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WELL POSEDNESS AND PHYSICAL POSSIBILITY

Balázs Gyenis, PhD

University of Pittsburgh, 2013

There is a sentiment shared among physicists that well posedness is a necessary condition for

physical possibility. The arguments usually offered for well posedness have an epistemic flavor

and thus they fall short of establishing the metaphysical claim that lack of well posedness

implies physical impossibility. In this work we analyze the relationship of well posedness to

prediction and confirmation as well as the notion of physical possibility and we devise three

novel and independent argumentative strategies that may succeed where the usual epistemic

arguments fail.

Keywords: determinism, laws of nature, metaphysics, philosophy of physics, physical pos-

sibility, prediction, well posed problem.

iv



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 GROUNDWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Well posedness: what it is and what it is not . . . . . . . . . . . . . . . . . 7

2.2 Well posedness and prediction . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Well posedness: not sufficient for prediction . . . . . . . . . . . . . 19

2.2.2 Well posedness: not necessary for prediction . . . . . . . . . . . . . 25

2.3 Prediction and physical possibility – the gap objection . . . . . . . . . . . 42

2.4 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.0 TWO READINGS OF PHYSICAL POSSIBILITY. BEST SYSTEM

AND WELL POSEDNESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 The received view of physical possibility . . . . . . . . . . . . . . . . . . . 49

3.2 Laws of nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Two readings of the received view . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 The two readings produce different physically possible worlds . . . 57

3.3.2 Side notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Which reading should be preferred? . . . . . . . . . . . . . . . . . . 61

3.4 May reading (B’) salvage well posedness? . . . . . . . . . . . . . . . . . . . 66

3.5 Detour 1: a Best Approximately True System? . . . . . . . . . . . . . . . . 69

v



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

3.6 BATS in Domes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Detour 2: why would well posedness matter for informativeness? . . . . . . 74

3.8 The main argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Objections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.0 LAWS AND WELL POSEDNESS . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Propagators and well posedness . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Peace between Governing and Non-Governing intuitions? . . . . . . . . . . 98

4.4 Are the two variants empirically distinguishable? . . . . . . . . . . . . . . 100

4.5 Objections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.0 POSSIBLE WORLDS AND WELL POSEDNESS . . . . . . . . . . . . . 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Alternative representations of physically possible worlds . . . . . . . . . . . 108

5.3 The main argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Bolution-chunks, bolution-paths, and bolutions . . . . . . . . . . . . . . . 114

5.4.1 Bolution-chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Bolution-path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.3 Bolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 The relationship between solutions and bolutions . . . . . . . . . . . . . . 121

5.6 States, initial value problems . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Well posedness results and discussion . . . . . . . . . . . . . . . . . . . . . 125

5.8 Objections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

APPENDIX A. MATHEMATICAL PRELIMINARIES . . . . . . . . . . . . 137

A.1 Well posedness for ordinary differential equations . . . . . . . . . . . . . . 137

A.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

vi



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

A.2 Basic definitions for abstract differential equations . . . . . . . . . . . . . . 140

A.2.1 Lp space, Lp norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2.2 C(K) space of continuous functions . . . . . . . . . . . . . . . . . . 141

A.2.3 Sobolev spaces, Sobolev norm . . . . . . . . . . . . . . . . . . . . . 142

A.2.4 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.5 Well posedness in the sense of Lax . . . . . . . . . . . . . . . . . . 143

A.2.6 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 Basic results for the Cauchy problem . . . . . . . . . . . . . . . . . . . . . 146

A.3.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3.2 The case of symmetric hyperbolic systems . . . . . . . . . . . . . . 147

A.3.3 Perturbation results . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4.1 The Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . 149

A.4.2 The Maxwell equation . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.5 A remark on the choice of the appropriate Banach space . . . . . . . . . . 153

APPENDIX B. BOLUTIONS AND SOLUTIONS . . . . . . . . . . . . . . . . 155

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

vii



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

LIST OF TABLES

1 Some versions of continuous dependence. . . . . . . . . . . . . . . . . . . . . 17

2 An argument for the Desired Solution Thesis. . . . . . . . . . . . . . . . . . . 115

viii



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

LIST OF FIGURES

1 Solutions of a differential equation. . . . . . . . . . . . . . . . . . . . . . . . . 110

2 Bolution-chunk: a maximal set of ε close solutions throughout time interval T . 117

3 Bolution-path: an assignment of bolution-chunks to all points in time. . . . . 119

4 Bolution: an assignment of bolution-paths to all levels of precision. . . . . . . 120

5 A set of ε-close initial values and a binitial value. . . . . . . . . . . . . . . . . 123

6 As t → 0 the set of initial values from which solutions in the bolution-path

originate gets larger and larger. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

PREFACE

The most important influences shaping this work came from four philosophers I had the

pleasure to count among my mentors. I owe a great deal to the professional guidance of
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1.0 INTRODUCTION

Si c’est ici le meilleur des mondes possibles,

que sont donc les autres?

(Voltaire: Candide)

Better understanding of nature requires better understanding of our theories of it, and

better understanding of our theories requires better understanding of the properties of mod-

els which are rendered physically possible by them. To achieve this goal we need to probe

oddly behaving possibilities besides well behaving ones: the study of properties of an odd

model helps understanding a physical theory similarly to how the study of an odd coun-

terexample helps understanding a mathematical theorem. No wonder many transitionary

discussions between philosophy and physics are focusing on, what appears to be, unexpected

and unintuitive properties of certain odd models of physical theories. Determinism defeat-

ing, supertask producing, time traveling, limiting behavior breaking scenarios are among the

main targets of investigation by philosophers of physics.

Many of these oddly behaving examples share a common feature: they fail to be solutions

of so-called well posed problems. A problem of mathematical physics is called well posed

if its solution exists, if its solution is unique, and if its solution depends continuously on

the data that is given. It is highly desirable that problems of a physical theory have these

properties: Without existence there is no model; without uniqueness there is no determinism;

without continuous dependence approximative methods, prediction, and confirmation may

1
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be at peril.

There is a sentiment shared widely across the physics community that well posedness

is a necessary condition for physical possibility. In spite of being viewed as an important

factor in understanding current physical theories as well as in guiding heuristic attempts to

arrive at new theories very little if any defense is given by physicists to back this sentiment

up. What we typically find are claims to the effect that failure of well posedness would make

prediction impossible and impossibility of prediction would render a theory to be physically

unviable.

There is an immediate problem with establishing physical impossibility on the basis

predictive incapability: it rests on a conflation of ontological and epistemic interests. There

is a gap between what there is (what there can be) and what can be known. A theory could

still be true of the world even if its models had limited or no use for us. Or, in other words,

the world does not need to care about the epistemic needs of its human observers. Hence

we can not narrow the set of models deemed physically possible by a theory by a simple

surgical removal of some of its predictively defective models. Pointing out the gap between

the ontologically grounded and the epistemically accessible is the essence of what we call the

gap objection against arguments for well posedness.

Familiar philosophical strategies which aim to reduce the ontological-epistemic gap may

counter the gap objection and may entail a defense of well posedness. One can imagine

that a verificationist-operationalist meaning postulate, combined with an analysis of the

relationship between continuous dependence and verifiability, may rule out (some) solutions

of non well posed problems as meaningless and leave behind only solutions of well posed

problems as meaningful representations of physically possible scenarios. One can also imagine

that arguments of Kantian flavor, taking off from the tenet that our physical theories can be

confirmed and seeking the necessary conditions which make this confirmation possible, may

rule well posedness to be a necessary condition for the possibility of knowledge and as such

2
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to be an indispensable foundation for the experienced phenomenal world.

Such philosophical strategies would either require comprehensive and quite restrictive

accounts of how scientific statements acquire meaning, or inquiries into the structure and

possibility of a priori knowledge and into how the world does after all care about its observers.

Albeit these and such investigations may be indispensable in order to convincingly settle

the matter it would be reassuring if less philosophically demanding considerations could

also underpin the physicist sentiment. In this work we attempt to devise and evaluate

such arguments in order to see more clearly what kind of epistemological and metaphysical

assumptions may be needed or may be sufficient to defend well posedness.

To meet the gap objection we are going to take a closer look at the notion of physical

possibility. A physical theory, broadly speaking, identifies two components in a representa-

tion of the world: a component which the theory proclaims to be fixed and a component

which the theory may allow to vary. The modal character of the physical theory arises

from associating the fixed component with the necessary and the variable component with

the accidental. If the variable component is viewed as accidental then it could have been

otherwise. The mathematical structure of the physical theory is suggestive of the space of

mathematically admissible alternatives to the variable component, and we take these al-

ternatives to represent the physical possibilities. It is in this sense we take solutions of a

fundamental differential equation to represent physically possible scenarios: we represent ar-

rangements of facts with a trajectory, notice that the trajectory is a solution of a differential

equation, proclaim that the differential equation is the fixed component – the law – and

that the solution is the variable component, and proceed to view other compatible variable

components – other solutions of the same differential equation – as representations of other

physical possibilities.

There are three assumptions behind our usual assessment of physical possibility: that (a)

mathematical compatibility of the of the fixed and of the variable components is a sufficient

3
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condition for a plausible notion of physical possibility, that (b) differential equations are

the appropriate mathematical representations of the fixed component, and that (c) solutions

of a differential equation are the appropriate mathematical representations of the variable

component. We are going to take a closer look at these assumptions and devise argumentative

strategies along which the physicist sentiment that well posedness is necessary for physical

possibility may become vindicated. The hope is that these strategies could avoid the gap

objection as they do not operate by direct and ad hoc surgical removal of epistemically

undesired possibilities.

The first strategy involves tinkering with the notion of physical possibility. We point out

a difference between two readings of physical possibility: the first reading merely requires

propositions expressing laws of the actual world to be true in the physically possible worlds

while the second reading requires propositions expressing laws of the actual world to also be

laws of the physically possible worlds. These two readings diverge if one accepts Humean

supervenience of laws. In particular for a Best System account a proposition which achieves

best balance between informativeness and simplicity in the actual world might fail to achieve

such balance in a possible world in which the proposition is nevertheless true, and hence such

possible worlds would not count as being physically possible as they wouldn’t have the same

laws as the actual world. We argue that this may indeed be the case if the proposition

at hand is a differential equation whose initial value problems are well posed in the actual

world but are not well posed in some other possible worlds; in these latter worlds other

propositions achieve a better balance of informativeness and simplicity, hence these worlds

are not physically possible according to the second reading.

The second strategy involves tinkering with the mathematical structure of the fixed

component of physical theories. We argue that propagator equations can be more directly

interpreted as laws than differential equations as long as the main intuition we associate with

laws is that they ‘evolve,’ ‘govern,’ or ‘bring about’ physical states. Promoting propagator

4
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equations as fixed components comes with a price: well posedness of the corresponding

differential equation is necessary for the existence of the propagator. However from the

propagator-as-law perspective this restriction can be viewed as a precondition for an appro-

priate mathematical formulation of the physical theory rather than as a post-hoc condition

restricting the number of possibilities.

The third strategy involves tinkering with the mathematical structure of the variable

component of physical theories: we replace a solution with an alternative mathematical

construction, the ‘bolution,’ as representation of a physically possible world (see the definition

later). As a result the set of physical possibilities becomes a set of all bolutions instead of

a set of all solutions. Epistemic concerns are present in the course of the motivation of the

mathematical definition of the bolution but once the mathematical definition is given these

epistemic concerns can be spared with and the focus can be shifted to the question whether

bolutions can indeed serve the role of the variable component in the representation of those

physical scenarios which form the basis of our generalization to all possibilities. It turns out

that there is a direct relationship between epistemically desired solutions and bolutions and

hence we can think of these desired solutions as representational short-hands for the bolutions

to which they correspond. However no such relationship exists with undesired solutions and

bolutions, hence if we indeed accept bolutions as the appropriate representations of the world

these undesired solutions are left without any representational role. In the end this strategy

also yields a narrower set of solutions as the set of short-hand representations of physically

possible worlds, but without the unwarranted surgical removal procedure problematized by

the gap objection.

We briefly overview the technical apparatus and discuss well posedness in Chapter 2

and in Appendix A. Chapter 3 discusses the notion of physical possibility and presents the

third argumentative strategy mentioned above; Chapter 4 pursues the first and Chapter 5,

supplemented by Appendix B, pursues the second strategy. As we will see results pertaining

5
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to the issue of well posedness are sensitive to technical subtleties. Our discussion frequently

omits subtle details in order to present the main ideas; whether they survive when adapted

to particular circumstances needs further investigation.

6
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2.0 GROUNDWORK

2.1 WELL POSEDNESS: WHAT IT IS AND WHAT IT IS NOT

A mathematical problem used to model a physical process is called well posed, properly posed,

or correctly set if it satisfies three conditions1:

(1) the solution of the problem exists,

(2) the solution is unique,

(3) the solution depends continuously on the given data.

Well posedness is widely held to be an essential feature of physical theories. Consider the

following remarks of Mikhail M. Lavrentiev, Alan Rendall, and Robert M. Wald – leading

experts in their respective fields of physics – intended as motivations for the continuous

dependence condition:

One should remember that the main goal of solving mathematical problems is to describe
certain physical processes in mathematical terms. In this case the initial data are obtained
experimentally; and since measurements cannot be absolutely precise, the data contain mea-
surement errors. For a mathematical model to describe a real physical process, the problem
should be supplemented with some additional requirements reflecting, in a physical sense,
the fact that the solution should have only small variations under slight changes of initial
data or, to put it conventionally, the stability of the solution under small perturbations in
the data. (Lavrentiev et al.; 2003, p. 6)

The condition of continuity is sometimes called Cauchy stability. The reason for including
it is as follows. If PDE are to be applied to model phenomena in the natural world it

1See e.g. (Walter; 1998, p. 142).

7
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must be remembered that measurements are never exact but always associated with some
error. As a consequence it is impossible to know initial data for a problem exactly and so if
solutions depend on the initial data in an uncontrollable way the model cannot make useful
predictions. Cauchy stability guarantees that this does not happen and thus represents a
necessary condition for the application of PDE to the real world. (Rendall; 2008, p. 134)

If a theory can be formulated so that “appropriate initial data” may be specified (possi-
bly subject to constraints) such that the subsequent dynamical evolution of the system is
uniquely determined, we say that the theory possesses an initial value formulation. How-
ever, even if such a formulation exists, there remain further properties that a physically
viable theory should satisfy. First, in an appropriate sense, “small changes” in initial data
should produce only correspondingly “small changes” in the solution over any fixed compact
region of spacetime. If this property were not satisfied, the theory would lose essentially
all predictive power, since initial conditions can be measured only to a finite accuracy. It
is generally assumed that the pathological behavior which would result from the failure of
this property does not occur in physics. [...]2 (Wald; 1984, p. 224)

These remarks express a sentiment widely shared among physicists: well posedness is a

necessary condition for models to describe real physical processes. Lack of well posedness

would be pathological and it “does not occur in physics,” at least not in describing forward

time propagation of physical processes.

To get a better understanding of the physicists’ sentiment we would ideally first nail

down a precise definition of well posedness. There are many concepts that are left vague by

the above characterization. What type of mathematical problems are we considering? What

2In the context of general relativity a further condition – that of finite propagation speed – is also
sometimes understood to be part of the definition of well posedness. Thus Wald continues (ibid.):

Second, changes in the initial data in a region, S, of the initial data surface should not
produce any changes in the solution outside the causal future, J+(S), of this region. If
such changes occurred, we should be able to use them to propagate signals “faster than
the speed of light.” This would undermine the entire framework of relativity theory. If a
theory possesses an initial value formulation which satisfies both of the above properties,
we say that this initial value formulation is well posed. Note, however, that we have
not attempted to give a mathematically precise definition of “well posed initial value
formulation” here since the precise criteria depend on the type of theory considered.

In what follows we do not include the assumption of finite propagation speed in our definition of well
posedness.

8
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solution concept are we working with? Do these solutions need to exists and be unique only

locally or globally? What is the given data3? What do we mean by continuous dependence?

Where do we get the topology necessary for the notion of continuity? Whether a certain

mathematical problem end up being well posed may clearly depend on how we fix these and

such concepts.

Much initial comfort can be drawn from starting with precise definitions as they appear

to ‘solve,’ by fiat, many of the questions posed in the previous paragraph. Starting with

definitions does not, however, do complete justice to the way physicists view the general

requirement of well posedness. Continuing his remarks Robert Wald states that he did not

attempt to give a mathematically precise definition “since the precise criteria depend on

the type of theory considered” (ibid.). This suggests that the right motivation should come

first and it may be expressed by different mathematical definitions in different theoretical

contexts.

We should also acknowledge upfront that the problem setting itself sidesteps several

major issues, notably an assumption that we can meaningfully differentiate two sources of

knowledge: one that is directly connected to observation or measurement to provide us

the ‘given data,’ and another that allows us to identify structural features of our modeling

apparatus. It has proven to be useful to separate two stages in the process of developing a

mathematical model adequate to represent a physical process: (1) identification of the general

3In what follows we use the term ‘given data’ as a terminus technicus referring to the quantities on which
solutions are supposed to depend continuously according to assumption (3). Typically ‘given data’ is the
data the supposed source of which is empirical observation and/or measurement. ‘Given data’ should not
be immediately equated with the notion of ‘initial value’ of the theory of differential equations; the latter
sometimes does not adequately characterize the empirical data ‘that is given’ to observers by measurements.
For instance in classical mechanics the left-hand side of Newton’s law F = ma also incorporates crucial model
parameters – i.e. the shape of surfaces on which balls are rolling – the values of which observers establish by
measurement. This is a typical case whenever ordinary differential equations are employed and is recognized
in the definition of well-posedness of initial value problems of ordinary differential equations (see Appendix
A). We take ‘state’ to be a term of the vocabulary of a physical theory that is supposed to represent a
‘configuration’ of a ‘physical system’ (this latter being the entity that is represented by trajectories of states
of a true theory).

9
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type and structure of the model – the relevant mathematical framework, the utilized physical

theories, differential equations, and general model parameters – and (2) determination of the

numerical values of the model parameters. Given data, then, is what we may acquire via

measurement during the second stage. This separation also allows us to introduce modal

talk: we may regard the structural features obtained in the first stage as fixed components

of physical descriptions and ask what are the possible ways the world may be given these

fixed components. It is unclear to me how artificial any such separation in the process of our

knowledge acquisition may ultimately be, but for our present purposes we assume that the

familiar way of drawing a dividing line by fixing a certain well established physical theory is

apt.

Some initial clarification is needed regarding the concept of continuous dependence. In

line with the separation of the two stages in the modeling process some modern practice- and

inverse problem-oriented textbooks4 characterize well posedness as follows. Many problems

in mathematical physics5 can be cast in the following general form:

Ow = d, (2.1)

where w ∈ W , d ∈ D, and O : W → D is an operator. In the context of differential equations

W is the set of solutions of a differential equation, D is a space of functions involved in the

initial and/or boundary conditions, and O is defined by the differential equation together

with some additional conditions. The problem is to find the solution w given O and d, i.e.

to find a solution given certain data6.

The authors offer the following definition of well posedness.

4See e.g. Lavrentiev et al. (2003) and other books in the Inverse and Ill-Posed Problems Series of de
Gruyter.

5(Temirbolat; 2003, p. 1) goes as far to say that “Every problem of mathematical physics.”
6Typically only d is regarded as given data, although there are exceptions. Some authors regard O

to represent given data as well and require that continuous dependence (see below) also holds for O in
the operator norm. See (Tikhonov and Arsenin; 1977, p. 6), (Kabanikhin; 2011, p. 5); also contrast with
perturbation result in Appendix A.
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Definition 1 (Well posed problem, initial attempt). Assume that D and W are normed

spaces7. The solution of problem (2.1)

(1a) exists if for all d ∈ D there is an element w ∈ W such that (2.1) holds,

(2a) is unique if for all d ∈ D there is at most one w ∈ W such that (2.1) holds,

(3a) is stable under small variations of the right side d if for every ε > 0 there exists a δ > 0

such that for every data d̄ ∈ D satisfying

‖d− d̄‖D ≤ δ (2.2)

the inequality

‖w − w̄‖W ≤ ε (2.3)

holds for every Ow = d and Ow̄ = d̄.

