
 

DANCE, DANCE REVOLUTION:  CHANGE IN EXECUTIVE FUNCTION 
FOLLOWING A VIDEO DANCE INTERVENTION IN POSTMENOPAUSAL WOMEN 

 
 
 
 
 
 
 
 
 

by 

Rebecca E. Roush 

B.S., University of Pittsburgh, 2001 

 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

the Department of Epidemiology 

Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Master of Public Health 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2013 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/19522824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH 

Graduate School of Public Health 
 
 
 
 
 

This essay is presented 

by 

Rebecca E. Roush 
 
 

 December 13, 2013 

and approved by 

Essay Advisor: 
Nancy W. Glynn, PhD                      ______________________________________ 
Research Assistant Professor of Epidemiology 
Graduate School of Public Health 
University of Pittsburgh 
 
Essay Reader: 
Howard J. Aizenstein, MD, PhD  ______________________________________ 
Associate Professor of Psychiatry, Bioengineering, 
And Clinical Translational Science 
University of Pittsburgh Medical Center 
 
Essay Reader: 
Kirk I. Erickson, PhD    ______________________________________ 
Associate Professor of Psychology 
University of Pittsburgh Medical Center 

 ii 



  

Copyright © by Rebecca E. Roush 

2013 

 iii 



 

ABSTRACT 

There is substantial evidence supporting aerobic exercise as an efficable opponent of the growing 

problem of cognitive decline (CD). Most exercise interventions have examined their relationship 

to brain health using simple aerobic exercises and achieved favorable results.  There is potential 

to improve cognitive outcomes by using a complex aerobic exercise such as video dance.  In this 

study, we compared brain activation from the digit symbol substitution task in 39 

postmenopausal women (mean age = 55.2 years, SD = 10.2 years, mean weight = 175.8 lbs., SD 

24.0) who completed baseline and follow-up fMRI scans. These women were divided into three 

groups; video dance, walk and delayed entry controls. Activation maps were created for the 

change between baseline and follow-up time points for each group:  video dance, walk and 

delayed entry controls.  The activation maps were qualitatively examined for differences 

between the three groups.  Results indicate that the video dance group showed significant, 

positive activation in areas of the brain associated with executive function potentially due to the 

complexity of the exercise intervention.  The public health significance of these finds are that 

video dance is an inexpensive, safe, and easy to implement intervention which may impede the 

progression of cognitive decline and decrease the expression of CD and Alzheimer’s disease 

(AD) symptoms,  and could lead to the decrease of disease in the population.  Any reduction in 

Nancy W. Glynn, PhD 
 

DANCE, DANCE REVOLUTION:  CHANGE IN EXECUTIVE FUNCTION 
FOLLOWING A VIDEO DANCE INTERVENTION IN POSTMENOPAUSAL 

WOMEN 
 

Rebecca E. Roush, MPH 

University of Pittsburgh, 2013 

 iv 



the incidence of CD also reduces stress on the healthcare system, individuals, and reduces the 

overall prevalence of disease in the population. 
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1.0  INTRODUCTION 

1.1.1 Aging Population and Cognitive Decline 

As the population of the United States ages and people are living longer, the public health 

community must prepare to deal with the impact on the healthcare system.  Over the next several 

years, the number of elders will significantly increase.  The number of Americans 65 years old or 

older are expected to increase by more than double, bringing the count to nearly 89 million US 

citizens by the year 2050.1  Not only will the healthcare system need to accommodate an increase 

in the number of elders, there are other considerations that come with growth of the aging 

population. Of these, cognitive health and impairment are arguably the most pressing public 

health concerns.  

