basket” structure [2, 5]. Several pictures of the core structural components of the NPC can be seen in Fig.

1.

In addition to the rigid, structural portion of the NPC, there are other flexible, possibly dynamic nups

typically 200-700 amino acids in length that contain characteristic phenylalanine glycine (FG) repeat

domains, referred to as “FG nups” [6]. Approximately 150 FG nups are grafted to the walls of the NPC

transport channel [7]. The FG repeat domains are typically made up of sequences of FG, FXFG or GLFG

repeat motifs separated by spacer sequences [6, 8, 9]. In total, approximately one-third of nups contain

1



these FG sequences, and the total number of FG repeat domains in one NPC is in the thousands [5]

(perhaps ∼20-30 per FG nup [8]). The FG repeat domains make up 12% of the NPC mass [7] . FG

nups are in the class of natively unfolded proteins, meaning that they are flexible and lack any significant

secondary structure [6, 10]. The FG nups occupy much of the available space in the transport channel,

though their exact location and morphology in vivo is disputed [11].

.3F ~ . -~  m mr ~V'B / CP 

3S ~ NE 

IS ~ NB 
~R 

NEL • 

FIGURE 1 

A schematic three-dimensional representation of the NPC drawn approximately to 
scale (based on data from Refs 2-7). The cytoplasmic face is shown uppermost, 

and certain facing portions have been omitted for clarity. CF, cytoplasmic 
filament; P, cytoplasmic particles; CR, cytoplasmic ring; OS, outer spoke ring; 

IS, Inner spoke ring; NR, nuclear ring; 5, spoke; CP, central plug (the buttresses 
connecting it with the IS are omitted); NB, nuclear basket; NE, nuclear envelope; 

L, lamina; NEL, nuclear envelope lattice, 

disassemble, during the lnterphase of higher 
eukaryotlc cells and throughout the entire cell cycle 
of budding yeast, thus maintaining the necessary 
NPC density t°. These assembly-disassembly events in 
mitosis and interphase may employ similar path- 
ways. Formation of the pore through the NE pre- 
sumably requires regulated fusion of the outer and 
inner nuclear membranes. Membrane fusion must 
also be required for elimination of a nuclear pore and 
restoration of an uninterrupted double-membrane 
structure. Moreover, to prevent non.specific 'leakage' 
from the interphase nucleus, membrane fusion must 
be precisely coordinated with oligomerization of 
NPC proteins. The mechanisms underlying these 
fusion events and the formation of the distinct sub- 
structures of the NPC are largely undefined. 

The NPC also forms part of the extended 
karyoskeleton. It is attached to the nuclear lamina (L) 
and the nuclear lattice (NELL thus helping to main- 
tain nuclear structure. It interacts with, and possibly 
binds to, chromatin and has also been proposed to 
be the attachment site of 'tracks', which may extend 
throughout the nucleoplasm to form routes for the 
movement of macromolecules to and from the 
NPCt.tT. 

NPCs are thus unique among cellular transporters 
in their large size (-300 times the mass of a gap junc- 
tion), variety of substrates and number of functions. 

This diversity of roles might be reflected in diverse 
and numerous NPC components. 

Defining NPC proteins 
With the peripheral structures included, the mass 

of an NPC might exceed 100 MDa and could be com- 
posed of -100 distinct proteins t,t°,m. A variety of bio- 
chemical, immunological and genetic approaches 
have been employed to isolate NPC proteins. Proof 
that any polypeptide is a component of the NPC 
requires demonstration of its presence in the NPC by 
immunoelectron microscopy. Furthermore, NPC 
proteins should fractionate with NPCs, their genes 
should interact genetically with the genes of other 
known NPC proteins, and their polypeptide se- 
quences might be similar to other NPC components. 
Table 1 is a catalogue of the genes and polypeptides 
that meet at least two of these criteria for an NPC 
component. 

Discovering the function of an NPC polypeptide is 
not so straightforward, in large part because direct 
assays for particular NPC transport or assembly steps 
do not yet exist. In addition, the view that each 
polypeptide has a single discrete function may be too 
siwnlistic. Numerous different NPC proteins may 
cooperate in any given NPC function. Furthermore, 
some NPC proteins may also be involved in several 
different functions. To confuse matters further, 
redundancy of function between NPC proteins might 
also be expected. Nonetheless, enough data have 
been accumulated to provoke some thought on the 
functional roles of NPC components. 

Roles Implied from polypeptlde sequences 
Tile majority of the polypeptldes in Table 1 have 

been characterized by study of their gene sequences. 
Similarity between the predicted amino acid se- 
quences and polypeptides of known cellular function 
would suggest possible roles for these NPC proteins. 
However, most of the predicted NPC protein se- 
quences are unrelated to non.NPC polypeptldes In 
the databases (Table 1). Nonetheless, a surprisingly 
large proportion of the yeast and vertebrate NPC pro- 
teins contain at least one region with characteristic 
repeat motifs tg-'~° (Table 2 and Fig, 2), These proteins 
display a continuum in number and exact sequence 
of the repeat motifs, There are two general types of 
regions with repeat motifs, which are usually referred 
to by the consensus sequence for the core of the 
repeat; namely, the degenerate XFXFG pentapeptide 
or the GLFG tetrapeptide, The spacer sequences 
between the XFXFG repeats are typically highly 
charged and enriched in S and T residues (Table 2). 
By contrast, GLFG repeat regions have spacer 
sequences that lack acidic residues and have a preva- 
lence of N and Q residues (Table 2). Both vertebrate 
and yeast proteins with the XFXFG repeat region 
have been identified. Several yeast NPC proteins 
containing the GLFG regions are known, and ver- 
tebrate NPC proteins with GLFG regions should 
also exist as a monoclonal antibody that was 
raised against rat nuclear antigens recognizes the 
yeast GLFG proteins z°. At least in vertebrates, the 
repeat motif proteins also have numerous sites for the 
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transport receptors [1]. The FG repeats are contained in
the N-terminus of Nup98, which also has a binding site for
Rae1, an NPC-associated protein implicated in RNA
export [16] and mitotic checkpoint activation [17]. The
one common feature of NUP98 translocations is that they
fuse the 50-end of the NUP98 gene, encoding the FG repeat
domain, in frame with the 30-portion of the partner gene.
The fusion partners of many NUP98 translocations are

genes of the homeobox (HOX) family of transcription
factors [9–13]. These transcription factors have roles in
early embryonic development and regulate hematopoiesis.
Other genes fused to NUP98 encode proteins with
unrelated functions, including an RNA helicase, DNA
topoisomerase I, a guanine nucleotide exchange factor and
several transcriptional coactivators [15].

There are several possible models of how the chimeric
fusion proteins cause leukemic transformation. The first
model proposes that the fusion proteins cause defects in
nucleocytoplasmic transport that contribute to leukemo-
genesis. The second model is based on the finding that the
Nup98 FG repeat domain functions, probably fortuitously,
as a transcriptional activator [18]. In this model, Nup98
fusion partners bind DNA and direct the Nup98 FG repeat
domain to activate downstream genes inappropriately.
One potential problem with this model is that some Nup98
fusion partners have no specific DNA-binding activity or
known role in hematopoiesis. A third possible model for the
oncogenic properties of Nup98 fusion proteins involves the
recent findings that the Nup98-associated protein Rae1
functions as a regulator of mitotic checkpoint activation
[17]. Rae1 deficiency results in a defective mitotic
checkpoint, an increased rate of chromosome missegrega-
tion and increased susceptibility to tumor formation in
mice [17]. These findings suggest that disruption of Rae1
activity could play a role in leukemogenesis. These models
are not mutually exclusive, and multiple mechanisms are
probably involved in the transformation potential of
Nup98 fusion proteins.

Nup214 translocations in myeloid leukemia

Nup214 is an FG repeat-containing nucleoporin, localized
asymmetrically to the cytoplasmic face of the NPC [1]. The
NUP214 gene is found in two different chromosomal
translocations that fuse it to genes encoding the DNA-
associated proteins DEK [19] and SET [20]. Similar to
Nup98 translocations, the resulting chimeric fusion
proteins contain the C-terminal FG repeat domain of
Nup214, which can function as a potent transcriptional
activator, suggesting that their oncogenic potential is
related to aberrant gene activation [18].

Tpr translocations in protooncogene activation

The nucleoporin Tpr was originally identified through a
chromosomal rearrangement found in a human sarcoma
cell line [21]. This and other chromosomal translocations
fuse a region of the N-terminal coiled-coil domain of Tpr to
the protein kinase domains of the MET [21], RAF [22] and
TRK [23] protooncogenes. More recent findings indicate
that Tpr localizes to the nucleoplasmic face of the NPC,
where it plays a role in nuclear export [24]. Biochemical
studies indicate that the N-terminal coiled-coil domain of
Tpr can activate the protein kinase domain of MET by
mediating protein oligomerization [25,26]. The resulting
constitutive protein kinase activity is believed to be
involved in cellular transformation. Whether specific
defects in NPC function are also involved is currently
unknown.

Box 1. Structure of nuclear pore complexes

One of the major distinguishing features of eukaryotic cells is the

compartmentalization of the genome into a separate organelle called

the nucleus. Chromatin is separated from the rest of the cell by a

double lipid bilayer called the nuclear envelope (NE), necessitating a

means of communication between nucleus and cytoplasm. This

function is fulfilled by nuclear pore complexes (NPCs), which span

the NE and provide a channel connecting the cytoplasm to the

nucleus [1]. NPCs are very large structures with a mass of 60–

125 MDa and a diameter of ,145 nm [3,61,62] (Figure I). Their most

striking feature is their eightfold rotational symmetry, which is

apparent throughout the entire structure. The central domain of

NPCs lies within the plane of the NE and consists of eight spokes

extending into the NE lumen, which anchor NPCs in the membrane

(Figure I; S). These spokes surround a central channel (Figure I; C), the

site of translocation for all actively transported cargoes. On either

side of the spoke complex are the cytoplasmic and nucleoplasmic

rings, each consisting of eight subunits (Figure I; CR and NR).

Attached to the subunits of these rings are fibers. On the cytoplasmic

face of NPCs, these fibers extend into the cytoplasm (Figure I; CF)

whereas, on the nucleoplasmic face, they connect distally to form a

characteristic basket-like structure (Figure I; NB). The nuclei of

human cells have several thousand NPCs connected by a structure

called the nuclear lamina. The nuclear lamina is a filamentous

network that lines the inner membrane of the NE. Mutations in the

protein components of the lamina are also associated with heritable

human diseases, including Emery-Dreifuss muscular dystrophy,

Dunnigan-type familial partial lipodystrophy and Hutchison Gilford

progeria syndrome [63,64]. Although the pathogenesis of these

diseases remains to be defined, they are generally not believed to

involve defects in NPC function or nucleocytoplasmic transport.

Figure I. The nuclear pore complex. A cross-sectional view of the vertebrate

NPC is depicted, with the relative localizations of specific disease-associated

nucleoporins discussed in the text. Abbreviations: C, central channel; CF, cyto-

plasmic fibrils; CR, cytoplasmic ring; INM, inner nuclear membrane; NB,

nuclear basket; NR, nucleoplasmic ring; ONM, outer nuclear membrane; S,

spoke.
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Figure 1: Three pictures of the NPC. In each case, the cytoplasmic side is shown at the top. Left Panel:

Schematic cartoon of the NPC from [8]. Note that this early picture of the NPC erroneously shows a

structural component to the NPC in the center of the transport channel. This structure was later concluded

to be a result of the non-structural components of the NPC and their interactions with the cargo. Center

Panel: Image of the NPC obtained from tomography of frozen NPCs from [12]. Right Panel: Schematic

cartoon of the NPC from [13]

.

From a functional standpoint, the NPC must selectively transport a wide range of cargoes such as

snRNPs, histones, transcription factors, mRNA, tRNA, and ribosomal subunits [5]. That is, unlike many

other structures in the cell (such as ion channels), nucleocytoplasmic transport does not occur through

a wide range of individually specialized channels designed for each particular cargo, but rather a single

essential structure, the NPC. The NPC must have properties robust enough to accomplish this task and

yet be selective enough to prevent the passage of unwanted cargoes. This is achieved through the use

of transport receptors, which signal to the NPC which cargoes are to be permitted passage through the

channel.

From a medical standpoint, the NPC is associated with a number of diseases including primary biliary
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cirrhosis, in which an autoimmune response targets components of the NPC and results in cirrhosis of

the liver, and triple A syndrome, in which mutations of a gene encoding the protein ALADIN, which

is localized to the NPC, result in a variety of problems including an inability of the adrenal cortex to

secrete glucocorticoids. NPC proteins are also implicated in cancer in a variety of ways. For instance

the gene encoding Nup98 is associated with a number of oncogenic fusion proteins [13]. In addition, the

NPC plays a role in viral infection. Some viruses dock onto nups at the cytoplasmic side of the NPC

in order to inject their genomes into the nucleus, and others interact with specific nups in such a way as

to inhibit or interfere with nucleocytoplasmic transport as a way to enhance their own replication. As a

result, anti-viral drugs could be designed that target the interactions between viruses and nups in order to

inhibit this step in viral replication [13]. Conversely, it may be desirable to deliver drugs into the nucleus,

in which case the drug delivery system requires a method of traversing the NPC. This likewise requires a

better understanding of the mechanism by which the NPC operates so that it can be co-opted or overcome

[14].

1.1.2 Transport through the NPC

Molecules smaller than about 40kDa [5] (∼ 5nm in diameter [15]) are able to passively diffuse through

the free space in the NPC channel without assistance. This would include the transport of water and small

ions, for example. For larger cargoes, up to about 39nm in diameter [16] (but more typically ∼ 25nm

[2]), a transport receptor is required for transport of the cargo.

Although the exact details vary given the wide range of transport receptors and cargoes which pass

through the NPC (see, e.g., the review in [2]), a cargo molecule to be imported into the nucleus contains

a nuclear localization sequence (NLS), and this sequence enables the cargo to form a complex with

the transport receptor. The formation of such complexes on the cytoplasmic side of the NPC creates a

concentration gradient of receptor-cargo complexes, thereby enabling transport of the complexes into the

nucleus without the consumption of energy during transport. In the nucleus, a molecule called RanGTP

dissociates the complex, thereby maintaining the concentration gradient and releasing the cargo for use.

The export of cargoes occurs via a conceptually similar mechanism, though the NLS is replaced by a

nuclear export signal (NES), and typically the outgoing cargo must form a trimeric complex with the

receptor and a RanGTP molecule. [2, 5, 17].
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Figure 2: Diagram showing the structure of human transportin 1 (Kapβ2). Left: From [18], the structure

of free transportin 1. Right: From [20], the structure of the complex Kapβ2-Ran x GppNHp. One can

see that the cargo fits into the pocket of the structure of the free molecule.

Many of the transport receptors come from the family of karyopherins (“kaps”) [2]. For instance,

one of the most commonly discussed transport receptors is Kapβ2, also known as Transportin1. Kapβ2

has a mass of about 100kDa and a size of about 5 − 10nm [18]. Its structure can be seen in Fig. 2.

As with other import receptors (importins), the binding of cargo and RanGTP onto the kap is mutually

exclusive. As a result, the receptor will tend to bind cargo where the concentration of RanGTP is low (the

cytoplasm), and will bind RanGTP where the concentration of RanGTP is high (the nucleus). In addition,

the cytoplasm contains RanGAP, which is capable of switching RanGTP into RanGDP. Since RanGDP

does not bind strongly to Kapβ2, this process releases the Ran and frees the transport receptor to accept

a new cargo molecule. [2, 19] This results in a loading of cargo in the cytoplasm and an unloading in the

nucleus as seen in Fig. 3. Conversely, RanGTP is loaded in the nucleus and unloaded in the cytoplasm,

and the direction of RanGTP transport is opposite to the direction of cargo transport. In the case of

export, the action of RanGAP in the cytoplasm destabilizes the trimeric complex by turning RanGTP into

RanGDP, and this stimulates the release of both cargo and RanGTP in the cytoplasm. Another transport
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factor called NTF2 is responsible for binding to the RanGDP and returning it to the nucleus through the

NPC. Here the RanGDP is switched back to the RanGTP state (through the action of RanGEF), and it

becomes available to continue the transport cycle.

Figure 3: Diagram showing the transport cycle for nuclear import. (1) Receptor-cargo complexes are

transported into the nucleus, (2) the cargo is released by the binding of RanGTP to the receptor, (3) the

receptor-RanGTP complex is transported to the cytoplasm, (4) The RanGTP is transformed into RanGDP

through the action of RanGAP, causing it to be released by the receptor, and (5) the receptor binds to

another cargo. This figure is from [2].

It should be emphasized that, although the transport receptors do interact with the nups in the channel,

the transport of the receptor-cargo complex is still diffusive in nature. That is, the transport itself does

not (directly) consume energy. The NPC should not be viewed as a pump which moves complexes into

areas of higher concentration, but rather each individual step which involves transport through the NPC

is moving a given complex down its concentration gradient. The energy-consuming step occurs outside

of the channel, where the concentration gradients are maintained via the switching between RanGTP and

RanGDP. In fact, the kinetics can be modeled phenomenologically via a first-order Michaelis-Menten

process in which the formation or dissociation of receptor-cargo complex in the nucleus and cytoplasm are

the energy-consuming steps and diffusion across the NPC is purely based on the concentration gradients

of the complexes. [21]
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1.1.3 Transport Models

It is known that transport receptors bind to the FG repeat domains of FG nups [19]. For instance, it

has been shown that the phenylalanine residue of the FXFG domain binds to the hydrophobic pocket

on the receptor NTF2 [17, 22]. Although binding of receptor-cargo complexes to the FG nups in the

channel is crucial to transport, there is not one unique transport model which appears to fit the available

experimental data. In fact, many transport models have been proposed. For instance, in the “Reduction-

of-Dimensionality” model (top-right panel of Fig. 4) the FG repeat domains are hypothesized to form

a two-dimensional surface on which transport receptors undergo a two-dimensional random walk, while

the spacer sequences block the remaining regions of the channel [17]. In the “Oily Spaghetti” model, a

“spaghetti” of FG nups are imagined to occupy the periphery of the channel, leaving a central tube for

passive transport. Transport receptors could easily move through the spaghetti by rapidly binding and

unbinding to FG repeat domains, while other large cargoes could not [2]. In the “Forest” model (bottom-

right panel of Fig. 4), nups are proposed to have collapsed globular domains near the channel walls and

additional globular domains near the channel center, leaving two transport pathways in the remaining

space [23, 24]. In the “Flycasting” model, it is proposed that a kap binds to a single nup filament for a

long period of time until, still bound to the same nup, it reaches the nuclear side of the channel where the

connection is cut through the action of RanGTP [25].

Although there are many different models of transport, one of the most fundamental disagreements in

the community concerns whether the nups are in a flexible, random, polymer brush-like state in the chan-

nel or whether they form a more rigid mesh-like structure. This point can be emphasized by examining

two transport models in particular.

In the “Selective Phase” model (bottom-left panel of Fig. 4), it is hypothesized that attraction between

FG repeat domains causes a crosslinking of the nups into a hydrogel. From this viewpoint, it is the mesh

size of the gel which determines the threshold for non-receptor-mediated transport. When molecules are

larger than the mesh size of the gel, they are too large to fit through the “sieve,” and the bonds between

FG repeat domains that make up the crosslinks in the gel must be broken by the transport receptor in

order to enable passage. As the receptor, perhaps loaded with cargo, melts into the gel, the FG repeat

domains must re-bind behind it so that the transport remains selective. This theory is supported by the

observations that FG nups can form hydrogels in vitro, that these hydrogels appear to selectively transport
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substituted for the Nup98 repeat
domain, they restored both transport
and the permeability barrier to
reconstituted nuclei.

Next, the FG domain of ScNsp1p,
a yeast Nup with a bipartite FG domain,
was examined. They found that neither
its full FG domain nor the large
non-cohesive portion of its domain
could substitute for the GLFG region of

Nup98. However, when four tandem
copies of a small cohesive portion of
ScNsp1p were fused to the Nup98
carboxyl terminus, the chimera
restored transport and the permeability
barrier. This is particularly noteworthy
since none of the ScNsp1p FG motifs
are GLFG, although the spacers share
the overall uncharged character of
cohesive domains. This experiment is

perhaps the strongest support of the
selective phase model: a cohesive
region from a distant species and
a non-orthologous nucleoporin,
distinct in sequence but similar in
overall properties, provides
a functional substitute.

Conclusions
Do the findings of Hulsmann et al. [1]
sound the death knell for competing
models of transport? Not necessarily,
as their results are compatible with
aspects of other models. For example,
loss of the cohesive FG domains, which
in the forest model form the central
channel barrier [5], could lead to the
observed leaky NPCs, even if the outer
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Figure 1. Mechanism of nuclear transport.