If conditions (1a)-(3a) are satisfied for all d ∈ D then the problem (2.1) is well posed. If

one of these conditions fail then the problem is ill posed.

Simply put, the problem (2.1) is well posed if solutions depend continuously on the given

data to which they correspond; it is not assumed that solutions or that given data have any

particular structure aside that a notion of distance between different solutions and different

given data is available. On the upside Definition 1 is both general and elegant: it rests

on an abstract separation of structural features and given data and refers to solutions and

continuity as basic concepts. By attaching to it the label ‘classical’ the authors mean to

signal that the concept of well posedness was developed by Hadamard (Lavrentiev et al.;

2003, p. 7). Attributing this particular sense of well posedness to him does not do justice

to the horror Hadamard might have felt discovering his well known counterexample (see

later) as Definition 1 blurs an important distinction. The case when solutions do not depend

7Slightly more general definitions can be based on metric and/or on topological spaces, but for a more
manageable discussion we assume that the metric and the topology is induced by a norm. In the context of
differential equations used in physics this is not a serious loss of generality.
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continuously on the given data is distinct and should be differentiated from the case of

chaotic systems whose solutions depend continuously but sensitively on the given data. As

the definition above requires continuity in the normed space of entire solutions – which are

for dynamical systems also functions of a time parameter – continuous dependence in this

sense also fails if the trajectories for nearby initial values diverge. Hence the above definition

renders chaotic systems to be ill posed; no wonder that in this sense we may find many

physically realistic systems countering the dictum that only well posed problems reflect real

phenomena.8 For numerical approximation chaotic behavior may pose a challenge which

could only be overcome only by utilizing further assumptions, but this challenge is different

from the one giving physicists like Hadamard a pause.

It is useful to recall Hadamard’s example of to illustrate the failure of continuous depen-

dence we want to capture. Consider the Laplace equation in two dimensions:

uxx + uyy = 0 (2.4)

in the square Ω = {(x, y); 0 < x, y < π}. If the data given for u is

u(x, 0) = 0, u(0, y) = u(π, y) = 0 (2.5)

uy(x, 0) = 0 (2.6)

then the problem (2.4)-(2.6) has a unique solution:

u(x, y) = 0. (2.7)

If we slightly change the given data by replacing the condition (2.6) with

uy(x, 0) =
1

n
sin(nx), (2.8)

8We assume that the norm on the space of solutions is given in the way it is standardly done. With
tricky ways of inducing the norms one can trivialize the problem of continuous dependence. I.e. if O is
one-to-one, solutions of the equation Ow = d are stable with respect to the normed space with new norm
‖w‖W new

.= ‖Ow‖D.
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n being a free parameter, the solution of the problem (2.4)-(2.5), (2.8) is again unique:

u(x, y) =
1

n2
sin(nx) sinh(ny). (2.9)

Note that, due to the exponential increase in the sinh(ny) term, we can make the new

solution (2.9) differ from the old solution (2.7) to an arbitrarily large extent if we choose our

parameter n large enough (measuring distances in the natural supremum norm). However,

as we increase n, the new given data (2.8) gets closer and closer to the old given data (2.6).

And this means that the solution of the problem does not depend continuously on the given

data: in any small neighborhood of the old data and in any short span of time we find new

data such that the corresponding new solution deviates from the old to an arbitrarily large

extent even within that short span of time.

This type of failure of continuous dependence motivated the original distinction between

well and ill posed problems (or correctly and incorrectly set problems in Hadamard’s termi-

nology). When we adopt our problem setting to handle this distinction suddenly a plethora

of options for fixing the notion of continuous dependence surface. To get a sense of the

cornucopia consider again the problem

Ow = d, (2.10)

where w ∈ W , d ∈ D, and O : W → D is an operator. We now also assume solutions to take

the form of a mapping of states to a time parameter: every w ∈ W is a function w : T → S,

where T ∈ T̂ ⊆ T 9 is potentially different for different solutions. For the Cauchy problem

the normed ‘state space’ S and the ‘data space’ D are typically the same with the same

norm, however there are other problems for which the given data does not have the same

9T is the set of all time intervals (of the form (a, b), [a, b), (a, b], or [a, b], b = ∞ or a = −∞ allowed) in
R; for simplicity we assume that 0 ∈ T for all T ∈ T . Let T + ⊂ T be the set of all nonnegative [0, b) or
[0, b] intervals (b > 0, b = ∞ allowed), and let T − be similarly the set of all nonpositive intervals. Also, let
Tf ⊆ T denote the set of all finite time intervals, T +

f the set of nonnegative, and T −
f the set of nonpositive

finite intervals.

13
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structure as do the states. For simplicity let’s assume that solutions are maximally extended

in the sense that if w : T → S, w̄ : T̄ → S, T̄ ⊆ T , and w|T̄ = w̄ then from w, w̄ ∈ W it

follows that T = T̄ .

Definition 2 (Well posed problem in d). Assume that D and S are normed spaces. Let

d ∈ D be a given data. The solution of the problem (2.10)

(1b) exists at d if there is an element w ∈ W such that (2.10) holds,

(2b) is unique at d if there is at most one w ∈ W such that (2.10) holds,

(3b) depends continuously on the right side d if

∀ε > 0 : ∃δ > 0, ∃U ⊆ T (2.11)

such that for every data d̄ ∈ D satisfying

‖d− d̄‖D ≤ δ (2.12)

the inequality

‖w(t)− w̄(t)‖W ≤ ε (2.13)

is meaningful and holds for every Ow = d and Ow̄ = d̄ and for all t ∈ U .

If conditions (1b)-(3b) are satisfied then the problem (2.10) is well posed in d (in sense (b)).

According to Definition 2 for every allowed margin of deviation there is a short enough

time interval and small enough vicinity of the given data such that any other solution be-

longing to data within this small vicinity will not deviate, throughout the short time interval,

from the original solution belonging to the given data more than the allowed margin of de-

viation. In this level of generality the definition is permissive regarding existence: initial

14
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value problems whose solutions only exist locally may also be well posed.10 It is frequent,

however, to require T̂ = R, meaning that solutions should exists globally.

There are other choices one could make regarding the order and type of quantifiers in

(2.11) while still ending up with a version of continuous dependence.

∀U ⊆ T +
f , ∀ε > 0 : ∃δ > 0 (2.14)

would, for instance, require that the deviation of the solutions for t > 0 can be arbitrarily

constrained throughout any finite time interval by allowing for a sufficiently small vicinity of

the given data. Condition (2.14) is stronger than (2.11) in the sense that well posedness of a

problem with condition (2.14) implies well posedness with condition (2.11) but the converse

is not true. Changing T +
f to Tf or to T in (2.14) produces stronger and stronger notions

of well posedness; the last would actually produce a definition which, after appropriate

identifications, is equivalent with Definition 1 of well posedness we introduced before.

The arrangement of quantifiers gets especially messy when we extend the notion of well

posedness in a given data d to well posedness in general. Besides the freedom of quantification

arrangement we get the additional issue whether existence of solutions should be required for

all possible data or for just some (typically dense) subset of them. We showcase the options

using the following general definition:

Definition 3 (Well posed problem in D̂). Assume that D and S are normed spaces. Let

D̂ ⊆ D be a set of data. The solution of the problem (2.10)

10In the sense of Definition 2 Hadamard’s example is not well posed but we conjecture that Xia (1992)’s
example for non-collision singularity is. Using the notation and results of Xia (1992) the sketch of the
argument is as follows. Take an initial condition x ∈ Λ0 of the main Theorem 1.2, x = (xq, xp) with xq being
the initial position coordinates. xq /∈ ∆ and there exists a compact ball Bxq of radius rxq around xq not
intersecting ∆. Let Bx be the (higher dimensional) compact ball centered on x with the same radius rxq .
If for a y ∈ Bx we denote with σy the maximal time until there exists a unique solution of the initial value
problem (according to Theorem 0.1) then due to the compactness of Bx we have ρ .= infy∈Bx

{σy} > 0. Thus
within a small vicinity Bx of an initial condition x of a Xia scenario all solutions exists and are unique at least
for a finite time ρ/2; that continuous dependence holds should then follow from the fact that throughout
ρ/2 solutions originating from initial conditions Bx stay within a compact region.
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(1c) exists in D̂ if for all d ∈ D̂ there is an element w ∈ W such that (2.10) holds,

(2c) is unique in D̂ if for all d ∈ D̂ there is at most one w ∈ W such that (2.10) holds,

(3c) depends continuously on the right side d if

∀d ∈ D̂, ∀ε > 0 : ∃δ > 0, ∃U ⊆ T (2.15)

such that for every data d̄ ∈ D satisfying

‖d− d̄‖D ≤ δ (2.16)

the inequality

‖w(t)− w̄(t)‖W ≤ ε (2.17)

is meaningful and holds for every Ow = d and Ow̄ = d̄ and for all t ∈ U .

If conditions (1c)-(3c) are satisfied then the problem (2.10) is well posed in D̂.

Table 1 collects a garden variety of definitions we get by changing condition (2.15) in

a way that still captures the idea of continuous dependence of solutions on initial data. It

is customary to differentiate between continuous dependence of solutions in the future and

in the past directions, as solutions of some initial value problems in physics – such as the

initial value problem for the heat equation – obey continuous dependence in one but not

in the other direction. Pepping up Table 1 with the direction-dependent variants yields an

overwhelming list of 36 different definitions of a well posed problem. Allow for a priori

assumptions on properties of solutions and correspondingly restrict the data space to data

that yields a solution satisfying these a priori assumptions – which is the notion of conditional

well posedness à la Tikhonov to be discussed later – and your count is bumped up to 72!

Among the possibilities listed in Table 1 the weakest condition (1) requires that for each

member of a set of possible given data there is a small neighborhood and there is a short

time interval so that solutions corresponding to the small neighborhood exist throughout

16
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Table 1: Some versions of continuous dependence.

Alternatives to condition (2.15) Remark

(1) ∀d ∈ D̂, ∀ε > 0 : ∃δ > 0, ∃U ⊆ T The original condition (2.15).
(2) ∀d ∈ D̂ : ∃U ⊆ T : ∀ε > 0 : ∃δ > 0 (2) → (1)

(3) ∃U ⊆ T : ∀d ∈ D̂, ∀ε > 0 : ∃δ > 0 (3) → (2)

(4) ∀U ⊆ Tf : ∀d ∈ D̂ : ∀ε > 0 : ∃δ > 0 (4) → (3)
Most faithful∗ to Hadamard’s notion.

(5) ∀d ∈ D̂ : ∀ε > 0 : ∃δ > 0 : ∀U ⊆ Tf (5) → (4), (5) ≡ (7)

(6) ∀U ⊆ T : ∀d ∈ D̂ : ∀ε > 0 : ∃δ > 0 (6) → (4)

(7) ∀d ∈ D̂ : ∀ε > 0 : ∃δ > 0 : ∀U ⊆ T (7) → (6), (7) ≡ (5)
Corresponds∗ to Definition 1.

(8) ∀ε > 0 : ∃δ > 0 : ∀d ∈ D̂ : ∃U ⊆ T (8) → (1)

(9) ∀ε > 0 : ∃δ > 0, ∃U ⊆ T : ∀d ∈ D̂ (9) → (8)

(10) ∃U ⊆ T : ∀ε > 0 : ∃δ > 0 : ∀d ∈ D̂ (10) → (9)

(11) ∀U ⊆ Tf ,∀ε > 0 : ∃δ > 0 : ∀d ∈ D̂ (11) → (10)
Corresponds∗ to Definition 4.

(12) ∀ε > 0 : ∃δ > 0 : ∀U ⊆ Tf ,∀d ∈ D̂ (12) → (11), (12) → (5), (12) ≡ (14)

(13) ∀U ⊆ T ,∀ε > 0 : ∃δ > 0 : ∀d ∈ D̂ (13) → (11)

(14) ∀ε > 0 : ∃δ > 0 : ∀U ⊆ T ,∀d ∈ D̂ (14) → (13), (14) → (7), (14) ≡ (12)

∗: after appropriate identifications.
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this time interval and do not deviate more than a preset value; the neighborhood and the

interval may be different for different given data. The strongest condition (14) requires that

solutions corresponding to a small neighborhood of data exist for all time and do not deviate

more than a preset value, irrespective of the given data on which this small neighborhood

is centered. Hadamard’s example violates all of these conditions, however his own notion

of well posedness most likely corresponds to condition (4)11. Probably the most studied are

implementations of condition (7) and (11).

Given such an abundance of possible conditions of continuous dependence one could won-

der which of these is supposedly necessary for a “physically viable theory.” The strongest?

The weakest? The one for which we can most straightforwardly offer an epistemic justifi-

cation i.e. in terms of predictive use? The one which turns out to be mathematically most

fruitful? Should there be a single such condition or may the condition vary case by case?

As with religions the mere abundance of possibilities should compel us to take a step

back and to try to first get a grasp of the motivations working in the background. Let us

now turn to advantages well posedness of some sort supposedly yields, keeping in mind the

question whether these advantages could indeed be strong enough to elevate well posedness

to a “necessary condition on physical viability / possibility.”

2.2 WELL POSEDNESS AND PREDICTION

The story linking well posedness with predictions goes roughly as follows. First, the solution

of the mathematical problem describing the physical scenario needs to exists, since without

an existing solution there is no prediction we can talk of. Second, the solution needs to

be unique, since without a unique solution we do not have a definite prediction, but many

11Based the reconstruction (Fattorini; 1983, p. 55-57).
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different predictions, and we don’t know how to choose among them. Third, the data

informing our model comes from measurement, but as measurement precision of physical

quantities is finite, the data can always contain some error. The solution needs to depend

continuously on the given data, otherwise even the smallest difference in data would yield

vastly different solutions and would thus render prediction impossible.

In what follows we are going to pick this story apart, arguing that well posedness is

neither sufficient nor necessary to allow for predictions.

2.2.1 Well posedness: not sufficient for prediction

Is well posedness sufficient to allow for predictions? Prediction is an epistemic concept

and hence this question can only be answered relative to a set of assumptions about the

capabilities of the agents who carry out the predictive tasks. What kind of data do these

agents have access to? What kind of limitations do they face in gathering the data? What

do we assume about their computational, and in general, mathematical abilities? Only after

fixing these and such parameters regarding the capabilities of the agents can we hope to

settle the issue of sufficiency. As only imagination bounds the limitations one may impose

and here we resort only to a couple of remarks.

We should keep in mind that the notions of determinism and prediction are distinct.

Determinism is a metaphysical concept which, in the context of physical theories, is linked

to the issue of uniqueness of solutions. Whether determinism holds – whether a solution is

unique given certain data12 – is independent of the knowledge of the observers of this fact.

Prediction on the other hand does depend on whether the observer may access the data on

12In a wider sense determinism holds if the mathematical problem determines the solution given certain
data, that is if the problem has a unique solution. In philosophy determinism typically signifies a narrower
concept – Laplacian determinism – which further requires the given data to be a specification of an instana-
neous state (or data on a spacelike hypersurface). For an extensive discussion on the status of determinism
in physics see Earman (1986), Earman (2007) and their references.
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the basis of which she is supposed to predict. Hence even if the problem is well posed given

certain data prediction may be rendered impossible by the inaccessibility of this data.

Inaccessibility of data may come in various forms. Physical theories that impose limits on

the speed of causal signal propagations in turn impose limits on the extension of observational

past of the observers. Such are the theories of special and general relativity; even though

determinism prevails in spacetimes that admit a Cauchy surface13, this Cauchy surface might

not be contained in the causal past of the observer14. Even in cases when there is a Cauchy

surface in the causal past of the observer the observer might not be able to know that there is

one: If we require observers to have the resources to know whether they are able to carry out

predictions then prediction outside the boundary of one’s observational past is not possible

in general relativity15.

There are other types of constraints on accessibility to data implied by the theories within

which the mathematical problems are formulated. The most straightforward example is that

of quantum mechanics. Consider the interpretation which portrays the quantum world most

alike to the familiar dynamical theories, that of Bohm and de Broglie16. The time evolution

of Bohmian mechanics is deterministic: given the guiding equation, the initial wave function

13In the context of spacetime theories the past domain of dependence D−(S) of an achronal surface S is the
set of spacetime points p such that every future inextendible causal curve through p intersects S; the causal
past J−(q) of a spacetime point q is the set of spacetime points p such that there exists a past directed causal
curve from q to p; the chronological past I−(q) of q is the set of spacetime points p such that there exists
a past directed timelike curve from q to p. The future domain of dependence D+(S) of an achronal surface
S, the causal future J+(q) and the chronological future I+(q) of a spacetime point q is defined analogously.
The (total) domain of dependence D(S) of achronal surface S is the set D−(S) ∪D+(S). A closed achronal
set S whose total domain of dependence is the entire manifold is called a Cauchy surface. See (Wald; 1984,
p. 190, pp. 200-201).

14In the case of special relativity the Minkowski spacetime (R4, η) does admit a Cauchy surface; however
there is no spacetime point which would contain a Cauchy surface within its causal past. Hence prediction
is not possible for the entire spacetime manifold. Moreover observers can’t even make local predictions: it
is easy to see that for any spacetime point p and any achronal surface S, if S ⊂ J−(q) then D(S) ⊂ J−(q);
see (Earman; 1995, p. 128).

15For definitions and results see Manchak (2008).
16An accessible introduction to Bohmian mechanics and its philosophical problems is Albert (1992).
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and the initial positions of the particles17 the quantum system has a unique time evolution.

The theory however also implies that observers who do not know the initial positions of the

particles are unable to reveal them via measurement. Observers can only learn about the

evolution of the wave function and about the probabilities of measurement outcomes, but

not about the unique time evolution which brings about the measurement outcomes18.

Besides theory-driven constraints on accessibility to data observers may face pragmatic

constraints as well. For instance it seems quite reasonable to assume that only finite number

of data can be gathered by an observer. Initial values for a partial differential equation

typically consist of infinitely many data points along a surface, i.e. for the heat equation

the temperature values at each point, say, along the length of a rod. Solutions may get

uniquely determined by these infinitely many data points; they would not, however, be

uniquely determined by only finitely many of them. Hence problems which could be well

posed for given data consisting of infinitely many data points would not be well posed for

given data consisting of only finitely many data points. It seems then that, even though

many physically relevant problems are well posed when initial values of the usual sort are

given, such well posedness would not be sufficient to allow prediction for observers who are

limited to collecting only finitely many data points.

Continuous dependence may come to the rescue. The imposition that observers have

finite data collection capability does not necessitate that all data collected by them must

be of the same sort, i.e. that all collected data should be an individual temperature reading

at a certain place of a rod. Observers may have other sorts of devices with which they can

measure aggregate information about an initial state, such as how far this state lies from

an appropriately chosen reference state. If observers can perform a finite set of operations

which would directly reveal, say, the norm of the measured initial state, then they can carry

17For uniqueness results in Bohmian mechanics see Berndl et al. (1995).
18See chapter 7 in Albert (1992).
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out predictions in case continuous dependence of solutions on the given data holds for the

said norm. Continuous dependence guarantees that for sufficiently close initial states the

solutions do not deviate more than a desired amount, and hence if the norm of the initial

state can be measured with sufficiently small imprecision then the approximate behavior of

the (norm of the) solution can be predicted.

Hence assuming that observers can collect only finitely many data does not necessarily

threaten prediction as long as a norm which makes the problem well posed is approximately

measurable (if for any state there is a finite measurement procedure which, up to some

error, yields the value of the norm of the state). Whether such connection between the

mathematical apparatus and possible measurement procedures exists is crucial in order to

appreciate whether a mathematical result regarding the well posedness of a problem has any

relevance to the issue of prediction. If the problem is well posed only with norms which are

not approximately measurable then well posedness of this sort would not allow prediction to

observers handicapped with a finite data handling capability.