Cognitive decline (CD), or cognitive impairment (CI), is damage to the cognitive 

processes, e.g., memory and attention, that negatively impact the things an individual can do in 

everyday life.2  Cognitive function generally transitions from optimal function in our youth to 

more disadvantageous function later in life. This is usually a gradual transition that sometimes 

accompanies the normal aging process, but can evolve into CD, or Alzheimer’s disease (AD), 

which is accompanied by steeper and more severe cognitive impairments.  Cognitive changes 

manifest distinctly in each person’s life, slowly eroding independence; the ability to care for 

oneself, the ability to manage finances and medications, and to prepare meals.2  Ultimately, CD 
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can lead to negative mental health outcomes, disability, and an increased risk of mortality for 

those affected by any type of CD be it a precursor to AD, or not. 3-5 

1.1.2 Public Health Significance 

CD and AD will change the face of the healthcare system because the impacts of these 

incurable conditions are far reaching. CD and AD care are expensive -- the price tag for 

Medicare, Medicaid, and individual out-of-pocket is high.  In any of its forms, dementia is 

costly; direct and indirect cost of care have been estimated between $159 billion to $215 billion 

in 2010 alone.2  The monetary strain on the healthcare system will only increase as the aging 

population of the US grows. By the year 2050, the cost of care for elders living with Alzheimer’s 

disease will reach $1.08 trillion per year, a fivefold escalation.6  The US healthcare system and 

taxpayers will not be able to shoulder the economic burden under the current system. Care for 

those suffering from CD and AD will need to be rethought in order to avoid a healthcare and 

economic crisis. 

The price for CD and AD care are not limited to the healthcare system tallies.  The costs 

of CD and AD extend beyond the medical costs for the diseased and ailing to their loved ones. 

“Family care partners of individuals with dementia are at greater risk for anxiety, depression, and 

poorer quality of life than care partners of individuals with other conditions. Between 28% and 

55% have depression, compared with 15% in the non-caregiving older adult population.”2 

Caregiver and family members devote their time and attention to preserve the health of their 

loved ones while risking their own health and well-being, which in turn further depletes 

resources from the healthcare system and decreases the overall health of the nation. 
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There are many benefits in avoiding the costs of CD and AD care. Most notably, elders 

would live longer, healthier, and more independent lives if the number of healthy years can be 

extended by avoiding any CD.  From a public health perspective, finding tangible avenues of 

prevention or early treatment for CD and AD could reduce current financial burdens on the 

healthcare system, reduce individual financial burden and stress, and decrease the overall 

incidence and prevalence of disease in the population. Although some drug treatments are 

available and under development, “there are no disease-modifying therapies, studies have shown 

consistently that active management can significantly improve quality of life through all stages 

of the disease for individuals with dementia and their care partners.”2  The lack of feasible drug 

treatments only adds urgency to the need to find an affordable, efficable treatment to slow, halt, 

or reverse the onset and progression of CD and AD. 

Accumulating evidence suggests that a host of modifiable behaviors can impact the 

trajectory and onset of CD and AD. These include activities like brain training,7-9 vitamin 

supplements,10,11 various diet modifications, 10,12,13 yoga and meditation, 14-16 and both anaerobic 

and aerobic exercise.17-24  Of these options, cardiorespiratory exercise not only has the potential 

to preserve cognitive functioning, it also has the potential to decrease risk factors and other 

comorbidities that frequently accompany aging, e.g., diabetes, cardiovascular disease, balance 

and mobility issues.18,25  

1.1.3 Exercise and Executive Function 

Animal models have shown promise in revealing the molecular mechanisms by which 

cardiovascular exercise promotes brain health.  There is evidence that Brain-derived neurotropic 

factor (BDNF) and nerve growth factor (NGF) along with other neurotransmitters promote 
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neurogenesis, and that exercise facilitates an increase in these chemicals.26  BDNF and NGF are 

neurotrophins that impede brain senescence in animal models; brain health is promoted by 

exercise induced neurotrophins increase.27,28  Exercise has also been shown to increase BDNF 

and NGF in the hippocampus, contributing to neuron growth and propagation, thus protecting 

and enhancing cognitive function in rodents.27-29  Behaviorally, these mechanisms translate into 

an increase in spatial memory; the rats that exercise learn the maze cues faster.30,31   These 

animal models create a foundation from which human studies can be planned and implemented.   