(A) Upper: Generalized FG domain types. A
cohesive domain with GLFG repeat motifs
and uncharged, serine/threonine-rich spacer
sequences (gold). A non-cohesive domain
with FG repeat motifs and non-cohesive,
charged spacer sequences (red). Lower:
Nup98 domain arrangement. The cohesive
domain contains a mix of FG (blue) and
GLFG (green) repeats. Number and place-
ment of each type are representative. Binding
site for the nucleoporin Rae1/Gle2 and the
NPC targeting domain are indicated. (B)
Proposed models of FG domain organization
and function in the NPC. In the ‘virtual gate/
polymer brush’ model, FG domains (red) act
as filaments that create an entropic barrier
to the entry of macromolecules. The energy
of binding between transport receptors and
FG motifs overcomes this barrier. In the
‘reduction of dimensionality’ model, FG
motifs (blue, green) line the inner face of the
NPC scaffold, while spacer regions (gray) fill
the central channel forming a barrier to
passage of non-receptor-bound macromole-
cules. NTRs move along the layer of FG
repeats. This model does not distinguish
between cohesive and non-cohesive FG
domains. By contrast, in the selective
phase/hydrogel model, cohesive FG domains
(gold) interact in the central channel to form
a gel-like barrier that selectively allows
passage of NTRs and excludes large non-
cargo. Finally, in the ‘forest’ model, FG repeat
domains adopt one of two conformations:
a collapsed coil (cohesive domains; gold) or
an extended coil (non-cohesive domains;
red). ‘Shrub’ Nups have their cohesive FG
domain near the NPC scaffold. ‘Tree’ Nups
have an extended coil separating their cohe-
sive FG domain from the NPC scaffold. This
arrangement creates a central cohesive
channel, and an outer channel where non-
cohesive FG domains may form an entropic
barrier. (C) Movement of NTRs through the
permeability barrier of the selective phase/
hydrogel. NTRs locally disrupt the hydrogel
by competing for FG motifs. The barrier
reforms and seals as NTRs move to each
new binding site. FG/GLFG motifs in green.
(Panel C is adapted from [1].)

Current Biology Vol 22 No 23
R1008

Figure 4: An illustrative diagram from [26] that shows where the FG nup “gate” in the NPC would be

and what basic morphology it would have according to the indicated transport models. Top Left: The

virtual gate, polymer brush, or reversible collapse model proposes the presence of an entropic barrier due

to a polymer brush of nups near the periphery of the channel. Top Right: The reduction of dimensionality

model proposes the formation of a two-dimensional FG surface (represented by the colored circles near

the walls) on which receptors can move due to their binding interactions with the FG repeats. The

spacer sequences of the nups block the remainder of the channel, preventing the passage of other large

molecules. Bottom Left: The selective phase model proposes that the channel is filled with a crosslinked

gel of FG nups. Bottom Right: The forest model proposes globular domains (represented by the orange

balls) occupying both the periphery and an area near the channel center, leaving two remaining zones

which could support transport.
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kaps in a way similar to NPCs, and that cohesion between FG nups is crucial for transport [27–29]

In the “Reversible Collapse” model (top-left panel of Fig. 4), the FG nups are hypothesized to be

in a flexible, dynamic, natively unfolded state in the channel (i.e., they form a polymer brush). They

fill up most of the available space in the channel with an entropic barrier that prevents the passage of

large molecules. In other words,the transport of cargo requires a compression of the nups so that they

occupy a smaller volume in the channel. The entropy penalty associated with this compression makes an

unfavorable state in terms of its free energy. In this model, the binding interactions between the transport

receptor and the FG nups provide the free energy to offset and overcome the entropic barrier. The nups

then collapse toward the wall of the channel in order to maximize the number of binding contacts with

the transport receptor. This could open up the space necessary for transporting an additional transport

receptor, for instance one that is weakly bound to the remaining FG nups. This theory is supported by

the observations that grafted layers of FG nups can form a polymer brush in vitro and that the height of

this brush is reduced upon the addition of transport receptors. [10, 30, 31]

It is also possible that the reality may be some hybrid of hypothesized mechanisms. For instance,

nups may be in a brush-like state at the periphery of the channel, forming a “virtual gate” [32], but in a

gel-like state near the channel’s midpoint. This is referred to as the two-gate model [33].

1.1.4 Experiments on Grafted Nucleoporins

Particularly relevant to our work are the in vitro experiments in which FG nups were grafted to a flat

surface and exposed to a solution of transport receptors. In particular, three such experiments will be

discussed below, including some of the particular details that differ among the experiments. This infor-

mation is summarized in Table 1.

In the first such experiment, described in Ref. [30] and summarized in Table 1, Lim et al. grafted

multiple copies of the FG nup cNup153, which is composed of 604 amino acids for a contour length of

around 200nm and comes from the nuclear periphery of the human NPC, to a gold nanodot at a grafting

distance of about 23.9nm [36]. Various concentrations of the transport receptor Kapβ1 were introduced

into the solution, and the height of the grafted polymers were measured by atomic force microscopy. In

this experiment, it was found that as the concentration of transport receptors was increased, a reduction

in the height of the nups was observed (to about 39% of their unperturbed height).
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Experiment
Nup Grafting Height in the Height at Maximum Relative
Used Distance Absence Compression Compression

(a) of Kaps (h0) (hmin) (hmin/h0)
Lim, et al. (2007) [34] cNup153 24nm 29.1nm 11.3nm 0.388
Eisele, et al. (2010) [35] Nsp1p 4.4nm 34nm ∼34nm ∼1
Schoch, et al. (2012) [31] cNup62 2.4nm 14.1nm 12.7nm 0.901

Table 1: A summary of relevant experimental data. In Eisele, et al., no compression of the layer is

observed to within the experimental precision. In Schoch, et al., we focus on the data set that is featured

in the paper.

The existence of a brush collapse was corroborated by a similar experiment performed by Schoch et

al., a group that included Lim, as described in Ref. [31] and summarized in Table 1. In this experiment

Kapβ1 was again introduced to a system of grafted nups. In this case, 240 amino acids of the FG nup

cNup62, which comes from the central pore region of the human NPC, were grafting to a surface at

a range of grafting distances from 2nm to 11nm, and the brush height was measured via the surface

plasmon resonance (SPR) technique. It was found once again that a decrease in the height of the nup

layer upon the addition of transport receptors occurred, but only for grafting distances less than 4.1nm

and only to a maximum depth of about 90% of the unperturbed height. In addition, it was also found that

a second regime exists at even higher receptor concentrations in which the nup layer swells back to, and

eventually beyond, the unperturbed height. This regime was hypothesized to be associated with a pile-up

of multiple layers of transport receptors in the grafted nups, thereby driving up the height.

Another similar experiment, descibed in Ref. [35] and summarized in Table 1, was performed by

Eisele et al., a group that included Görlich. In this case, 600 amino acids of the FG nup Nsp1p, which

comes from the central pore region of the yeast NPC, were grafted to a lipid bilayer at a grafting distance

of 4.4nm and exposed to the transport receptor Kap95p. It was found that the height of the nups did

not decrease measurably upon the addition of transport receptors as measured by both AFM and quartz

crystal microbalance with dissipation monitoring.

These experiments are often interpreted to support two very different in vivo transport mechanisms.

The first two appear to support a collapse-based mechanism such as Reversible Collapse model, while

the third appears to support the idea that a morphological reorganization does not occur in the pore, as in
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the Selective Phase model. In Chapter 4, I will address the differences in light of the theoretical models

developed in Chapters 2 and 3. One of the goals of this work is to provide a unified theoretical analysis

of these in vitro experiments on grafted nucleoporins which explores the possibility that the apparent

qualitative differences can be explained in light of the relevant parameter differences.

1.2 RELEVANT POLYMER SYSTEMS

1.2.1 The Alexander-de Gennes Polymer Brush

The experiments on grafted nucleoporins are reminiscent of another system from the field of polymer

physics−namely, the system of grafted polymers. When a single polymer is grafted to a surface, it under-

goes (approximately) a random walk in the vicinity of the grafting point and forms a roughly hemispher-

ical “mushroom” on the grafting surface. The size of such a mushroom R, in terms of the polymerization

of the chainN and the distance between monomers bwill be roughly that of a self-avoiding random walk:

R ∼ N3/5b [37]. Since we will primarily focus on the scaling behavior, one can think of the size of the

chain R as its end-to-end distance, but other choices such as the radius of gyration will differ only in

numerical prefactors of order one and are equally good.

If many polymers are attached to the same surface, and the spacing between grafting sites is small

enough, they will overlap and thereby interpenetrate and interact. Formally, one could consider a system

of self-avoiding and other-avoiding random walkers, one starting at each of the grafting sites. In practice,

we seek a simpler model of the system. In the regime where the polymers overlap suffiiciently strongly,

each polymer’s lateral extent will be, for the most part, limited by its neighbors, and the polymers will be

forced to meander upward, away from the grafting surface. A system of grafted polymers in this over-

lapping limit is referred to as a “polymer brush.” In this case, we make use of the simplifying assumption

that the lateral size of the polymer will be limited to a size ξ ∼ a, where a is the distance between grafting

sites and ξ is referred to as the blob size of the brush [37]. In the direction perpendicular to the grafting

surface, there is no such constraint, and the height of the polymers above the grafting surface will exceed

the blob size. One can imagine the brush as being made of stacks of blobs filling the space up to the brush

height. Since the brush is made of stacked blobs and each blob can be expected to have roughly the same
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density, one might suppose that the density of monomers inside the brush will be approximately constant

up to the edge of the brush. This idea is referred to as the Alexander-de Gennes approximation, which

assumes that the density of monomers throughout the polymer layer is constant [37, 38]. Although this

approximation is not very accurate, the results it produces are surprisingly good for several key brush

properties.

In order to examine the Alexander-de Gennes polymer brush more quantitatively, we will model

its free energy using a viewpoint analogous to Flory’s approach to modeling the free energy of poly-

mer melts [39], as discussed in Appendix A. Although this approach has been remarkably successful, it

should be noted that it includes many crude approximations. We will treat aspects of the polymer systems

which, in principle, could be crucial, such as the excluded volume between monomers and the connec-

tivity of the chain, only approximately. Although the approach may be inexact, we will find that several

experimentally and computationally verified conclusions result.

We will regard the characteristics of a polymer brush as resulting from a competition between the

stretching entropy of the polymer chains, which favors more compact, less stretched configurations, and

the excluded volume repulsion between monomers, which favors less compact, more stretched configu-

rations. Some basic properties of the polymer brush may be obtained by taking the free energy of each

chain of the brush to be, at the mean field level and assuming a homogeneous monomer concentration

throughout,

F = a2h(1− ψ) ln(1− ψ) +
h2

2N
(1.1)

' a2h

(
−ψ +

1

2
ψ2 +

1

6
ψ3

)
+

h2

2N
(1.2)

where a is the distance between grafting points, h is the height of the brush above the grafting surface, N

is the polymerization of the chain, ψ = Nb3/a2h is the volume fraction of space occupied by monomers,

and the expansion has been carried out for small ψ. Please note that here and throughout this treatment,

energies will be expressed in units of kT (where k is the Boltzmann constant and T is the temperature)

and lengths will be expressed in units of b, the monomer diameter. The first term in Eq. (1.1), which

represents the entropy of the solvent, can be obtained in several ways including the use of a lattice gas

counting argument (see Appendix A). The last term represents the entropy of a Gaussian polymer chain.

It can be obtained by calculating the probability distribution of end-to-end vectors for a Gaussian random

walk P (R) and converting to a free energy via F ∼ − ln(P (R)) [40]. Note that absent from this free
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energy are any “enthalpic” interactions such as attractions or long-range repulsions between monomers

or any interactions with solvent. If one expands the logarithm for small ψ, the free energy can be written

in the form shown in Eq. (1.2).

Minimizing the approximate free energy Eq. (1.2) with respect to h at constant a and N and keeping

only the lowest order term, one obtains

heq =
1

21/3
Na−2/3 (1.3)

which is regarded as the basic scaling relationship for the polymer brush [37, 41]. An interesting property

of this result is that h ∼ N . This is in stark contrast to ordinary random walk statistics in which the size

of the walk scales with some power of N less than one. Physically, the lateral extent of the chain is

limited by its neighbors and adding additional monomers to the chain would simply stack more “blobs”

on top of the brush.

Eq. (1.1) may be viewed as an approximate starting point for the consideration of polymer brushes.

The characteristics of the brush may be modified by the inclusion of other interactions, such as addi-

tional attraction or repulsion between monomers, or interactions between the monomers and the solvent.

Several relevant modifications to this basic Alexander-de Gennes brush will be treated below.

1.2.2 An Ungrafted Polymer Interacting with Solvent

One way of modifying the properties of a polymeric system is through the use of solvents. Solvents are

generally classified as “good” or “bad.” A good solvent is one which swells the size of the polymer, while

a bad solvent reduces the size of the polymer. Thus, one way to model the effects of a good solvent is with

an effective repulsive interaction between monomers, and a bad solvent with an attractive interaction[42].

If a solvent causes neither additional attraction nor additional repulsion between monomers, it is referred

to as “athermal” [43]. One special case worth noting is the “theta solvent,” in which the effective attractive

interactions produced by the solvent are equal in magnitude to the repulsive ineractions which are present

due to effects inherent, such as excluded volume between monomers. In a theta solvent, the effective

attraction (approximately) cancels the preexisting repulsion, and this cancellation causes the polymer to

behave similarly to an ideal Gaussian chain in which monomers do not interact at all [44].
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Before considering the effect of solvents on the polymer brush, we will first consider their effect on

an ungrafted polymer chain. A simple Flory-Huggins mean field analysis of a polymer chain in a single

solvent yields, in units of kT (see Appendix A),

F = R3 ((1− ψ) ln(1− ψ) + χψ(1− ψ)) +

(
R

R0

)2

(1.4)

where ψ = Nb3/R3 is the volume fraction of monomers,R is the size of the polymer chain, R0 is the size

of an ideal chain (i.e., without excluded volume interactions), and χ expresses the interaction between the

polymer and the solvent (e.g., the polymer may be hydrophobic or hydrophilic). χ is known as the Flory

or Flory-Huggins parameter. Recall that the length R gives the qualitative length scale of the polymer

chain, but is imprecise to within a numerical factor of order one. As such, the numerical coefficients in

the equations that follow are not meant to be precise, but only to give the general scaling behavior.

A simple analysis of this free energy may be performed by expanding to third order in ψ. This gives

F = (χ− 1)N +
1

2
(1− 2χ)

N2

R3
+

1

6

N3

R6
+

(
R

R0

)2

. (1.5)

Minimizing this function over the polymer size R yields,

∂F

∂R
= −3

2
(1− 2χ)

N2

R4
− N3

R7
+ 2

R

R2
0

= 0. (1.6)

Now we will consider three limiting cases.

First, let χ = 1/2 such that the first term in Eq. (1.6) goes to zero. This corresponds to a “theta”

solvent, at the mean field level, since the solvent interactions cancel the monomer-monomer interactions

in the leading order term. In this case, R = R0 since the chain is approximately ideal, and we obtain

R0 =

(
1

2

)1/6

N1/2 (1.7)

in units of the monomer size b. Note that R0 ∼ N1/2. Since the binary interactions between monomers

have been canceled out by the solvent interactions, the polymer in theta solvent behaves in a way similar

to an ideal chain, in which monomers do not interact at all besides their connectivity, and one obtains

ordinary random walk scaling behavior.

Next, let χ � 1/2. This is the good solvent limit, in which the solvent interaction term will tend

to swell the polymer. In this case, the second term in Eq. (1.6) can be neglected because the additional
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swelling of the chain it causes will be negligible compared to the swelling caused by the solvent. Phys-

ically, the two-body (ψ2) monomer-monomer repulsion will be the primary force that swells the chain,

and this will be balanced by the stretching entropy at equilibrium. This leaves

Rgood =

(
3

4
(1− 2χ)N2R2

0

)1/5

. (1.8)

Making use of Eq. (1.7), this means that Rgood ∼ N3/5. This mean-field scaling behavior corresponds

to a self-avoiding random walk (SAW) [44]. In this regime, the scaling is dominated by the requirement

that the monomers cannot overlap, and the polymer trajectories must avoid each other.

Finally, if χ � 1/2, we reach the bad solvent limit. In this case, the last term in Eq. (1.6) can be

neglected. Physically, the effective monomer-monomer attractions become dominant over the stretching

entropy as the primary force causing contraction of the chain. This effect is balanced by the three-body

(ψ3) repulsion term. Discarding the stretching entropy term, we obtain

Rbad =

(
2N

3(2χ− 1)

)1/3

. (1.9)

Here, Rbad ∼ N1/3 meaning that the volume of the polymer chain scales linearly with N . A polymer

chain with this property is referred to as a globule. The coil-globule transition in polymer chains is

related to the thermal denaturation of globular proteins in biology, in which the transition to the coil state

corresponds to a loss of biological activity [42].

Considering the minimization of Eq. (1.4) numerically, we can plot R as a function of χ over the full

range of χ. This produces the result shown in Fig. 5. The chain transitions between the swollen coil and

compressed globule states as one sweeps through χ.

1.2.3 Polymer Brush Interacting with Solvent

A solvent can be added to the polymer brush free energy of Eq. (1.1) just as it was in Eq. (1.4). Namely,

the term χψ(1−ψ) must be added to take into account the interaction of the monomers with the solvent.

This gives a free energy per chain of the form

F = a2h ((1− ψ) ln(1− ψ) + χψ(1− ψ)) +
h2

2N
. (1.10)
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Figure 5: The relationship between the polymer size R and the Flory parameter representing the solvent

quality χ for a polymer in a solvent. The decrease in R corresponds to the transition between the coil and

globule states. This plot shows the case of polymerization N = 100.

Performing the same analysis, we minimize with respect to h and expand the logarithm to obtain

∂F

∂h
= a2 ln(1− ψ) +

N

h
+
χN2

a2h2
+
h

N
(1.11)

' −(1− 2χ)
N2

2a2h2
− N3

3a4h3
+
h

N
. (1.12)

In the case of good solvent (χ� 1/2), the second term in the expansion Eq. (1.12) can be neglected

for the same reason discussed in the previous section, and one obtains

hgood =
(1− 2χ)N

21/3a2/3
. (1.13)

Note that the ordinary brush scaling relationship seen in Eq. (1.3), h ∼ Na−2/3, is preserved.

In the case of bad solvent (χ� 1/2), the first term can be neglected, and one obtains

hbad =
2N

3(2χ− 1)a2
. (1.14)

Note that in this case the volume per chain a2h ∼ N . Since the volume of the brush scales with the

number of monomers, this corresponds to the collapsed state, analogous to the globule state in Eq. (1.9),

in which monomers are densely packed.
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Figure 6: The relationship between the polymer brush height h and the Flory parameter representing

the solvent quality χ for a polymer brush in a solvent. Decrease in h corresponds to the collapse of the

polymer brush. This plot uses grafting distance a = 4 and polymerization N = 100.

The numerical solution over the full range of χ in shown in Fig. 6. As with the ungrafted polymer

chain, the volume of the polymer brush changes with the character of the solvent, but the change is

continuous and smooth with respect to χ.

1.2.4 Milner-Witten-Cates Polymer Brush

The arguments above assume a homogeneous distribution of monomers throughout the polymer layer

(i.e. the Alexander-de Gennes approximation). One can avoid making this assumption by first regarding

the monomer volume fraction ψ as a local quantity ψ(~r) which gives the monomer volume fraction in the

neighborhood of point ~r. In addition, the assumption that the stretching entropy of the polymer is simply

∼ h2, will be replaced by calculating the stretching energy as one would for a continuous string. In units

of kT , the grand canonical free energy (or, equivalently, generalized Edwards Hamiltonian [45]) of the

brush for a given set of monomer coordinates is given by a functional of the following form [41, 46, 47]:

F [{~rα(s)}] =
∑

α

1

2b2

∫ N

0

ds

(
∂

∂s
~rα(s)

)2

+

∫
d3rf(ψ(~r)) (1.15)
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where α indexes the polymer chain, ~rα locates monomer s (0 ≤ s ≤ N ) on chain α, and f is the local

non-elastic free energy density.

If this free energy functional is minimized over the polymer trajectories (i.e. the first variation is set

to zero), one obtains

− 1

b2

∂2

∂s2
~rα(s) +

∂

∂~rα

∂

∂ψ
f(ψ) = 0. (1.16)

Additional details about this minimization for a more general case can be found in Appendix C. The

insight of Milner, Witten, and Cates is that this differential equation is equivalent to Newton’s second law

if one makes the correspondence [46]

1

b2
→ m

s → t (1.17)

− ∂

∂ψ
f → U

where m, t, and U are the mass, time, and potential energy respectively. Furthermore, if we assume

that the brush is homogeneous in the lateral direction (such that ψ is a function of the distance from

the grafting surface z only) we know that, although the chain ends may be at different distances from

the grafting surface, every trajectory must reach the grafting surface in the same “time” N , even though

the “initial velocity” ∂z/∂s(0) = 0 by the condition that the tension in the polymer must be zero at the

chain end. By analogy to Newton’s equations, we therefore know that the appropriate “potential energy”

corresponds to the harmonic oscillator. Namely,

∂

∂ψ
f = A−Bz2 (1.18)

where z is the distance from the grafting surface. The constant B may be determined from Eq. 1.16.