Even approximate measurability of the norm only allows to predict the behavior of the

norm of the solution. This is still a far cry from predicting how the solution itself behaves

in terms of its various measurable properties. It may be the case that the norm is not

operationally significant: sufficient closeness of two states in the norm does not mean that

their measurable properties are also sufficiently close to each other19. If a problem is well

posed only in norms which are not operationally significant then we can at best predict

19As an example, the L2 norm utilized in quantum mechanics is not operationally significant. Assume
measurable properties of a quantum mechanical system are the expectation values such as the position and
momentum expectation values. The time evolution for free particles is linear and unitary and thus preserves
the norm. This means that if two states start close measured in the L2 norm then they stay close for all
time. One can have two wave packets that are arbitrarily close to each other in the L2 norm such that
initially their position expectations are the same and their momentum expectations differ only slightly. Due
to Ehrenfest’s theorem the expectation values behave as their classical counterparts hence after sufficient
amount of time the position expectations can differ to an arbitrary extent, even though the states stay close
in the L2 norm! Thus closeness in the L2 norm does not imply closeness of measurable properties. See also
(Earman; 2007, p. 1403) and Belot and Earman (1999).
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how the norm of the solution behaves but not how the measurable world does20. As our

main interest lies in predicting behavior of measurable properties and not the behavior of a

single abstract (albeit frequently informative) quantity, operational significance of the norm

is crucial for linking well posedness with prediction even for observers not handicapped with

a finite data handling capability21.

Operational significance or the norm may fail for several reasons; one of its most wor-

risome aspects is the assumption that measurement precision can be arbitrarily refined.

Continuous dependence may only be sufficient for prediction if for any pre-assigned preci-

sion observers are capable of building and operating devices which can measure physical

quantities up to this said precision. Without such capability observers might run into limits

before the deviation of the can be narrowed in any useful way. There are several reasons

to think that such measurement limitations exist. Quantum mechanics sheds serious doubts

upon the possibility of arbitrary measurement precision as well as on the tacit assumption

that measurement of physical quantities can take place without altering the measured quan-

tities themselves. If observers run into hard limits in refining their measurement precision

then continuous dependence is again insufficient for prediction22.

20Even such prediction would assume that we have independent basis to know that the initial states
indeed fall into the required neighborhood; without additional premises in case the norm is not operationally
significant it is unclear how could we experimentally verify that and so even prediction of the behavior of
the norm would become problematic.

21We drew a distinction between two properties norms of well posed problems should have in order to allow
for prediction: norms that are approximately measurable and norms that are operationally significant. I have
not seen such distinction being drawn nor have I found any systematic study of how norms used in physical
theories correspond to measurement procedures that are used to test the theories. I think understanding
this link between the mathematical apparatus and the measurement procedures would be crucial in order to
understand what we do when we test our physical theories based on their predictions, and thus this problem
should move the forefront of research in the foundations of physics.

22Consider the well known Kolmogorov-Arnold-Moser (or KAM) theorem according to which the phase
space trajectory of a quasi-integrable Hamiltonian system, for particular choices of initial conditions and for
a sufficiently small perturbation parameter, can be confined to a restricted region. Thus as long as observers
of such systems can improve their measurement accuracy to get within the small perturbation required by
the KAM theorem they can predict that the trajectory stays within a confined (torus-like) region. The size of
the perturbation parameter depends on the number of degrees of freedom N of the system, and is typically of
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Finally let us mention that observers may also be handicapped with computational lim-

itations which can cause quite serious problems for prediction. Mere existence of a solution

does not imply that it can be found or even that it can be approximated by observers who

have, say, the computational capabilities of a Turing machine, even in cases when the given

data itself is within the computational reach of the observers23. Continuous dependence does

grant approximative techniques – indeed this is one of its main mathematical advantages, as

we will point out later – however there are still cases that show that well posedness is not

sufficient for constructively accessible solutions. There is a further obvious issue arising with

continuous dependence: the mere assumption that a sufficiently small data neighborhood

keeping deviation of solutions within a desired level exists does not mean that this neighbor-

hood is also computable. Prediction arguably requires that observers are able to tell when

they have arrived at their predictions and computability of the error rates is necessary for

that24.

the order exp−N log N , which means that for large-N systems the region of stability is extremely small. (For
a precise statement of the KAM theorem and for a discussion of the dependence on the degrees of freedom
see (Pettini; 2007, pp. 59-61).) It had been argued (see Frigg and Werndl (2011), and also Vranas (1998))
that for large non-integrable perturbations of integrable systems the motion is likely epsilon-ergodic (ergodic
except for a small phase space region); if we take this to be an indication that outside the small regions
of stability prediction becomes impossible then we can conclude that observers who do not have access to
sufficiently fine measurements become unable to predict even though they would be able to predict if they
were able to measure sufficiently but still finitely finely.

23A physically relevant example is provided by (Pour-El and Richards; 1989, p. 116). Pour-El and Richards
construct an initial value problem for the relativistic wave equation with computable initial values whose
solution, even though it exists and is unique, is not computable. Computability of solutions is a type of
approximation and hence it makes reference to a norm with which distances are measured; the norm utilized
by their Theorem 6 is the uniform norm on the Banach space of continuous functions of a compact region.
If one changes the norm (i.e. to the energy norm) then solutions become computable, see Theorem 7 on p.
118. (ibid). Note that well posedness for the wave equation fails for the space of continuous functions but
holds for norm relevant for energy conservation; see Appendix A.

24For many interesting counterexamples and for a general overview on computational analysis see Pour-El
and Richards (1989). See also Chapter 6 of Earman (1986) for a discussion of the relationship of determinism
and computability.
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2.2.2 Well posedness: not necessary for prediction

As even the weakest notion of well posedness (Definition 3) may allow observers handicapped

with finite measurement precision to predict at least for a brief period of time, failure of

stronger notions of well posedness do not automatically entail impossibility of prediction.

Besides this general remark it is worthwhile to take a look at other reasons why well posedness

does not seem to be necessary for prediction.

2.2.2.1 Existence. Suppose well posedness fails since the solution of the mathematical

problem does not exist. Prediction is not possible, the reasoning goes, because without an

existing solution we do not have a prediction we can talk of. But is it so? Lack of solution

may signal a variety of problems; one such problem can be that we have not utilized the

appropriate type of solution concept. Non-existence of a solution is a mathematical claim

which have been preceded by definitions of what counts as a mathematical problem and

what it is to be a solution of such a problem. The non-existence result is relative to and is

dependent on the particular mathematical choices we make in defining our concepts; if we

changed some of the requirements the existence result may also change25.

Such changes in the solution concept have happened during the history of treating the

problem of well posedness. For differential equations the concept of a classical solution

is defined as a sufficiently many times continuously differentiable function satisfying the

differential equation. Many physically relevant differential equations have classical solutions,

but many of them do not. Consider the scalar conservation law

ut + F (u)x = 0

that models various phenomena including formation and propagation of shock waves26. A

25Definitional dependence should be also noted w.r.t. sufficiency of well posedness for prediction.
26For an introduction to weak solutions, conservation laws and for a treatment of this equation see Evans

(1998).
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shock wave is a curve of discontinuity and if we want to study conservation laws we should

allow solutions which are not continuously differentiable. The concept of a classical solution

does not permit such discontinuities. It is possible, however, to weaken this classical concept;

this is where various types of so-called weak solution concepts surface.

The tricky issue is not how to weaken a solution concept, but how to weaken it so that

we avoid the trade-off between existence and uniqueness: a problem whose solution is unique

with a more stringent solution concept may very well have multiple solutions with a more

relaxed solution concept27. Appropriate relaxation of the classical solution concept can be

done for many conservation laws of the type mentioned above so that their problems become

well posed utilizing a weak solution concept. However there is an interpretational price to

be paid: it is much less straightforward to see how weak solutions represent physical systems

as they are not functions that assign states to a time variable. This may or may not cause

problem for prediction.

2.2.2.2 Uniqueness. Let us now turn to the assumption of uniqueness. The existence

of multiple solutions is supposed to threaten prediction due to a lack of recipe for choosing

among different possibilities. There are couple of questions to be asked about this assessment.

Is it necessarily the case that different solutions represent different physical possibilities?

Can there indeed be no further criteria on the basis of which we can choose among different

solutions?

27There are many examples; a simple illustration for calibrating a concept of solution to achieve uniqueness
may be the Hamilton-Jacobi equation on an open Ω subset of a Banach space E. The problem is to find
solutions u : E → R of ‖Du(x)‖ = 1 for all x ∈ E such that u(x) = 0 for all x ∈ ∂Ω. This problem has
no classical solution, it has multiple weak solutions, and among these many weak solutions one can find a
‘natural’ one, the so called viscosity solution, which is unique (see Deville (1999) for details).
Surprises may also happen. The literature on weak solution is vast and one may easily run into incompatible
definitions; even though weak solutions born out of the need to salvage non-existence of classical solutions not
all weak solution concepts are strictly weaker than the classical solution concept. For instance the Dirichlet
problem for the Laplacian with discontinuous boundary data has a classical solution but appears to not have
a sort of weak solution, see Krutitskii (2009).
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The negative answer to the first question is a commonplace in the literature of gauge

invariance. It may be that several different solutions represent the same physical scenario due

to the presence of surplus mathematical structure which do not correspond to any physical

property but which mathematically may take different values. The given physical data is

insufficient to determine these non-physical values and in turn solutions become non-unique.

This non-uniqueness, however, does not threaten prediction as long as we are only supposed

to predict the behavior of physical properties. The solutions only differ in some of their

mathematical properties, but all of them tell the same story of physical happenings28.

Thus prediction can also thrive if merely the class of physically equivalent solutions

is determined uniquely by the given data. Unfortunately we don’t have clearly indepen-

dent means of establishing physical equivalence; many times we take gauge invariance to be

evidence for physical equivalence as opposed to establishing physical equivalence first and

judging on this basis that a non-uniqueness of solutions indicates surplus structure. As ex-

perimentally we can only confirm observational equivalence, physical equivalence – sameness

of physical properties – can only be established by using additional theoretical premises, and

the presence of non-uniqueness which only affects non-observable properties is often taken

as a basis for such a premise of a Leibnizian flavor.

As physical equivalence is not identical with observational equivalence we may also won-

der whether fans of prediction would not be satisfied with being able to predict the course

of observable properties. For that it would be sufficient to have the class of observationally

equivalent solutions being uniquely determined by the given data. As what solutions count

28An example for gauge invariance can be found in electrodynamics. The initial value problem for
Maxwell’s equation for electromagnetic potentials does not have a unique solution; the solution only be-
comes unique if one imposes some further condition, such as the Lorentz gauge condition. The different
solutions for potentials however tell the same story about the behavior of the electromagnetic field E and B.
Only the E and B fields are empirically accessible and hence it may be reasonable to assume that only they
represent genuine physical properties and the potentials are merely convenient tools for calculation (albeit
the Aharonov-Bohm effect suggests otherwise). See i.e. in (Earman; 2007, p. 1378).
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observationally equivalent again depends on the capabilities of the observers, for sufficiently

handicapped observers this could be a much less stringent requirement than unique determi-

nation of the class of physically equivalent solutions, and a further blow to the assumption

that uniqueness of solutions themselves is necessary for prediction29.

Assume now that our problem has several non-physically and/or non-observationally

equivalent solutions given certain data. Under what conditions does this multiplicity threaten

the possibility of prediction? Can we indeed not rely on further criteria to choose among

these solutions?

When the given data does not include all data that is available to the observer at the

time of prediction this further data may be relied upon to get rid of multiplicity – lack of

uniqueness may simply be due to not taking into account all available information. Thus the

possibility of prediction should only be at peril when the given data includes all data that

is available to the observer. However, as we discussed before, different assumptions about

capabilities of observers yield different sets of data that is available to them. That this may

cause problems can be illustrated by examples. Physicists who emphasize the necessity of

well posedness for prediction typically think of initial value problems where the given data is

a specification of the properties of an instantaneous state. If we already assume (pace theory

of relativity) that an entire instantaneous state can be considered as data that is available

for an observer we might as well assume that the states past this instantaneous state also

constitute data that is available for the observer – observers, after all, may have memory of

states which they lived through. There are, however, examples of problems which are not

29When the need for prediction is cited to motivate continuous dependence prediction is understood to take
place with some imprecision. This suggests that we may even relax observational equivalence to ‘observational
similarity’ and require only the class of ‘observationally similar’ solutions to be uniquely determined by the
given data. This would be a bit misleading, however, as continuous dependence is also motivated by the
possibility to arbitrarily diminish the said prediction imprecision via narrowing the set of possible given data.
If only the class of observationally similar solutions were fixed by an individual given data there would be
no more ways to improve upon the similarity.
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well posed when the given data is an instantaneous state but which become well posed when

the given data is a set of (past) states; initial value problems for delay differential equations

are often of this sort30.

Important cases for instantaneous states not furnishing all data that is available to the

observer also permeates the literature on inverse problems. Inverse problems deal with

retrodiction: they ask what could have been the dynamical evolution in the past that led to

a certain present state? An inverse problem which only takes the present state as given data

may have multiple solutions. However observers may have additional information on the

behavior of the solution that led to the present state i.e. that its norm have not surpassed a

certain finite value. Assuming finiteness of the norm of the solution is in many cases sufficient

to ensure uniqueness. The assumption that the dynamical evolution leading to the present

state was not explosive may in certain circumstances be treated as further data that is given

to the observers31. Thus one needs to be careful drawing conclusions from the failure of a

Laplacian sort of determinism to the failure of prediction; prediction may still be possible

even if Laplacian determinism fails.

Assume, then, that the given data does include all data that is available to the observer

at the time of prediction and the problem still has several non-observationally equivalent

solutions. Prediction of the involved observable quantities with certainty may be then at

peril but that does not preclude the possibility of prediction with very high probability.

Even if uniqueness can not be guaranteed, the physical theory in which the problem is

formulated may furnish a probability distribution on the space of solutions according to

which these solutions get realized. Such is the case is quantum mechanics; in the Bohm–

de Broglie formulation the guiding equation uniquely determines the time evolution of the

quantum mechanical system given the initial wave function together with the initial position

30For examples and physical relevance see (Earman; 2007, p. 1373).
31Technical issues surface when we attempt to formulate a requirement for continuous dependence on such

type of ‘data’ but for uniqueness purposes these issues are not present.
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of the Bohmian particle. If we make the usual assumption that observers can not know

the initial position of the Bohmian particle and thus we assume that only the initial wave

function constitutes given data then the solution of the resulting problem of finding the time

evolution of the quantum system is not uniquely determined. Still the wave function traces

the probability of finding the Bohmian particle in a certain location and hence it provides a

probability distribution over the set of possible solutions. Depending on the physical setup

the probability of finding the Bohmian particle – and thus the probability to obtain certain

measurement outcomes – can get arbitrarily close to one.

We take up further discussion of prediction with uncertainty in the following section.

When probabilities or other notions of ‘likeliness’ for solutions are not supplied by the phys-

ical theory32 there are few options remaining open to eliminate non-uniqueness. One option

may be to discard some solutions along the lines that they are ‘unphysical.’ Such claims are

fueled when results show that uniqueness ensues if we can impose suitable boundary condi-

tions or growth conditions or other restrictions on the behavior of the solution. An example

could be the initial value problem for the heat equation on the real line33. The solution of the

initial value problem is not unique without the aid of further conditions, such as a specific

exponential growth condition on the solution or the assumption that the solution is non-

negative everywhere for all times. Both of these assumptions may be regarded as ‘physically

reasonable’: lack of strong influences coming from infinity may motivate the exponential

growth condition, or the physical interpretation of the solution as temperature may moti-

32If the physical theory does not supply the probabilities in order to smuggle them in one either needs
to resort to some dubious principle such as the principle of indifference or needs to invent extra physical
properties. (For a brief discussion of these options in the context of an example in classical physics see
(Norton; 2003, p. 10).) Without further empirical justification of the so-introduced probabilities neither of
these options seem helpful for prediction.

33In general parabolic partial differential equations provide illustrative examples since their initial value
problems typically do not have unique solutions (their characteristics coincide with planes of absolute si-
multaneity). For results for the heat equation and for a discussion of general second order linear parabolic
partial differential equations see John (1982).
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vate the non-negativity assumption. The crucial issue from the perspective of prediction is

whether such ‘physically reasonable’ assumptions could indeed be taken as available data34.

As the required assumptions can not be derived from data of any present or past state,

observers lacking foresight can not take them to be available data, and hence observers can

not rely on such assumptions to pick out a single solution35 without running into circularity.

There is another way to diminish worry about non-uniqueness arising for problems of a

physical theory T if there is another physical theory T ′ that ‘cures’ non-uniqueness of T .

If T ′ is in some empirical sense superior to T then we can point fingers towards T ′ to get

rid of some of the solutions of T as ‘unphysical.’ This elimination in turn may allow us to

predict on the basis of the remaining solutions. Such ‘curing’ relationship between classical

and quantum mechanics have recently been explored by Earman (2009) in the context of

Laplacian determinism. It remains to be seen to what extent does the ‘cure’ come from

elimination of physical possibilities that results from different mathematical assumptions

and to what extent does it get an explanation in terms of new physical knowledge36. Albeit

34For an extended discussion and criticism of such conditions on the heat equation in the context of
Laplacian determinism see (Earman; 1986, pp. 40-45).

35Prediction with uncertainty may come again to rescue. We have pointed out the possibility of prediction
with uncertainty when we can rely on a notion of ‘likeliness’ on the space of solutions belonging to a single
given data; in the following section we treat the case when a notion of ‘likeliness’ is available for the space of
given data. A third option for prediction with uncertainty could arise if a notion of ‘likeliness’ were furnished
for conditions on the behavior of solutions that ensure uniqueness, i.e. resulting from the ‘chance’ of strong
influences coming from infinity. The required notion of ‘likeliness’ may be obtained from an additional
physical theory or even merely from counting relative frequencies of relevant past observations. To my
knowledge motivating uncertain predictions via this third route is unexplored in the philosophy of physics
literature.

36For the purposes of this footnote let WT stand for the set of physically possible worlds according to a
theory T . Let [wT ] denote the set of all worlds in WT which agree with wT ∈ WT at some time; let us here
refer to [wT ] as the indeterminism bouquet of wT . The world wT ∈ WT is (Laplacian) deterministic if it is
the only world which can agree with itself at some time, that is when its indeterminism bouquet has a unique
member [wT ] = {wT }. (The relation generating [.] is reflexive and symmetric, but not necessarily transitive.
After a suitable rescaling of the global time function [wT ] = {wT } whenever wT (t∗) = w′

T (t∗) for some t∗

implies wT (t) = w′
T (t) for all t. wT (t∗) for a specific time t∗ is called the state of the world wT at time t∗.)

Some worlds in WT may be deterministic while some other worlds in WT may not be deterministic, which is
to say they are indeterministic. Thus we can partition WT as Wd

T ∪Wi
T where Wd

T holds the deterministic
worlds and Wi

T holds the indeterministic worlds. (Note that for wT ∈ Wi
T we have [wT ] ⊆ Wi

T .) The theory
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this is a fascinating area of inter-theoretical relationships we can only rely on aid coming

from better theories when there are any; unfortunately many of our best physical theories

are also plagued by non-uniqueness and thus cure for their non-uniqueness awaits discovery

T is deterministic if all worlds in WT are deterministic – if WT = Wd
T –, and it is (partially) indeterministic

otherwise.
Suppose a theory T is indeterministic. What would it take for another theory T ′ to “cure” the indeter-

minism of T?
The question clearly assumes that theory T and theory T ′ can be related to one another in some meaningful

way. It seems that addressing the same type of phenomena is necessary for so relating the two theories in a
meaningful way: the question whether the theory of business cycles may cure the indeterminism of the theory
of quantum mechanics appears moot because these theories do not address the same type of phenomena.
Thus there needs to be some type of phenomena to which both some physically possible worlds of T and
some physically possible worlds of T ′ can be related. But if both theories’ physically possible worlds can be
related to the same phenomena they can also be related to one another. A minimal assumption, then, is
that at least some physically possible worlds of T can be related to some physically possible worlds of T ′;
let’s denote the mapping implementing this relation by the partially defined mapping φ : WT 7→ WT ′ . For
some worlds in WT the mapping φ may not be defined, and for some worlds it may yield an empty result,
meaning that some physically possible worlds of T do not have corresponding physically possible worlds of
T ′. φ may also be one-to-many, as T ′ may give a more nuanced description of the phenomena than does T .
Although specifying φ is far from being straightforward let us now assume that it is given.