 The epidemiological literature supports the fact that better physical health is correlated 

with prolonged healthy cognitive function.17,32  In a Canadian population of men and women 65 

years and older over a five year period, walking was found to reduce the risk of developing CI by 

58%, AD by 50% and any type of dementia by 63%.33  One of the first multicenter randomized 

clinical trials called the Lifestyle Interventions and Independence for Elders Pilot study found 

that there are both physical and mental benefits produced from aerobic exercise.5  These studies 

highlight the importance of exercise in maintaining healthy cognitive function and support the 

correlation between increased physical activity and improved cognitive performance. 

The relationship between physical activity and cognitive health goes beyond increased 

healthy brain function. There is also evidence exercise interventions prevent the negative 

changes that occur in the brain as it ages.  A study done in 2006 found that over an approximate 

six year period, people 65 years and older that exercised three or more times a week were less 

likely to develop dementia.34 Yaffe and colleagues, established that for community dwelling 

women 65 year old over a 6-8 years or older period, exercise can decreases the risk of CD from 

66-74%.35 This research points to an important relationship between physical fitness and brain 
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health.  However, the underlying physical mechanisms the animal models have proposed are 

unable to be connect to the behavioral effects seen in the epidemiological studies. 

As technology becomes more sophisticated, so do the types of experiments and 

interventions that are able to be studied.  Scientists have used magnetic resonance imaging 

(MRI) to assess the anatomy of the brain in conjunction with functional magnetic resonance 

imaging (fMRI) to ascertain how brain processes work.  Imaging studies have attempted to 

establish how physical fitness affects brain health. This begins with understanding some of the 

circumstances which are sub-optimal for brain function. Typically, the presence of white matter 

hyperintensities (WMH) has been associated with decreases in task accuracy.36  However, the 

same study has also shown the ability of brains with a higher instances of WMH to alter 

activation patterns; they recruit additional areas of the parietal lobe to maintain accuracy during 

task performance.  This additional brain activity is likely to be a result of the brain’s ability to 

adapt by using other available resources to maintain similar performance despite underlying 

structural damage.36    

This adaptive capacity is enhanced by physical activity.  The physical changes induced 

by increasing cardiorespiratory fitness include an influx of resources to the brain to stimulate 

new cell and blood vessel growth, which lead to decreased brain atrophy and greater brain 

volume.3,37,38  In this scenario, the areas of the brain that receive blood supply from multiple 

sources would be most reflective of these types of changes.3,37,38   These areas include those 

specific to executive function, e.g., the frontal cortices, and there is evidence of increased signal 

in the parietal region after sustained physical activity.36,38  This increased signal is thought to 

compensate for mechanisms of structural deficiencies, but is also evidence of cortical plasticity.  
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Cortical plasticity is not a new idea, but it has not been the norm in discussions about 

aging.  Historically, the brain has been regarded as having an expiration date, and while this is in 

part true, it does not necessarily mean that there is no hope to fight cognitive decay commonly 

associated with age.3,39 Exercise positively affects cognitive function by increasing brain mass; it 

is also important in influencing neural connectivity networks.36,37,40  A person’s level of aerobic 

fitness in part determines what resources are available while preforming cognitive function.  If 

an elder exhibits neural atrophy and WHMs, then the brain must compensate to perform at a 

level comparable to someone else without physiological deficits.  One way to facilitate this 

compensation it to increase the supply lines to the brain via aerobic stimulation of blood vessel 

and new cell growth.  In brain areas where there is damage, the connections can’t be direct and 

these resources propagate through different pathways, similar to a plant growing in a sidewalk 

crack.  This detour facilitates connections which allow recruitment of axillary brain areas to 

maintain performance levels on fMRI tasks by incorporating the temporal and parietal lobes to 

the “usual” processing loop. 