Since the period of the oscillator is 4N and the mass is 1/b2, and knowing that B = mω2/2 for a

harmonic oscillator, we can show that

B =
π2

8N2b2
. (1.19)

The constantA, which corresponds to an overall shift in the potential and does not affect the classical me-

chanics of the system, is determined from the normalization condition that the total number of monomers

in the chain must be N and the grafting density is 1/a2. Namely,
∫ h

0

ψ(z)dz = N/a2. (1.20)
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In general, one could solve Eqs. (1.18) and (1.20), along with an appropriate definition of f , self-

consistently using an iterative approach.

For a polymer brush with no solvent interactions, we can use

f = (1− ψ(~r)) ln(1− ψ(~r)) ' −ψ(~r) + ψ2(~r)/2. (1.21)

in analogy with Eq. (1.1). The expansion for small ψ is particularly useful here because in this case the

solution may be obtained analytically. Eq. (1.18) becomes

ψ = (A+ 1)− π2

8N2b2
z2. (1.22)

In other words, the monomer density profile is a downward-facing parabola with maximum value at the

grafting surface. This solution is often referred to as the “parabolic brush.” The height h of this brush is

the point at which ψ(h) = 0. This gives

A+ 1 =
π2h2

8N2b2
. (1.23)

Furthermore, combining Eqs. (1.20), (1.22), and (1.23) gives

h3 =
12N3b2

π2a2
. (1.24)

Note that although many of the details differ when comparing the Alexander-de Gennes result Eq. (1.3) to

the MWC result Eq. (1.24), some of the essential features, such as the scaling relationship h ∼ Na−2/3,

are preserved. This is why the Alexander-de Gennes model is still widely used even though its basic

assumption (a density profile which is independent of z in the brush) is incorrect.

18



1.2.5 MWC Polymer Brush with Solvent Interactions

The same analysis can be performed for a polymer brush with solvent. Eqs. (1.15)-(1.20) still hold, but

in this case we must use a more complicated f(ψ). Expanding the expression in the same way that we

did for the Alexander-de Gennes brush, we have

f = (1− ψ) ln(1− ψ) + χψ(1− ψ) ' (χ− 1)ψ + (
1

2
− χ)ψ2 +

1

6
ψ3. (1.25)

When χ � 0, the ψ3 term in the expansion may be neglected. As in the Alexander-de Gennes case,

when the solvent quality is good, both the ψ2 and ψ3 terms result from the repulsion between monomers,

and it is sufficient to keep the lowest order term of this type. The brush remains parabolic, but the use of

Eq. (1.18) with the free energy density of Eq. (1.25) yields

(1− 2χ)ψ = (A+ 1)− π2

8N2b2
z2. (1.26)

Eq. (1.23) still holds, and Eq. (1.24) becomes

h3
good =

12(1− 2χ)N3b2

π2a2
. (1.27)

The polymer brush is swollen, but the scaling relation h ∼ Na−2/3 is preserved as is the qualitative shape

of the brush−a downward-facing parabola.

The case of an MWC brush in a bad solvent is slightly more complicated. In this case, the ψ3 term

cannot be neglected, and Eqs. (1.18) and (1.25) yield

ψ2

2
+ (1− 2χ)ψ = (A+ 1)− π2

8N2b2
z2. (1.28)

Now the left hand side of the equation is potentially non-monotonic, and inverting the equation to obtain

ψ(z) becomes non-trivial. If the expression ψ2/2 + (1−2χ)ψ has its minimum in the physically relevant

domain 0 < z < h, then the inversion of Eq. (1.28) would have two values of ψ corresponding to

some values of z. To deal with this issue, an additional physical consideration must be invoked. Namely,

we require that the osmotic pressure Π(z) must be a continuous function in order to ensure mechanical

equilibrium in the layer [48]. The osmotic pressure in the layer is

Π = ψ
∂f

∂ψ
− f = −(1 + χψ)ψ − ln(1− ψ) ' 1

2
(1− 2χ)ψ2 +

1

3
ψ3. (1.29)
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Figure 7: Left: Monomer density profiles obtained from the MWC model as the solvent quality χ is

varied. At χ > 1/2 the density profile has a discontinuity at the location where the osmotic pressure

becomes zero. This plot uses grafting distance a = 4 and polymerization N = 100. Right: The osmotic

pressure as a function of the monomer volume fraction for the same parameters. The osmotic pressure is

non-monotonic for χ = 0.75 and χ = 1. The negative portion of the osmotic pressure is not physically

meaningful, and as a result the monomer volume fraction must jump discontinuously from zero to the

nonzero value of ψ at which Π(ψ) = 0.

Note that since ψ(z ≥ h) = 0, this means Π(z ≥ h) = 0. One can ensure continuity of the osmotic

pressure and a valid solution to Eq. (1.28) by having a discontinuity in ψ(z) at z = h that connects ψ = 0

to the nonzero solution ψ = ψ∗ which satisfies Eq. (1.28). One must be cautious about using the series

expansion form in this regime since (as one can see in Fig. 7) the solution is not guaranteed to have

ψ � 1. Solving without making use of the series expansion yields

ψ∗ = 1− e−(1+χψ∗)ψ∗ (1.30)

which can be solved numerically. ψ(z) will decrease monotonically as z increases until it reaches ψ(z) =

ψ∗. At this z the ψ will drop discontinuously to zero and the brush will suddenly terminate. Physically,

the monomer density does not gradually decrease to zero, leaving a region of sparse density near the top

of the brush. Instead, the high-density brush ends quite suddenly. The result of this is illustrated in Fig. 7.

Although the density profiles are in some cases discontinuous, the brush height h vs. the solvent quality

χ is not. The behavior of the brush for the full range of solvent quality can be seen in Fig. 8.
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Figure 8: The relationship between the polymer brush height h and the Flory parameter representing the

solvent quality χ for a polymer brush in a solvent as obtained from the MWC model. This plot uses

grafting distance a = 4 and polymerization N = 100.

1.2.6 Polymers Interacting with Mixed Solvent

In addition to the cases considered so far, there are many generalizations and special cases which are

possible to consider. One important case is a polymer or polymer brush in a mixture of two or more

solvents [45, 49–57]. One could attempt to use either of the basic approaches considered here (that is,

Alexander-de Gennes or Milner-Witten-Cates). In the AdG case, first term in Eq. (1.10), which takes into

account the translational entropy of the solvent, must be replaced by one term for each type of solvent

so that the translational entropy of each solvent is taken into account. The second term, which takes the

polymer-solvent interaction into account, must be replaced by one term for every possible solvent-solvent

and polymer-solvent interaction which may occur. In addition, in order to determine the concentrations

of each solvent within the polymer brush, one must ensure that the chemical potential of each solvent is

equal inside and outside the brush. One of the most transparent formulations of the Alexander-de Gennes

version of this theory can be found in [58]. Within the realm of mixed solvent models, the choice of the

various solvent parameters can give rise to a number of different types of polymer behavior. In one case
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which bears the most on this work, Birshtein et al. note the existence of what they term a “compositional

phase transition” in which the polymer brush collapses due to solvent composition changes in the brush.

In the self-consistent field formulation of this theory, similar modifications are made to the free energy

density f in Eq. (1.25) as were made to the AdG free energy. In this case, one finds for certain parameter

values discontinuities in the density profiles that connect two regions of nonzero monomer density [59].

This is related to the phenomenon of “preferential solvation” in which the concentrations of the various

solvents can be significantly different inside and outside of the polymer layer [60]. This phenomenon

is analogous to the preferential infiltration of attractive nanoparticles into a polymer brush which I will

discuss in later chapters.

1.2.7 Polymers Interacting with Nanoparticles

Of particular interest here are the interactions of polymers with various molecular or macromolecular

level additives, which we will generically refer to as “nanoparticles.” Nanoparticles are added to polymers

in a wide variety of applications. For example, anti-plasticizers can be added to polymer melts to alter

their physical properties [61, 62], quantum dots or metallic particles can be added to polymers to create

solar cells or organic electronic devices [63–67], and of course protein “nanoparticles” and “polymers”

are crucial to the functioning of the NPC, as discussed in section 1.1, and are also relevant in biomimetic

NPC-like devices [68–70].

Nanoparticles and other types of inclusions have been treated in a variety of ways in the literature. For

example, Currie and coworkers considered the case of a polymer brush with adsorbed surfactants in the

Alexander-de Gennes approach by using a free energy similar to that of Eq. (1.1) but including additional

terms for the energy associated with the binding of monomers to the nanoparticles, the free energy of

mixing, and a repulsive interaction between surfactant micelles [71]. As in the case of mixed solvent, in

this study it was found that the polymer layer height makes a discontinuous jump as the adsorption energy

of the surfactants was varied. Physically, at a certain critical value of adsorption energy, it becomes

energetically favorable to increase the layer height in order to adsorb as many surfactants as possible

while still keeping them sufficiently separated. This work was followed by a self-consistent field (SCF)

treatment similar to that discussed in subsections 1.2.4 and 1.2.5 which showed monomer density profiles

develop a discontinuity not unlike that of Fig. 7 except that instead of the monomer density dropping to
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zero, the discontinuity connects two regions of nonzero monomer density. This is shown in Fig. 9. This

was accompanied by a discontinuous loading of the brush, in which the micelles preferentially occupied

the upper region of the brush [72]. Indeed the case of nanoparticles inside a polymer brush is closely

related to the problem of mixed solvents in some cases. If the nanoparticles are envisioned to be quite

small, one can view them as the constituents of one of the solvents, and it should not be surprising that

the two cases give similar results. Of course, when the nanoparticles become larger, attempting to view

them as a continuum solvent will become problematic.E.P.K. Currie et al.: Grafted polymers with annealed excluded volume 35

Fig. 8. The effect of monomer-micelle excluded volume inter-
actions on the degree of loading θ(z). Three values of v2 (1, 3
and 3.5) are considered and v1 = 10.
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Fig. 9. The profiles θ(z) of the degree of loading for three
values of v1 and v2 = 3.5. In the plot the values θ1 and θ2 of
the degree of loading in two co-existing phases are indicated
for v1 = 6.

of microphase segregation, which leads to a co-existence
of a dense (unloaded) proximal and sparse (loaded) dis-
tal phase in the brush. Such segregation occurs when the
monomer-micelle interactions are dominant and interme-
diate degrees of loading are unfavourable.

In Figure 9 the degree of loading θ(z) is plotted for
constant v2 = 3.5 and for three different values of v1.
The set of parameters corresponds to decreasing micelle-
micelle excluded volume and constant monomer-micelle
excluded volume. As mentioned, this variation can be re-
alized experimentally by increasing the ionic strength.

At v1 = 10 the coverage θ(z) still increases contin-
uously with increasing z. This situation corresponds to
v1 ≥ v∗1(v2) and has been discussed in the previous sec-
tion. On the contrary, at v1 = 8 and 6, the dependence
θ(z) demonstrates a van der Waals loop. This implies that
the degree of loading changes abruptly at a certain dis-
tance from the grafting surface, denoted by z0. For v1 = 6
this is illustrated by the vertical dashed line through the
points θ1 and θ2. The position z0 of the boundary between
the co-existing phases and the degree of loading at z = z0
in the sparsely and highly loaded phases (which we de-
note as θ1 and θ2, respectively) can be determined using
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Fig. 10. The polymer density profile ρ(z) (left axis, solid line)
and the profile of the degree of loading, θ(z) (right axis, dashed
line) for v1 = 6, v2 = 3.5, θb = 0.831 and h = 0.3. The
magnitudes of the jumps in polymer density (Δρ) and in the
degree of loading (Δθ) are indicated.

the Maxwell equal-area construction

∫ θ2

θ1

(z2(θ)− z20)
dρ

dθ
dθ = 0. (22)

This is equivalent to the requirement of equality of the
osmotic pressures in two co-existing phases.

The discontinuity in θ(z) evidently goes along with a
discontinuity in the polymer density profile ρ(z), as these
two quantities are coupled via equation (19). Hence, at
z = z0 the density jumps from a high value ρ1 in the
weakly loaded (dense) phase to a smaller value ρ2 in the
highly loaded (extended) phase. In Figure 10 the monomer
density and the degree of loading are plotted as a function
of z. The jumps in polymer density, Δρ ≡ ρ1 − ρ2, and in
the degree of loading, Δθ ≡ θ2 − θ1, are indicated.

The density profile of adsorbed micelles, m(z) ∼
ρ(z)θ(z) also exhibits an upward jump, Δm = m2 − m1

at z = z0. The relative magnitude Δm/m1 of this jump
is, however, smaller than that of the jump in the degree of
loading, Δθ/θ1 because ρ2 < ρ1. In particular, the differ-
ence in the density of micelles Δm in coexisting phases
decreases strongly as the critical point for microphase
separation is approached.

The discontinuity in ρ(z) has significant consequences
for the distribution g(z) of the end segments, as given by
equation (17). As the polymer density exhibits a jump Δρ
at z = z0, we can formally split the density profile into two
parts,

ρ(z) = ρ̃(z) +Θ(z0 − z)Δρ (23)

where ρ̃(z) = ρ(z) − Δρ at z ∈ [0, z0) and ρ̃(z) = ρ(z)
at z ∈ (z0, h] is a continuous and smooth function of z
and Θ(z) is the Heavyside step function. Substitution of
this distribution into equation (17) gives the end-segment
distribution (in reduced variables) for z < z0,

g(z) = − z

σ

∫ h

z

(dρ̃(z)/dz)z′dz′√
z′2 − z2

+
z

σ

Δρ√
z20 − z2

(24)

while at z > z0 equation (17) holds.

Figure 9: A figure from [72] showing a monomer density profile ρ (solid line) and the density profile

of the surfactant micelles θ (dashed line). Under certain conditions, a discontinuity can develop in both

profiles as surfactants preferentially occupy the high z region of the brush where repulsions between them

are minimized.

In another important work by Kim and O’Shaughnessy an SCF theory for polymer brushes infiltrated

by nanoinclusions of arbitrary size is presented [73]. In this theory, the free energy consists of terms

accounting for polymer stretching and a requirement that space be filled with monomers and nanoparticles

(in our language, ψ + φ = 1). Notably absent in the theory is a direct interaction between nanoparticles

and monomers, such as an adsorption energy or repulsion. It was found that nanoparticle penetration

of the brush is sensitive to the nanoparticle size. For small nanoparticles, penetration into the brush is

complete. As the nanoparticle size is increased, they are excluded first from the lower regions of the brush

where the monomer density is higher, and finally are excluded from the brush entirely. The nanoparticle
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size representing the crossover between the penetration and exclusion regimes is the blob size of the

polymer brush (roughly the size of the fluctuations in polymer trajectories about the average path of

the polymer). However, bear in mind that these results do not include direct nanoparticle-monomer

interactions.

Other work has been performed for the case of large nanoparticles infiltrating a polymer brush, but

typically the collapse of the brush is not considered. For instance, often the effect of only a single

nanoparticle is considered (e.g. [74]), and it is sometimes assumed that the brush height remains unper-

turbed by the addition of nanoparticles (e.g. [75]).

1.3 LANGEVIN DYNAMICS SIMULATIONS

In addition to the analytical tools discussed in the previous section, this thesis will make extensive use of

computational methods to explore the relevant systems to be studied. The use of computer simulations

enable one to corroborate analytical findings and in some cases to probe parameters that are beyond

the reach of analytical methods. Specifically, we will perform Langevin dynamic simulations, so we will

begin with a discussion of the Langevin Equation. For additional details, the fortran code used to simulate

the system may be found with this thesis as supplementary material.

1.3.1 The Langevin Equation

In Langevin dynamics, the motion of particles is governed by Newton’s second law ~F = md2~x/dt2. In

particular, we wish to consider Newton’s second law for the case of a particle interacting not only with

other particles, but also with a solvent or fluid. In principle, one could write down Newton’s second law

for all of the particles of interest as well as every particle of solvent. This is referred to as representing

the solvent explicitly. On the other hand, one can avoid tracking the motion of solvent particles by

representing them implicitly via their effect on the particle whose equation of motion we will consider.

This is accomplished by regarding the net force on the particle of interest ~F to be composed of three

contributions: (i) a deterministic force that results from the interaction of the particle of interest with

other explicitly represented particles in the system, (ii) a random thermal noise due to the collision of the

particle with small solvent molecules, and (iii) a frictional drag force due to the solvent.

24



When a particle is placed in a solvent, the random thermal motion of the solvent molecules gives

rise to collisions between the particle and the solvent molecules. If the particle is significantly larger

than the solvent molecules, these collisions will occur very frequently due to the large number of solvent

molecules which are near the surface of the particle. These collisions result in a “jiggling” of the particle

which is referred to as Brownian motion [40]. To avoid modeling the motion of the individual solvent

molecules, one can model the combined effect of the collisions on the particle (excluding friction) via a

random thermal force. This force ~η(t) is represented by a a stochastic function which has the properties

that its time average is zero and its value at one time is not correlated to its value at earlier or later times

[40, 76]. In other words,

〈~η(t)〉 = 0 (1.31)

〈ηi(t1)ηj(t2)〉 = 2γkTδ(t1 − t2)δij (1.32)

where γ is the friction coefficient of the particle and i, j = x, y, z. We will also assume the random noise

function η(t) is Gaussian, which means that the two moments Eqs. (1.31) and (1.32) are sufficient to

define the properties of the distribution. In practice, we generate Gaussian random numbers R(t) with

unit variance using an algorithm based on Numerical Recipes [77], and multiply this by a prefactor which

gives the proper standard deviation. Namely, the random forces can be obtained as [76]

ηi(t) =

√
2γkT

∆t
R(t). (1.33)

Note that when time is discretized into steps of size ∆t, the delta function in Eq. (1.32) should retain its

integral of unity and so is replaced by δt1t2/∆t.

The second effect of the solvent is the frictional drag on the particle of interest. We assume that

the friction is proportional to the particle’s velocity and opposed to its motion, and therefore can be

represented by a term ~Ff = −γd~x/dt. In practice, the value of the friction constant γ is important for the

dynamics of the system but not for the equilibrium properties, achieved at long times under conditions of

zero net particle flux. Since we will study the equilibrium properties only, for the present purposes the

choice of γ is not important.
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Including these two forces as well as a sum of the deterministic pairwise forces between the particle

of interest, particle j, with other particles in the system, one obtains

∑

i 6=j

~F (~ri, ~rj)− γ
d~xj
dt

+ ~η(t) = m
d2 ~xj
dt2

. (1.34)

This equation provides a second-order differential equation which can be solved numerically to obtain

the trajectory of the particle ~x(t). Note that one could also include other forces here, such as an external

force on particle j, but we will not consider that case here. We assume that the drag of the solvent is

sufficiently strong that it removes the momentum of particles very rapidly (i.e., the overdamped limit). In

this case, the inertial term md2~x
dt2

can be neglected, and the equation obtained is

∑

i 6=j

~F (~ri, ~rj) + ~η(t) = γ
d~xj
dt
. (1.35)

This equation holds the advantage that it has been reduced to a first order differential equation. As such,

one can calculate the sum of the deterministic forces on the particle at a time t, add to this the Gaussian

random force generated according to Eq. (1.33), and use this force to update the components of the

particle’s position to their position at a time ∆t later. Namely,

(∑

i 6=j

~F (~ri, ~rj) + ~η(t)

)
∆t

γ
= ~xj(t+ ∆t)− ~xj(t). (1.36)

This update procedure is performed on every particle in the system to update each particle’s position from

~x(t) to ~x(t+ ∆t), then the entire process is repeated to increment time forward by another step ∆t.
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1.3.2 Simulations of Polymer Brushes

Before solving Eq. (1.35), one must decide upon the force fields that will be used to generate the de-

terministic pairwise forces between particles. One of the most ubiquitous and versatile of all molecular

scale force laws is obtained from the Lennard-Jones (6-12) potential, which can be written as

ULJ = 4ε

((σ
r

)12

−
(σ
r

)6
)

(1.37)

where r is the distance between particles, and σ and ε set the length and energy scales respectively. This

potential provides a very strong repulsion at small r so that particles cannot overlap strongly, an attractive

tail at large r which is suitable for modeling the van der Waals attraction between atoms (or qualitatively,

other types of attractions), and a minimum point at rmin = 21/6σ at which particles are bound with an

energy ε. The LJ potential can be modified in order to remove the attractive tail if a purely repulsive force

is desired. This modification and others can make the Lennard-Jones force suitable for modeling a wide

range of physical phenomena.

Simulating polymer chains also requires the use of forces that will ensure the connectivity of the

polymer chain. One of the most common choices is the finitely extensible nonlinear elastic (FENE) force

which is given by

FFENE =
−kr

1−
(

r
`max

)2

where r is the distance between particles, `max is the maximum extension of the spring, and k is the spring

constant [78]. The FENE force is approximately proportional to r at small r and thereby represents a

spring-like potential. Unlike an ordinary Hooke’s Law spring, the restoring force becomes super-linear

in r if the spring is stretched too far. This is important because polymers cannot be stretched infinitely.

They have some contour length beyond which stretching them becomes very difficult. In addition, one

can use this maximum extension to ensure that adjacent monomers never become so spread apart that

there is empty space along the polymer backbone, which would allow chains to cross and pass through

each other.