We say that theory T ′ cures the indeterminism of the physically possible world wT of T if all physically
possible worlds of T ′ corresponding to wT are deterministic: if φ(wT ) ⊆ Wd

T ′ . The theory T ′ partially
cures the indeterminism of theory T if it cures the indeterminism of at least some physically possible worlds
of T . The theory T ′ cures the indeterminism of theory T if it cures all of T ’s indeterministic worlds: if
φ(W i

T ) ⊆ Wd
T ′ .

Note that curing the indeterminism of a theory T by T ′ does not necessarily mean that T ′ fares better on
the front of determinism, as T ′ may still be indeterministic; perversely some of the indeterministic worlds of
T ′ may even correspond to physically possible worlds of T which were originally deterministic. Those who
take indeterminism as a disease for which determinism is the cure strive not merely for curing indeterminism
in the sense defined above, but for curing indeterminism by a deterministic theory.

Indeterminism of a physically possible world wT consists in that [wT ] is not unique. Curing this indeter-
minism requires reducing the number of corresponding possible worlds in the corresponding indeterminism
bouquet to at most a single possible world. Hence curing indeterminism of a possible world can follow a
(mix) of three different strategies: elimination of the physically possible world itself, elimination of physically
possible worlds in the indeterminism bouquet, and determination of the physically possible worlds (turning
indeterministic worlds into deterministic ones).

If successful cure merely means that the therapy leaves no ill patients then the therapist can take care of
the illness in a simple but maybe not very satisfying way: by the elimination of all ill patients. According to
our definition T ′ does cure the indeterminism of T in case no physically possible worlds of T ′ correspond to
the indeterministic worlds of T ′. We say that T ′ eliminates a physically possible world wT of T if φ(wT ) = ∅.
A radical way for a theory T ′ to cure the indeterminism of T is by elimination of all of T ’s indeterministic
worlds: φ(Wi

T ) = ∅.
It is possible to cure the indeterminism of T by elimination of all of its indeterministic worlds, but for

an elimination strategy to succeed it is also sufficient to eliminate worlds in indeterminism bouquets. We
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of yet unknown theories.

Finally we note that even the existence of several non-observationally equivalent solu-

tions, given all available data and all justified restrictions and all likeliness analysis, would

not necessarily serve a fatal blow to prediction. As long as our problem narrows down the

set of possible solutions in some way it yields us a prediction in the sense that it asserts that

only solutions belonging to this set are possible. Non-uniqueness should not be equated with

‘everything goes.’ It may well be that some observable quantities can not be predicted but

some other observable quantities can, or at least that we can predict the range in which the

evolution of observable quantities fall. Such predictions would even allow us to empirically

test our theories; the tests would arguably be less effective than in cases where uniqueness

reigns but they would still make the theory falsifiable37. Narrowing the set of observable

say that T ′ eliminates an agreement alternative of a physically possible world wT of T if it eliminates at
least one world from the indeterminism bouquet [wT ]: if there is a w′

T ∈ [wT ]\{wT } such that φ(w′
T ) = ∅.

Eliminating all agreement alternatives of wT may be a decisive step in curing the determinism of wT . As
an example consider the case of a theory T ′ for which WT ′

.= Wd
T ∪ V where V is a minimal set for which

[V ] = Wi
T , and set φ(wT ) = wT if wT ∈ WT ′ and φ(wT ) = ∅ otherwise. ([U ] .= ∪w∈U [w]. V is minimal in the

sense that for any proper subset of V : [V ] 6= Wi
T . Such V always exists due to the axiom of choice.) In this

example T ′ eliminates the indeterminism of T and is itself deterministic. Determinism was achieved purely
by elimination of some indeterministic worlds, even though it did not require elimination of all of them.

Curing indeterminism may happen without elimination of possible worlds. Here is a simple but useful ex-
ample of a theory T ′ curing the indeterminism of T without elimination: for all wT ∈ WT let φ(wT ) = (wT , κ),
where κ is a different cardinal for each wT ’s, and let WT ′ = φ(WT ). No worlds in WT ′ are indeterministic,
since due to their different labeling they are never going to agree with each other. Curing happens by ‘de-
termination,’ by turning indeterministic worlds into deterministic ones. The cure is nevertheless suspicious,
as nothing seems to suggest that receiving a different κ label signifies a physical difference between states
which would agree otherwise.

In which of these ways do actual physical theories cure the indeterminism of another theory? To my knowl-
edge this is a not yet well understood topic in the foundations of physics. I conjecture that most cases, such
as curing the indeterminism of classical physics by quantum mechanics, involves to some degree elimination
strategies. From a philosophical point of view curing indeterminism by elimination is less compelling than
curing by ‘determination’: the very same elimination could be achieved without the help of any additional
theory as a mere posit in the old, i.e. by an application of a selection principle we discuss later. Elimination
by a selection principle may seem more ad hoc than elimination implied by the mathematical structure of
another theory but it is unclear to me whether the difference has philosophical significance.

Same distinctions can be made w.r.t. curing non well posedness; to pursue this issue further shall be the
topic of another paper.

37Take, for instance, the indeterminism produced by Norton (2006)’s Dome. The solution depicting the
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possibilities is a valid and pragmatically useful sense of prediction and yet another indication

of why issues of determinism should not be equated with issues of prediction.

2.2.2.3 Continuous dependence. There are many tacit assumptions behind the tenet

that continuous dependence of solutions on given data is necessary to allow for prediction

for observers who are only capable to obtain the given data imprecisely. For one it is tacitly

assumed that the given data consists of physical quantities which take continuous values. If

the possible values for the quantities were discreet then it would be sufficient if measurement

precision could get beyond the distance between successive values, since then it would be

possible to reveal by a finite precision measurement the precise value of the physical quantity.

We do venture that some fundamental physical quantities are of this sort, i.e. in quantum

mechanics the possible energy values are quantized.

In Hadamard’s example we have found arbitrarily large deviations of solutions for any

small neighborhood of the initial data within any short span of time. The presence of

unbounded behavior might seem to be curious: continuous dependence could, in principle,

also fail without producing large deviations. It is possible that continuous dependence fails

but solutions are still not departing more than a fixed number ε∗ > 0 after choosing an

appropriately small δ > 0 neighborhood for the given data. Even though ε∗ could not be

further decreased by decreasing δ this type of failure of continuous dependence doesn’t seem

to pose a fatal problem for approximate prediction if ε∗ is “small,” as we could still keep

predictions within ε∗ accuracy by keeping accuracy of the given data within a δ range.38 We

should allow for such failure of continuous dependence i.e. if our continuous models were

known to be merely approximations of inherently discreet processes.

ball departing the top of the Dome at t = 0 puts an upper bound on the distance the ball may be from the
top of the Dome at a given time regardless of which of the multiple non-observationally equivalent solutions
gets realized. Claims of the form ‘the ball will not hit the pole situated in 100 meters from the top of the
Dome under 10 seconds’ are valid and testable predictions of the theory.

38Compare with remarks on necessity of uniqueness!
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In the context of differential equations, given that existence and uniqueness of solutions

is established, if continuous dependence fails then arbitrary deviation of the solutions is

tacitly assumed39. The reason has to do with powerful theorems in functional analysis show-

ing that when solutions fall into a compact set existence and uniqueness entails continuous

dependence. These theorems are the main motivations behind Tikhonov’s notion of a condi-

tionally well posed problem Tikhonov (1943). Tikhonov assumes that the given data may not

vary arbitrarily but only within a specific subset of data which yield solutions that belong

to a restricted set, i.e. that the norm of the solution stays below a certain upper bound40.

The challenge of establishing (conditional) well posedness then reduces to the challenge of

establishing uniqueness of solutions which significantly decreases mathematical difficulties.

Why should failure of continuous dependence and an ensuing arbitrarily large deviation

pose a fatal threat to prediction? Hadamard opines that sans continuous dependence “ev-

erything takes place, physically speaking, as if the knowledge of ... [the initial data] would

not determine the unknown function,” and the time development of a system lacking con-

tinuous dependence “would appear to us as being governed by pure chance (which, since

Poincaré, has been known to consist precisely in such discontinuity in determinism) and not

obeying any law whatever” (Hadamard; 1923, p. 38). Thus Hadamard piggybacks failure of

continuous dependence to apparent failure of determinism41 and he equates apparent failure

39I am not aware of counterexamples. If uniqueness also fails then solutions might not deviate arbitrarily,
i.e. as in the case of Norton (2006)’s Dome.

40Using the notation of Definition 1 conditional well posedness requires that (i) the solution w exists and
it belongs to M , (ii) the solution is unique in the set M , and (iii) for every ε > 0 there exists δ > 0 such that
for every data d, d̄ ∈ OM satisfying

‖d− d̄‖D ≤ δ

the inequality
‖w − w̄‖W ≤ ε

holds for Ow = d and Ow̄ = d̄. When the operator O is continuous and M is a compact set existence
and uniqueness entail continuous dependence (Lavrentiev et al.; 2003, p. 11). For another significant result
connecting existence and uniqueness with continuous dependence, see Appendix A.

41Apparent failure of determinism should of course not be confused with actual failure of determinism.
Popper (1982) seems to make this sort of mistake as it was pointed out by (Earman; 1986, p. 9).
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of determinism with apparent “pure chance” and “not obeying any law whatever.”

We have already commented on the danger of equating non-uniqueness with ‘everything

goes.’ The same is true for equating failure of continuous dependence with ‘everything goes:’

“not obeying any law whatever” would require that any function which can represent a time

development of a system can be approximated by a solution of the problem that originates

from a small pre-assigned neighborhood. In physically relevant problems this is not the case;

even if the norm of solutions originating from a small neighborhood varies wildly that does

not imply that such solutions are dense in the set of all functions that can represent time

development (many of which do not obey the law of the problem). Thus even if continuous

dependence failed it would be possible to achieve predictions in the limited sense we described

in the previous section. If the norm is not operationally significant then solutions originating

from a small neighborhood may even allow prediction of specific values of physical quantities

instead of prediction of some set of these quantities.

Continuous dependence favors a notion of prediction with certainty. If observers can

sufficiently narrow the set of possible given data they can be certain that the corresponding

solutions stay within a desired level of accuracy, no matter which data within this possibility

set is actual. Certainty is not the only interesting option from the vantage point of those

who would want to predict; failure of (classical) continuous dependence may still allow for

predictions with various degrees of certainty. This may be captured by theoretical results

in several ways. Suppose, for instance, that the set of possible given data D is endowed

with a probability measure and that it has a subset D̂ ⊂ D of measure one such that

solutions depend continuously on data that belongs to this subset. If the probability measure

reflects on the chance of the occurrence of the given data in observational scenarios then this

would mean that continuous dependence holds almost always and observers are almost never

mistaken in their predictions. We could even relax the assumption that the measure of this

data subset is one to that it is very close to one and still end up with a pragmatically highly
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justified notion of prediction.

There are rigorous ways other than measure theory to talk about certainty. Solutions

that fail to depend continuously on all data D may depend continuously on a set of data

D̂ ⊂ D that has the same cardinality as D. If the cardinality of D\D̂ is smaller than that of

D and D̂ then there are ‘as many’ possible data in D̂ as in D while there are relatively ‘few’

possible data in the omitted set making, in this sense, appearance of continuous dependence

‘likely.’ A bit more elaborate way of talking of relative sizes is via the notion of a meagre

set of descriptive set theory42. If D\D̂ is a meagre set in D then one could say that the set

of exceptions from continuous dependence is negligible compared with all possibilities.

Talking of certainty in terms of measure, cardinality or meagreness may not help crit-

icizing the necessity of continuous dependence for prediction: mathematical results might

cut in both ways and it may turn out that the set of data one would need to discard in

order to achieve conditional well posedness is ‘overwhelming.’43 If predictions in these cases

would actually work out well we would be compelled to conclude that the applied mathemat-

42A set is meagre iff it is the countable union of nowhere-dense sets. A set is comeagre iff its complement
is meagre. See i.e. Oxtoby (1980).

43Consider the case of a point particle constrained to move on a frictionless surface S in the presence of
a uniform gravitational field. As it is exemplified by Norton’s Dome the initial value problem for Newton’s
law is not always unique if we only require the surface S to be continuously differentiable (to be C1). As a
consequence of Theorems 1 and 2 in Appendix A the initial value problem does become well posed (in the
sense defined there) if the surface S belongs to C2. One could wonder then about the relationship between
C1 and C2 in terms of relative ‘sizes.’ Two claims can be conjectured:
Claim 1. Take an initial value problem of a point particle constrained to move on a frictionless C2 surface S.
In any δ-neighborhood of S (understood in the supremum norm) there are C1 surfaces for which the initial
value problem with the same initial value does not have a unique solution. The cardinality of such C1 surfaces
in the given δ-neighborhood is at least as large as the cardinality of C2 surfaces in the δ-neighborhood.
Claim 2 C2 surfaces are megre among the C1 surfaces.
Claim 1 can be proven by bending the surface S perpendicular to the direction of the particle’s velocity
using Norton’s construction in a sufficiently small area around the particle’s initial position. Claim 2 is a
consequence of the well known theorem of Banach (1931) according to which the set of continuous functions
that have a derivative in at least one point are meagre set in the space of continuous functions. As maybe not
all C1\C2 surfaces lead to indeterminism it is only indicative of the fact that there might be overwhelmingly
more indeterminism-yielding surfaces than well behaving ones. If our mathematical notions of “likeliness”
had any relationship to the chance of the occurrence of physical systems which are adequately represented
by these models then we should expect prediction to fail ‘overwhelmingly.’
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ical notion of ‘likeliness’ has no direct relationship with chance of occurrence in predictive

scenarios. Without such link between mathematical notions and physical occurrences it is

difficult to appreciate any of the results and there is a risk of mistaking elegance of a mighty

formalism with relevance for application. When the physical theory itself does not endow a

mathematical notion of likeliness with physical interpretation (as it is the case with quantum

mechanics) the mathematical notion of likeliness is in grave danger of being purely ad hoc.

Arguing along the lines of ‘likeliness’ of some subset D̂ of given data D does not exclude

the possibility of data D\D̂: we only assumed that data in D\D̂ is not ‘likely’ and hence its

possibility does not threaten prediction. Albeit Tikhonov’s restrictions on the set of possible

given data seems only to be warranted for inverse problems it does call attention to the

strategy of narrowing the set of possible given data to achieve continuous dependence. One

may argue that there exists a sort of selection principle that supplements the requirement

of well posedness: for reason X the set D\D̂ contains given data that is not (in some sense)

possible and hence we only need to require well posedness conditionally on a restricted subset

D̂. Reason X many vary; here we briefly concoct some possibilities.

The so-called Past Hypothesis narrows the set of possible initial conditions of our Uni-

verse to a specific subset44. It has become fashionable to elevate this requirement to the

venerable status of a physical law. Riding this tide one could posit the Well Posedness Hy-

pothesis which narrows the set of possible initial conditions of our Universe (for a suitably

chosen fundamental physical theory) so that conditioning on this narrower set the initial

value problem becomes well posed. If one could supplement this Hypothesis with results

showing that well posedness of relevant local direct problems in the future time evolution

follows from the Hypothesis then one could get an explanation of why well posedness seems

to holds for the typical dynamical systems we are experimentally familiar with.

44For an introduction to the Past Hypothesis which assumes that this set comprises states of low entropy
see Albert (2000).
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For reasons similar to those expressed against the Past Hypothesis the Well Posedness

Hypothesis may not even be false: to paraphrase Earman (2006) it is not clear whether it

can be properly motivated, whether it can be well defined, and whether its implementation

would consist in more than furious hand waving and wishful thinking. It certainly ‘solves’

the problem of justifying necessity of well posedness by fiat. When no further explanation

seems possible such attempt may satisfy someone but we do not pursue this line of thought

further here as I’m not aware of any defenders of such Hypothesis.

Another candidate for a selection principle could be selection by measurement. According

to this idea both well and not well posed problems may be physically possible but the act of

measurement selects a subsample of systems that can be described by well posed problems.

One could maintain that measurement always alters the measured system in a way that

conditioning of the set of post-measurement systems renders problems conditionally well

posed. Such selection by measurement would then explain why do we seem to experience

well posedness and why failure of well posedness could nevertheless happen when no-one

looks. Although this may be an interesting idea to investigate I’m not aware of any analysis

of measurement that would indicate the existence of such a selection by measurement.

The selection principle may be supplied by another theory. We touched upon the pos-

sibility of a theory T ′ ‘curing’ the non-uniqueness of a theory T by elimination of some

solutions of T . A theory T ′ may similarly ‘cure’ the failure of continuous dependence of

solutions of T by narrowing the set of possible given data. If T ′ is in some sense superior

to T then one may argue that failure of continuous dependence simpliciter is not necessary

for prediction; we can eliminate some of the given data on the recommendation of theory T ′

and it is sufficient for prediction if continuous dependence holds conditionally on the rest.

The idea of cherry-picking from the set of possible given data that is promoted by the

above selection principles is rarely cherished outside the literature on inverse problems. The

cherry-picking does nevertheless happen albeit it is dressed up more innocuously. Instead of
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narrowing the set of possible given data D while keeping the norm with which one measures

distances between data, curing failure of well posedness typically proceeds by changing the

norm ‖.‖D to another norm ‖.‖D′ . As we are going to see many physically relevant problems

that are not well posed using one norm becomes well posed using another. What may slip

past by the attention of the causal reader is that there is no change of norm without a

corresponding change of the underlying space. The mathematical claim we usually read is

not that the problem which is not well posed in the space (D, ‖.‖D) becomes well posed

in the space (D, ‖.‖D′), but that the problem becomes well posed in the space (D′, ‖.‖D′)

where D and D′ typically differs. The difference is induced by the assumption that ‖.‖D′ is

meaningful on the elements of D′; indeed this is the condition through which D′ is usually

defined. ‖.‖D′ is frequently not meaningful for all elements of D and hence the pair (D, ‖.‖D′)

would not be a normed space.

Thus changing the norm may implicitly introduce a selection among the possible given

data, i.e. when elements of D are states then states that appear possible in one formulation

may become not possible in another. Narrowing the set of possible states by means of

invoking a selection principle may rightfully leave bad taste in our mouth but then similar bad

taste should also accrue seeing changes in norms that also imply elimination of possibilities.

Whether the bad taste should persists depends on what do we make of the difference between

D and D′ as their elements may turn out to be identifiable in some physically relevant sense.

The existence of a norm preserving isomorphism between elements of D and D′ could be an

indication of such identifiability; such is the case when both D and D′ are separable infinite

dimensional Hilbert spaces45.

45The existence of a norm preserving isomorphism seems as much as one may want for physical iden-
tification and it has become a sort of slogan that in physics we do not need to care about the choice of
the (infinite dimensional separable) Hilbert space as they are all equivalent. Treating isomorphic Hilbert
spaces as representing the same physical possibilities does not seem to me to be the only arguable option.
Consider the example D = L2(R4) = H0(R4) and D′ = H5(R4), Hk referring to the kth Sobolev space. As
both L2 and H5 are separable infinite dimensional Hilbert spaces there is a norm preserving isomorphism
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As we can see necessity of continuous dependence for prediction is difficult to justify in

full generality. We now turn to the issue of connecting pragmatic concerns of predictability

with metaphysical claims of possibility.

i according to which all ψ ∈ H5 corresponds to a ψi = i(ψ) ∈ L2; norm preserving means that we always
have ‖ψ‖H5 = ‖ψi‖L2 . Every element of H5 can, however, be also naturally identified with an element of
L2, as every function whose H5 norm is finite has a finite L2 norm as well. Loosely speaking every state
in H5 is also a state in L2. Thus there is a mapping m so that every ψ ∈ H5 naturally corresponds to a
ψm = m(ψ) ∈ L2; furthermore we always have ‖ψ‖H5 = ‖ψm‖H5 (properly understood). The mapping m
is, of course, not a bijection, in general ‖ψ‖H5 6= ‖ψm‖L2 , and m and i only agree on the null-vector.