This processing loop includes a collection of brain areas that are associated with 

executive function.  Executive function incorporates several cognitive domains.  Among them 

are: working memory, attention, task switching, and coordination of multiple tasks.40  Simple 

aerobic exercise can enrich control of executive and attentional networks behaviorally 

manifesting as gains in processing speed and accuracy in tasks measuring executive 

function.3,38,40   A measure of executive function used both in epidemiological and imaging 

studies is the digit symbol substitution task (DSST).  The DSST has been characterized as a 

reliable measure of working memory and processing speed.5,38,41,42 Declines in DSST scores can 

be operationalized as indicators of CD, and are also indicative of increased mortality risk, 
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cognitive decline and other changes associated with aging.36,38,42-45  In order to address current 

gaps in the knowledge, the impact of a complex cardiorespiratory fitness regimen has on 

cognitive function is examined in the context of brain imaging.  This study uses the change in 

DSST activation patterns to characterize the relationship between a complex aerobic task and 

healthy cognitive function.   

Randomized control trials illustrating the relationship between aerobic exercise and 

healthy cognition are in short supply.46,47  In the video game Dance Dance Revolution, this 

executive function component is comprised of coordinating body movements in synchronization 

with the rhythm of a song. Each level increases in difficultly, demanding increased physical 

activity and mental coordination.  Research that explores the relationship between physically 

active video games which are aerobically demanding and stimulate higher cognitive processes, 

and the yield to cognitive function is still in its infancy.48  Thus, my hypothesis is that the DSST 

activation patterns of the exercise group will significantly differ from those of the brisk walk 

group and delayed entry control group.  I suspect brain activation patterns will include areas 

typically activated by the DSST (frontal cortex and parietal regions).  Also, due to the complex 

nature of the DDR task, I expect to see DSST activation in areas that have been altered as a result 

of exercise, specifically areas of the fronto-parietal network.  These areas include inferior 

parietal cortices, supplementary motor cortex, frontal eye fields, visual cortex, inferior frontal 

cortex, and parts of the temporo-parietal junction.49 These areas have been shown to be 

susceptible to recruitment for36,38,49 and the fronto-parietal network is associated with top down 

processing of attention (both spatial and distributive), working memory, encoding, and response 

mappings.41,49  
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2.0  METHODS 

2.1.1 fMRI and Physical Activity Intervention 

The data for this study is from the Adherence and Health Effects of Video Dance 

Exercise and Brisk Walking in Postmenopausal Women: A Randomized Control Trial50 

conducted at the University of Pittsburgh, NIH NCT01443455.  The main study examined 

adherence to a video dance exercise (DDR) program in comparison to brisk walking (Walk) and 

delayed entry controls (Wait) over a six month time period.  Detailed information about the 

intervention can be found elsewhere.41,50  Briefly, participants were screened for safety 

considerations relevant to an exercise intervention (physical health factors, risk of fracture, and 

serious comorbid conditions), and cognitive impairment.41 Exclusion criteria included a history 

of osteoporosis, osteoporotic fractures, active cardiovascular disease, uncontrolled hypertension, 

exercise limiting weight bearing pain, seizure disorder, or any medication that would limit the 

safety of the study.50  Participants were randomly assigned to one of the three arms of the 

intervention:  DDR, Walk, and Wait.   

Each group in the intervention was invited to participate in an fMRI ancillary study.  If 

interested, they were additionally screened for safety concerns relevant to an MRI procedure, 

then scheduled for their fMRI baseline and follow-up.  Follow-up fMRI scans took place about 

three months into the intervention.  For the fMRI ancillary study, each participant signed an 
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approved IRB consent specific to the fMRI procedure.  Participants were alloted practice time 

outside of the scanner to learn the task and each scan was completed in under two hours. 

2.1.2 Participants 

Participants in the main trial were sedentary, post-menopausal women between the ages 

of 50 – 65 years with a BMI over 25.41  A total of 39 women (mean age = 55.2 years, SD = 10.2 

years, mean weight = 175.8 lbs., SD 24.0) participated in the ancillary study by completing 

baseline and follow-up fMRI scans.  Of the 39 women, nineteen women were in the DDR group 

(mean age = 55.4 years, SD = 4.6, mean weight = 182.4 lbs., SD 25.2), fifteen women were in 

the walk group (mean age = 52.1 years, SD = 15.9 years, mean weight = 165.6 lbs., SD 21.7), 

and five women were in the wait group (mean age = 55.4 years, SD = 3.9 years, mean weight 

=179.4 lbs., SD 20.8). 