In addition, our simulations require the polymer brush to be coupled to a solution of nanoparticles. We

have accomplished this through two different methodologies which gave equivalent results in all instances

in which they were compared. The first method, which we refer to as a grand canonical approach, involves

making the “ceiling” of the simulation box an absorbing boundary for the nanoparticles, but introducing a
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constant (modulo fluctuations) flux of nanoparticles into the box. Once equilibrium is reached, the flux of

particles out of the box stabilizes at (on average) a level that is equal to the (fixed) flux into the box. This

produces a constant concentration of nanoparticles in the polymer layer and above the polymer layer.

This is equivalent to coupling the simulation box to a reservoir at fixed nanoparticle concentration (or

chemical potential). Each flux of nanoparticles into the box corresponds to one value of the nanoparticle

concentration in solution.

In certain cases, dramatically different morphologies of the polymers were observed for almost iden-

tical solution nanoparticle concentrations. (This will be discussed in chapter 2.) In this case, using the

nanoparticle concentration as a control parameter produced some practical difficulties, so we sometimes

use a canonical ensemble method. In this case, the ceiling of the simulation box is a reflecting boundary,

and the number of nanoparticles in the simulation box is fixed. These nanoparticles will partition between

the polymer layer and the region outside of the polymer layer according to the energetics of the system.

After equilibrium is reached, the concentration of nanoparticles is measured. That is, the total number of

nanoparticles, rather than their concentration, is the control parameter. This methodology is better suited

to situations in which the system is very sensitive to the nanoparticle concentration. As expected, the two

different ensembles produces the same results in those instances where a comparison was possible.

1.4 SUMMARY

In summary, much is known about polymer brushes. Brushes have been analyzed using simple

Alexander-de Gennes type theories, which assume a homogeneous concentration of monomers through-

out the brush, and using more sophisticated models from which density profiles of the monomers can be

extracted. From both of these approaches, one can obtain the standard brush scaling relationship which

states that the height of the brush above the grafting surface h is related to the number of monomers in the

polymer chain N and the grafting density of the chains σ = 1/a2 according to h ∼ Nσ1/3. In addition

to this, Milner-Witten-Cates theory shows that the density profile of the monomers is a downward-facing

parabola with its maximum value at the grafting surface. More sophisticated generalizations of these

theories also exist, such as Green’s function based self-consistent field models [79–81], but the primary

conclusions of the simpler models prove to be essentially correct.
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The case of brushes in solvents has also been considered. In this case the monomer-solvent interaction

must be included, but such models are fundamentally similar to their predecessors. In these models, one

finds that the solvent may have the effect of swelling or compressing the polymer brush. For the case of

good solvent, the swelling of the brush does not disrupt the scaling relationship h ∼ Nσ1/3 and the brush

is still parabolic. In poor solvent, the brush may collapse, in which case the volume of the brush scales

with N . The collapsed brush may result in a discontinuous density profile in which the brush suddenly

terminates at z = h.

A brush in mixed solvents may also compress and swell, but in this case more exotic effects are possi-

ble such as a preferential occupation of one solvent in the brush. This can also result in discontinuities in

the density profiles, but much depends on the detailed parameter choices since each solvent can interact

with the polymers and with each of the other solvents.

Brushes with “nanoparticles” (that is, some type of inclusions or foreign particles) have also been

studied, but less extensively. When the nanoparticle size is on the order of the solvent molecule size, the

nanoparticles behave in a way similar to a second solvent, causing, e.g., a preferential expulsion of the

nanoparticles from the brush as in Fig. 9. Typically when their large size is taken into account, simplify-

ing assumptions are made that preclude a collapse of the brush or other exotic morphology change.

In the following two chapters, I will consider the problem of a polymer brush infiltrated by nanopar-

ticles which bind to the monomers. In chapter 2, which was published as [82], I consider the case where

the nanoparticles are similar in size to a monomer and I use the simpler Alexander-de Gennes approach.

In chapter 3, which was published as [83], I consider the case of larger nanoparticles and use an approach

similar to Milner, Witten, and Cates [46]. In both cases, I find that a collapse of the brush is possible,

as are discontinuities in the monomer and nanoparticle density profiles. In chapter 4, I apply these theo-

retical tools to examine the results on the system of the Nuclear Pore Complex, where a collapse-based

mechanism is one possible candidate for nucleocytoplasmic transport.
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2.0 THE MORPHOLOGIES OF POLYMER BRUSHES INFILTRATED BY SMALL

NANOPARTICLES USING ALEXANDER-DE GENNES THEORY

2.1 INTRODUCTION

Alongside traditional bulk polymeric materials such as rubbers and plastics, thin surface films of polymers

have become important in many technological applications, such as sensors, lubricant coatings, light-

emitting devices, nonlinear optics and more. Thin polymer films decorated with nanoparticles form a

novel class of “responsive” composite materials allowing one to design the function and to control the

morphology of the films in nanotechnological applications such as solar cells and programmable memory

devices. One major technological challenge is the precise control and engineering of the properties of

such composites [63, 84–91].

In the biological context, polymer-like molecules (such as natively unfolded, disordered proteins)

confined near or attached to surfaces interacting with nano-size particles (such as proteins) play important

roles in many processes [92–97]. For instance, binding of certain transport proteins is thought to induce

reversible morphological changes in the layer of natively unfolded proteins lining the channel of the

nuclear pore complex in eukaryotic cells, and such morphological changes are at the core of the transport

mechanism of this very important biological “device” [34, 93, 97, 98]. In another example, binding of

proteins and proteoglycans to the layer of hyaluronic acid molecules that coat cartilage cells regulates

the mechanical properties of the cartilage [99]. Some of the structural and functional aspects of such

biological systems can be reconstituted in vitro with the purpose of studying the basic mechanisms of

their function, as well as for developing bio-mimetic nanotechnological applications, such as nanofilters

and biosensors [68–70, 84, 100].

Understanding various morphologies of polymer nanoparticle mixtures at surfaces is therefore impor-

tant for the predictive design of novel materials and devices as well as for the mechanistic understanding
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of important biological processes. These goals require predictive, quantitative theoretical understanding

of the underlying physics of grafted polymers infiltrated by nanoparticles in order to bridge the gap be-

tween experimental results in controlled situations and predictions in realistic regimes, which might not

be directly accessible experimentally. The behavior of single-component grafted polymer films, known

as “brushes”, has been extensively studied, and a comprehensive theoretical framework explaining the

experimental phenomena has been developed (e.g.[37, 45, 46, 75, 101–104]), providing the foundation

for the present work. Brush morphologies can be controlled, for instance, by changing the solvent qual-

ity or by manipulating the direct polymer-polymer interactions [45, 50, 75, 89, 102–104]. However,

the effect of the addition of nanoparticles has been much less studied. In the case of only excluded

volume interactions between the polymers and the nanoparticles, Kim and O’Shaughnessy [73, 105]

studied theoretically the effect of particle size on their penetration and assembly into polymer brushes.

Similar ideas were explored by Binder and coworkers [102] via Brownian dynamics simulations. More

recently Halperin et al. [75] studied the additional effect of weak attractions between the nanoparticles

and polymers on the brush structure, along with the variation of the solvent quality. In related systems,

three dimensional structures of mixtures of block copolymers with nanoparticles have been studied in

[106, 107].

In this chapter, motivated by several technologically and biologically important systems [33, 34, 63,

85, 86, 89, 93, 108], we study the effect of specific attractive interactions (binding) between grafted

polymers and small particles that may infiltrate the polymer layer. In particular, we study the effect of

these small nanoparticles on the film morphology, using mean field type analytical theory supported by

Langevin dynamics simulations.

One particular motivation for our work is the controversy regarding possible morphological changes

in the layers of natively unfolded constituents of the nuclear pore complex induced by the binding of

other folded proteins [34, 35]. Our model, in its present form, is not directly applicable to this system

due to the relatively large nanoparticles involved in the latter. Our primary goal here is to establish how

the properties of a polymeric layer, such as its height and composition, depend on the concentration of

nanoparticles present in it, the strength of their interaction with the polymers and the parameters of the

layer such as the grafting density. We show that such attractive interaction can result in sharp large scale

changes in the layer structure, allowing global control of the polymer layer morphology and geometry,

as well as nano-particle positioning within the layer. This result is qualitatively consistent with observed
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behavior for real nanoparticle systems such as that studied in Ref. [34] in which a substantial decrease in

the height of grafted polymer was observed upon addition of the binding “nanoparticles.” In addition, it

provides a foundation on which to construct more elaborate models.

2.2 THE MODEL

We consider a layer of Np flexible polymeric chains, each containing N monomers. Each chain is grafted

at one end to a planar surface of area A at a distance a from its nearest neighbors. The polymer layer

is in equilibrium with a solution of nanoparticles of concentration c that interact attractively with the

monomers of the chains. The particles can penetrate the polymer layer, thereby changing its properties

such as its density and the height above the grafting surface h - see Fig. 10 for illustration; we denote

the number of nanoparticles in the layer as Nnp. For simplicity, here we consider the nanoparticles to be

of the same size as the chain monomers. With an appropriate choice of monomer size, these particles

may be thought of as representing small nanoparticles (perhaps ∼ 1− 3nm in diameter) interacting with

polymer chains, as any other small additives which may penetrate a polymer layer, or as constituents of

a mixed solvent. As discussed in Section 2.5, the conclusions of the mean field theory discussed below

are also expected to hold for somewhat larger particles.

The layer height h is not dictated by the polymer length alone, but is established as a result of the

minimization of the total free energy of the system that depends on several salient factors: entropic

stretching of the polymers, steric repulsion between the monomers, and the interactions of the polymers

with the nanoparticles.

A simple mean field free energy of such a layer, per unit area in units of kBT can be derived, for

example, using a lattice construction [44, 46, 110], as explained in Appendix A. The result is

F (ψ, h)/A = σh2/(2N) + (2.1)

+h (φ lnφ+ (1− φ− ψ) ln(1− φ− ψ) + χφψ)

where σ = Np/A = 1/a2 is the polymer grafting density, φ = Nnp/(Ah) is the density of the nanopar-

ticles and ψ = NpN/(Ah) = σN/h is the monomer density; all lengths are measured in units of the
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Figure 10: Snapshots of the Langevin simulations illustrating the first-order collapse of the polymer layer

upon addition of the nanoparticles. The nanoparticles are shown as blue circles. Polymer chains, grafted

from below onto a flat surface (not shown), are depicted in line format (i.e., their bead-spring structure

is not resolved here). Left panel: The layer in the extended swollen state just below the transition;

c = 6.9 × 10−5. Right panel: The collapsed layer packed with nanoparticles, just above the transition;

c = 2.4× 10−4. εb = 2 and a = 4 for both panels. Snapshots were visualized using PyMOL [109].

monomer size b. The first term represents the entropic stretching of the polymers, under the assump-

tion that the monomer density is a step function, as in the Alexander-deGennes model [37, 46]. The

real monomer density distribution within the brush is closer to parabolic [46, 104, 111], but we will see

that the predictions of this relatively simple model are in very good agreement with simulations for the

quantities we are interested in. The second term represents the translational entropy of the nanoparticles

within the layer, and the third term is the correction to the translational and configurational entropies

due to excluded volume effects. Together, these three terms account for the entropy of all possible ar-

rangements of the polymers, nanoparticles, and empty sites (which are implicitly assumed to be filled

with athermal solvent) [110]. Other approximations for the free energy that express similar physics are

possible [44, 110]; they result in qualitatively similar predictions. The last term in Eq. (2.1) describes the

direct interaction between the nanoparticles and the polymers, where χ is proportional to the microscopic
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energy of the particle-polymer interaction (see Section 2.4). We will focus on the case of χ < 0, which

corresponds to attractive interactions. The arguments so far are standard. In the absence of the interaction

term, in the small density expansion, the free energy (2.1) reduces to the standard Alexander-deGennes

polymer brush [46]. As we will be interested also in moderately high concentration regimes, we keep the

full expression for the logarithmic term, which ensures incompressibility when ψ+φ→ 1, i.e., when the

polymers plus the nanoparticles occupy all the available volume.

The values of the variables h and φ are determined as sketched below. The chemical potential of the

nanoparticles in the layer is, from Eq. (2.1):

µnp =
∂F/A

h∂φ
|h=const = χψ + ln (φ/(1− φ− ψ)) . (2.2)

The osmotic pressure of the layer is

Π = −dF/A
dh
|φh=const = χφψ − hσ

N
− ψ − ln(1− φ− ψ). (2.3)

Because the nanoparticles are free to diffuse between the polymer layer and the bulk solution, in equilib-

rium their chemical potential in the layer, µnp must be equal to the chemical potential µc of the nanopar-

ticles in the solution above the layer. The osmotic pressure of the layer Π and of the solution Πc must be

equal as well. Assuming ideal solution, µc = ln(c/(1− c)) ' ln(c) and Πc = −ln(1− c) ' c. These two

conditions determine the two unknowns: the layer height h and the concentration of the nanoparticles

in the layer φ. These equilibrium conditions are equivalent to the minimization of the global thermody-

namic potential Φ(c, h,Nnp) = F (h,Nnp)− µc(c)Nnp + Πc(c)Ah over layer height h and the number of

the nanoparticles in the layer, Nnp = φh, when c is fixed (“grand canonical”), or the minimization of an

appropriate “canonical” free energy when the total number of nanoparticles in the system is fixed instead.

These two cases may correspond to different experimental situations.
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2.3 SIMULATIONS

The mean field theory was augmented and verified via overdamped Langevin dynamics simulations [112–

114]. In these simulations, the polymers are represented as chains of beads kept on the strand by finitely

extensible, nonlinear, elastic (FENE) springs [112], which exert a force of the form

FFENE =
−kr

1−
(

r
`max

)2

on the nearest neighbor beads of the chain, where k is the spring constant, r is the distance between beads,

and `max is the maximum separation of beads, at which the FENE restoring force becomes infinitely

strong. The nanoparticles are modeled as freely diffusing beads. All beads, both the monomers of the

polymers and nanoparticles, interact through a pairwise 6-12 Lennard-Jones type potential [113] of the

form

U(r) =





ε
((

b
r

)12 − 2
(
b
r

)6
)

+ ε− εb r < b

εb

((
b
r

)12 − 2
(
b
r

)6
)

r > b
(2.4)

which models short range molecular interactions. εb = 0 for polymer-polymer interactions and

nanoparticle-nanoparticle interactions, representing a short-range repulsion with the effective hard core

diameter b and the excluded volume ∼ b3. For polymer-nanoparticle interactions, positive εb corresponds

to attraction. Note that varying εb does not affect the excluded volume size b or the strength of the hard

core repulsion interaction energy ε. Dynamically, in simulations each bead performs diffusion under

the action of the deterministic forces from all other beads and the random thermal force [112, 113].

Each chain is grafted at one end to a wall at z = 0, z being the perpendicular distance from the wall.

The wall itself is modeled by another purely repulsive potential of the shape of Eq. (2.4) with εb = 0

and r = z, centered at z = 0. In all simulations chains of length N = 100 were grafted onto a square

lattice at a distance a = 4b or a = 3b from each other, in a 4 × 4 or 6 × 6, array. Periodic boundary

conditions were used in the in-plane directions. The simulations were performed with two types of

boundary conditions on the top of the box: one corresponding to a reservoir of nanoparticles with fixed

concentration (grand-canonical ensemble with respect to particle number), the other with a fixed number

of particles in the simulation box (canonical ensemble). The two different boundary conditions were

found to agree in regimes of parameter space where a comparison was possible. The brush height was

measured by creating time-averaged histograms of the monomer density as a function of z, and marking
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Figure 11: Left panel: Layer height, h, normalized by the height in the absence of nanoparticles, h0, as

a function of the concentration of the free nanoparticles in solution, c, for different interaction strengths.

Right panel: Average nanoparticle density in the layer as a function of c for same interaction strengths as

in the upper panel. The inset shows the number of adsorbed particles, per unit area, compared to a simple

Langmuir adsorption isotherm (dotted line). In both panels the solid lines are the mean field theory, filled

dots - corresponding grand-canonical simulations, filled triangles - canonical simulations. In both panels

the grafting distance is a = 4b.

the top of the brush as the z value at which the monomer density became negligible. Once h was

determined from the monomer density profile, all nanoparticles with z < h were considered bound in the

layer, and those with z > h were considered to be in solution. The simulations were tested by comparing

with known cases in the absence of nanoparticles [101].

2.4 RESULTS

The main result of the modeling is that the layer height, as well as its composition and morphology

are very sensitive to the number of added nanoparticles and the strength of their interactions with the
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Figure 12: The total thermodynamic potential Φ vs. polymer layer height h for a = 4, N = 100, χ =

−10, and 10−4 < c < 10−2. The development of a minimum of the free energy (global thermodynamic

potential) Φ at low values of h reflects the first order transition as the nanoparticle density is increased.

At approximately c = 1.2× 10−3 (shown via the bold red line), the two minima are equal in energy.

polymers. These results are summarized in Fig. 11 and illustrated in Fig. 10. For sufficiently strong

interactions, increasing nano-particle concentration from zero causes the polymer layer to compress.

At still higher concentrations, the trend is reversed and further addition of nanoparticles results in the

swelling of the layer.

Notably, the nature of the compactification of the polymer layer is different at high and low interaction

strengths χ(εb). For weak attraction, above a critical value χc, and low to moderate c, the layer height h

decreases continuously with the concentration of nanoparticles c, while for χ < χc and an appropriately

chosen range of c, the layer undergoes an abrupt, first order transition from an extended, low density state

to a high density collapsed film packed with nanoparticles as shown in Fig. 11. This abrupt collapse is

accompanied by a corresponding discontinuous increase in the number of nanoparticles adsorbed within

the layer, as shown in Fig. 10 and the right panel in Fig. 11.

The results of the mean field theory are in very good agrement with simulations, as shown in Fig.

11. The interaction parameter χ is fitted as χ/(b3kT ) = −8.45(εb/kT ) + 4, consistent with the ef-
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Figure 13: Time averaged histograms of the monomers’ and nanoparticles’ height above the grafting

surface for parameter values for which few nanoparticles are bound to the brush. The monomer density

profile is nearly parabolic as expected for a brush with no nanoparticles. The red line shows a parabola

to guide the eye. Both profiles were generated for a = 4, εb = 2, c = 4.2 × 10−5. The area under both

data curves is normalized to unity.

fective interaction range of 2b [114]; it is also closely related to the second virial coefficient of the

polymer-nanoparticle interaction potential (2.4) [40], χ ' 1
2

∫
d3r(e−U(r) − 1). Simulations also provide

information about the internal structure of the layer.

The heuristic physics behind this behavior is simple: penetration of the nanoparticles increases the

number of energetically favorable contacts between the polymer and the nanoparticles. This helps to

overcome the entopic loss due to excluded volume interactions in the high density layer. At low parti-

cle concentrations, nanoparticles penetrate the porous, swollen texture of the unperturbed layer, causing

the layer to condense around them, decreasing the volume of the layer. By contrast, at higher nanopar-

ticle concentrations, the already dense, collapsed polymer layer has to increase its volume in order to

accommodate as many nanoparticles as possible. The observed transition is expected to lie in the same

universality class as an ordinary liquid-gas transition [115], which is apparent from the analysis of the

thermodynamic potential Φ: as the nanoparticle concentration c increases, the global minimum of Φ

discontinuously switches from a high value of the layer height h to a low one (see Fig. 12).
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Figure 14: Time averaged histograms of the monomers’ and nanoparticles’ height above the grafting sur-

face for parameter values for which many nanoparticles are bound to the brush. The red line shows a step

function which drops to zero at the measured value of h. The density profiles are close to step functions

because monomers and nanoparticles are tightly packed as in a solid. Both profiles were generated for

a = 4, εb = 2, c = 2.3× 10−3. The area under both data curves is normalized to unity.

Besides confirming the general picture supplied by the mean field theory, simulations provide addi-

tional information about the particle distribution within the layer. When the nanoparticle concentration is

small enough that they constitute only a small perturbation on the standard polymer brush, the monomer

density profile is approximately parabolic as seen in Fig. 13. The height of the brush is approximately

the intercept of the fit parabola as shown in Fig. 13. Although our MFT takes the monomer density to be

constant throughout the polymer layer, the density profile obtained in simulations matches the expected

behavior of a plane-grafted brush [41, 46], including the presence of a depletion region near the wall and

a “foot” at high z in simulations [101, 116].

When the attraction between nanoparticles and polymers is sufficiently strong and the nanoparticle

concentration is sufficiently high, the brush becomes highly compact, and space is almost completely

filled with nanoparticles and monomers. That is, the monomer density profile becomes approximately

a step function as seen in Fig. 14. Of course in simulations the step is not infinitely sharp, but instead

includes a transition region of intermediate monomer concentration. We include this intermediate region
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as part of the brush when calculating the height.

The corresponding nanoparticle density profiles can also be seen in Figs. 13 and 14. In both cases, the

nanoparticle density profile for z < h qualitatively tracks the monomer density profile because nanopar-

ticles in the polymer layer are expected to be bound to one or more monomers.

2.5 DISCUSSION

To summarize, we have found that the morphology and composition of surface layers of polymers can

be controlled by addition of attractive nanoparticles. In particular, we have uncovered the possibility

of a novel first order transition between a low density swollen layer and a high density compact state,

triggered by either the increase in the concentration of the nanoparticles or the increase in the interaction

strength.