It may be reasonable to argue that it is the mapping m that identifies physically possible states as the
‘same’ in different mathematical representations and to view a transition from L2 to H5 as narrowing the
set of possibilities (or a transition from H5 to L2 as including more possibilities). L2 i.e. allows physical
states with ‘rough edges’ while H5 does not. As some states in L2 have properties that none of the elements
in H5 have it may be an open debate whether such difference in properties signal physical difference.

Note that the difference between m and i is also carried over to possible time evolutions since i and m

identifies different functions fi : t 7→ L2 and fm : t 7→ L2 with a given time evolution f : t 7→ H5. Suppose
we solve an initial value problem in H5 and we solve the ‘same’ initial value problem in L2 in the sense
that the initial values are the same (according to m) and the differential equation takes the ‘same’ form. If
f is the solution of an initial value problem in H5 then the same function in L2 (that is, fm) may not be
the solution of the ‘same’ initial value problem in L2! Purely from taking a look at a function describing
the time evolution of a system we can not tell whether it is a solution of a differential equation until we
fix the norm operating on the space of states. (This should be obvious as the definition of a solution of a
differential equation invokes a norm according to which derivatives are taken and for different norms the
derivatives may differ. This is not emphasized in finite dimension as there all norms are equivalent.) Thus
given the time evolution of a system and the form of the differential equation it may be possible to determine
the norm (up to equivalence) from the requirement that the time evolution needs to be a solution of the
equation. Unfortunately our observers do not have access to the time evolutions, they only have access to
the time evolution up to some imprecision, and as imprecision is mathematically represented by a norm the
norm needs to be already given. (Some iterative process to find the right norm may be of help but there is
no guarantee that such process would not yield multiple potential norms.)

That fm may not be a solution in L2 even though f is a solution in H5 can either be interpreted as a
further proof that m should not be taken as physical identification or as an indication that we should be
more careful identifying differential equations defined on different spaces as being the ‘same’ merely on the
basis of their formal similarity. On the other hand if we take i to physically identify elements of L2 and
H5 then we need to make sense of results such as the ‘same’ initial value problems being well posed in one
of the spaces but not in the other. I.e. Hawking and Ellis (1973) famously proved the existence of a well
posed initial value formulation of linear diagonal second order hyperbolic systems for globally hyperbolic
spacetimes; it is assumed that continuous dependence is understood with norm H5, not with norm L2; see
(Wald; 1984, pp. 244-267) for details.
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2.3 PREDICTION AND PHYSICAL POSSIBILITY – THE GAP

OBJECTION

As we have seen quite many assumptions are needed to justify either necessity or sufficiency

of well posedness for prediction. Assume now that well posedness is indeed necessary for

prediction. Can we then draw conclusions regarding the necessity of well posedness for

physical possibility46?

Prediction is undoubtedly an important pragmatic virtue; one may even maintain that a

theory that is unable to predict is ‘not viable’ in some pragmatic sense. Pragmatic virtues,

however, should not be confused with metaphysical claims. A theory may very well be true

of the world even if it does not have certain pragmatic virtues which would allow users of

the theory to, say, carry out predictions. Observers’ problems with being able to carry out

predictions are epistemic problems; claims about physical possibilities entailed by a certain

theory are metaphysical claims. There is a gap between epistemic and metaphysical claims –

between what may be known and what there may be – and without closing this gap in some

way one can not draw inferences from failure of epistemic access to physical impossibility.

One can ask the question: but how do we know whether a certain theory is true of the

world? As we typically test our dynamical theories by testing the empirical adequacy of

their models well posedness seems instrumental for confirmation. If well posedness were

sufficient for prediction then we had a straightforward recipe that allows testing of theories

both in inductive and in falsificatory ways: First, decide upon a level of empirical fit with

which you want to test your theory. Take a well posed problem, determine the data precision

that corresponds to the required fit, and determine the set of possible predictions. Create a

46Although the authors quoted above do not directly use the term ‘physical possibility’ they claim that
well posedness is necessary for “a mathematical model to describe a real physical process,” and its failure
would be “pathological” and “does not occur in physics.” I take these quotes to express that models of
theories which arise from some relevant set of problems that are not well posed can not (all) be taken to
represent physical possibilities.
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physical scenario such that its measured physical quantities that are represented by the given

data fall within said precision and observe how the system behaves. Contrast the outcome

with the predictions. If there is a possible match then the theory passed the particular

test and one may refine the level of empirical fit or change the tested problem, rinse, wash

and repeat. If there is no possible match and the discrepancy can not attributed to data

collection, interference or representational problems then the theory is falsified since if the

theory had been true then deviations of solutions should have stayed within the pre-assigned

fit.

Lack of well posedness would sabotage several steps in this logic. If well posedness were

necessary for prediction (if all objections against its necessity mentioned in the previous

section were preempted) then without continuous dependence our theory testers would be in

trouble no matter how loose level of empirical fit would they aim at. They would not be able

to find a precision such that scenarios whose measured physical quantities fell within said

precision could be guaranteed to evolve as to stay within the required fit. Some scenarios

may do so, some others might not, and so inductive practices would be in trouble. Even if

none of the evolutions stayed within the required fit we could not rely on this fact to falsify

the theory as the theory itself allows the existence of arbitrary deviations.

The same worries we raised about sufficiency and necessity of well posedness for predic-

tion apply to its sufficiency and necessity for confirmation; the Reader is urged to revisit

the problems from this point of view. To the extent well posedness is not necessary for

confirmation we may acquire reasons to believe that solutions of not well posed problems do

represent physical possibilities. Furthermore, even if a case can be made for a connection

between well posedness and confirmation of theories, arguments connecting physical possi-

bility with confirmation would still suffer from the same problem as arguments connecting

physical possibility with prediction do. A theory may well be true of the world even if users

of the theory are not able to confirm that it is so. Truth of a theory and consequently truth
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of a claim about physical possibilities entailed by the theory is a metaphysical claim which

should not be conflated with the epistemological question of how observers may confirm the

theories they become acquainted with.

In the light of the gap objection the task of establishing well posedness as a necessary

condition for physical possibility seems exceedingly difficult. In the rest of this work we

invent and evaluate arguments which aim to achieve this feat; the price we need to pay in

terms of premises, as we will see, may also be exceeding.

2.4 FURTHER REMARKS

Even if the connection between well posedness and prediction and confirmation is not entirely

straightforward well posed problems are important because they are mathematically quite

tractable. It is impossible to give here even a brief overview on the mathematical literature;

the list of references for the 1983 non-historical survey for linear partial differential equations,

Fattorini (1983), is over a hundred pages long, while ill posed inverse problems themselves

have their own journal and book series. Thus we are only going to point out few mathe-

matical advantages of assumptions of continuous dependence; the reason why existence and

uniqueness of a solution is mathematically desirable is rather clear.

Despite the existence of a garden variety of definitions of continuous dependence for

reasons of clarity it is useful to settle with a particular formulation (although we need to

apply care to not to over-generalize the particular results we obtain). The archetype case of

a mathematical problem used to model a physical process is an initial and/or boundary value

problem of a differential equation which expresses a law of a dynamical physical theory47.

47Although there are other relevant and interesting mathematical problems which should also be discussed
in the wider context of well posedness – difference equations are among them (see Lax and Richtmyer (1956)
or examples e.g. in Lavrent’ev and Savel’ev (2006)) – we are going to restrict our attention to this archetype
case.

44



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

In the majority of this work we rely on a general and widely used framework developed for

abstract differential equations by Peter Lax in the 1950’s. This abstract framework is general

enough to handle many fundamental dynamical equations in physics – such as the Maxwell,

the Schrödinger, the Dirac equation for free particles – and it applies to both initial and

initial/boundary value problems (as information about boundary values can be encoded in

the domain of the utilized operator A). Appendix A gives a more detailed mathematical

background, but the basic ideas can be easily introduced.

Let A be a densely defined operator in an arbitrary Banach space E with a norm ‖.‖.

Consider the equation

u′(t) = Au(t) (−∞ < t <∞) (2.18)

A solution of (2.18) is a function t → u(t) such that u(t) is continuously differentiable for

−∞ < t <∞, u(t) is in the domain D(A) of A, and (2.18) is satisfied for −∞ < t <∞.

Definition 4. We say that the Cauchy problem for (2.18) is well posed in the sense of Lax

(or simply well posed) in −∞ < t <∞ if the following two assumptions hold:

(1) Existence of solutions for sufficiently many initial data: There exists a dense subspace D

of E such that, for any u0 ∈ D, there exists a solution u(.) of (2.18) in −∞ < t <∞ with

u(0) = u0. (2.19)

(2) Continuous dependence of solutions on their initial data: There exists a function C(t)

defined for −∞ < t <∞ such that C(t) and C(−t) are nondecreasing, nonnegative, and

||u(t)|| ≤ C(t)||u(0)|| (−∞ < t <∞) (2.20)

for any solution of (2.18).
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Condition (2) can be given an equivalent (but more palpable) formulation as:

(2’) Let {un(.)} be a sequence of solutions of (2.18) with un(0) → 0. Then un(t) → 0

uniformly on compacts of −∞ < t <∞.

One can immediately note that the uniqueness condition in Definition 4 is missing. This

is due to the fact that uniqueness is a mathematical consequence of existence 2.19 and

continuous dependence 2.20. In a more general setting uniqueness of solution for a studied

initial value problem is often established by showing that solutions of suitably taken, tractable

initial value problems converge; continuous dependence is then used to infer from convergence

of initial data to convergence of solutions.

The relationship between continuous dependence and uniqueness, assuming existence, is

even stronger. As one can see from Theorem 6 of Appendix A, if operator A satisfies an

additional condition existence and uniqueness of solutions also imply continuous dependence.

This tight connection may tempt someone to try to give a non-circular justification for

uniqueness – to try to give a non-circular justification for determinism – via providing an

independent justification for continuous dependence. To do this was the original motivation

for my research; the problem, as we have seen, lies in the inherently epistemic character of

the usual justifications that are offered for continuous dependence.

Continuous dependence is also instrumental for various types of approximation results.

Solutions of well posed problems can often be approximated by solutions of a series of dif-

ferent, more easily tractable differential equations; the time variable may also be discretized

and the equation itself can often be replaced by a finite difference approximation48. As it is

often indispensable for approximation and discretization continuous dependence is also often

needed for the applicability of numerical methods and computer simulation.

48For some results see Chapter 5.7 and onwards in Fattorini (1983). Note that results about approximation
and the link between continuous dependence and uniqueness do not require the norm to be approximately
measurable or operationally significant; mathematical results do not require an interpretational link between
the formal apparatus and measurement.
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Finally, assuming that we are fine with some pre-established fit, continuous dependence

allows us to conveniently choose a relatively simple representative from a set of given data

that is compatible with measurement results and to predict by calculating the trajectory of

a single, and hopefully simple solution. As given data can only be obtained up to a certain

imprecision lack of continuous dependence would necessitate tracing the trajectory of every

solution in order to arrive at the set of possible trajectories which may not be fitted within

bounds. That we may represent time development of systems using a single solution is a

major convenience.

What is the status of well posedness in current research? Even though Hadamard seems

to have believed that failure of well posedness would not occur in world obeying physical

laws, mathematical research unearthed many examples of problems with physically relevant

equations that are not well posed; facing the counterexamples in the middle of the 20th

century the reference guide of Courant and Hilbert opined that

Nonlinear phenomena, quantum theory, and the advent of powerful numerical methods have
shown that “properly posed” problems are by far not the only ones which appropriately
reflect real phenomena. So far, unfortunately, little mathematical progress has been made
in the important task of solving or even identifying and formulating such problems that are
not “properly posed” but still are important or motivated by realistic situations. (Courant
and Hilbert; 1962, p. 230)

Subsequent research has emphasized the importance of the mathematical choices we make

in formulating our equations; in particular whether an equation is well posed in the sense

of Definition 4 depends on the choice of the Banach space E. Failure of well posedness may

then be linked to the inappropriate mathematical choices, as it is emphasized in the mid-80’s

by the author of The Cauchy Problem:

A look at the vast amount of literature produced during the last two decades on deter-
ministic treatment of improperly posed problems (including numerical schemes for the
computation of solutions) would appear to prove Hadamard’s dictum wrong. However, it
may be said to remain true in the sense that, many times, a physical phenomenon appears
to be improperly posed not due to its intrinsic character but to unjustified use of the model
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that describes it; for instance the model may have “unphysical ” solutions in addition to
the ones representing actual trajectories of the system, bounds and constraints implicit in
the phenomenon may be ignored in the model, the initial and boundary value problems
imposed on the equation may be incorrect translations of physical requirements, and so
on. [...] With the possible exception of the reversed Cauchy problem in Section 6.1, none
of the problems and examples in this chapter [which is an overview of ill posed problems
in physics – B. Gy.] would probably be recognized by specialists as improperly posed, but
rather as properly posed problems whose correct formulation is somewhat nonstandard.
[...] For this reason such non well posed equations are often referred to as weakly ill posed,
i.e. they become well posed if we choose another, more suitable space E. (Fattorini; 1983,
p. 347,375)

In Appendix A we give examples for physical laws that have a well posed Cauchy problem

using one formulation but have a not well posed Cauchy problems using another. We are also

going to take this insight as our stepping stone for developing arguments for the necessity of

well posedness for physical possibility. In order to proceed first we need to fix the sense of

physical possibility that is being invoked in these discussion.
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3.0 TWO READINGS OF PHYSICAL POSSIBILITY. BEST SYSTEM AND

WELL POSEDNESS

3.1 THE RECEIVED VIEW OF PHYSICAL POSSIBILITY

Modal terms such as ‘possible’ and ‘physically possible’ can be understood in different ways.

We do not attempt to overview the enormous philosophical literature: our focus is on the

possible worlds approach that understands alethic modal statements that invoke possibility

as an existential quantification over possible worlds1. According to this characterization if

the statement ‘time travel is physically possible’ were true then it should be understood as

the statement that ‘there exists a physically possible world in which time travel happens.’ I

submit that this approach is not merely predominant among philosophers and philosophers

of science but also among physicists when they talk of possibilities offered by our most

fundamental theories. When asked whether time travel is physically possible physicists

routinely point to the existence of mathematical models that satisfy Einstein’s equation and

feature time travel. Taking the existence of such global models as evidence for physical

possibility – even though these models do not resemble and may even be incompatible with

our actual world – is best explained by the implicit adoption of the possible worlds approach2.

1Thinking in terms of possible worlds goes back at least to Leibniz; for a modern introduction see Kripke
(1959, 1963a,b) and Lewis (1973). There are philosophical approaches, such as that of Meinong (1960),
Fine (1994), or Jubien (1996) that do not understand possibility in terms of possible worlds; for a general
overview of the literature on possibility and ‘possible objects’ see i.e. Yagisawa (2009).

2The possible worlds approach have not always been so predominant. Planck and many other nineteenth
century physicists understood the term (physically) possible as ‘available in the actual world.’ For them the
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Note that physical possibility is not intended as an epistemic notion: physically possible

worlds are not to be equated with epistemically possible worlds, that is with possible worlds

that are compatible with some state of knowledge of observers. Lack of observers’ knowl-

edge may influence their epistemic possibilities but it does not bear upon what systems or

interactions are physically possible3.

The received view of physical possibility is the conjunction of the possible worlds approach

with the tenet that it is physical laws that determine what is physically possible. The

conjunction, albeit it is widely accepted, is not necessary. One may entertain either of these

assumptions without the other: one may accept that the notion of physical possibility should

be analyzed via a possible world approach but deny that the set of physically possible worlds

truth of the statement that ‘a perpetual motion machine is physically possible’ depended upon whether we
could actually build one given the furniture of our actual world, that is given the systems and interactions
that actually are. (For historical notes on different understandings of physical possibility see i.e. Uffink
(2001).) Such an actualist account of possibility faces many difficulties, especially if we adopt the view
that our actual world is best represented by a distribution of modally thin definite physical quantities on
a spacetime structure, which is arguably the way how the actual world is represented by a solution of a
differential equation. A system or process then either exists or does not exist in the (modally thin) actual
world and hence making room for the possible in the actual is not straightforward (for an alternative research
project that represents a possible world as not modally thin see Placek and Belnap (2012) and its references;
on modal thinness of physical quantities see also (Belot; 2011, p. 108)). Notions such as ‘could actually
build’ also carry connotations of agency which is difficult to reconcile with modal thinness, definiteness, and
the assumption that agents are also subject to the same physical laws as other systems and interactions.
Despite these worries I ultimately believe that the correct account of physical possibility is actualist, but an
analysis would go beyond the scope of the present work.

3The hierarchy of modal notions is convoluted. It is customary to make distinction among logical,
epistemic, metaphysical, nomic / natural, and physical possibility, logical possibility being the most and
physical possibility being the least permissive. For the purposes of this work we assume that epistemic
possibility differs from metaphysical, nomic, and physical possibility; we do not take stance in whether the
latter three notions differ but we tend to use them interchangeably. Distinction between physical possibility
and physical laws vs. nomological possibility and natural laws becomes important if we contemplate the
existence of natural laws which are not (and which do not supervene in an appropriate sense on) physical
laws; such distinction is often emphasized by philosophers of mind. Whether nomic and metaphysical
possibility coincides is a debate between the so-called necessitarians and contingentist (see Kment (2012)).
There are many other modal notions such as practical, medical, moral, legal etc. possibility that do not
enter to our discussion, although we note that some nineteenth century physicists, such as Lord Kelvin and
Maxwell, were concerned with a notion of possibility that is dependent upon the human condition (see Uffink
(2001)).
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is determined by physical laws (either because there are no physical laws or because physical

laws are not sufficient to determine which possible worlds fall into the set of physically

possible worlds)4. One may also accept that physical laws determine what is physically

possible but deny that what is physically possible should be analyzed in terms of possible

worlds5. In the rest of this work we concern ourselves with the received view of physical

possibility and we explore strategies to defend the idea that only well posed problems give

rise to physically possible worlds in the light of the received view.

The received view makes reference to physical laws; we now take a brief detour to discuss

the question: what are physical laws?

4There is a point of contact here with the ongoing debate about the nature of scientific theories. The
so-called semantic view maintains that one should think of a scientific theory T as a class of models MT .
The most radical form (SMV5 in the terminology of Earman (2008)) of the semantic view claims that this
class of models MT in general can not be obtained as a set of L-structures (as a set of models in the logical
sense) of formulas ∆ of some suitable formal language: MT 6= mod(∆) for any ∆ set of propositions (for such
pronouncement see (van Fraassen; 1989, pp. 211-212); also see (Earman; 2008, p. 20)). If laws of a physical
theory T can be formulated axiomatically then the radical version of the semantic view denies that the set
of models MT which a physical theory is supposedly identified with are the L-structures that satisfy these
physical laws. Since we can also naturally view MT as the set of models that represent physical possibilities
according to T the radical version of the semantic view seems to accept the possible world analysis but deny
that the set of physically possible worlds are those that satisfy the physical laws. The radical version of the
semantic view may then deny the received view while still entertain a possible world analysis of physical
possibility. (Some proponents of the radical version of the semantic view such as van Fraassen indeed must
deny the received view as he also denies that laws of nature exist; see later.)
I don’t find the arguments presently cited in favor of the radical version of the semantic view convincing
(mainly in agreement with the challenges formulated by Earman (2008); also see Halvorson (2012) for a
different line of attack). I note, however, that while reading (B’) of physical possibility (see later) is accepting
of the received view of physical possibility it is also consistent with the radical claim of the semantic view of
scientific theories. In reading (B’) the set of physically possible worlds is determined by the physical laws but
this set may not coincide with the set of models that satisfy the laws or satisfy some other set of formulas.
Whether this is so depends on the definability of the mapping Λ : L → W that assigns to a set of laws the
possible worlds in which those are laws. Undefinability of Λ would imply the radical claim of the semantic
view.