2.1.3 Digit Symbol Substitution Task 

The digit symbol substitution task (DSST) is a metric of executive function.5,38,41-43  To 

Figure 1. Sample Control Trial from the sDSST Task 
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perform the DSST successfully, a participant must employ several cognitive modalities such as 

perceptual organization, aspects of memory, visuomotor coordination, and selective attentional 

filtering.42,44 This task has been adapted and validated for use during an fMRI scan.36,44  The 

electronic version of the DSST is a block design that consists of presentation of a control block 

and then an experimental block. 

During the experiment, a fixation appeared followed by a cue number and symbol pair. 

The participant must respond to the control trials, which assessed the participant’s basic 

processing speed and response time for a finger press.  The participant must respond to the 

control trial, which confirms the participant can distinguish left and right, with the correct button 

response.  The correct button response is dictated by the letter the display shows (left or right), 

see Figure 1.36  The structure of the experimental trial is the same.  This time, the participant 

determined whether the cue symbol was correctly substituted within a string of number/trial 

pairs.   Once the determination is made, a button press is used to indicate the perceived accuracy 

(right  = correct/matching, left = incorrect/unmatching), see Figure 2.36  Notably, the DSST has 

been used in a number of earlier studies to characterize the effects of aging on cognitive 

function.36,38,42,44,45,51 

Figure 2. Sample Experiment Trial from the sDSST Task 
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2.1.4 fMRI protocol  

All data acquisition occurred at the Neuroscience Imaging Center (NIC) on a 3 Tesla 

Siemens MAGNETOM Allegra scanner using a 12-channel head coil.  Both baseline and follow-

up scan protocols were identical.  Collection of diffusion weighted imaging, high resolution 

anatomical images, and resting state scans were obtained.  Prior to the fast echo-planar imaging 

(EPI) data collection, a 3 plane localizer and sagittal scan were collected.  An EPI sequence (TR 

= 2, TE= 25, 34 slices) was used to collect the blood oxygen level dependent contrast (BOLD) 

data for the DSST task mentioned previously. 

2.1.5 Preprocessing and Analysis of fMRI Data 

All fMRI data were analyzed using Statistical Parametric Mapping (SPM8) v4667 and 

MatLab 7.9.0.529 R2009b.  Each participant’s imaging data was motion corrected by realigning 

all images in the session to the first image of that individual’s same scan session.  The images 

were then smoothed using an 8mm Gaussian kernel and normalized to a template image in 

Montreal Neurological Institute (MNI) space.  Then a general linear model using restricted 

maximum likelihood estimation was employed to calculate the F statistic and create contrast 

maps for the Experimental > Control and Control > Experimental conditions.  During this 

process further motion correction was performed to further eliminate effects caused by head 

motion.  After level one contrasts were created, further comparison (level two analysis) were 

calculated to determine the within-group main effect.  For each group, DDR, Walk and Wait, 

differences in activation between baseline (T1) and follow-up (T2) scans were calculated using a 
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two sample paired t-test.  The T-maps were then examined in XjView to determine the MNI 

coordinates of the active brain regions, and a qualitative comparison of the data were performed. 
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3.0  RESULTS 

Within the DDR group, brain activation was significantly different for the DSST 

experimental condition at T2 compared to T1.  The activation for the DSST T2 > DSST T1 

contrast increased in several regions in the brain.  The largest cluster of activation was situated 

around the area of the right supramarginal gyrus, right superior temporal gyrus, and Broadman 

area 39 (T = 3.61, cluster size 5, p = 0.001), see Figure3.Figure 3. DDR Activation T2 > T1  There 

was a smaller cluster of activation around the left amygdala, left parahippocampal gyrus and 

Broadman area 40 (T = 3.61, cluster size 5, p = 0.001).  