Although we present the case of monomer-size particles only, the results of this study are more

broadly useful for several reasons. Firstly, this approach creates a useful foundation on which to analyze

more complicated cases, and many of the same physical arguments made here hold for particles larger

than the monomer units as well. The appropriate free energy analogous to Eq. (2.1) can be derived on the

mean field (MF) level with minor modifications to the lattice gas argument (or other phenomenological

arguments) used to derive Eq. (2.1), and a similar comparison to simulation may be carried out, as will

be discussed in Chapter 3. For larger particles, especially when their size exceeds the “blob” size, a char-

acteristic length scale of the brush which is roughly equal to the grafting distance [37], additional effects

not included in a simple mean field theory, might become important. Such effects include corrections to

the configurational entropy of the polymers, arising from either adsorption onto the surface of the larger

particles or meandering around them, depletion interaction between large particles induced by the smaller

monomers and crystallization of large particles [73, 105–107, 117, 118]. The exact shape of the density

profile might be important for precise determination of the particle distribution within the brush and more

sophisticated theories such as self-consistent field theory (SCFT) might be needed [46, 73, 111, 119].

However, preliminary simulations with larger nanoparticles show that the qualitative predictions of the

simple MF theory hold even for larger nanoparticles. This is in accord with the general understanding

that for particles of size smaller than the blob size, additional effects such as polymer stretching are sub-
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dominant [73, 102, 105, 120]. A systematic discussion of the effects of the particle size and the above

mentioned issues will be presented elsewhere. Secondly, consideration of monomer-sized nanoparticles

may be directly applicable to realistic situations, particularly if one imagines a coarse-grained approach

in which one monomer is a nano-scale moiety composed of several amino acids or other chemical units.

In fact, the simulations carried out in Section 2.3 are, by nature, coarse-grained, and, provided the poly-

mers under consideration are sufficiently flexible, the monomer size b need not be taken on the atomic

scale.

Good agreement between the simple mean field theory and the simulations suggests that the theory

does capture the essential complexity of the problem. Our results suggest strategies for the control of

morphologies of composite materials for practical applications. The insights from the model also inform

future analysis of biological systems such as interactions of unfolded polypeptides with nanoparticle-like

objects such as proteins [34, 121]. Also, the described transition is mathematically similar to the “bistable

switch”, which is an important part of many biological control circuits [122]. Finally, the discontinuous

dependence of the number of the nanoparticles in the layer on their concentration in the bulk has important

implications for the estimation of the binding affinities between flexible objects such as unfolded proteins

[92].
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3.0 THE MORPHOLOGIES OF POLYMER BRUSHES INFILTRATED BY VARIOUS SIZES

OF NANOPARTICLES BY MILNER-WITTEN-CATES THEORY

3.1 INTRODUCTION

Binding and intercalation of nanoparticles or other nano-sized objects to polymer layers grafted to sur-

faces is a common motif in nanotechnology and surface science and engineering [63, 64]. For instance,

the collapse and extension of polymer layers grafted to the walls of nano-channels are used technologi-

cally for molecular valves and sieves [123, 124], drug delivery devices [125], and lubrication of surfaces

[126]. Nano-inclusions and other additives can be used to control the specific morphologies crucial to the

operation of devices such as solar cells and to create responsive materials through manipulation of the

polymer-nanoparticle interactions [63–67]. Industrially, the physical properties of polymer materials can

be manipulated by the binding of ungrafted polymers to small attractive additives, and this process can

cause a reduction in the system volume [61, 62]. Polymer brushes are also used to prevent and manipulate

protein binding to surfaces [127, 128].

Morphological transitions of flexible filaments induced by binding of nano-sized particles are also im-

portant in several biological processes. For example, hyaluronic acid, which is important to the function-

ing of cartiliage and skin, can undergo significant changes in volume when bound to proteoglycans [99].

In the Nuclear Pore Complex, binding of transport proteins may cause conformational changes in the un-

folded proteins within the pore, facilitating nucleocytoplasmic transport of cargos [31, 34, 36, 121, 129].

Biomimetic devices based on the functional properties of such biological systems like have been created

[68–70].

Grafted polymers in the absence of nanoparticles have been well-studied, both theoretically and ex-

perimentally, and the properties of such polymer “brushes” are well-established [37, 41, 46, 47, 81, 101,

116, 130–132]. Physically, the height of a brush is determined by the balance between the stretching
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entropy of the polymers, which favors more compact conformations, and the excluded volume interac-

tion between the polymers, which favors less compact conformations. The height and morphology of the

brush can be modulated by changing the quality or the composition of the solvent or mixture of two or

more solvents in contact with the brush or by the addition of small nanoparticles, whose size is of the

order of the monomer size [45, 49–57, 71, 72, 82, 133].

However, the behavior changes for larger nanoparticles whose size exceeds the monomer size, and

the morphological changes undergone by the polymers when they bind nano-sized objects are still not

well-understood. Penetration of polymer brushes by large nanoparticles that do not bind or are repelled by

the polymers has been studied by self-consistent field (SCF) calculations and computer simulations [73,

102, 105, 118, 127, 134]. It has been shown that weak attractive interactions between the nanoparticles

and the polymers allow large nanoparticles to penetrate the brush [74, 75, 135]. However, the changes

in the overall morphology and the height of the layer, and in particular collective and cooperative effects

arising from binding multiple particles simultaneously, were not considered.

In this chapter, we investigate the morphological changes of plane-grafted polymer layers induced by

binding of attractive nanoparticles of various sizes and interaction strengths. Using a self-consistent field

theory approach augmented by Langevin Dynamics simulations, we find that the nanoparticles modulate

the height and the morphology of the layers. Depending on the nanoparticle size, nanoparticle concentra-

tion, polymer grafting density, and polymer-nanoparticle interaction strength, a wide range of behaviors is

observed, including nanoparticle-induced layer collapse and swelling. Nanoparticles can produce highly

inhomogeneous stratified morphologies in which they form a band near the grafting surface, or they can

fail to fully penetrate the layer and stay in the region of sparse polymer density far from the grafting sur-

face. Features such as the sharpness and degree of the collapse in layer height depend on the nanoparticle

size, interaction strength and the polymer grafting density.

3.2 THEORY

In this section, we develop a model of a layer of grafted polymers in equilibrium with a solution of large

attractive nanoparticles using a variant of a self-consistent field theory (SCFT) [41, 46, 47, 81].

The state of the system is characterized by the collection of all polymer trajectories in space and by the
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location of all nanoparticles. We denote the trajectory of a polymer chain α as ~rα(s), where 0 ≤ s ≤ N

is the position of a monomer along the chain backbone, so that the local monomer volume fraction at a

position ~r is ψ(~r) = b3
∑

α

∫ N
0
dsδ(~r−~rα(s)) where b is the monomer diameter. Similarly, we denote the

local volume fraction of the nanoparticles at a position ~r within the brush φ(~r) = v
∑

i δ(~r − ~ri) where

v is the nanoparticle volume and the sum is over all nanoparticles [46, 73]; the volume fraction of the

nanoparticles in the solution, c, is constant.

In units of kT , the grand canonical free energy (or, equivalently, generalized Edwards Hamiltonian

[45]) of the brush for a given set of monomer and nanoparticle coordinates is given by a functional of the

following form [41, 46, 47]:

F [{~rα(s)}] =
∑

α

1

2b2

∫ N

0

ds

(
∂

∂s
~rα(s)

)2

(3.1)

+
1

b3

∫
d3r(f(ψ(~r), φ(~r))− 1

v̄
µcφ(~r))

The first term describes the stretching entropy of the polymers, f(ψ, φ) is the local free energy density

due to all other effects, such as the excluded volume and other interactions between the polymers and

nanoparticles, and the last term takes into account the fact that the layer is coupled to a (dilute) solution of

nanoparticles with the chemical potential µc = ln(c/(1−c)). In this term v̄ is the ratio of the nanoparticle

volume to the monomer volume.

The non-elastic local free energy density f(ψ(~r), φ(~r)) can be obtained from a lattice gas model [44].

Details of this derivation can be found in Appendix A. The result is

f(ψ, φ) = (1/v̄){φ lnφ+ (1− v̄)(1− φ) ln[1− φ]

+v̄(1− ψ − φ) ln[1− ψ − φ] + χφψ} (3.2)

where χ characterizes the monomer-nanoparticle binding and depends on both the binding strength and

the nanoparticle size. χ < 0 corresponds to attractive monomer-nanoparticle interactions.

At equilibrium, the free energy functional (3.1) is minimized over the nanoparticle density φ(~r)

and the polymer trajectories {~rα}. Carrying out first the minimization over φ(~r) yields a constraint that

relates the local nanoparticle volume fraction at equilibrium φeq(~r) to the monomer volume fraction ψ(~r).

Namely,

µc = χψ + ln

(
φeq(1− φeq)v̄−1

(1− ψ − φeq)v̄
)
. (3.3)
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For arbitrary v̄, Eq. (3.3) can be solved numerically, but at v̄ = 1, which corresponds to equal size

monomers and nanoparticles, φeq(ψ) may be obtained analytically.

Further minimization of the free energy functional over the ~rα(s)’s gives, for each polymer,

− 1

b2

∂2

∂s2
~rα(s) +

∂

∂~rα
µ(ψ) = 0, (3.4)

where

µ(ψ) =
∂

∂ψ
f(ψ, φeq(ψ)) (3.5)

= − ln(1− ψ − φeq(ψ)) +
χ

v̄
φeq(ψ)− 1.

A more detailed derivation of Eqs. (3.3) and (3.4) can be found in Appendix C. The equations (3.4) and

(3.5) must be solved self-consistently (numerically) in order to determine the ~rα’s and the ψ(~rα)’s. How-

ever, it has been noted [46] that when the density is uniform in the lateral direction, so that the densities are

only dependent on the distance from the grafting surface z, Eq. (3.4) becomes mathematically identical

to the Newtonian equations of motions of particles moving in the one-dimensional potential −µ(ψ(zα))

over the time interval [0, N ]. The untethered end of each grafted polymer chain starts from a different

initial position zα(0) with zero ”velocity” ∂zα(0)/∂s = 0 and reaches the final position zα(N) = 0 (the

grafting surface) in the same ”time” N . The only potential possessing such a property is the harmonic

potential so that

µ(ψ(z)) = A−Bz2 (3.6)

where B = π2/(8b2N2) [41, 46].

The monomer density profile ψ(z) is determined by inverting Eq. (3.6) after making use of Eqs. (3.3)

and (3.5), and the normalization condition

Nσ =

∫ h

0

dzψ(z) (3.7)

where σ is the grafting density of the polymers and h is the height of the polymer layer above the grafting

surface. The parameter A in Eq. (3.6) is adjusted so that Eq. (3.7) is satisfied, a procedure which could

be phrased alternatively in the language of Lagrange multipliers [47, 135].

When the magnitude of the nanoparticle-monomer interaction parameter χ is sufficiently small, µ(ψ)

is a monotonically increasing function of ψ over the entire range of solution nanoparticle volume fraction
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0 < c < 1. In this regime, the spatial monomer density profile ψ(z) is a continuous, monotonically

decreasing, approximately parabolic function of z. For larger values of χ, µ(ψ) can become a non-

monotonic function (i.e. more than one value of ψ can be associated with a given value of µ), which

implies that the density ψ(z) develops a discontinuity, resulting in a stratification of the layer into a band

of high density near the grafting surface covered by a band of low density above it. The location of

the density discontinuity is determined from the condition that the osmotic pressure Π = −f(ψ, φ) +

ψ∂ψf(ψ, φ)+φ∂φf(ψ, φ) is continuous, which is required to maintain mechanical equilibrium throughout

the layer. This condition is equivalent to using the Maxwell equal areas construction on µ(ψ) [48, 49,

55, 135]. Once the monomer density profile ψ(z) is determined, the density profile of the nanoparticles

φ(z) is calculated from ψ(z) using Eq.(3.3). These results could also be obtained using an alternative

(but equivalent) representation of the SCF method [47, 135].

3.3 SIMULATION METHODS

Simulations of the grafted polymer-nanoparticle system were performed using overdamped Langevin

Dynamics simulations [136]. In this type of simulation, particles move under the influence of forces that

result from the pairwise interactions between the particles and a random force that represents the ther-

mal noise. Polymers were modeled using a bead-spring model, in which the bonds connecting nearest-

neighbor monomers on the same polymer chain were represented using the finitely extensible nonlinear

elastic (FENE) spring force [78]

FFENE =
−kr

1−
(

r
`max

)2 (3.8)

where k is the spring constant, r is the distance between adjacent monomers, and `max is the maximum

possible distance between connected monomers.

The inter-particle interactions are modeled by a shifted potential of the Lennard-Jones form:

U(r) =





ε
((

dave
r

)12 − 2
(
dave
r

)6
)

+ ε− εb r < dave

εb

((
b

r−r0

)12

− 2
(

b
r−r0

)6
)

r > dave
(3.9)

in which b is the monomer diameter, dave is the average diameter of the two interacting particles (or

equivalently, the sum of their radii), ε is the strength of the repulsive interaction, εb is the binding strength
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Figure 15: The height of the polymer layer above the grafting surface vs. the volume fraction of nanopar-

ticles in solution for different binding strengths and nanoparticle volumes. Simulation data is shown in

filled symbols. The SCFT results are shown as unfilled symbols connected with dashed lines. Left panel:

nanoparticle volume v̄ = 1 and grafting distance a = 4, Middle panel: v̄ = 19 and a = 4, and Right

panel: v̄ = 96 and a = 4.

between particles, r is the distance between particles, and r0 = (d − b)/2 (where d is the nanoparticle

diameter) is a shift in the potential to account for the difference between the radii of the two particles. The

binding strength εb = 0 for monomer-monomer and nanoparticle-nanoparticle interactions, while εb > 0

for monomer-nanoparticle interactions. This form of the potential ensures that monomers are attracted to

nanoparticles only when the distance between their surfaces is (r − dave) . b.

Sixteen polymer chains, each composed of N = 100 linked monomer beads, were grafted onto a

flat surface (at z = 0) on a square lattice via fixed end beads with the distance between neighboring

grafting sites being a = σ−1/2. The grafting surface was modeled by a repulsive potential of the form

of Eq. (3.9), but with r = z and εb = 0. The simulation box was bounded from above by a similar

barrier. Laterally, periodic boundary conditions were enforced. Nanoparticles were allowed to diffuse

throughout the simulation box, partitioning between the polymer layer and solution freely. Hence, the

total number of nanoparticles in the simulation box was fixed, but their number in the polymer layer

was not. For a few cases in which nanoparticles and monomers were the same size, the ceiling was

made an absorbing boundary with a constant flux of nanoparticles into the box such that the solution

nanoparticle concentration was fixed to within fluctuations. This procedure (corresponding to a grand

canonical ensemble) was found to produce the same results as using a closed simulation box (canonical
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ensemble) [82]. To test for potential finite size effects, such as a chain interacting with its own periodic

image, we measured the lateral radii of gyration of the grafted chains, Rgxy:

R2
gxy =

1

N

N∑

i=1

(
(xi − xcm)2 + (yi − ycm)2) (3.10)

where i indexes the monomer and xcm and ycm represent the x and y coordinates of the polymer chain’s

center of mass, respectively. R2
gxy was averaged over the chains and over time for two representative

parameter sets: a = 4, εb = 1.25, v̄ = 96, and a = 2.2, εb = 1, v̄ = 125 at several nanoparticle

concentrations. We found that on average Rgxy = 4.8 and 3.7, respectively, significantly smaller than the

simulation box width in both cases (16 and 8.8 respectively), suggesting that finite size system artifacts

are small.

The height of the layer h was determined as the distance from the grafting surface beyond which

only a negligible fraction (1%) of the monomers were located after time averaging. Specifically, the

distribution of monomers or nanoparticles along the z direction was calculated by creating histograms of

the location of the monomer or nanoparticle centers and time averaging. For a time-averaged monomer

distribution function P (z) (whose integral was normalized to unity), hwas defined as
∫ h

0
P (z) dz = 0.99.

Once h was determined in this manner, nanoparticles whose centers were located at distance z < h

from the grafting surface were regarded as being in the polymer layer, while those with z > h were

regarded as being in the solution. Time averages and uncertainties in the solution phase volume fraction

of nanoparticles c were obtained via the block averaging method [137]. To improve statistics, in some

cases additional averaging over several independent runs was performed; each time series was block

averaged separately, and the results were combined using standard uncertainty-weighting methods.

3.4 RESULTS AND DISCUSSION

The results of the theoretical model and of the simulations are summarized in Figs. 15-20. Fig. 15 shows

the dependence of the equilibrium polymer layer height h on the volume fraction of nanoparticles in the

solution c, as obtained from the theoretical model and the simulations for three different nanoparticle

volumes: v̄ = 1, 19, 96. Note that v̄ is a dimensionless ratio of the nanoparticle volume to the monomer

volume v̄ = v/v0 where v0 is the volume of a single monomer. In simulations, v0 = πb3/6 with b
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obtained from the minimum of the potential in Eq. (3.9), while in the SCFT v0 was taken to be the

volume of one lattice site. In all three cases, a range of monomer-nanoparticle binding strengths are

considered: sufficiently strong attraction between monomers and nanoparticles causes a compression of

the brush. That is, h decreases from its value in the absence of nanoparticles h0. At high nanoparticle

concentrations, the height recovers back to - and in some cases beyond - h0. The compression of the brush

occurs because the number of attractive contacts between monomers and nanoparticles is increased via

an increase in monomer density (i.e. decrease in layer volume). The re-expansion occurs when the layer

becomes saturated with nanoparticles, and more contacts can only be added by increasing the volume of

the layer to accommodate additional nanoparticles. For v = v0, the compression transition is very sharp

and occurs over a narrow range of densities c. In fact, a simpler theory using an Alexander-de Gennes

type free energy analogous to Eq. (3.2) with v̄ = 1 predicts a first order discontinuity in the h vs. c

curves [82]. In contrast, the SCFT presented here predicts a rapid but continuous decrease. When the

nanoparticle size v becomes significantly larger than the monomer volume v0 (v̄ � 1), the transition

region becomes broader.

The nature of the transition region can be further analyzed by the examination of the monomer and

nanoparticle density profiles within the layer, shown in Fig. 16. Both the SCFT and the simulations

show three distinct regimes as the nanoparticle concentration is increased. When the concentration of

nanoparticles in the solution c is very low, the nanoparticles, although they do infiltrate the layer, cause

only a small perturbation to the parabolic density profile that characterizes the free polymer brush. For

very high c, in the compressed state, the density profiles of both monomers and the nanoparticles are close

to a step function because monomers and nanoparticles are densely packed into a condensed layer. In the

transition region between these two limiting cases, the layer develops an inhomogeneous morphology,

stratifying into bands of high and low density. According to the SCFT, the formation of the dense state

typically starts with a formation of a vanishingly thin band of high density near the grafting surface.

Beyond this band is a lower density, parabolic region which extends to higher z. As the concentration of

the nanoparticles increases, the width of this dense region grows until it contains all the material in the

layer, and the parabolic region vanishes. The simulations qualitatively confirm this picture. They show

the formation and eventual expansion of a high density region near the wall, although in comparison

to SCFT, the simulations show a depletion region near the wall, a small “foot” in the density profile at

high z, and the rounding of the boundaries between the dense and dilute regions. In addition, although
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Figure 16: Monomer (dashed blue lines) and nanoparticle (solid red lines) probability distribution func-

tions for grafting distance a = 4 and nanoaparticle volume v̄ = 1 at three different nanoparticle solution

volume fractions c. Distributions are normalized such that the integral from zero to the layer height h

is equal to one. Note that with this normalization the qualitative shape of the nanoparticle density pro-

files is accurately represented, but certain quantitative differences between SCFT and simulations, such

as the total number of nanoparticles in the layer, are suppressed (see text). Top row: Simulations with

binding strength εb = 2. Bottom row: SCFT calculations with the corresponding interaction parameter

χ = −13.5. Left Column: c = 2× 10−5, Middle Column: c = 1× 10−4, Right Column: c = 2.8× 10−3.

See text for details.

the qualitative shapes of the nanoparticle distributions in SCFT vs. the Langevin simulations agree well

in Fig. 16, certain quantitative features such as the absolute concentration of nanoparticles in the layer

do not necessarily agree well at low c and high binding strength, where concentration fluctuations are

too large and Eq. (3.2) is inadequate. These are well-known differences between Milner-Witten-Cates

(Semenov-Zhulina) SCFT approximation and more realistic results, stemming from finite size effects,

the discrete nature of the particles, fluctuations, and other factors not taken into account in the SCFT.

[41, 101, 116, 132]
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Figure 17: Snapshots from simulation data for a = 4 showing the tendency of nanoparticles to cluster

near the grafting surface. Polymer chains are shown as red lines, and nanoparticles as blue spheres. Left:

v̄ = 1, εb = 2, c = 8.1× 10−5, h/h0 = 0.76, Middle: v̄ = 19, εb = 1.75, c = 1.3× 10−6, h/h0 = 0.83,

Right: v̄ = 96, εb = 1.25, c = 1.0× 10−6, h/h0 = 0.94.