5An actualist approach to physical possibility mentioned in a previous footnote would be such a position.
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3.2 LAWS OF NATURE

There is a difference between the question ‘what are physical laws’ and the question ‘what are

the physical laws.’ The latter may be answered by a list of differential equations featured in

our most revered physical theories (for a different view, see Chapter 4); the former question

asks about the criterion that differentiates laws that make their way to the list from other

propositions that are non-laws.

There is not only a plethora of accounts of laws of nature but also many ways to group

and label them alongside commonly shared characteristics6. Here we follow Cohen and

Callender (2009) in distinguishing three varieties.

The No-Laws camp believes that there are no laws of nature: in idealized models we

may find causes, symmetries, or some general principles but they are not worthy to be el-

evated to the status of laws. These accounts are frequently driven by a sort of pessimistic

meta-induction: van Fraassen7 draws motivation from the perceived failure of major ap-

proaches such as that of Lewis and Armstrong while Giere8 cites cases from the history of

science in which generalizations once thought to be laws were proven to be false. Mumford9,

Cartwright10, and some projectivist accounts such as that of Ward11 can also be lumped

under the No-Laws heading. If one maintains that there are no laws then one can not appeal

to the laws to determine physical possibilities and hence needs to reject the received view of

6Thus the main camps for the overview article Carroll (2012) are systems, universals, antirealist, antire-
ductionist and necessitarian approaches, while Swartz (2009) differentiates two main camps, necessitarians
and regularity accounts; they differ on whom to count as necessitarian. Belot (2011) focuses on best system,
primitivist, and necessitarian approaches (mentioning alongside the Armstrong-Dretske-Tooley and other
approaches). Earman (1986) also have a different terminology and analyzes many other accounts as well,
such as the naive regularity account.

7See i.e. (van Fraassen; 1989, p. 130, pp. 180-181).
8See i.e. (Giere; 1999, pp. 86-91).
9According to Carroll (2012), Mumford (2004) can be seen as arguing for an antireductionist position.

10Cartwright (1983) is interpreted by (Cohen and Callender; 2009, p. 2) as a no-laws position.
11Ward (2002) is sometimes viewed as anti-realist (i.e. in Carroll (2012)) and sometimes as promoting the

existence of laws (i.e. in Cohen and Callender (2009)) alongside other projectivist accounts, i.e. Goodman
(1954) and Ayer (1956).
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physical possibility.

The Governing camp insists that genuine laws of nature exists and stipulate that these

laws govern events and happenings in the world12. In the eloquent words of Cohen and Cal-

lender, “just as librarians enforce the rules of book borrowing and policemen enforce traffic

rules, so some Governing theorists think that necessitarian relations, primitive accessibility

relations, or primitive universals enforce certain behaviors upon the events of the world.

Other advocates of Governing are silent on how the laws manage these feats, but insist that

they do and treat laws with the requisite governing powers as primitive” (ibid. p. 2). Not

only do some Governing advocates treat laws as primitive, but they also ascribe the power

to the laws to generate, evolve, bring about, or propagate physical states. Thus (Maudlin;

2007, p. 15) writes:

My own proposal is simple: laws of nature ought to be accepted as ontologically primitive.
We may use metaphors to fire the imagination: among the regularities of temporal evolu-
tion, some, such as perhaps that described by Schrödingers equation, govern or determine
or generate the evolution.

The Non-Governing camp also insists that genuine laws of nature exists but deny that

these laws govern. Instead of governing the laws merely describe certain aspects of patterns

that obtain in the mosaic of events. One of the most prevalent Non-Governing view is the

Best System account13 associated with Mill14, Ramsey15, Callender16, Lewis17, Loewer18,

and Earman19. According to the Best System account the distinguishing feature of laws is

12For advocates of the Governing view see Armstrong (1978, 1983, 1991, 1993), Dretske (1977); Tooley
(1977); Swoyer (1982); Shoemaker (1998); Maudlin (2007).

13After the associated authors the view could be abbreviated as MiRaCLE, although the abbreviation
MRL is in current use after Mill, Ramsey and Lewis. We are going to use the BTS abbreviation after ‘Best
True System’.

14See Mill (1947).
15See Ramsey (1978).
16See Callender (2008); Cohen and Callender (2009).
17See Lewis (1973, 1983, 1986, 1994).
18See Loewer (1996).
19See Earman (1986).
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that they are highly informative about the world in a simple way: they are propositions of

a deductive system which best balances informativeness and simplicity.

One of the main dividing line between the Governing and the Non-Governing camps is

in how they relate to Humean supervenience, “the doctrine that all there is in the world is

a vast mosaic of local matters of particular fact, just one little thing and then another”20.

In general advocates of a Governing view deny Humean supervenience about laws of nature

while advocates of Non-Governing views, in particular of the Best System view, embrace it.

All three accounts of laws have been severely criticized. Without laws it is very difficult to

explain practice of the physical sciences and to explain why certain regularities and patterns

among events hold. While Governing views may be able to explain, in terms of their favored

necessetarian relations, primitive accessibility relations, or primitive universals, why certain

patterns among the events hold they seem to merely push the explanatory issue one step back

as they are unable to explain why the employed particular relations or universals hold21. If

they provide no explanatory advantage then postulating laws as entities existing in addition

to the mosaic of facts seems metaphysically parsimonious. The Best System view is in danger

to render laws subject dependent as notions of simplicity, informativeness, and best balance

seem to be very difficult to articulate from an objective point of view22.

In their above-mentioned article Callender and Cohen proposed to relativize the Best

System account to specific choices of basic kinds or basic predicates. They claim that even

though there is indeed no objective point of view from which simplicity, informativeness and

20(Lewis; 1986, p. ix). Humean supervenience tries to capture the empiricist constraint that laws should
supervene on the mosaic of non-nomic facts; what counts as ‘non-nomic’ and ‘fact’ is a matter of debate.
There exists several, more sophisticated statements of Humean supervenience; for an analysis see Earman
and Roberts (2005a,b).

21Whether by pushing back the explanatory question it also radically shrinks may be up to debate.
Advocates of the Governing view tend to think this is so (thanks for Gordon Belot for this remark); I don’t
share their impression but this is debate should be pursued elsewhere.

22For an overview of the main advantages and the main lines of criticism mounted against these views see
i.e. Carroll (2012).
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best balance could be judged such vantage point is also not necessary to find a satisfactory

account of laws. They hold a true generalization a law relative to a choice of basic kinds

or predicates if the generalization appears in all immanently Best Systems relative to these

basic kinds or predicates. They take relativity to be an advantage of their account; with its

help they claim to be able solve many problems plaguing the traditional Best System view.

In addition they see Relativized Best System (RBS) to be capable of giving an account for

laws in the special sciences.

This last point will be of interest for us later. In order to accommodate the special

sciences the authors concede that RBS needs to allow for exceptions because claims of special

sciences “will be in principle defeatable by lower-level physical limitations” (ibid. p. 25). One

proposal they make to amend this difficulty is to “relax the requirement that the MRL laws

be true and replace it with some other requirement, like pragmatic reliability (as determined

by the science of interest)” (ibid. fn 24). Apparently the authors believe that (exact) truth

is not a sine qua non of laws: it is consistent with an understanding of laws as simple and

informative systematizations that under certain circumstances they may happen to be false.

Presumably this can only happen if the price of falsehood is paid back in improvement

of the overall balance of simplicity and informativeness. As generalizations that are not

even approximately true can not be informative this suggestion amounts to relaxing the

condition that laws are true generalizations to the condition that laws are approximately

true generalizations.

3.3 TWO READINGS OF THE RECEIVED VIEW

There seems to be a not sufficiently recognized split in philosopher’s understanding of phys-

ical possibility. When philosophers present the view they take to be standard, they usually
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state either of the following two, non-equivalent formulations:

(A) A possible world is physically possible if and only if it satisfies the physical laws of

the actual world23.

(B) A possible world is physically possible if and only if it has the same physical laws as

does the actual world24.25

It is difficult to assess what are the physical laws of the actual world, especially given the

well known incompatibility of some of our best physical theories. To counter this and other

difficulties we frequently rely upon a theory-relativized notion of physical possibility. Thus,

23Examples:

Letting W stand for the collection of all physically possible worlds, that is, possible worlds
which satisfy the natural laws obtaining in the actual world, [...] (Earman; 1986, p. 13)

In saying of a certain state of affairs that it is “physically possible,” one of the things we
might mean is this: that the state of affairs is one such that the statement that it obtains
is, by itself, consistent with the laws of nature. (Chisholm; 1967, p. 412)

Our world seems to be governed by laws, at least around here. When we say that an
event or situation is physically possible we mean that its occurrence is consistent with the
constraints that derive from the laws. (Maudlin; 2007, p. 18)

24Examples:

A physically possible world is any possible world which has the same natural laws as does
the actual world. (R. Bradley; 1979, p. 6)

[...] There are possible worlds in which Ling-Ling is a plaid panda and in which the laws
are exactly the laws of the actual world. Invoking the standard definition of physical
possibility, it follows that it is physically possible for Ling-Ling to be a plaid panda.
(Carroll; 1994, p. 174)

Let the physically possible worlds be those in which all and only the laws of physics of the
actual world are laws of physics therein. [...] (Witmer; 2001, p. 62)

25I thank Gordon Belot for pointing out that a very similar distinction between two notions of physical
possibility appears in Earman (1995).
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instead of delivering possible worlds from the actual world, it is customary to say things like

“w is physically possible according to theory T ,” where T is a physical theory, such as the

theory of general relativity. We can carry over the distinction between the two readings to

this theory-relativized notion:

(A’) A possible world is physically possible according to a theory T if and only if it satisfies

the physical laws of T .

(B’) A possible world is physically possible according to a theory T if and only if it has the

same physical laws as does T .

If we assume that L is a physical law of T if and only if L is a physical law of the actual

world then these theory-relativized notions (A’) and (B’) reduce to their actual world-based

(A) and (B) counterparts.

3.3.1 The two readings produce different physically possible worlds

The set of physically possible worlds under reading (B) may be narrower than under reading

(A). Reading (B) not only requires a physically possible world to satisfy the physical laws L

of the actual world, but also that L are the physical laws of the physically possible worlds

themselves. This latter condition does not follow automatically from the former: depending

on our conception of physical laws it may be the case that a possible world w do satisfy L

but L is not a physical law in w.

Indeed if Humean supervenience about laws holds we should expect such cases to occur.

The Best System account of laws provides an illustrative example. According to the Best

System account the distinguishing feature of laws is that they are highly informative about

the world in a simple way: they are propositions of a deductive system which best balances

informativeness and simplicity. Now suppose that Maxwell’s equations are among those

propositions which best balance informativeness and simplicity in our actual world. Since
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the possible world which is empty also satisfies Maxwell’s equations it is physically possible

according to reading (A). But this empty world may not be physically possible according

to reading (B) since the deductive system best balancing informativeness and simplicity in

the empty world may simply contain the proposition that ‘the world is empty.’ Maxwell’s

equations are true in this empty world but they are not laws since they are not simple enough

given the alternatives.

The difference can also be seen without invoking the Best System account of laws. Note

again that most of our current physical theories allow for an “empty” world to satisfy its

physical laws. Hence the empty world is physically possible according to several different

theories under reading (A’). However, this empty world could possess exactly the same laws

of at most one of these theories, and hence it can not be physically possible under reading

(B’) for the other theories26. Hence as long as our account of laws of nature is capable to

recover at least some of our current physical theories, without which it’s arguably without

much merit as an account of laws, the two readings will produce different physically possible

worlds.

The two readings of physical possibility may only coincide if the recoverable sets of

physical laws (the recoverable theories) perfectly partition the possible worlds. If the two

readings coincide then there is either only one set of physical laws (one physical theory),

regardless of circumstances such as the non-nomic constitution of the actual world, of if

there are possibly different sets of physical laws (different physical theories) for different

circumstances, then there is no possible world which satisfies more than one of these. Both

of these options seems implausible and hence one needs to decide which reading is to be

26Slightly more generally: Suppose there is a possible world w0 which satisfies the laws of two theory T1

and T2 which have a different set of physical laws; in other words, w0 is physically possible for both theories
according to reading (A’). Now w0 can at most have the same physical laws as either those of T1 or those
of T2, as these latter have different laws. Thus w0 can be physically possible, according to reading (B’), at
most either for T1 or for T2. Hence the two readings produce a different set of physically possible worlds for
at least one of these two theories.
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preferred as a reading of physical possibility.

3.3.2 Side notes

At this point it is reasonable to wonder what is the motivation for the “same” clause in

reading (B’). The “same” clause prevents a physically possible world w to have more physical

laws than does the actual world. But why is it not sufficient to require that all physical laws

of the actual world shall also be physical laws of a physically possible world w?

The “sameness” restriction fosters quite unintuitive consequences for an adherent of a

Best System account, such as a world w becoming physically impossible merely because it

has an additional symmetry (which becomes a law in w) which the actual world does not

have27. It would then seem that all textbook examples, and indeed exactly those physical

models which we can make pragmatic use of by virtue of their additional symmetries, are

not examples of physically possible worlds. This is especially counterintuitive given that

confirmation of our physical theories typically proceeds through tests of their special models,

which models then would not represent a physical possibility if the theory were true. Weird28.

In this spirit fans of baroque philosophical vogue may find it compelling to combine and

generalize the two readings as follows:

(AB’) A possible world is physically possible according to a triple (T1, T2, T3) if and only if

(a) it satisfies the physical laws of theory T1, and of theory T2, (b) it has all the physical

27Example: w is a swarm of Newtonian particles perfectly aligned in a circle (the Best System laws are
Newton’s laws plus a law expressing the circular alignment) while the particles of the actual world are aligned
almost exactly like that of w but with slight displacements (hence the laws are merely Newton’s laws). w is
then not (B)-physically possible since it also has an additional law which the actual world doesn’t have.

28Another weird feature appears when we combine a Best System account with the liberal reading of
satisfaction (see below). Then invisible pink unicorns and other random stuff may show up in physically
possible worlds but only as long as they don’t behave regularly enough to give rise to an additional law, for
then the “only if” clause would break. So according to reading (B) adding random nonsense to our ontology
may be permitted until its behavior is not too systematic, which is a quite interesting inversion of Occam’s
razor.

59



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

laws of T2, and (c) it might have some additional physical laws, but only if those are

included in T3.

(AB’) reduces to reading (A’) if we set T1 = T , T2 = ∅, and T3 to include all formulas

consistent with T1. (AB’) reduces to reading (B’) if we set T1 = T , T2 = T , and T3 = ∅.

With other choices we get a host of new notions of physical possibility29.

29We should note that there is some ambiguity in how we understand the notion “satisfies the laws.”
The more liberal understanding is that of model theory: we take the physical laws L to be formulas of
an appropriate logic and think of possible worlds as models which satisfy, in the standard logical sense,
these formulas. This liberal understanding is relatively precise, however it has a disadvantage in allowing
physically possible worlds to be populated by many superfluous entities, such as invisible pink unicorns,
whose properties are independent of, and whose behavior does not interact with, the physical laws of the
actual world. Given a set theoretic model w satisfying L it is trivial to produce another model w′ which also
satisfies L but whose universe is much larger that that of w. A suitably expressive logic may also allow w′

to satisfy some additional laws L′ which also employ predicates not utilized by L.
Although the possibility of superfluous entities is not troublesome when we only want to study the prop-

erties of the physical laws of the actual world, the existence of physically possible worlds in which invisible
pink unicorns fight a death-match in the immaterial background does bring some uneasiness. So one may
opt for a more conservative reading of satisfaction and allow only for models which, say, are minimal models
of a logic whose language is in some sense minimally sufficient to formulate the laws L. This reading is
more faithful to the intuitive picture of the philosopher of physics who thinks of physically possible worlds
as solutions of a differential equation (as the definition of what it is to be a solution of a differential equation
brings in required kinds of restrictions), but the details of “minimal models” and “minimally sufficiency
language” would needed to be fleshed out and it is unclear to me whether this could be done unambiguously.
The logically minded anxious reader is welcomed to fill out the details.

Staying with the liberal understanding of satisfaction we may reformulate the two readings in the context
of formal logic (thanks to Gergely Székely for calling my attention to this elegant way of presenting the idea).
Let’s choose a suitably rich language. If w is (a model representing) a possible world let’s write Laws(w) for
the set of formulas which express the physical laws of w. We require that all possible worlds w satisfy their
own laws Laws(w), that is for all w we have w � Laws(w). Let wa be (a model representing) the actual
world.

(A) A possible world w is physically possible iff w � Laws(wa).
(B) A possible world w is physically possible iff Laws(w) = Laws(wa).

Note that w � Laws(wa) follows from Laws(w) = Laws(wa) as we require w � Laws(w). With some
ambiguity let now Laws(T ) be the set of formulas expressing the physical laws of a theory T ; the theory-
relativized readings can be captured as follows:

(A’) A possible world w is physically possible according to T iff w � Laws(T ).
(B’) A possible world w is physically possible according to T iff Laws(w) = Laws(T ).

In this formal context the task of an account of laws of nature is to say something informative about how
Laws(w) depend on a possible world w. A few hidden dangers lurk behind this formal approach, primarily
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3.3.3 Which reading should be preferred?

It is unclear on what basis we could make up our mind about which reading is the ‘right’

one. Purely from the perspective of formal simplicity and elegance both readings have

advantages and disadvantages. Reading (A) yields a set of physically possible worlds which

can be mathematically explored quite effectively: since physical laws are typically formulated

as differential equations the set of physically possible worlds is (represented by) the set of

solutions of a system of differential equations, a well known object of mathematical study.

Handling the set of possible worlds of reading (B) may be a messy business depending on

how effectively one can handle the mapping Λ : L → W that assigns to laws the possible

worlds in which those are laws; the apparent vagueness of the requirements of the Best

System account does not encourage optimism in this regard.

While reading (A) produces a mathematically more elegant set of physically possible

worlds, reading (B) produces a more elegant notion of accessibility through physical possi-

bility. If we write w1PBw2 for “w2 would be physically possible under reading (B) if w1 were

the actual world” then the relation PB is an equivalence relation: it is reflexive, symmetric

and transitive.

The respective relation PA, however, does not necessarily have any nice structure. PA

is reflexive, however it need to be neither symmetric nor transitive. It might be the case

that w1PAw2 but not w2PAw1: w2 would be physically possible if w1 were actual but w1

would not be physically possible if w2 were actual. And it might be the case that w1PAw2,

and w2PAw3, but not w1PAw3: w2 would be physically possible if w1 were actual, w3 would

be physically possible if w2 were actual, but w3 would not be physically possible if w1 were

due to the lack of pre-theoretic specification of what counts as a “model” and due to the ambiguities in how
much detail these models “represent” the possible worlds they stand for. For instance if the ws only contain
the non-nomic facts then the assumption that Laws(w) is always a well defined set of formulas is equivalent
with Humean supervenience about laws. It would be unhelpful to sneak in such assumptions from the outset
hence we need to keep formalization urges at bay.
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actual30.

As the difference between reading (A) and (B) is a matter of lawhoodness a way to assess

the merits of the readings is by regurgitating what laws are supposed to do for us. Do certain

roles laws are supposed to play – that they govern, that they lend support for counterfactuals,

that they play a role in explanation, etc. – favor one reading over the other31?

1) Even though we illuminated differences between reading (A) and (B) by relying on

the Best System account of laws proponents of other accounts also face a choice between the

two readings. It seems that the Governing view, especially in its more recent formulations,

should favor reading (B) of physical possibility. According to some proponents given a state

of the world the role of fundamental dynamical laws of nature is to ‘generate’ future states.

Fundamental laws play a role in the becoming of future states akin to how a meat fed grinder

plays a role in the becoming of the sausage. Due to their ability to generate the future states

the fundamental dynamical laws are necessary constituents of the basic ontology of the world.