 
The Walk and Wait groups both had areas of significantly less cortical activation when 

the DSST baseline activity was compared to follow-up activity. The Walk group had significant 

negative activation for the T2 > T1 contrasts.  This decrease in cortical activation was 

concentrated around the right anterior cingulate, right medial frontal gyrus, and right Broadman 

Figure 3. DDR Activation T2 > T1: Comparison of activation between baseline and follow-up times for the DDR 

group experimental condition 
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areas six and 32 (T = 3.85, cluster size 5, p = 0.001), see Figure 4.  Figure 4. Walk Activation The 

Wait group had one major area of significant negative activation for the DSST T2 > T1 contrasts.  

The reduction in cortical activity is located in the area of the inferior frontal gyrus (T = 7.17, 

cluster size 5, p = 0.001), see Figure 5. 

A qualitative comparison of the data between the baseline scan and the follow-up scan 

yielded different significantly active brain regions between the DDR, Walk, and Wait groups.  

The DDR group showed positive significant activation in the right temporal and parietal regions 

of the brain (cluster size 5, p = 0.001), while the Walk and Wait groups showed significant 

negative activation in the frontal regions of the brain (cluster size 5, p = 0.001).   

Figure 4. Walk Activation T2 > T1: Comparison of activation between baseline and follow-up times 

for Walk group 

 

- 
- 
- 

- 
- 

- 
- 
- 
- 
- 

Figure 5. Wait Activation T2 > T1: Comparison of activation between baseline and follow-up 

times for Wait group 
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Brain activation is summarized in Table 1, which also includes the central MNI xyz 

coordinates.  The DDR group showed activation in brain areas associated brain networks 

involved in visuospatial working memory, fronto-parietal network, decision making areas and 

the fronto-executive network.  These areas are characteristic of executive function, emotion, 

directed attention, and working memory.38,49,52  The Walk group showed decreased cortical 

activation in memory53 and executive function38 areas while the Wait group had decreased 

cortical activation in the inferior temporal gyrus associated with executive function.38 

 

Table 1. Active Brain Areas by Group 

Group  (N) Brain Area x y z Network 

DDR (19) 

Right Supramarginal Gyrus, 
Right Brodmann Area 39, and 
Left Brodmann Area 40 

50.00 -50.70 27.27 Visuospatial Working 
Memory52  

Right Superior Temporal Gyrus 56.15 -57.26 24.00 Fronto-parietal Network49 

Left Amygdala and Left 
Parahippocampal Gyrus -18.00 -3.82 -14.17 Decision Making54 and 

Fronto-executive Network49 

Walk (15) 

Right Medial Frontal Gyrus, 
Right Brodmann Area 6 14.11 -15.49 58.11 Memory Network53 

Right Anterior Cingulate, Right 
Brodmann Area 32 9.27 39.79 12.00  Executive Control Function38 

Wait (5) Inferior Frontal Gyrus 46.22 28.43 -1.57  Executive Control Function38 
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4.0  DISCUSSION 

The DDR group showed significant, positive activation in the right supramarginal gyrus, 

right Brodmann area 39, and left Brodmann area 40, areas associated with visuospatial working 

memory.52  In neuroimaging literature the supramarginal gyrus has been associated with 

information storage in working memory, and the right supramarginal gyrus specifically has been 

associated with visuospatial tasks.52  Due to the nature of the DSST, it is expected to find 

activation in the region.  This is also an area of executive function that has been shown to be 

affected by aerobic exercise.36,37,40  The fact that the activation is the difference at T2, suggests 

the change is due to the intervention.   