The features of the layer in the transition region are further illustrated by the representative simulation

snapshots in Fig. 17. One can see that a dense region of monomers and nanoparticles forms near the

grafting surface, corresponding to the peak in the density profile in the middle column of Fig. 16. Some

of the polymer chains extend out of the dense region into the solution, forming a low density region above,

corresponding to the tail region in the middle column of Fig. 16. It should be emphasized that, both in

the SCFT and the Langevin simulation results, the layer is not merely adsorbing additional particles as

the concentration in solution increases, but the observed layered structure inside the brush is induced by

collective aggregation of the nanoparticles into the layer.

The SCFT predictions of the h vs. c behavior for grafting distance a = 4 are in good agreement

with the simulations for both v̄ = 1 and v̄ = 19. For v̄ = 96, some features of the theoretical curves,

such as the width of the transition region, begin to deviate from the simulated ones. Since volumes of

v̄ = 1, 19, 96 correspond to nanoparticle diameters of d = 1, 2.67, 4.57 in units of monomer diameter
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Figure 18: Monomer (dashed blue lines) and nanoparticle (solid red lines) probability distribution func-

tions for a = 2.2 and v̄ = 125. Distributions are normalized such that the integral from zero to the

layer height h is equal to one. Top Row: Simulations with binding strength εb = 1 at three different

numbers of nanoparticles in the simulation box (8, 16, 32; cf. Fig. 20). Bottom Row: SCFT calculations

with interaction parameter χ = −175 and three corresponding solution nanoparticle volume fractions

(c = 10−4, 10−2, 10−1). See text for details.

respectively, this is not unexpected. As previously mentioned, qualitative changes in the system behavior

are expected to arise when the particle diameter d is on the order of the blob size size of the brush ξ

[73, 102, 118]. For larger particles, additional perturbations of the polymer configurations that are not

taken into account in the SCFT (such as the lateral stretching of the chains, or meandering of the chains

around the particles) become important. In a brush, the blob size can be estimated to be on the order of

the grafting distance (ξ ∼ a = 4) [37], or alternatively ξ ∼ ψ−3/4 ∼ (N/a2h0)−3/4 ' 4.61 [44, 131].

Thus, for v̄ = 96, the nanoparticle diameter d ' ξ and one would expect the mean field approach used

here to start to break down. Nevertheless, the SCFT appears to agree qualitatively with the simulation

results even when d > ξ, as seen in Fig. 18 (discussed below), despite some deviation in the quantitative

characteristics.
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Figure 19: Correspondence of the mean field interaction parameter χ (defined in Eq. (3.2)) to the interac-

tion energy used in simulations εb (Eq. (3.9)). Dots: values used in Fig. 15. Dashed line: Fit to a simple

heuristic approximation |χ| ∼ v̄2/3εb.

The only fitting parameter in the comparison of simulation results with SCFT is the relationship be-

tween the mean field interaction parameter χ and the interaction strength in the simulations εb. The fitted

values agree rather well with a scaling relationship between the two that can be estimated ab initio on

basic physical grounds. In mean field theory, the average total energy of attractive interactions experi-

enced by a nanoparticle is χψ. In simulations this energy is proportional to the average number of its

surface contacts with the monomers, so that |χ| ∼ v2/3εb. One can see from Fig. 19 that this relationship

is roughly obeyed. Some deviations from this simple argument are to be expected since, in principle, χ

and εb should be related via the second virial coefficient of the system [138].

The behavior of the system changes entirely for very large particles or high grafting densities (d �
ξ ∼ a, where ξ is the ”blob” size of the brush). In this regime, the free energy penalty associated with

inserting a nanoparticle into the brush is larger and overcoming this penalty requires stronger binding en-

ergies [73, 75, 102, 105, 118]. If the binding energy is not sufficiently high to compensate, the behavior

in this regime is illustrated in Figs. 18 and 20 for grafting distance a = 2.2 and particle size v̄ = 125

(d = 5). Nanoparticles still penetrate the topmost, dilute region of the brush, but the brush height does not

change much as a result, and the polymer conformations and their density profiles are essentially unper-

turbed. As more nanoparticles are added to the system, they progressively infiltrate the layer. However, in

this case the infiltration starts with the accumulation of the nanoparticles in the outer part of the polymer

layer where the monomer density is lower, and not near the grafting surface. Interestingly, the agreement
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Figure 20: Snapshots from Langevin simulations with v̄ = 125, a = 2.2, and εb = 1 corresponding to the

profiles in Fig. 18. Polymer chains are shown as red lines, nanoparticles as blue spheres.

between the SCFT and the simulations is good even when the particle size is significantly larger than the

grafting distance (Figs. 18 and 20) because the nanoparticles perturb the polymer conformations only

slightly in this regime compared to a brush without the nanoparticles.

3.5 CONCLUSIONS

Using a theoretical SCFT model and Langevin dynamics simulations, we have shown that addition of

nanoparticles to grafted polymer layers can result in a wide variety of qualitatively different behav-

iors that can be controlled by the polymer-nanoparticle binding strength, the nanoparticle volume, the

nanoparticle concentration in the solution, and polymer grafting density. Sufficiently strong binding al-

lows nanoparticles to penetrate the polymer brush. If the particle size is smaller than the ”blob” size of

the brush, both SCFT and Langevin simulations predict large-scale morphological changes in the layer,

characterized by a decrease in the height of the layer (Fig. 15), and the formation of a dense region rich
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in both monomers and nanoparticles that occurs near the grafting surface (Figs. 16 and 17). Remarkably,

even when the grafting density was quite high (such that our polymer brush may be entering the over-

stretched regime [119]) and the nanoparticles were quite large (such that the mean field approximations

of the Theory section may be breaking down), both SCFT and Langevin simulations were in agreement

in predicting a penetration of nanoparticles only into the sparse region near the top of the brush (Figs.

18 and 20), related to the “partial penetration” regime noted by Kim and O’Shaughnessy for the case of

non-attractive nanoparticles [73].

The predicted behavior of polymer layers in the presence of nanoparticles has a clear physical ex-

planation. It does not arise because the polymers are exposed to a bad solvent or due to an interaction

between the solvent and the nanoparticles[49, 50, 52–55], but rather due to an attraction between the

nanoparticles and polymers. Qualitatively speaking, it arises from the competition between the energy of

attraction of the nanoparticles to the polymer, which favors compact conformation, and the confinement

entropy of the polymers, which favors extended conformations. In fact, our previous work, based on a

simpler Alexander-de Gennes-type (AdG) theory that assumes that the density of both monomers and

the nanoparticles is uniform within the brush, takes into account only these two effects and also predicts

a collapse of the polymer layer upon addition of small attractive nanoparticles [82]. However, the AdG

type theory is unable to describe the non-uniform distribution of the particles in the brush and predicts

a discontinuous collapse of the layer height, which, although approximately correct for small nanoparti-

cles, starts to break down for larger particles. Remarkably, the SCFT treatment presented here, verified

by the simulations, is applicable to a wide range of nanoparticle volumes and interaction strengths and

also accurately describes the distribution of the particles within the layer and its internal morphology,

thus greatly improving the applicability of the theory to a wide range of systems in both biological and

technological contexts.

In particular, the results reported here may shed light on recent experimental results on the confor-

mational changes induced in the unfolded polypeptides encountered in the Nuclear Pore Complex by

binding of transport proteins, which may impact the transport of molecular cargo across the pore. Recent

experiments with surface layers of such unfolded proteins observed regimes similar to those predicted

here, such as the reversible collapse of the layers [31, 34, 121]. Detailed comparison as well as the ex-

amination of dynamic behavior will be reported elsewhere. Interactions of proteins and nanoparticles

with surface polymer layers also arise in several technological applications, such as the fabrication of a
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variety of non-fouling surfaces, responsive materials and nano-electronic devices, often involving large

conformational changes in the polymers (reviewed in [64]). However, the predictive understanding of

such systems is only starting to emerge.

Our model provides the basic physical framework for understanding and interpreting such experi-

ments and designing or engineering devices. It can also be systematically developed by introducing more

system-specific details into the model and presents specific, experimentally verifiable results on how the

layer height and morphology depend on the densities and interaction strengths of the grafted polymers

and nanoparticles involved.
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4.0 APPLICATIONS TO THE NUCLEAR PORE COMPLEX

4.1 BACKGROUND AND INTRODUCTION.

The nuclear pore complex is responsible for conducting all molecular transport between the nucleus and

the cytoplasm in eukaryotic cells. Transport through the NPC is fast, highly selective and robust with

respect to molecular noise and structural perturbations. The transport of small cargo (such as ions) of

sizes up to several nanometers [5] is not regulated by the NPC and occurs by pure diffusion, without

direct interactions with the NPC. However, the passage of larger macromolecules, such as import of

transcription factors and export of mRNA, is tightly regulated by the NPC. For efficient transport, macro-

molecules larger than several nanometers must bind a transport factor from a highly conserved family of

proteins (known as Karyopherins or “kaps” in yeast or Importins/Transportins in vertebrates) that shuttle

the bound cargo through the NPC [2].

The passageway for transport complexes is formed by a structural scaffold that consists of multiple

proteins of a combined size of ∼125 MDaltons [139]. The central channel they form has a diameter

of about ∼35-50 nm [4] and is filled by a set of 150 -250 (depending on the species) natively unfolded,

unstructured polypeptide chains, collectively known as “FG nups” due to large numbers of phenylalanine-

glycine (FG) repeats in their sequence [6, 7]. The FG nups appear to set up the permeability barrier that

prevents the free passage of large macromolecules. They also serve as a template for the transient binding

of the cargo-carrying transport factors. The attractive interaction and transient binding of the transport

factors to the FG nups appears to be the key component of the transport mechanism, responsible for the

selectivity and speed. For example, interfering with the binding of the transport factors decreases the

transport efficiency, or abolishes the transport altogether [3, 22, 140, 141]. Conversely, functionalizing

particles or molecules that normally cannot penetrate the NPC to bind transport factors or interact directly

with the FG nups allows them to pass through the NPC [142].
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Although the consensus on the overall role of the FG nups in transport through the NPC seems to

have been reached, a mechanistic understanding is still lacking. It is clear that the binding of the transport

factors helps to overcome the permeability barrier and enhances their transport compared to non-binders,

and tuning the strength of this interaction enables control of the transport selectivity [11, 32, 143, 144],

but this does not directly reveal the underlying mechanism of transport. Simple models that describe the

transport as facilitated diffusion modulated by the interactions with the FG nups provide a good overall

picture of the selectivity of the NPC and are able to semi-quantitatively describe the transport properties

of systems that mimic the NPC function [143, 144]. However, it is not clear how the coarse grained

parameters of such models arise from the molecular properties of the FG nups or how they are related to

the permeability barrier.

Although structural data and measurements of the affinities are available, the results between different

studies are conflicting in regard to identifying the major factors contributing to the binding of the transport

factors to the FG nups. Generally, the strength of the interaction is reported according to the dissociation

constant for the binding of the transport factors to the nupsKD. If one considers the process of binding as

a simple bimolecular process in which transport factors at an equilibrium solution concentration [Kaps]

and FG repeat domains at an equilibrium concentration [FG] react to form bound complexes at an equi-

librium concentration [Kapb], KD may be thought of as the ratio [Kaps][FG]/[Kapb] or equivalently as

the equilibrium solution kap concentration at which half of the FG binding sites will be occupied [145]. In

one experiment, the binding of the transport factor Kap95p to the nup Nsp1p was fit to a two-component

Langmuir isotherm having a binding affinities of 0.32µM and 5.3µM [35]. In another experiment, a

two-component fit was also used to obtain binding affinities between Kapβ1 and cNup62 of 0.35µM

and 95.9µM [31]. Other studies have obtained values such as 8nM for free Kap95p and Nup62 [146],

1.7µM for Kap95p-Kap60p-cargo complexes with Nup42p, 90nM for the same complex with Nup100p,

and 0.4nM for the complex with Nup1p [147]. In addition to the wide variation of these measurements,

the average measured affinity of ∼ 0.3µM is substantially lower than physiological concentrations, and

predictions based on transport times yield substantially weaker binding (e.g. KD ≥ 4µM for transportin

in permeabalized HeLa cells) [3, 148].

The actual conformations of the FG nups in the NPC and the mechanism by which the transport fac-

tors navigate the network created by the FG nups remain unclear. It is still under debate whether the FG

nups essentially serve as a template for binding of the transport factors, or whether their dynamic con-
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formational changes in response to transport factor binding are a crucial part of the transport mechanism.

Various scenarios and models of the FG nup conformations have been proposed, with correspondingly

different models of the dynamics of the translocation tied to the underlying conformation of the FG

nups. Many of these ideas are supported or inspired by in vitro experiments in different regimes and with

different FG nups. In one scenario, the FG nups form a physical gel due to their cross-linking at the

hydrophobic FG locations, and the TFs disentangle this gel by exchanging their binding contacts with the

FG nups. Conversely, macromolecules which do not have the requisite binding sites are unable to disen-

tangle the gel and are blocked from entering the pore [27–29]. In another picture, the FG nups form a

non-cross-linked “polymer brush” that constitutes the permeability barrier. In this case, it is the steric re-

pulsion from the fluctuating chains which blocks passage through the pore. Transport would be achieved

when the brush is collapsed by TFs, thereby removing the barrier [10, 30, 31]. More complicated models

taking into account heterogeneity and molecular structure of the FG nups, have been proposed, such as

the forest model in which nups are proposed to have collapsed globular domains near the channel walls

and additional globular domains near the channel center, leaving two transport pathways in the remaining

space [23, 24]. At present it is difficult to distinguish the mechanisms from one another in terms of exper-

imental results, and some details remain obscure. For instance, it is not known with how many FG nups a

transport factor interacts during the passage or for how long. In yet another model the transport factor is

transported through the NPC by a single long-lived initial binding to an FG nup which carries it through

the NPC [25]. Although the translocation of the TFs through the NPC can be tracked on single molecule

level [149], the current experimental resolution (milliseconds and up to 10 nm) is not sufficient to resolve

the detailed conformations of the FG nups and the coordinated dynamics of the transport factors and the

FG nups during transport. Therefore, the support for different models comes from inferring the in vivo

mechanisms from indirect or in vitro experimental efforts.

However, even the in vitro experiments appear to produce conflicting results. Specifically, several

groups investigated assemblies of FG nups, grafted onto rigid surfaces [10, 30, 31, 35]. The height of the

resulting layers has been investigated by atomic force microscopy (AFM), ellipsometry, surface plasmon

resonance (SPR), and quartz crystal microbalance (QCMB) under different conditions. In particular, it

was established through AFM measurement that the FG nups behave like conventional polymeric worm-

like chains and that the elastic properties of such layers are close to what is expected for layers of flexible

polymers [10]. However, the polymer height was dramatically reduced upon the addition of the transport
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factor Kapβ1 [30]. This appears to support the idea that the nups are in a brush-like conformation which

is collapsed by the transport factors. In a later experiment, the same group used SPR to again observe

a collapse and subsequent recovery of the putative nup brush [31]. However, a similar experiment by

another group used QCMB and concluded that their nup brush did not collapse in the presence of the TFs

even though they penetrated the FG nup layer [35].

The FG nups are complex and their interactions are not fully understood. Therefore, in principle,

many factors might need to be considered in order to explain the various observations, which can depend

on all sorts of minute details of the FG nup sequence and local molecular interactions. However, despite

wide variation of the FG nup sequences among different species, some major characteristics, such as FG

mediated interaction with the transport factors, are strongly conserved. Similarly, artificial nanochannel

mimics of the NPC that maintain only a gross level of similarity to real NPCs on the level of conceptual

design recapitulate many important functional features of the NPC’s under quite different conditions

and with just a limited number of the FG nups [68–70]. Thus, it is not unreasonable to expect that the

conformational dynamics of the FG nups and the transport factors can be understood from basic physical

principles without consideration of the specific molecular details of individual cases.

Because the conformations of the FG nups and their dynamics are difficult to access experimentally,

computational and theoretical approaches have become increasingly important (e.g. [129, 144, 150,

151]). Although these studies have provided insight into some of the factors that may be critical in

determining the behavior of the NPC constituents, a unified theory which parameterizes the essential

features of the system so as to explain the wide variety of observed behaviors has been elusive.

In this chapter, I address the conflicting experimental evidence by investigating the basic physical

features and variables that control the kap-dependent conformations of the FG nups and their morpho-

logical changes. Using a coarse grained statistical mechanical theory [82, 83] that encompasses only the

basic consensus physical features, i.e., the flexible nature of the FG nups and their attractive interactions

with transport factors, we analyze the behavior of a nup brush grafted to a flat surface in a variety of

parameter regimes. Based on this limited set of assumptions, the model resolves the apparent contra-

dictions by obtaining qualitatively different behavior at different grafting densities and different kap-nup

binding strengths. It provides experimentally testable predictions regarding what parameters control the

transitions of the system from one regime to another and how apparently conflicting experimental results

can be reconciled.
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4.2 THE MODEL

The FG nups and their interactions with the transport factors can be modeled on many different levels

of detail. However, not all of those details are known: even the number of binding sites on the transport

factors and binding affinities are a matter of controversy. Therefore, the model used in this chapter aims

as a first stage to capture only the essential physical properties of the FG nups and their interactions with

the TFs. This basic model can then be further developed with additional molecular and structural details

by adding additional terms to the free energies below or modifying the existing ones to account for effects

such as the discrete binding sites on the transport factors, the specific amino acid sequence of the nups, or

electrostatic effects. As a first attempt, the FG nups are modeled as flexible polymeric chains. Although

natively unfolded proteins cannot always be described in this way (for instance due to residual secondary

structure), the FG nups have been shown to be well described by the wormlike chain model, at least in

in vitro AFM measurements [10]. The TFs are modeled as large solid spherical particles that interact

attractively with the FG nup polymers.

We first examine the behavior of a flat layer of grafted chains in equilibrium with a solution of

the particles - mimicking the experimental setup of Refs. [10, 30, 31, 35]. The main physical factors

acting in such a situation are the entropy of chain packing and stretching and the energy of the attrac-

tive interaction. Roughly speaking, the attractive interaction between nups and transport factors favors

more compact structures because it allows formation of more energetically favorable contacts, while the

entropy of packing favors more diffuse and open conformations. The model is investigated using two

different statistical mechanical models. For estimating crude properties of the layer, such as the maxi-

mum compression that can be achieved as the concentration of the transport factors is varied, a model

of the Alexander-de Gennes form will be used. When details are needed, such as the layer morphology,

a quasi-analytical self-consistent field theory (SCFT) is used. The details of the two approaches have

been reported in [82] and [83] respectively and have been discussed in Chapters 2 and 3. The results of

the models have previously been compared to the results of Langevin dynamics computer simulations

in order to verify that they capture the essential physical features relevant to the behavior that they will

be used to describe. In addition, the differences between the theory and simulations have already been

examined, allowing us to understand qualitatively the corrections that are typically required to make the

theoretical results more accurate.
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In both models, the nup chains can be thought of as consisting of linked monomers, where each

monomer can be roughly thought of as corresponding to a patch of several amino-acids−an appropriate

mesoscopic size which is large enough that the specific atomic interactions can be coarse grained but

small enough that the FG nups can still be regarded as long chains of monomers. The current modeling

does not aim for a detailed representation of the specific chemical details of the FG nups, but rather

elucidation of general patterns of behavior that are actually independent of various details (which can be

added later).

We first obtain the non-elastic local free energy density f(ψ, φ) in units of kT from a lattice gas

model, generalizing previous works (e.g. [37, 39, 44, 82]). The derivation of this expression is discussed

in Appendix A. We obtain

f(ψ, φ) = (1/v̄){φ lnφ+ (1− v̄)(1− φ) ln[1− φ]

+v̄(1− ψ − φ) ln[1− ψ − φ] + χφψ} (4.1)

where ψ and φ represent the volume fractions of the monomers and transport factors respectively, the

reduced volume v̄ is the ratio of the nanoparticle volume to the monomer volume, and χ characterizes

the binding between the FG repeats and transport factors and depends on both the binding strength of

individual bonds and the maximum number of bonds which can be supported. We consider the case

χ < 0, which corresponds to attractive kap-nup interactions. In the Alexander-de Gennes model, one

takes the volume fractions ψ and φ to be equal to their mean values in the polymer layer. As such, the

non-elastic free energy of the polymer layer can be obtained by simply multiplying Eq. (4.1) by the layer

volume. In the SCFT model, ψ and φ are local variables that represent the mean volume fraction of

monomers or nanoparticles in the vicinity of a particular location in the layer, and a volume integral must

be performed in order to account for contributions from the entire layer.

To the non-elastic free energy obtained from Eq. (4.1) we add a term for the free energy associated

with stretching the polymer chains. In the Alexander-de Gennes model, we use h2/2N per chain, where

h is the height of the polymer layer above the surface and N is the polymerization of the chain [37, 41].