If ‘generating’ future states is a matter of lawhood, for states of physically possible

worlds to develop similarly to how they do in the actual world the fundamental laws L of

30Take the following plausibility constructions based on the Best System account. Let w1 be a Newtonian
spacetime with a sourceless electromagnetic field and a number of electrically charged massive point particles.
We assume that the BTS laws of w1 are the Maxwell equations, the Lorentz force law and Newton’s law.
For the failure of symmetry, let w2 be the completely empty Newtonian spacetime. w1PAw2 since the empty
spacetime does satisfy all the mentioned laws. However the simplest and strongest description – the BTS
law – of w2 is the proposition that “w2 is empty,” and hence the Maxwell equations etc. are, albeit true of
w2, not laws of w2. w2PAw1 is not the case since w1 is not empty and hence it does not satisfy the BTS
law of w2. For the failure of transitivity let w2 be a Newtonian spacetime with a number of massive point
particles but without any electric charge and field (hence the only BTS law is Newton’s law), and let w3

be a Newtonian spacetime with a number of non-charged massive point particles but with a purportedly
electromagnetic field which defies one of Maxwell’s equations. We then have w1PAw2, we also have w2PAw3,
but we don’t have w1PAw2.
Under typical non-Humean approaches PA may turn out to be an equivalence relation but it is difficult to
see what would necessitate that it is; see discussion below.

31Proper treatment of this issue should be pursued by another work; we keep the discussion brief. Note
that we do not make judgement about what are the laws or compare different conceptions of laws here on
the basis of the goodies they are supposed to deliver us but we compare different conceptions of physical
possibility on the basis of some assumed properties of laws. This of course does not make it more clear how
valuable reasonings that presuppose that certain goodies need to be delivered can be.
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our world would also need to be fundamental laws in the physically possible world. If some

fundamental laws of our world were merely true generalizations in a physically possible world

w then they would lack the power of generate the states of w. But the set of laws which

generate the states are necessary constituents of the basic ontology of a world and hence

when we judge physical possibility it seems we ought to keep these generating constituents,

which are necessary, fixed. If the successive states of w were generated by another set of

fundamental laws L′ then w could be physically possible according to L′, but that is different

from being physically possible according to L. If, on the other hand, the successive states

of w were not generated at all, and yet w were sufficiently similar to our world, then the

need for laws which govern to account for the unfolding of the world is in serious jeopardy.

The argument is similar for other Governing accounts that require laws to enforce certain

behavior upon the events of the world.

2) Another feature oft attributed to laws is their ability to support counterfactuals32.

Suppose I have an apple sitting in my hands. The truth of the counterfactual claim ‘had

I dropped this apple it would have hit the ground’ is said to be supported by the law of

gravity. In the language of possible worlds this can be reformulated as the claim that in all

gravity-respecting physically possible worlds which are sufficiently close to the actual world

and in which this apple is dropped the apple hits the ground.

It is unclear whether a need to support counterfactuals would induce preference of one

reading over the other. According to both readings the law of nature which supports the

counterfactual is a true generalization in the physically possible worlds, and hence if in some

of these worlds the antecedent of the generalization is fulfilled then the consequent follows.

Hence even reading (A) allows for evaluation of the truth value of counterfactuals along

the lines described in the previous paragraph. Whether we should prefer reading (B) could

depend on additional considerations, such as a desire that physically possible worlds should

32For an overview see Carroll (2012).
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also support the same kind of counterfactuals as does the actual world. One could argue that

it is plausible to require that in a physically possible world in which I dropped the apple it

should be true that ‘had I not dropped this apple it would have stayed in my hands.’ After

all this is a true proposition in our actual world so it would be weird if it became untrue in

a world which is physically possible on the basis of our actual world.

3) Laws are also supposed to be the salt and pepper of scientific explanations. Staying

with our previous example, the law of gravity does not merely imply that a dropped apple

hits the ground, but on the count of being a law it also explains why does the apple do so.

If we cash out this ability of laws to provide explanations in terms of counterfactuals we get

a similar analysis as before. But even without such a translation one could wander whether

we should let the ability to explain disappear in a physically possible world. If the law of

gravity explains falling apples in our world why should it loose its power to explain in a world

which, say, differs from our world in some minor detail somewhere far away? Reading (B)

would ensure that our physical laws still explain in the physically possible worlds; reading

(A) would not.

None of the considerations above are conclusive but in general reading (B) seems preferred

when we want laws to deliver the usual goodies. But do we really need to make up our

mind? There seems to be at least two ways in which the odium of choice can be shrugged

off. Those who maintain that lawhood is independent of the non-nomic constitution of the

possible worlds may take this independence to be indicative of the coincidence of the possible

worlds of the two readings. After all there is no need to worry that a generalization which

is satisfied by a possible world may be prevented from being a law in that possible world by

the worlds unfortunate arrangement of non-nomic facts.

Even though under such accounts of laws there may be nothing preventing the coextension

of the sets of physically possible worlds of reading (A) and (B) it is unclear what would

necessitate that they do. A generalization may well be a law in a possible world independently
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of the worlds non-nomic constitution but this independence does not entail that in all possible

worlds in which the generalization is true it is also a law. It is conceivable that the set of

possible worlds in which a generalization is a law does not contain some possibilities in

which the generalization is merely true. Of course it may be, say, mathematically convenient

to work with a set of worlds in which a generalization is true, but mere mathematical

convenience is not sufficient to equate this set with the set in which the generalization is also

a law; additional philosophical premises would need to entail this coincidence, and without

such suitable premises we still need to choose among the readings of physical possibility.

A second way to avoid choice leads through the relativization of the notion of physical

possibility and results in conditional philosophical conclusions. That is, instead of making

direct claims about what is physically possible, one makes claims of the form “if what you

mean by physically possible is (A) then the result is X but if what you mean by physically

possible is (B) then the result is Y etc.” One can support this attitude by pointing out that

the notion of physical possibility is highly technical33 and hence conditional analysis is not

necessarily inappropriate.

While conditionalization is always an option, it is difficult to escape the feeling that it

is mere cover for perplexity. We surely intend to mean something substantial when we say

that, according to our best understanding of gravitation (general relativity), time traveling

spacetimes are physically possible. It may be that we translate this statement in a specific

way, but this specific translation often amounts to a choice of a reading of physical possibility.

For instance, we may intend this claim to mean that the truth of Einstein’s field equations is

consistent with the possibility of the existence of closed timelike curves; but this translation

amounts to accepting reading (A). With such translations a choice is being made, and we

should be able to motivate why are we making this choice and not the other.

33Thanks to Barry Loewer for this comment.
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3.4 MAY READING (B’) SALVAGE WELL POSEDNESS?

It is natural to ask whether there are philosophically interesting problems which hinge on

the difference of the two readings. We now turn to a difference which arises if one accepts

amenable modifications to the Best System account of laws. Based on this modified Best

System account only possible worlds whose subsystems admit a well posed initial value

problem may be physically possible under reading (B’). Scenarios of a theory T which feature

initial value indeterminism or which feature non-continuous dependence of solutions on initial

data are possible worlds which may not be physically possible according to T under reading

(B’) even though they are physically possible under reading (A’). Since a whole host of

issues in philosophy of physics depend on the physical possibility of scenarios featuring

indeterminism or essential idealization it is worthwhile to explore how demanding premises

are needed to bring about this conclusion. Our tour will also serve as an exploration of the

plausibility of Best System approaches to laws.

To unpack the jargon of the previous paragraph recall that a law of a physical theory

is typically represented by a differential equation and a possible world is represented by a

solution of this differential equation. Differential equations and their solutions have a handy

relationship: if the equation is given we may only need some further property of the solution

to determine the whole solution. It is especially desirable that we can do this when the

needed property of the solution is a so-called initial value. The problem of finding a solution

which satisfies both a differential equation and an initial value is called an initial value

problem. When an initial value problem has a single solution which depends continuously

on the initial values – that is, when sufficiently small variation in the initial value results in

small variation in the solution – then we say that the initial value problem is well posed.

The initial value problem is not well posed if one of these mentioned conditions fail:

First, the problem might not have a solution at all. Second, the problem might have more
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than one solution; this is the case of initial value indeterminism. Third, the solution might

not depend continuously on the initial data, that is, even the smallest variation in the initial

data may lead to infinitely large variation in the solution. For the sake of readability we

are going to refer to a well posed initial value problem as a ‘graceful problem’ and to a

differential equation whose initial value problems are well posed as a ‘graceful equation;’ the

labels ‘ungraceful problem’ and ‘ungraceful equation’ will be respectively reserved for not well

posed initial value problems and for differential equations whose initial value problems are

not well posed. In doing so we bypass many subtle issues we discussed in Chapter 2 for the

sake of presenting the main idea.

Graceful problems are highly informative: they not only pick out a single possible world

among the many but they also give us approximate truths about this world if the initial

value is given only with some approximation. On the contrast ungraceful problems are not

very informative: if there is no solution they tell us nothing about the world; if there are

many widely differing solutions or when continuous dependence fails and only inexact data

is available they may provide truth at best about certain aspects of the world.

The main idea we follow here is to make use of this difference in informativeness of graceful

versus ungraceful problems in the context of a Best System account of laws. Consider a

physical theory with differential equation L and suppose that w is a solution of an ungraceful

problem with equation L. According to reading (A’) w represents a physically possible

world. According to reading (B’) w only represents a physically possible world if L also

shows up among the propositions of the deductive system describing w which best balances

informativeness and simplicity. If there is another deductive system with a better balance of

informativeness and simplicity than what is provided by L then w is not physically possible

according to our physical theory under reading (B’) for L is not a law of w.

To cook up such an alternative deductive system showing something along the following

lines would seem to be sufficient: whenever we have a solution w of an ungraceful problem
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with differential equation L we can always find a graceful problem with differential equation

L′ such that w is also a solution of this graceful problem and there is no significant difference

in simplicity of L and L′. If informativeness of laws depend significantly on the issue of well

posedness and if there is no significant difference in simplicity of their laws then it seems

a better balance of informativeness and simplicity is reached by the alternative deductive

system featuring L′, and hence L is not a law in w and w is not physically possible under

reading (B’).

John Norton’s Dome34 might serve as an illustration. Imagine a ball resting on the top of

a carefully designed Dome-shaped surface. The ball can move frictionlessly but it is restricted

to move on the surface and is influenced by a homogeneous gravitational field. Our physical

theory is classical mechanics with Newtons’ laws, in particular the second law: F = ma.

In order to find how the ball moves we need to solve the initial value problem where the

force F of Newton’s law is determined by the shape of the Dome and by the gravitational

field and where the initial values are the initial position and momentum of the ball. If this

were a commonplace problem in classical mechanics we would get a unique solution telling

us how the ball is going to move. However the shape of the Dome was trickily designed so

that our initial value problem yields many different solutions: the ball will spontaneously

start to roll from the top of the Dome but classical mechanics can’t tell us when this starting

moment happens. Thus Norton’s is a case of an ungraceful problem featuring initial value

indeterminism as the initial values and the differential equation do not single out a unique

solution.

A possible world w featuring Norton’s Dome is physically possible according to reading

(A’) since it satisfies Newtons’ laws. In order for w to be physically possible according to

reading (B’) we would further need the equation F = ma to also be a law in the world

34For an accessible presentation see Norton (2003); for more in-depth analysis see Norton (2006) and
Malament (2008).
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w. F = ma could fail to be a law according to a Best System type account if we could

find another differential equation which is also satisfied by our possible world w, which is

as simple as F = ma, and which is significantly more informative than F = ma about the

happenings in w.

There is a strong intuition that even if another differential equation also satisfied by w

existed it would surely be no simpler than F = ma. With the possible exception of the

case when the ball stays forever on the top of the Dome this intuition is probably right.

However we shall argue that we can slightly relax the conditions above so that we may find

a candidate for a law that is simpler than F = ma. To achieve this we need to alter the

Best System account of laws. In particular we shall argue that it is consistent with the spirit

of the Best System approach to allow for laws which are approximately true by which we

mean that the laws are true up to a certain approximation or coarse graining. As we noted

before the relativized Best System approach of Cohen and Callender is an account pointing

towards this direction. To articulate these ideas we take a brief detour.

3.5 DETOUR 1: A BEST APPROXIMATELY TRUE SYSTEM?

Should Maxwell’s equations be considered laws of our actual world? Consider the following

remarks made by Einstein in his seminal 1905 paper on the light quantum:

The wave theory of light, which operates with continuous spatial functions, has proved itself
splendidly in describing purely optical phenomena and will probably never be replaced
by another theory. One should keep in mind, however, that optical observations apply
to time averages and not to momentary values, and it is conceivable that despite the
complete confirmation of the theories of diffraction, reflection, refraction, dispersion, etc.,
by experiment, the theory of light, which operates with continuous spatial functions, may
lead to contradictions with experience when it is applied to the phenomena of production
and transformation of light. (Einstein 1905, pp. 132-133.)
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Einstein takes Maxwell’s as a theory which is true only up to an approximation, the ap-

proximation being a result of operating with time averages instead of momentary values of

physical quantities. Even though he denies its exactness Einstein still uses a strong language

to endorse Maxwell’s theory as it “has proved itself splendidly,” got “completely confirmed”

in several domains of phenomena and “will probably never be replaced by another theory.” It

may be reasonable to interpret these statements as regarding the Maxwell equations as laws

despite of their approximate truth; to the extent this sentiment is shared by other physicists

it may point towards an acceptance of merely approximately true generalizations as laws.

To regard generalizations which are only true-to-an-approximation as laws likely does not

mesh well with Governing accounts of laws. Approximate truth on the other hand does seem

to be consistent with the spirit of the Best System account of laws. To ease discussion let us

first highlight the difference between the ‘Best True System’ and the ‘Best Approximately

True System’ accounts:

(BTS) Laws are propositions of the true deductive systems which best balance simplicity

and informativeness.

(BATS) Laws are propositions of the deductive systems which best balance simplicity,

approximation to truth, and informativeness.

BTS is a view that balances the virtues of informativeness and of simplicity assuming

truth; BATS is a view that balances the virtues of informativeness, of simplicity, and of

truth. According to BTS truth is a must; according to BATS, lots of simple informativeness

may outweigh a small loss in exact truth. BATS does embrace truth but allows for the

introduction of a certain coarse graining in the true description of the world. As BATS

proposes a balance between all virtues without singling out one as absolute it seems to follow

better the spirit of identifying laws as means to achieve effective organization of information

about the mosaic of events than does BTS.
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Difference between BTS and BATS may be highlighted by an example. Which deductive

system carries more the merit of lawhood: one which implies the exact value of the electro-

magnetic field in one spacetime point but is completely silent about its values everywhere

else, or another which implies the values of the electromagnetic field everywhere but only up

to an approximation which lies beyond our measurement capabilities to detect? BTS would

force us to choose the first option while BATS also allows for the second.

We do not aim to argue here for the validity of BATS. We merely submit that BATS is

an account which should be amenable to defenders of a Best System account of laws. As we

have already pointed out the Relativized Best System account implicitly already embraces

BATS. Any other account that allows the special sciences to have laws is also likely to

implicitly embrace BATS. If the same mosaic of events may be subject to laws of theories

located on different levels of the proverbial layer cake then truth with approximation should

be sufficient for laws as theories on a higher level typically operate with more coarse-grained

descriptions than theories on the lower level. Allowing for approximate truth does come with

a major disadvantage, though: it adds approximation to the laundry list of terms such as

informativeness and simplicity which we need to make sense of35.

35Without denying the need for clarification I resort to making only one comment. Approximation is
best accounted for by appealing to a notion of distance between different initial data, different solutions,
and so on: a claim about a physical quantity is approximately true if the true value lies within a certain
distance from the claimed value. But this notion of distance is logically independent of the notion of
‘distance’ referred to in debates about ‘closeness’ of possible worlds. An example for this latter would be the
evaluation of counterfactuals a la Lewis: a counterfactual claim is true if in all sufficiently ‘close’ worlds in
which the antecedent is true the consequent is also true. This ‘closeness’ is a notion which needs metaphysical
grounding; approximation, on the other hand, is primarily tied to epistemic interests, and it relates to issues
of measurement precision. A typical physical theory already comes equipped with a notion of distance which
reflects the connection of the mathematical apparatus to measurement, and hence this distance notion might
be less problematic than the hypothetical closeness-of-possible-worlds relation of Lewis. One may of course
connect these two interests, but they do not necessarily need to coincide, and hence we need to keep them
separate.
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3.6 BATS IN DOMES

Domes do not suit BATS well. To see how BATS change the landscape consider a finite

trajectory w of a classical world consisting of a Dome and a ball which starts to spontaneously

roll at a certain time. Reading (A’) renders this world physically possible according to

classical mechanics.

Substituting the force determined by the shape of the Dome and by the gravitational

field, Newton’s law in this world becomes

x(2) =
√
x, (3.1)

where x is the distance of the ball from the top of the Dome on its surface and the (2) super-

script denotes the second derivative with respect to the time parameter. Albeit this equation

contains some ugly mathematical notation it does strike us as pretty simple. Can we really

hope to find an equation which better balances approximation to truth, informativeness, and

simplicity than equation (3.1)?

Well, simplicity is in the eye of the beholder. Contrast (3.1) with the following differential

equation:

x(k) = 0, (3.2)

where k is a yet undetermined number. A charitable reader may agree that, at least at a

first blush, it is not unreasonable to hold that equation (3.2) is simpler than equation (3.1).

There may be issues with the number k not being simple enough36, but superficially speaking

36Merely as a tongue in cheek (not as a serious argument) one can “prove” that there are infinitely many
simple natural numbers. A number is simple if it admits a simple definition. If there were finitely many
simple natural numbers then there would be a largest among them. But then “the number that follows the
largest simple number” would be a definition that is arguably simple, and hence it would define a simple
number that would be larger than the largest simple number, a contradiction. Hence there are infinitely
many simple numbers. As a corollary k can always chosen to be simple, since if it is not simple we can
choose the first larger simple number, as it will also fit our purposes.
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(3.2) is homogenous and only makes reference to differentiation, while (3.1) is inhomogenous

and involves, besides differentiation, the square root of the variable as well.

The solutions of equation (3.2) are polynomials up to the k-th degree. Polynomials can

be used to approximate finite trajectories and thus they can approximately describe the path

the ball rolling down on the Dome takes. Mathematically speaking for any finite solution w of

equation (3.1) we can find a value for k so that a solution w′ of equation (3.2) stays within our

desired level of approximation to w. By appropriately choosing k number of initial values we

can uniquely determine this w′ solution. Thus assuming our Best System only systematizes a

finite lifespan of the Dome universe equation (3.2) may count as a proposition of a deductive

system which approximates truth, is informative and is simple.

Equation (3.2) is merely approximately true while equation (3.1) is exactly true; if we

accept that equation (3.2) is simpler than equation (3.1) then it becomes a question of balance

whether (3.2) or (3.1) should count as a law in w according to the Best Approximately True

System account. As the loss in truth due to the approximation could be made arbitrarily

small, if a gain in simplicity has an effect on the balance of informativeness and simplicity

then the overall balance may be improved by a suitable choice of small approximation. In

case it turns out that equation (3.2) provides a better balance we get the conclusion that

in reading (B’) of physical possibility w is not physically possible according to classical

mechanics since its laws are not those of Newtons’.

The argument has many shortcomings, notably the assumption that our Best System

only systematizes an arbitrarily long, but still finite lifespan of the possible world. We will

return to this point later. It is also worthwhile to point out that the argument is somewhat

sensitive to the assumption that w merely contains a single Dome scenario. If, instead of

a single Dome, w were also populated with many other classically behaving particles in

various force fields then the balance between simplicity and approximation to truth could

get altered in favor of Newton’s law. Note however that even in a larger classical universe we
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could preserve the simplicity of equation (3.2) by appropriately introducing new dimensions

and by increasing the value of k, and the fact that the achieved approximation to truth could

still be made arbitrarily small might still keep the balance in favor of (3.2) as a law.

The gain in simplicity by equation (3.2) might very well turn out to be too small to favor

one system over the other, and it may even be illusory. One further nagging point is that

equation (3.2) requires k number of initial values to determine the solution, and so a large

k can make the task of further determination of the world w look quite complicated. This

brings up the question whether informativeness or simplicity of laws should depend upon

their ability to get combined with additional accessible informative and simple information

in order to produce further informative and simple information about the world. In the next

section we take a look at arguments to the effect that it should. These arguments turn out to

actually strengthen the negative conclusion regarding the physical possibility of the Dome.