The DDR group’s activation is did show an active cluster of voxels in the right superior 

temporal gyrus which is a part of the fronto-parietal network.49  This network has been shown to 

associated with attention and working memory, especially when the task complexity exhausts 

typical working memory networks.49  The DSST has not been shown to be particularity 

cognitively taxing,41 especially to a well-practiced group of participants.  Therefore, it is possible 

this activation is due to the strengthening of the networks because of the complex aerobic 

component of the intervention.  There is however, much less involvement of the fronto-parietal 

network than hypothesized.  It is possible this is due to the DSST not being complex enough to 

tax executive function to the point it needs to recruit the entire network.   
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The last active areas in the DDR group were the left amygdala and left parahippocampal 

gyrus.  The amygdala and parahippocampal gyrus are both components of the limbic system.55  

This system has been noted to play a role in judgment, decision making and emotion in 

conjunction with rational decision making.54,56,57  Activation in this areas is intutive because the 

DSST requires a choice.  The positive activation at T2 could indicate that this area has also been 

effected by the video dance intervention.   

Historically, the association between fitness and working memory has not been clear.3,47 

This could be due to the lack of complexity in the type of aerobic exercise traditionally 

undertaken in interventions.  Video dance, as opposed to aerobic walking or stationary cycling, 

requires motor coordination, attention and motor coordination.  This movement is often built on 

and repeated during the same song making each song a mini short-term memory work out.  

Consider the DDR activation areas, the positive activation maps indicate that complex exercise 

has altered the functional areas responsible for working memory, attention and decision making. 

These changes could be due the “complexity” component propagating the physiological 

alterations in the brain that support neural network integration, improving cognition in ways not 

seen in simple aerobic exercise interventions.  In addition, these changes were seen over a three 

month period of time, which is relatively short period compared to other interventions.37,46,47 

The Walk group had significant, decreased cortical activation in the right anterior 

cingulate, right Brodmann Area 32.  The anterior cingulate cortex has been associated with the 

“presence of behavioral conflict and need to adapt attentional control processes.”58  Since the 

participants have performed this task prior and are provided with adequate practice time, their 

arousal is not increased enough to recruit these brain areas.  The Walk group also showed a 

significant decrease in cortical activation right medial frontal gyrus, right Brodmann area 6, 
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which has been associated with executive function.38  This finding also points to the existence of 

a practice effect because the Walk participants were familiar with the DSST, they did not need to 

recruit higher functional areas to perform well on this test.   It is also possible that the additional 

areas were not recruited because the Walk group was not subject to the “complex” component of 

the exercise intervention.  This component feeds the underlying anatomy, providing the 

resources to initiate recruitment of these functional areas.  

The Wait group presented decreased cortical activation in one area, the inferior frontal 

gyrus.  The inferior frontal gyrus is a part of the fronto-parietal network which is associated with 

top-down attentional processing, cue recognition, and working memory.49  Decreased cortical 

activation in this area could again be due to practice effects. 

Between the T1 and T2 scans for each group the change in the DDR BOLD signal during 

the DSST task differed dramatically.  Though the nature of this analysis is qualitative, it points to 

many areas for further quantitative analysis. Other factors that could help explain the relationship 

between complex cognitive function and brain health should considered when further exploration 

is undertaken.  These factors include considering the effects of short or long term hormone 

replacement therapy (HRT), consideration of protective lifestyle factors (diet, meditation, 

vitamins, genetic background), inclusion of a fitness quantifier, metabolic factors (cortisol and 

insulin levels) and the presence of comorbid conditions.   

 This study is an important step in examining complex exercise as a means to preserving 

brain health.  These results are significant to the field of public health because video dance is an 

inexpensive, safe, and easy to implement intervention that may be able to impede the progression 

of cognitive decline and decrease the expression of CD and AD symptoms.  In the next ten years, 

if the onset of CD can be delayed for an individual for as little as five years, this would decrease 
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incidence of CD/AD by about 50%.5  Any reduction in the incidence of CD also reduces stress 

on the healthcare system, individuals, and reduces the overall prevalence of disease in the 

population. Due to the complexity of the exercise, video dance has the potential to stimulate 

more brain areas, and networks that would not be recruited during the performance of simple 

exercises. 
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