In the SCFT model, one integrates the stretching energy of the polymer over the polymer backbone. This

is achieved via an integral of the form
∫ N

0
ds
(
∂
∂s
~r(s)

)2 where 0 ≤ s ≤ N represents the location as

indexed along the polymer chain and ~r is the same point’s spatial location.
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Finally, we must couple the polymer layer to reservoir of transport factors at a fixed concentration

c. The solution acts as a source of transport factors which may partition into the polymer layer. The

partitioning of the particles is governed by their chemical potential µc. Using a lattice gas argument

analogous to those outlined in Appendix A and taking the appropriate thermodynamic derivative, we

obtain a solution chemical potential µc = ln(c/(1− c)). In the Alexander-de Gennes model, the solution

is also treated as a reservoir of volume with osmotic pressure Π = − ln(1 − c)/v̄. In the SCFT model,

the height of the layer is free to vary via the spatially varying monomer volume fraction ψ, which is only

nonzero up to the edge of the polymer layer, and the continuity of the osmotic pressure enters elsewhere,

as discussed in Appendix B.

The resulting grand canonical thermodynamic potential in units of kT and per chain for the

Alexander-de Gennes model is then

Φ =
h2

2N
+ a2h

(
f(ψ, φ)− µc

v̄
φ+ Π

)
(4.2)

where a is the grafting distance between the chains. We minimize this potential over the brush height

h and the number of transport factors bound in the layer and obtain the equilibrium state of the system

using a procedure very similar to the one described in Chapter 2 and in [82].

For the SCFT model, these physical considerations are encapsulated in the free energy functional

F [{~rα(s)}] =
∑

α

1

2b2

∫ N

0

ds

(
∂

∂s
~rα(s)

)2

(4.3)

+
1

b3

∫
d3r(f(ψ(~r), φ(~r))− 1

v̄
µcφ(~r))

where α indexes the polymer chain. Note that energies are expressed in units of kT , lengths are expressed

in units of the monomer size in both models. b represents the diameter of one monomer and will set the

scale of length when comparing this theory to experimental results. The functional can be minimized

via a self-consistent approach within the framework of Milner-Witten-Cates theory [46] or the alternative

approach of Zhulina et al. [47]. In particular, at equilibrium, the free energy Eq. (4.3) is minimized over

all the polymer trajectories and the density distribution of the transport factors in the layer, as explained

in previous work [83] and in Chapter 3 of this thesis.

Although our model does not attempt to capture molecular details about the nups or kaps, we need

to understand the approximate parameter range that is relevant to the real systems. The masses of the
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free transport factors Kapβ1 and Kap95p are both approximately 100kDa [141, 152]. Since our model

does not represent the detailed shape of the kap, we will assume for simplicity that the kap is a spherical

globular protein which has a typical density of 1.4g/cm3 [153]. In this case its volume would be approx-

imately 119nm3 and its diameter 6.1nm. To give another example, the smaller transport factor NTF2 has

a mass of approximately 29kDa [154], which would correspond to approximately a volume of 35nm3

and a diameter of 4.1nm. In our model, the scale of length is set by the monomer diameter b. This

distance corresponds to the cross-sectional size of the polymer chain in the direction perpendicular to

the polymerization. Since the FG nup is a natively unfolded protein and lacks any significant secondary

structure [6], we approximate its cross-sectional “width” as being on the order of one amino acid size,

and we will set the diameter of the monomers of our polymer chain to be b = 1nm. In our model, the

volume of the kap should be expressed in units of the monomer volume. Monomers of diameter b = 1nm

have volume v0 = (π/6)nm3. Therefore the volume of Kapβ1 and NTF2 would be roughly v̄ = 227 and

v̄ = 67 respectively with all the assumptions above. It should be noted, however, that the model used is

not very precise in its use of the kap volume. For instance, one might note that the lattice construction

used to obtain the free energy density Eq. (4.1) specifies only the number of lattice sites occupied by the

particles. It does not distinguish the shape of the particles, and the spatial arrangement and coordination

of lattice sites are to some extent arbitrary. As a result, there is some degree of ambiguity in the corre-

spondence between the actual kap volume and the parameter v̄ in the model, and some fitting may be

required.

4.3 RESULTS

Layer height has served as a useful and easily measured proxy for the layer conformation in experiment,

and we will also use it theoretically. Overall, depending on the kap size, grafting density, and the inter-

action strength, there are several different regimes that result in different degrees of brush compression.

A heuristic understanding of the effect of changing these parameters can be gained from Fig. 21 for the

case of v̄ = 227, which is on the order of the transport factor size. In this plot we show the height of the

layer when at maximum compression (for any solution kap concentration c), normalized by the height

of the layer in the absence of kaps, for the given grafting distance a, and kap-nup interaction parameter
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χ. In other words, each point on the plot shows layer height at the minimum of the h/h0 vs. c curve

(analogous to the ones shown in Figs. 11 and 15) for the given a and χ. For simplicity and since we

only show the maximum compression rather than the detailed features of the morphology, we use the

Alexander-de Gennes model in this figure. We will then supplement our understanding of the various

qualitative regions of the diagram with more detailed results drawn from the Milner-Witten-Cates based

model.

Qualitatively, we identify three basic regions of the diagram, which will be analyzed in detail below.

At sufficiently weak binding (right side of Fig. 21), the compression is modest and the polymer brush

is only slightly perturbed by the presence of the transport factors, regardless of their concentration. If

the grafting density is too high (bottom of the diagram), the proximity of the polymers to each other

creates a large energetic penalty for penetration of the transport factors into the polymer layer, and thus

the compression of the brush is once again modest. If, on the other hand, the grafting density is low

and the binding is strong (top left area of the diagram), a significant compression can occur. Strong

compression is generally accompanied by layer collapse induced by penetration of the kaps to the region

near the grafting surface.

4.3.1 Weak Binding Case: Continuous Penetration

At sufficiently weak binding strengths (compared to the strength of the repulsive interactions between

monomers, which increases with the grafting density), the penetration of kaps into the nup brush is grad-

ual and the effect on the layer height is modest. By this we mean that the kap density profile in the nup

layer is continuous and is not characterized by strong inhomogeneities, a sudden collapse, or discon-

tinuous loading of the brush. Rather, one can envisage the kaps as simply binding to the nups without

significant changes in the nups’ conformations as a result. The energetic benefit of a morphological re-

organization of the nups to accommodate the kaps is not sufficient to overcome the energetic penalties

associated with it. The monomer density profile, which characterizes the distribution of nups in the layer,

is likewise continuous and is only slightly perturbed from its shape in the absence of kaps−the standard

downward-facing parabola [41, 46, 47, 132]. The extent of the effects depend upon the concentration

of kaps present, and there can be some compression of the brush due to a weak binding process of this

sort, but typically the fractional reduction in brush height is on the order of 10% or less. This type of
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Figure 21: Contour plot which shows the maximum relative compression of the nup brush which can

occur for the given kap-nup interaction parameter χ and grafting distance a for kap volume v̄ = 227. The

color bar indicates the smallest value of the nup layer height h, normalized by the height in the absence

of the transport factors h0, which may be obtained for any solution concentration c of transport factors.

This figure was obtained using the Alexander-de Gennes formulation of the theory.

compression can be seen on the right-hand side of Fig. 21.

An example of this type of density profile can be seen in Fig. 22. The monomer density profile is

nearly parabolic (which is its shape in the absence of transport factors [46]), and the density profile for

the transport factors qualitatively tracks the monomer density profile, though the concentration of the

transport factors is much lower than the monomer concentration. In this case, one can regard the bound

transport factors as being a small perturbation on the ordinary nup polymer brush, and the height of the

polymers will not change much due to the binding of only a small concentration of transport factors.
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Figure 22: Monomer (dashed blue) and Nanoparticle (solid red) density profiles for the case v̄ = 227,

χ = −300, a = 9, N = 100, and c = 10−3. In this case, the monomer density profile is nearly parabolic

and the density profile of the transport factors tracks the monomer density qualitatively. The transport

factors are bound throughout the nup brush, but the effect of the transport factors on both the shape of the

monomer density profile and its height above the grafting surface is limited. A compression of ∼ 10% is

possible with these parameters, but the qualitative shape of the monomer density profile is not strongly

affected.

4.3.2 Low Grafting Density and High Binding Strength: Collapse and Recovery

For stronger binding and sparser grafting, the compression of the brush is much more dramatic. The

strong energetic advantage of a qualitative morphological change in the nups which maximizes the num-

ber of contacts between the nups and kaps overwhelms the entropic and excluded volume penalty which

ordinarily keep monomers separated. The collapse that results is characterized by the formation of a

dense layer of kaps and monomers near the grafting surface (where the density of monomers is highest in

the brush). In some cases, this dense layer may consume the entire polymer brush, while in other cases it

may abut a sparser region above it where the monomer density is closer to that of the unperturbed brush.

The polymer height is reduced as kaps bind to the polymers and consume the sparse, brush-like

region of the polymer layer, replacing it with a more compact, denser layer near the grafting surface.
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When enough kaps have been loaded into the polymer layer, the sparse region disappears completely

and the entire polymer layer is dense. This is the state of minimum layer height. Once this state has

been realized, loading additional kaps into the brush results in a swelling of the brush. This swelling

creates free volume in which the new kaps can be loaded. As a result, the brush height as a function of

kap concentration is non-monotonic, and increasing the kap concentration will result in recovery of the

brush back to, and ultimately beyond, its height in the absence of kaps at sufficiently high solution kap

concentrations.

Both the collapse and recovery have been observed in Ref. [31], and the authors hypothesized the ex-

istence of a dense layer of kaps near the surface as an explanation of their experimental results. Although

they did not observe these morphologies directly, they successfully fit their data with a two binding affin-

ity model. As a way to explain the apparent presence of two different binding affinities, they suggested a

strong binding in the dense part of the layer and weak binding in the sparse part of the layer. Our results

in this regime appear to qualitatively corroborate the “cartoons” proposed in Ref. [31], in that we see

the formation of a layer of kaps near the surface, followed by additional layers on top as more kaps are

loaded into the brush.

Examples of this type of profile can be seen in Fig. 23. In such a case, the monomer density profile

shows a discontinuity which connects a region of high density to a region of lower density. In the density

profile for the transport factors, the effect is even more dramatic. The concentration of kaps in the dense

region near the grafting surface is significantly higher than the concentration elsewhere. This corresponds

to the formation of one or more layers of transport factors near the grafting surface. At higher solution

concentrations (right panel of Fig. 23), the dense layer has grown to the point where the region of lower

density has been completely consumed, and the entire nup layer has become dense. This corresponds to

multiple layers of kaps piling up. As even more transport factors are added to the brush, it will swell

because it is already stuffed with kaps and must grow in order to bind more.

4.3.3 High Grafting Density Case: Imperfect Penetration

If the size of the kaps is sufficiently large compared to the grafting distance of the polymer chains, they

gradually become unable to penetrate the space between the polymers. At intermediate grafting densities,

the kaps are preferentially located near the top of the brush, where there is a lower density of monomers
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Figure 23: Monomer (dashed blue) and Nanoparticle (solid red) density profiles for the case v̄ = 118,

χ = −250, a = 2.7, and N = 100. Left: c = 10−8. Note the discontinuity in the density profiles. This

corresponds to the formation of a dense layer of nup monomers and transport factors near the grafting

surface with a sparser region of nup monomers above it. Right: c = 10−4. In this case, the entire layer

has become dense, and the sparse region has disappeared.

and thus more free volume. At even higher grafting densities, they eventually are expelled from the brush

altogether and must remain on the surface of the brush. These regimes of partial penetration and no

penetration have been noted in theoretical studies of polymer brushes exposed to nanoinclusions which

do not bind to the polymers [73]. In our case, the failure of kaps to penetrate to the bottom of the brush

precludes a collapse of the brush. The collapse results from polymer strands being drawn toward the

grafting surface via binding to the transport factors located there. It is possible that a dense region of

kaps bound to monomers may form in the case of partial penetration, but if it does, it must be formed

near the top of the brush, and this would not result in a reduction in the height of the brush.

An example of this type of effect can be seen in Fig. 24. In this case, the highest concentration

of transport factors does not occur near the grafting surface, but rather near the outer edge of the nup

brush. This corresponds to a situation in which few transport factors can fully penetrate to the bottom of

the brush and instead most remain near the surface. Without the formation of a dense layer of transport

factors near the grafting surface, there is no energetic motivation for the nup brush to collapse, and a

significant reduction in height will not be observed here. Although much emphasis is placed on the

collapse transition, it should be noted that a morphology which involves kaps remaining near the top of
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Figure 24: Monomer (dashed blue) and Nanoparticle (solid red) density profiles for the case v̄ = 125,

χ = −175, a = 2.2, N = 100, and c = 10−4, as reproduced from Fig. 18. In this case, the concentration

of the transport factors is highest in the edge of the nup brush, away from the grafting surface. This

corresponds to an adsorption of the transport factors onto the top of the brush. Since the transport factors

do not preferentially penetrate to the region near the grafting surface, this type of partial penetration will

not cause a collapse of the layer.

the nup layer may be biologically relevant for the transport of larger cargoes. In vivo a failure of kaps to

penetrate the brush could result in the formation of (or expansion of) a dense phase at the top of the brush

near the channel center, potentially leaving a transport pathway in the sparser region near the grafting

surface. This could be consistent with e.g. the forest model [23, 24] or simulations which have seen an

analogous dense region in the channel center [151].

4.3.4 Analysis of Experimental results

Although the theoretical model used here is coarse-grained and considers only some of the essential

features of the system, one can use it to better understand experimental results on nup-kap systems. In

particular, we focus on three experiments which have similar setups, but have given seemingly contradic-

tory results: Refs. [31, 34, 35]. In Ref. [34], Lim and coworkers consider the binding of the transport

factor Kapβ1 to an in vitro system of surface grafted strands of the cNup153. In Ref. [31], Lim’s group

does a similar experiment, but with Kapβ1 and cNup62. Finally, in Ref. [35] Eisele, Görlich and cowork-
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Figure 25: A comparison of the data from [34] with the results of our theory with the parameters v̄ = 227,

a = 9, χ = −450. Our theory predicts the substantial decrease in polymer height observed in the experi-

ment with these parameters. While the Alexander-de Gennes model (AdG) predicts a discontinuous drop

at a certain critical concentration, the Milner-Witten-Cates-based model (MWC) gives a more realistic

gradual drop in the height.

ers perform a similar experiment, but using Kap95p and the nup Nsp1p. The aspects of these experiments

relevant to our model are summarized in Table 1. The chemical details of the nups and kaps used in the

three experiments are different, but we will subsume the differences into the parameter χ, which repre-

sents the net interaction between the nups and kaps. From this standpoint, two experimental parameters

are relevant for our model: the ratio of the kap volume to the monomer volume v̄ and the grafting distance

a in units of the monomer diameter. a will be chosen based upon the reported grafting densities in the

experiments, with adjustments allowed to account for aspects of the experiments not taken into account,

as will be discussed below. In principle, the kap volume is fixed by the choice of b and a fitting such as

that of section 4.2. However, it should be noted that the theory used is imprecise in modeling the detailed

size and shape of the kap. As such, one can only expect this fitting to be a rough guide. We therefore

allow ourselves some flexibility in choosing the kap volume, though we know it should be on the order

of v̄ ∼ 227 given our choice of b = 1nm. With a and v̄ chosen in this way, the only fitting parameter
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remaining to link our model to the three experiments is χ.

In Lim et al.’s 2007 experiment on grafted nups interacting with a solution of kaps [34], they found

that at very low grafting densities (grafting distance a ∼ 24nm) the nup brush strongly compressed in

the presence of kaps, to about 40% of its height in the absence of kaps. We can approximate a similar

situation by using a large value of a in our model along with our estimate of the kap volume, v̄ = 227.

Although our choice of b = 1nm would yield a = 24, we find that a better fit is obtained for a = 9.

This may be due to a breakdown of the assumption of lateral inhomogeneity implicit in our model. Lim

estimates the crossover to the mushroom regime (at which polymers cease to interpenetrate) at a ∼ 27nm

[10]. Although his grafting distance is slightly less than this, it is likely that his system is beginning to lose

its lateral inhomogeneity, particularly when the polymers contract in response to the transport factors. In

addition, Lim et al. make a second measurement of the grafting distance using a different methodology

and a flatter substrate but the same sample preparation method and obtain a value of a = 10nm [10],

which is much closer to our best-fit value. Varying χ to fit Lim’s data, we obtain a best fit curve shown

in Fig. 25. For these parameters, the Alexander-de Gennes model predicts a discontinuity in the brush

height as a function of the solution kap concentration, while the MWC-type theory predicts a more

realistic gradual decrease.

In Lim et al.’s 2012 experiment [31], they used a higher grafting density and a different combination

of nups and kaps. In this study, they consider several grafting densities, but some of the results appear

to be in the mushroom regime (where our theory does not apply), so we will focus on the case that is

highlighted in their work. Here they observed a compression to about 90% of the height in the absence of

kaps for a grafting distance of 2.4nm. We found that a good fit to the experimental data could be obtained

by using the MWC-based theory with a = 2.7, which is approximately the same as the experimental

value, v̄ = 118, about one half of the value we used in the previous case, and χ = −250. The factor of

two difference in kap volume used is not significant compared to the level of precision of the theory used.

This choice of a and v̄, along with the best-fit χ results in the fit of Fig. 26. As one can see in the figure,

the Alexander-de Gennes model can also be fit to the experimental data, albeit with a = 3.9, v̄ = 118,

and χ = −205. The result of using the AdG model without refitting the parameters is also shown for

comparison.

It should not be surprising that the MWC and AdG theories require somewhat different parameters

in order to fit the data. Firstly, although the models are superficially similar and agree well in some
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Figure 26: A comparison of the data from [31] (black dots) with the results of our theory. Dashed Blue

Line: v̄ = 118, a = 2.7, χ = −250 using MWC model. Solid Red Line: v̄ = 118, a = 2.7, χ = −250

using AdG model. Solid Pink Line: v̄ = 118, a = 3.9, χ = −205 using AdG model. Naturally, the fit is

not exact, but our theory appears to give a qualitatively correct picture with a suitable parameter choice

using either model. The red Alexander-de Gennes (AdG) curve is meant to show a comparison of the two

models when the parameters are not re-fit. This produces a qualitatively similar curve in this case, but at

a lower solution kap concentration.

cases, factors such as the spatial variation in the density and the stretching of the polymer chains are

treated quite differently. There is no guarantee about whether these differences will noticeably manifest

in particular cases. Furthermore, in some regions of parameter space, the theories can be fairly sensitive

to parameter choices. Consulting Fig. 21, one can see for the analogous case of v̄ = 227 that for some

parameter choices the system may be quite sensitive to changes in χ, while for other parameters it may be

sensitive to a. Similarly, there may be regions where the system is more or less sensitive to the differences

between the MWC and AdG theories, and smaller or larger parameter changes may be required to offset

these. The difference in fitting parameters for the two theories suggests that our fitting of the theoretical

parameters to the experimental ones will necessarily be inexact, though it can be guided by approximate

fitting to the experiments.
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The theoretical fit for the MWC-type model agrees well with experiment qualitatively, and the differ-

ences can be explained. Our model overestimates the compression of the brush at low kap concentrations,

but this discrepancy is a known inaccuracy of the model used and is the same as the trend observed when

comparing this theoretical model to Langevin dynamics simulations [83]. It is likely due to a break-

down of the mean field theory that underlies Eq. (4.1), which represents particles with their mean local

density and ignores concentration fluctuations. The relative fluctuations will be more significant at low

concentration. At high concentrations the discrepancies in the fit are due in part to the same geometrical

imprecision which gives rise to the imprecision in the kap volume. Since the shape of the particles and

the lattice they occupy when filling space is not precise, the density of the closely packed monomers and

transport factors will be only approximately correct. The Alexander-de Gennes model’s fit for the same

parameters is also shown for comparison. In this case, the qualitative features of the curve are fairly

accurate, but the compression occurs at a lower concentration.

After fitting the curve in this manner, we can examine the morphological details that the nups and

kaps obtain. We find that for these parameters, the system is in the “collapse and recovery” regime

described in section 4.3.2, in which a dense layer of kaps and nups forms near the grafting surface at

intermediate kap concentrations (giving rise to the drop in the layer height). At higher concentrations a

pileup of kaps results in a recovery and expansion of the layer. This appears to qualitatively corroborate

the cartoon pictures hypothesized in Ref. [31] as well as their experimental results in terms of the change

in layer height and the presence of two separate binding affinities (corresponding to the two separate

densities of monomers and transport factors).

In a different experiment by Eisele et al. [35], a similar experimental setup was used, but in this case a

compression of the polymer brush was not observed for a reported grafting distance of 4.4nm. Although

it is difficult to extract data of the type analyzed for the Lim experiments due to the experimental methods

used, we can infer that the h vs. c curve for this experiment would be flat or nearly flat over the range of

concentrations studied. In the context of our model, the grafting density used in this experiment must have

been too high for collapse to be observed. Since the grafting density here was actually lower than that

used in Ref. [31], this suggests that the strength of binding between Kap95p and Nsp1p is lower than the

binding strength between Kapβ1 and cNup62. According to the data reported, the kaps did successfully

penetrate the polymers, but the brush did not collapse as a result. This implies that the failure of the brush

to collapse was due to the system being in the continuous penetration regime as described in section 4.3.1
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or in the partial penetration as described in section 4.3.3. In both cases, the brush may be loaded with

some kaps but fail to collapse. It is also possible that a small amount of compression did occur, but it

was not observed to within the experimental precision. Since the maximum degree of compression might

have only been a few percent in light of the modest compression in Ref. [31], it is possible that the

compression was not significant enough to be detected. In fact, the supplementary information of Ref.

[35] states that the error of the QCMB technique used is ±4nm, more than 10% of the unperturbed film

thickness.

Although these three experiments seem contradictory in that three different compressions of the brush

were obtained using similar experimental setups, the differences should not be surprising in light of

Fig. 21, in which the effect of varying different parameters is represented. Since the experiments were

performed using different combinations of nups and kaps and at different grafting densities, we can

hypothesize that the experiments lie in qualitatively different regions of the plot. The brush of Ref.

[34] underwent a dramatic collapse because of the low grafting density used. The brush of Ref. [31]

underwent a smaller collapse because the experiment was performed at a higher grafting density. The

lack of collapse in Ref. [35] might be due to a lower strength of the binding interaction between the nups

and kaps used in this experiment, but it may be more likely that uncertainty in the measurements of the

brush height masked a small amount of compression in Ref. [35].

Lastly, we consider the physical meaning of the interaction parameters obtained in the fits of Figs. 25

and 26. Our model includes many approximations, but we can use these best fit values of χ to provide

an order of magnitude estimate of the real binding energy. Using the Alexander-de Gennes model for

simplicity, the term in the final thermodynamic potential that represents the binding of the kaps and nups

can be obtained by combining Eqs. (4.1) and (4.2) and is equal to a2hχφψ/v̄. Using φ = v̄Nb/a
2h

where Nb is the numer of kaps in the nup layer, the free energy per kap can therefore be written as χψ.

Physically, χ represents both the binding strength of the interaction and the size and number of binding

sites available on the kap, while the factor of ψ represents the concentration of FG repeats which will be

nearby and therefore the fraction of the sites which will be occupied. The total binding energy that is

possible if a kap is fully bound to the nups with every binding site occupied would be χ. Since we found

that the experimental data can be fit by χ = −250 or χ = −450, we obtain a binding energy per kap of

∼ 250kT or ∼ 450kT . Assuming that this energy is shared by ∼ 5− 10 binding sites [155], we estimate

individual binding events to have binding energies on the order of 25 − 90kT . This suggests that fairly
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strong binding between nups and kaps is necessary to offset the free energetic cost of layer collapse, but

it should be emphasized that this estimate depends upon many approximations implicit in the model and

fitting procedure used here.

4.4 CONCLUSIONS AND DISCUSSION

Although the available experimental data concerning the binding of nucleoporins to the transport factors

in the nuclear pore complex appear at first glance to be inconsistent (insofar as both layer collapse and

the absence of layer collapse have been reported), we present here a very simple theoretical model which

can qualitatively explain the discrepancies among these experiments. Our model does not attempt to

represent the nups and kaps with atomic or even amino-acid scale accuracy, but rather encapsulates the

key physical features of the problem into results that can be clearly understood. Namely, if one varies the

grafting density of the nups, binding affinity between the nups and kaps, and volume of the kaps, three

distinct regimes can be observed. In one case, the layer does not collapse because the binding energy

is insufficient to overcome the free energy cost associated with the reorganization of the nup chains.

In a second regime, the kaps are unable to fully penetrate the nup brush and therefore cannot induce a

collapse. In the third, collapse does occur because the grafting density is low enough and the binding

energy is high enough that the nup chains can overcome the free energy penalty associated with the

collapse by offsetting it with the energy associated with binding.

In addition to providing a qualitative explanation that can reconcile differences between the exper-

imental results, our model can serve as a predictive guide for future experiments. For example, if one

consults Fig. 21, one can predict that Görlich and coworkers could perform their experiment at a lower

grafting density and see a similar collapse as that observed by Lim’s group. The typical grafting distance

in the NPC is on the order of that used in Görlich’s experiment [35, 156], but one must remember that the

actual geometry of the NPC is highly non-planar, and given the sensitivity of the system to parameters, it

is difficult to predict from the aforementioned experiments or the work discussed here whether the nups

in the pore would collapse, fail to collapse, or even obtain a morphology for which the non-planar geom-

etry is crucial, such as that predicted by the forest model where there could be a dense region analogous

to our collapsed layer in a location other than along the channel wall. However, before an attempt to
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relate these experiments to the NPC in vivo can hope to succeed, we must gain a heuristic appreciation

of the parameter space in which experiments are being performed and a recognition of when different

experimental results are to be expected.
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5.0 CONCLUSIONS

In this thesis I have examined the behavior of grafted polymers when interacting with additives that

interact attractively with the polymers. I analyzed the system in Chapter 2 with a simpler Alexander-de

Gennes theory, which assumes a uniform density of monomers and nanoparticles throughout the layer,

and in Chapter 3 with a more complex Milner-Witten-Cates self-consistent field theory. These theoretical

finding are corroborated by Langevin dynamics simulations. Finally, I applied this model to further the

understanding of the grafted proteins found in the nuclear pore complex when they interact attractively

with transport factors in Chapter 4.

Broadly speaking, we have found that the attractive nanoparticles are capable of inducing a collapse

of the polymer layer. This collapse is often characterized by the formation of a dense layer of monomers

and nanoparticles near the grafting surface. The Alexander-de Gennes theory predicts this collapse as

a discontinuous drop in the height of the polymer layer at a certain critical solution concentration of

nanoparticles, while the MWC theory predicts a continuous decrease, but one that is characterized by

discontinuous monomer and nanoparticle density profiles.

This type of collapse does not occur for all possible system parameters. If the attractive interaction

between the monomers and nanoparticles is not strong enough, the compression of the layer is not as

significant and it is not characterized by a discontinuous density profile. Rather, the nanoparticles act

as a small perturbation on the ordinary polymer brush. Another regime exists at large nanoparticle sizes

compared to the grafting distance of the polymers. In this regime, nanoparticles cannot penetrate the

small spaces between the polymers to reach the grafting surface. Instead, they remain near the top of the

brush, where the density of monomers is lower.

The observation of different parameter regimes is significant when considering applications to the

nuclear pore complex system. Experiments in this field have produced inconsistent results in that col-

lapse has only been observed in certain cases. Our theory provides a qualitative explanation as to why
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these results occur. The experiments were performed with different experimental parameters and probed

different regimes. The recognition that simple models such as the ones we present here can explain the

different results should help to resolve disagreements in the community and promote experiments and

NPC models which take advantage of the understanding of different parameter regimes presented here.
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APPENDIX A

COUNTING STATES IN THE LATTICE GAS MODEL

When calculating contributions to polymer free energies, we frequently invoke approximations via a

lattice gas model. In this approach, one divides space into discrete lattice sites and counts states based

on the assumption that the polymer is made of disconnected monomer beads in a random (gaseous)

arrangement on a lattice. One can then approximately correct this starting point in order to take into

account the polymer’s connectivity. An alternate approach would be to avoid making the assumption

that monomers are arranged randomly in a gas, and instead count states based on the assumption that

each monomer must occupy an adjacent lattice site to the monomers connected to it in the polymer

chain. However, in order for the problem to be tractable, self-avoidance is typically only considered at

the mean field level [39]. Although it is not conceptually obvious that either approach should generate

an accurate free energy since a number of assumptions and approximations underly both methods, it is

encouraging that they give the same result (modulo a physically irrelevant additive constant). In addition,

a van der Waals version of the derivation produces a free energy which is different in some details but

produces a generally qualitatively similar result in terms of, for example, the scaling of the free energy

with crucial parameters such as the nanoparticle volume. Thus, though the method used here is inexact, it

appears to give qualitatively reasonable results and ultimately was found to agree well with the simulation

results presented in chapters 2 and 3. However, it should be emphasized that the following derivation is

approximate and does not explicitly count the possible physically correct conformations of the polymers

in all circumstances.
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A.1 POLYMER BRUSH WITHOUT NANOPARTICLES

Imagine that space is divided into a lattice with M sites. Onto this lattice, randomly place N monomers

such that only one particle can occupy each lattice site. The number of possible configurations Ω will be

Ω =
M !

N !(M −N)!
(A.1)

Equating the entropy of this system to ln Ω, we can obtain (in units of kT )

F = M (ψ lnψ + (1− ψ) ln(1− ψ)) (A.2)

where ψ = N/M is the fraction of lattice sites occupied by monomers. Note that Sterling’s approxi-

mation has been used and the (ultimately physically irrelevant) terms linear in ψ have been discarded.

The first term in Eq. (A.3) represents the translational entropy of the monomers, while the second term

represents the translational entropy of the empty lattice sites.

In order to make this free energy suitable for a polymer chain, in which monomers do not have the

translational entropy implied by Eq. (A.3), the term ψ lnψ must be discarded and replaced by the elastic

energy of stretching of a polymer chain. (Note that terms linear in ψ do not contribute to the relevant

thermodynamic derivatives, and we will not include such terms when taking the translational entropy into

account.) The appropriate stretching entropy for a polymer brush is h2/2N per chain. This procedure is

followed e.g. by de Gennes [37]. The corrected free energy then becomes

F =
h2

2N
+M(1− ψ) ln(1− ψ). (A.3)

This is equivalent to the free energy used in Eq. (1.1) when one notes that the system volume isM = a2h.
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A.2 POLYMER BRUSH WITH SMALL NANOPARTICLES

If the polymer layer consists of polymer chains mixed with nanoparticles that are the same size as the

monomers, then the lattice gas counting becomes

Ω =
M !

N !NB!(M −N −NB)!
(A.4)

where NB is the number of nanoparticles in the polymer layer. Calculating F = − ln Ω, and again using

Stirling’s approximation,

F = M (ψ lnψ + φ lnφ+ (1− ψ − φ) ln(1− ψ − φ)) , (A.5)

where φ is the fraction of sites in the layer occupied by nanoparticles. After correcting for the connectivity

of the polymers in the same way,

F =
h2

2N
+M (φ lnφ+ (1− ψ − φ) ln(1− ψ − φ)) . (A.6)

This is equivalent to the free energy used in Eq. (2.1).

A.3 POLYMER BRUSH WITH LARGE NANOPARTICLES

Now we consider the case in which the nanoparticles and monomers do not have the same size. In par-

ticular, let the ratio of the nanoparticle volume to the monomer volume be v. That is, the nanoparticles

occupy v lattice sites. In order to represent the fact that the large nanoparticles must occupy v adja-

cent sites, they are placed on a superlattice that has M/v sites. This gives a counting of states for the

nanoparticles to be

Ω1 =
(M/v)!

NB!(M/v −NB)!
. (A.7)

After the nanoparticles are placed, the monomers are placed in the remaining free volume. The counting

of states for the monomers is then

Ω2 =
(M − vNB)!

N !(M − vNB −N)!
. (A.8)
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The uncorrected free energy can then be calculated as F = − ln Ω1Ω2, namely,

F =
M

v
(vψ lnψ + φ lnφ− (1− v)(1− φ) ln(1− φ) + v(1− ψ − φ) ln(1− ψ − φ)) . (A.9)

Note that in this case φ represents the fraction of the smaller lattice sites that are occupied by the nanopar-

ticles: φ = vNB/M , while ψ = N/M as before. Removing the translational entropy of the monomers

and adding the stretching entropy as before,

F =
h2

2N
+
M

v
(φ lnφ− (1− v)(1− φ) ln(1− φ) + v(1− ψ − φ) ln(1− ψ − φ)) . (A.10)

This is essentially the Alexander-de Gennes form of the free energy used in Chapters 3 and 4.
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APPENDIX B

THE MAXWELL EQUAL AREAS CONSTRUCTION AND THE OSMOTIC PRESSURE FOR

A POLYMER BRUSH INFILTRATED BY NANOPARTICLES

Starting with the free energy density of Eq. (3.2), we can obtain the osmotic pressure Π and the chem-

ical potential of the monomers (excluding the elastic term) and nanoparticles µm and µb through the

thermodynamic derivatives

Π = − ∂

∂V
(V fint(ψ, φ)) =

χ

v̄
φψ − ψ +

(
1− 1

v

)
ln(1− φ)− ln(1− ψ − φ), (B.1)

µm =
∂fint(ψ, φ)

∂ψ
= − ln(1− ψ − φ) +

χ

v̄
φ− 1, (B.2)

and

µb =
∂fint(ψ, φ)

∂φ
= χψ + ln

(
φ(1− φ)v̄−1

(1− ψ − φ)v̄

)
. (B.3)

Note that the partial derivative used to determine the osmotic pressure in Eq. (B.1) is to be carried out at

constant particle number rather than constant density. fint(ψ, φ) must first be changed into fint(V,Nb),

where Nb is the number of nanoparticles bound in the polymer layer, using ψ = N/V and φ = v̄Nb/V .

It can be shown that Eqs. (3.2), (B.1), (B.2), and (B.3) are related by

fint = −Π + µmψ +
1

v̄
φµb. (B.4)

Since nanoparticles are free to move within the layer and are exchanged between the polymer layer and

the solution above, the chemical potential of the nanoparticles is constant throughout the layer and its

value is fixed by the concentration of the solution above µc. This chemical potential can be obtained
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by writing the free energy of the (one-component) solution above the layer and taking the appropriate

thermodynamic derivative. Namely,

µb = µc = ln

(
c

1− c

)
, (B.5)

which can be obtained via the same type of lattice gas counting arguments discussed in Appendix A.

For a specified value of ψ, Eqs. (B.3) and (B.5) can be solved to obtain a unique value of φ in the

interval 0 < φ < (1 − ψ). In general, only a numerical solution is available, but for the special case of

v̄ = 1, which is the case considered in Chapter 2, an analytical solution is available. Namely,

φv̄=1(ψ) =
1− ψ

1 + exp(χψ − µs)
. (B.6)

After solving for φ(ψ) and substituting into Eqs. (B.1) and (B.2), Π(ψ, φ) and µm(ψ, φ) become functions

of one variable only: P (ψ) and µ(ψ). In particular, since the total derivative of fint(ψ, φ) can be written

as

d

dψ
fint(ψ, φ) =

∂fint
∂ψ

+
∂fint
∂φ

dφ

dψ
(B.7)

= µm +
1

v̄
µb
dφ

dψ
, (B.8)

the relationship between φ and ψ at equilibrium can be used to obtain

(
d

dψ
fint(ψ, φ)

)

φ=φ(ψ)

= µ(ψ) +
1

v̄
µb

(
dφ

dψ

)

φ=φ(ψ)

. (B.9)

An unexpected feature of the function µ(ψ) is that in some cases it may be non-monotonic and possess

a van der Waals loop. The presence of this loop ultimately corresponds to the highly inhomogeneous layer

morphologies discussed in Chapters 3 and 4. In order to make µ(ψ) a monotonic function of ψ we must

excise the loop. This corresponds to choosing an upper and lower value of ψ at which µ(ψu) = µ(ψ`)

and replacing the function µ(ψ) between these two values of ψ with a horizontal tie line. In other words,

in the range ψ` ≤ ψ ≤ ψu, we make µ(ψ) a constant value µtie, which is equal to µ(ψ`) and µ(ψu).

Although, in principle, many values of ψ` and ψu have this property, they can be chosen uniquely by

also requiring mechanical stability of the polymer layer. This will occur only if the loop is excised in
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such a way that the osmotic pressure is continuous everywhere, corresponding to P (ψu) = P (ψ`). This

condition is equivalent to using Maxwell’s equal areas method, which can be stated as
∫ ψu

ψ`

µ(ψ)dψ = µtie(ψu − ψ`), (B.10)

as will be proved below.

Starting from Eq. (B.10), we first explicitly take the anti-derivative G(ψ) of the integrand µ(ψ). Eq.

(B.10) then becomes

G(ψu)−G(ψ`) = µtie(ψu − ψ`). (B.11)

Since by definition dG(ψ)/dψ = µ(ψ), we can write Eq. (B.9) as
(
d

dψ
fint(ψ, φ)

)

φ=φ(ψ)

=
dG

dψ
+

1

v̄
µb

(
dφ

dψ

)

φ=φ(ψ)

. (B.12)

This equation implies

G(ψ) = fint(ψ, φ(ψ))− 1

v̄
µbφ(ψ), (B.13)

perhaps with an additive constant which will be irrelevant here. Combining this with Eq. (B.4), we obtain

G(ψ) = −P (ψ) + µ(ψ)ψ. (B.14)

Finally, we combine Eqs. (B.11) and (B.14) to obtain

P (ψ`)− P (ψu) = 0. (B.15)

Therefore, the osmotic pressure is continuous in the layer even if the monomer concentration undergoes

a discontinuity due to treatment of the the van der Waals loop. Furthermore, setting the osmotic pressure

equal at the discontinuity is equivalent to performing the Maxwell equal areas construction on the van

der Waals loop in the function µ(ψ). As a result, there are two equivalent methods to excise the loop in

a physically correct manner. One can perform the Maxwell construction directly, or one can choose the

discontinuity such that the osmotic pressure is continuous. In addition, the existence of two methods can

provide a computational double-check on a numerical solution.
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APPENDIX C

SOLVING THE MILNER-WITTEN-CATES MODEL WITH NANOPARTICLES

In this appendix I will sketch how the stationary point of the free energy function Eq. (3.1) is found in

order to obtain the equilibrium conditions Eqs. (3.3) and (3.4). The first variation δF of the functional

is obtained by varying the polymer trajectories {~rα} and the nanoparticle volume fraction φ from their

minimum energy state equilibrium state, and then the stationary point is found by setting δF = 0.

Let us first find the first variation of the stretching term in Eq. (3.1), which may be written as

∑

α

1

2b2

∫ N

0

ds

(
∂

∂s
~rα(s)

)2

=
∑

α

1

2b2

∫ N

0

ds
(
ẋ2
α(s) + ẏ2

α(s) + ż2
α(s)

)
(C.1)

where the dot has been used to represent a derivative with respect to s. For simplicity, let us consider one

term in this sum only: the z component term from a single chain. Adding a small variation δz to z(s)

yields
1

2b2

∫ N

0

ds (ż + δż)2 =
1

2b2

∫ N

0

dsż2 +
1

2b2

∫ N

0

ds (2żδż) (C.2)

to first order in the variation. The last term on the right hand side can be integrated by parts to obtain
∫ N

0

dsżδż = żδż|N0 −
∫ N

0

dsz̈δz. (C.3)

The boundary term vanishes because at s = 0, δz = 0 since every chain is end-grafted, while at s = N ,

ż = 0 because at equilibrium the tension in the chain must be zero at the free end, and we assume that

the dominant contributions will come from those close to the equilibrium state. By carrying out the same

procedure on the x and y terms, one can see that the first variation of this term is

δ

(∑

α

1

2b2

∫ N

0

ds

(
∂

∂s
~rα(s)

)2
)

=
∑

α

1

b2

∫ N

0

ds
(
~̈rα(s) · δ~rα

)
. (C.4)
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To treat the other terms in Eq. (3.1), which depend on ψ and φ, we can write their variation as

δ

(
1

b3

∫
d3r(f(ψ(~r), φ(~r))− 1

v̄
µcφ(~r))

)
=

1

b3

∫
d3r

(
∂f(ψ, φ)

∂ψ
δψ +

(
∂f(ψ, φ)

∂φ
− µc

v̄

)
δφ

)
.

(C.5)

Note that the variation in the polymer trajectories {~rα} corresponds directly to a variation in the monomer

volume fraction ψ. φ, on the other hand, must be varied separately. As a result, δF = 0 requires two

separate conditions. First the prefactor of δφ must be zero. This yields

µc
v̄

=
∂f(ψ, φ)

∂φ
. (C.6)

This provides Eq. (3.3) which relates ψ and φ at equilibrium.

After this condition has been taken into account, the remaining terms in δF from Eqs. (C.4) and (C.5)

give
∑

α

1

b2

∫ N

0

ds
(
~̈rα(s) · δ~rα

)
+

1

b3

∫
d3r

∂f(ψ, φ)

∂ψ
δψ = 0. (C.7)

In order to reduce this expression, we must convert the integral over the spatial coordinates into an integral

over s. This can be done by noting that

ψ(~r) = b3
∑

α

∫
dsδ(~r − ~rα(s)) (C.8)

so that

δψ = b3
∑

α

∫
dsδ(~r − ~r ′α(s))−

∑

α

∫
dsδ(~r − ~rα(s)) (C.9)

where {~r ′α} denotes the positions of the monomers after the variation has been applied. In addition, we

note that since ψ and φ are functions of ~r, ∂f(ψ, φ)/∂ψ can be regarded as a function µ(~r). Then

∫
d3r

∂f(ψ, φ)

∂ψ
δψ =

∫
d3rµ(~r)δψ

= b3

∫
d3rµ(~r)

(∑

α

∫
dsδ(~r − ~r ′α(s))−

∑

α

∫
dsδ(~r − ~rα(s))

)

= b3
∑

α

∫
ds
(
µ(~r

′

α(s))− µ(~rα(s))
)

= b3
∑

α

∫
ds∇αµ · δ~rα. (C.10)
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Inserting Eq. (C.10) into Eq. (C.7), we obtain

∑

α

∫
ds

(
∇αµ−

1

b2
~̈rα

)
· δ~rα = 0. (C.11)

Setting the expression in parentheses equal to zero yields an equation which can be mapped onto New-

ton’s second law for a particle moving in the potential −µ(~r), as in Eq. (3.4).
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