3.7 DETOUR 2: WHY WOULD WELL POSEDNESS MATTER FOR

INFORMATIVENESS?

Another point in need of clarification is the relationship between informativeness of differ-

ential equations and gracefulness of problems. We claimed that graceful problems are more

informative about the world than ungraceful problems. Initial value problems are combi-

nations of two components: differential equations and initial values. Best System accounts,

however, only require laws to be informative and simple. Indeed this is how a Best System

account can distinguish propositions which express laws from propositions which express

other information, such as initial values: these latter might not be simple enough to be

included in the deductive system which best balances informativeness and simplicity. So are

we not comparing apples with oranges when we talk about informativeness of initial value
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problems in relation to a Best System account of laws?

To answer this question we need to take a closer look at the notion of informativeness.

What does it take for a law to be informative? Intuitively we can associate informativeness of

a proposition with the extent to which it restricts possibilities. Relative to some background

knowledge the narrower the set of possible worlds in which a certain proposition is true the

more informative the proposition is. If a proposition can uniquely pick out the actual world

it is maximally informative. Tautologies are on the other end of the spectrum, they do not

restrict possibilities hence they are not informative at all.

Differential equations are somewhere between maximally informative propositions and

tautologies: they do restrict the possibilities to the set of solutions satisfied by them, but in

themselves they typically don’t single out the actual world. If we solely judge the informa-

tiveness of a differential equation by the extent to which it, in itself, restricts possibilities,

then there may be no difference between graceful versus ungraceful equations. It is difficult

to quantify and compare the size of the set of all solutions of two different equations, but it

seems to be likely that, both in the measure-theoretic sense (if a measure over the sets of

solutions can be introduced at all) and in the Baire category sense there will typically be no

difference between the ‘sizes’ of respective solution sets.

However the informativeness of a proposition is always relative to a set of other propo-

sitions – the background knowledge – which accompanies it to restrict possibilities. For

instance in case our proposition logically follows from the background knowledge it does not

further restrict possibilities, and hence it is not informative in the sense defined above. Thus

informativeness of a proposition is not purely a matter of how well this proposition restricts

possibilities, but also how well it restricts possibilities given some other propositions that

are present. The interaction between different propositions which are used to characterize

the world should also be constitutive of their informativeness.

The sense in which graceful equations are more informative is tied to their interaction
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with other simple and informative propositions. We can think of differential equations as

input-output systems in the sense that given additional information (such as initial data)

as input they produce further information about the world (such as a single solution) as

output. The advantage of graceful equations is that they are simple and informative input-

output systems: they are able to take simple and informative propositions as inputs and

produce simple and informative propositions as outputs. Ungraceful equations, however, do

not produce simple and informative propositions as outputs even if they are fed simple and

informative propositions as inputs.

To see this consider first the case of initial value indeterminism. Suppose we supplement

our differential equation – which qualifies as a law under a Best System approach – with

an initial value which does not qualify as a law due to not being simple enough. An initial

value problem which has a unique solution is clearly superior in informativeness to one which

features initial value indeterminism since the deterministic problem is able to uniquely pick

out the world while the indeterministic problem is not, and the differences between the

multiple different solutions might be large37. When presented with exact initial values a

deterministic differential equation yields a more informative proposition than one which

features initial value indeterminism.

Exact initial values, aside from textbook examples, are rarely simple. However they may

be approximated with relatively simple non-exact initial values, and hence a proposition

stating that the initial value is within the neighborhood of a simple value can be both simple

and informative38. If we can supplement a differential equation whose solutions depend

continuously on the initial data with such a simple and informative proposition we can end

up with another simple and informative proposition about the solution staying within some

37We assume here that the indeterminism is not a product of gauge freedom but the multiplicity reflects
real physical differences.

38We do not assume that an entire Cauchy surface can be approximated by simple and informative initial
values, only that some subsystems’ initial surfaces can be. If a proposition describing the entire Cauchy
surface were simple then it would become a law according to a Best System approach.
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time-dependent neighborhood of a simple solution39. However in case continuous dependence

fails we may not get any informativeness out of the resulting set of solutions as these solutions

differ beyond any measure.

To sum up, if the deductive system’s interaction with further input and output is taken

into consideration, a graceful equation is more informative than an ungraceful equation.

Hence ceteris paribus a graceful equation qualify better for lawhood than an ungraceful

equation. If in the balance lots of additional informativeness can outweigh a small loss

in exact truth then this conclusion also holds if the graceful equation describes the same

phenomena merely approximately.

3.8 THE MAIN ARGUMENT

Combining the remarks of the previous section we arrive to the mouthful Best Approximately

True Input-Output System account of laws:

(BATIS) Laws are propositions of the deductive systems which best balance simplicity,

approximation to truth, and informativeness, especially regarding the ability to entail

further informative and simple approximate truths when they are supplemented by ac-

cessible informative and simple approximate truths.

We argued that according to BATIS a simple approximately true graceful equation qual-

ifies better for lawhood than a simple true ungraceful equation. This seems to be the differ-

39Assuming that relative simplicity of initial data correlates with relative simplicity of the resulting approx-
imate solutions, which seems reasonable at least in the realm of linear differential equations. (If continuous
dependence holds typically any solution can be approximated with solutions of a converging set of initial
value problems whose initial values, by construction, is relatively simple, and whose solutions are defined
by Fourier series whose components involve these simple initial values. If the series converge quickly the
first few terms in the series yield an approximation that is relatively simple. Simplicity of the differential
equations of which these Fourier functions are solutions of also gives hope that our recipe for finding a simple
and informative law can be generalized to physical theories other Newtonian mechanics.)
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ence between equation x(k) = 0 and Newton’s F = ma for possible worlds obeying classical

mechanics which contain subsystems whose description under (3.1) feature initial value in-

determinism. In such worlds, then, BATIS crowns x(k) = 0 as a law instead of Newton’s

F = ma. As a consequence possible worlds which feature initial value indeterminism (or

non-continuous dependence on initial data) are not physically possible according to classical

mechanics under reading (B’) of physical possibility even though F = ma is true of them40.

Note that this conclusion does not extend to possible worlds obeying classical mechanics

which do not contain non well posed systems: in such worlds F = ma is still a law since

without the presence of non well posed systems F = ma is as informative as x(k) = 0 and

has the further advantage of being true instead of being merely approximately true. Hence

possible worlds which only contain subsystems with graceful problems remain physically

possible according to classical mechanics.

Although we used Norton’s Dome and classical mechanics as an illustration our plausi-

bility argument can be generalized to cover cases of non well posedness showing up in other

physical theories as well. Given a possible world w the task is to come up with a simple

graceful equation which has solutions approximating w. For field theories we can keep rely-

ing on the homogenous differential equation whose solutions are the (now four dimensional)

polynomials to approximate finite solutions. For other cases and for non-finite solutions we

would need to come up with alternative mathematical constructions.

Despite its many shortcomings the argument presented here has one advantage. We have

seen in Chapter 2 that prediction-based arguments for well posedness manifestly conflate

epistemic and ontological interests: pragmatic difficulties with prediction does not justify

40There is another potential outcome of the balance struggle which, however, would yield the same conclu-
sion. Consider again a possible world w which features a Dome. Even with BATIS the best balance may be
reached by a deductive system which has F = ma and a proposition setting the value of the time T at which
the ball starts to spontaneously roll as laws. If this were the case w would still not be physically possible
according to Newtonian mechanics under reading (B’) for its laws would not exactly be those of Newtonian
mechanics.
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exclusion of solutions of ungraceful problems from the set representing physically possible

worlds. The argument presented here against physical possibility of worlds describable by

non well posed problems, however, does not promote removal of possible worlds from the

set of physically possible worlds on the basis of alleged epistemic defects. Once we accept

the outlined account of laws and reading (B’) of physical possibility they jointly determine

the whole set of of physically possible worlds. This whole set happens to not contain worlds

describable by non well posed problems; no further surgical removal of possible worlds or

further epistemic arguments are needed to achieve the conclusion that only worlds describable

by well posed problems represent physical possibilities. The argument presented here thus

seems to avoid the gap objection.

3.9 OBJECTIONS

The conclusion of an argument can only be as strong as the premises on which it is based. As

the intended conclusion narrows the gap between ‘what can be known’ and ‘what can there

be’ assumptions with epistemic implications needed to have been snuggled in at some point.

The entry point for such assumptions here is the account of laws of nature. To the extent

BATIS is acceptable as an account of laws we massaged the part of our formal apparatus

which is relied on to generate modalities – the part of the formal apparatus on the basis

of which the ‘what can there be’ question is answered – and as a result the gap between

accessible and possible got narrowed without an apparent conflation of the epistemic and

the ontological.

It is questionable whether BATIS is not overly epistemically laden to qualify as an ac-

count of laws of nature. The most obvious epistemic entry point in is conditioning on the

accessibility of the given data. This accessibility condition was added to single out initial
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values as the data on which solutions need to depend continuously. The deductive system’s

desirable interaction with further simple and informative propositions may be used as a jus-

tification for continuous dependence on some data (and hence for well posedness in general)

but without additional requirements such as accessibility nothing seems to necessitate that

the data should consist of initial values. One could argue the same way for why continuous

dependence on boundary values or on any other type of data is crucial for informativeness.

So why would an adherent of a Best System account of laws single out initial values as the

type of data on which solutions should continuously depend? The same point can be raised

regarding uniqueness: even if uniqueness of solutions given some data matters for informa-

tiveness why should this data be initial data as opposed to some other type of data41? Initial

data may indeed be accessible for observers in a way boundary data or other data from the

future is not, but it is unclear why should laws care about being compliant with data that

is accessible for observers as, after all, they are supposedly determined by the whole mosaic

of events and not merely by events that are accessible for observers.

There is hope that the requirement of accessibility can be dropped altogether from

BATIS. Based on an analysis of differential equations in physics Callender (2008) argues

that the direction of time – and thus the direction from which data is judged to be initial

– is determined by the informativeness requirement of a Best System. Under this analysis

‘initial’ turns out to be mere labeling that signifies the direction from which a given input,

coupled with the differential equations that qualify as laws, most increases informativeness.

Requiring data to be ‘initial’ data then is not an epistemic requirement but a further elab-

oration on a notion of informativeness that is not based on observers’ limitations but on

41For instance, in the case of Norton’s Dome the initial data consisting of the position and of the momentum
of the ball is insufficient to determine a single solution, but the initial position and momentum joined by one
further data – the time at which the ball starts to spontaneously roll – does single out a unique solution.
Hence for the Dome Newton’s (3.1) merely requires three values to determine a solution, while (3.2) requires
k values to determine a solution. As k is typically large, the only real advantage of the latter equation is
that all k values are initial values, while the time at which the ball starts to roll is not an initial data.

80



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

objective features of the Humean mosaic of events. This result would in turn allow us to

drop the ‘accessibility’ requirement from BATIS while keeping the presented argument for

well posedness intact. Many details in Callender’s analysis are left open for future research42;

we do not pursue this matter further here either.

Hailing x(k) = 0 as a law for worlds in which Newton’s F = ma nevertheless holds is going

to strike some as a reductio refuting either reading (B’) of physical possibility, or BATIS,

or some other premises43. This is a licit move, but one should not dismiss the conclusion

without identifying the premise that is the target of the modus tollens. We have contrasted

the two readings of physical possibility earlier; some considerations seem to favor reading

(B’) over reading (A’) but it is unclear where to find higher grounds on which we could stand

to reject either of the readings. Before we quickly dismiss BATIS note again that BATIS does

not depart too far from the widely accepted BTS account. We argued that allowing for truth

with an approximation is consistent with the spirit of BTS and in fact appears in its recently

defended version. Introducing a preference for well posedness is, on the other hand, merely

an elaboration on the notion of informativeness which is integral part of BTS itself44. Hence

if the modus tollens is directed against BATIS the hit should likely be taken by its core: the

idea that laws are propositions which allow for a best balance between informativeness and

42For a similar view see Skow (2007).
43It may be argued that the premises could all be accepted individually but their combination is incon-

sistent. If one accepts Humean supervenience about laws as well as that only the actual Humean mosaic
of events exists in a meaningful sense then talk of physical possibility becomes problematic. Here we only
point out that all previously mentioned defendants of the Best System approach do talk in their works
about physical possibility in the same unproblematic way as most other philosophers do. Exploring possible
inconsistencies of this approach is out of the scope of our present treatment.

44Callender (2008) seems to embrace the very same elaboration on the notion of informativeness as BATIS
albeit he does not make the difference between his account of laws and the standard BTS account explicit
as we do here. Callender also argues for the importance of well posedness as an element of informativeness
and he also assumes, without arguments, that laws need not only be simple and informative themselves but
also need to interact well with further data. See i.e. (Callender; 2008, p. 3) : “[a best system] will instead
contain a way to generate some pieces of the domain of events given other pieces. In other words, it will
favor algorithms, and short ones at that. The more of what happens that is generated by small input the
better.”
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simplicity45.

One of the most serious defects of our ‘wonderlaw’ (3.2) is that it can only guarantee

approximate truth if we assume that our Best System systematizes the happenings of a

world with a finite lifespan. There is no guarantee that our wonderlaw can do the same for

a world whose happenings go on forever. Worse, there is no guarantee that our wonderlaw

can systematize happenings of a world which contain subsystems which disappear to infinity

in a finite time, such as Xia’s example of a non-collision singularity. The reason is that

polynomials can be used to approximate continuous functions on a compact domain but the

same is not true for continuous functions of an unbounded domain or on an open domain.

While this is a serious objection against (3.2) being applicable for all interesting scenarios

in classical mechanics it is not a refutation of the existence of another simple approximately

true46 graceful equation which could be relied on to carry the same argumentation through.

To render the objection conclusive one would need to find a solution of a physically relevant

45In my view the main problem with BATIS (and with BTS), apart from the inherent vagueness of
concepts such as simplicity, is not that it is too epistemically laden but that it is not sufficiently epistemically
motivated. Examples such as our wonderlaw 3.2 become possible because there is no requirement built in
to the account that would force discoverability of laws. How such requirement could be built in would hinge
upon a way to solve the problem of induction which we are not touching upon here.

46A further note should be made about approximate truth of deductive systems. When we talk of truth
in the context of formal languages we mean truth relative to a model w: a deductive system is true relative
to w if w satisfies the formulas of the deductive system. We handled approximate truth similarly: we held
a deductive system to be approximately true relative to w if there is a model w′ satisfying the formulas of
the deductive system which is ‘close’ to w in some sense in which distance of models can be judged. Such
comparison of models yielded our conclusions in particular about the approximate truth of some differential
equations: we held a differential equation to be approximately true relative to w if the differential equation
had a solution which was ‘close’ to w.
However there are other ways in which approximate truth of deductive systems could be cached out. Com-
parison of deductive systems may proceed on the basis of more than a pair of their models, or it may proceed
without making any reference to their models at all. The former strategy can be naturally exemplified in the
context of linear differential equations: one could say that two differential equations are ‘close’ to each other
if the differential operators – or, alternatively, if the propagators – of the two equations are ‘close’ to each
other in the operator norm. The latter strategy could proceed by introducing a distance among formulas,
for instance on the basis of the number of steps it would take to get from one formula to the other according
to some well defined method of formula construction and deconstruction. If these alternative methods of
comparison can be philosophically motivated different conclusions may be reached along the same line of
argumentation.
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ungraceful problem which can not be approximated by a solution of any other simple graceful

problem. It is a question open for further investigation whether for specific scenarios such

suitable differential equations can or can not always be found. Without some further elabo-

ration on the notions of simplicity and informativeness this question can not be conclusively

decided.

Even though no unambiguous elaboration on the notions of simplicity and informative-

ness is forthcoming I believe that the investigation of this mathematical issue should be

pursued further as it is likely going to provide valuable insights. To bring this project to

fruition, instead of attempting to find some abstract scheme which allows approximation

of an arbitrary differential equation, we should get our hands dirty and overview the rela-

tionship of various concrete partial differential equations in physics. Elliptic and parabolic

differential equations are the typical sources of failure of well posedness in physics and there

is a general sense in which such equations can be approximated by quasilinear first order

hyperbolic equations whose initial value problems are well posed. Robert Geroch, one of the

main authorities on partial differential equations in physics opines that

[...] A case could be made that, at least on a fundamental level, all the “partial differential
equations of physics” are hyperbolic – that, e.g. elliptic and parabolic systems arise in
all cases as mere approximations of hyperbolic systems. Thus, Poisson’s equation for the
electric potential is just a facet of a hyperbolic system, Maxwells equations. (Geroch; 2008,
pp. 2-3)

Geroch then proceeds to show that a general symmetrization procedure is available for quasi-

linear first order hyperbolic systems; for symmetric systems general theorems on existence

and uniqueness of solutions are available. This is a strong indication that in a relevant sense

solutions of non well posed problems in physics can be approximated by solutions of well

posed problems. As these latter are problems of some fundamental differential equation re-

quired simplicity of the graceful equation may get automatically resolved via the oft-argued

simplicity of laws of our fundamental physical theories.
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These issues are not pursued further here; we hope to have shown that it is not implausible

that the required kind of approximating graceful problems exist and hence that the presented

argument for well posedness may succeed even in infinite cases. We should nevertheless

emphasize again that many important technical subtleties got suppressed for the sake of

presenting the main idea. We introduced the notion of graceful vs. ungraceful problems and

graceful vs. ungraceful equations to improve the readability of the text but these notions

carry the danger of oversimplification. For instance depending on our particular definition

of well posedness graceful and ungraceful equations might not be exhaustive categories, as

there might exist differential equations which have both well and not well posed initial value

problems. It is straightforward to modify the argument to allow for such mixed cases, but

for the sake of readability we leave this task to the Reader.
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4.0 LAWS AND WELL POSEDNESS

4.1 INTRODUCTION

In Chapter 3 we pointed out that the theory-relativized received view of physical possibility

has two non-equivalent formulations:

(A’) A possible world is physically possible according to a theory T if and only if it satisfies

the physical laws of T .

(B’) A possible world is physically possible according to a theory T if and only if it has the

same physical laws as does T .

Depending on our conception of laws of nature reading (B’) may yield a narrower set of

physically possible worlds than does reading (A’). Utilizing reading (B’) we constructed an

argument for well posedness by adopting a suitable variant of the Best System account of

laws. The argument avoided the gap objection as it did not operate by a selective removal

of physical possibilities on the basis of epistemic motivations: the whole set of physically

possible worlds happens to not contain worlds that are represented by solutions of non well

posed problems.

Non-philosophers likely remain unimpressed by this argument. Even if all philosophically

satisfying considerations preferred reading (B’) mathematical pragmatism would trump these

considerations in the mind of a practicing physicist. By choosing a particular mathematical

formulation of a physical theory reading (A’) allows discussion of possibilities in a math-
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ematically clear and unambiguous way while reading (B’), sans any clearly and effectively

formulated account of laws, does not. As the sentiment that well posedness is a necessary

condition for physical possibility is widespread among practicing physicists it would be more

satisfying to back up their sentiment by arguments relying on reading (A’)1.

1It is instructive to take a look at a (highly idealized) genesis of reading (A’) of physical possibility. The
story goes as follows. We observe a number of ‘similar’ physical systems and collect data about their behavior.
Based on the data we construct mathematical representations of the observed systems. During this process we
find commonalities among the representations; if we get lucky we can capture some of these commonalities
mathematically. The mathematical structure of the commonalities is then suggestive of mathematically
admissible representations of yet unobserved physical systems that also obey the commonalities. We may then
conduct experiments to verify whether yet unobserved physical systems indeed behave as the mathematically
generated representations, to which they correspond to, suggest they should. If we are lucky they do. After
substantial effort to verify a variety of mathematically admissible representations our confidence may reach
a point to make two sort of generalizations about the commonalities.

The first generalization asserts that (G1) all representations of ‘similar’ physical systems obey the identified
commonalities. This generalization is a claim about physical systems that appear in our actual world. As
an example if mathematical representations were functions of the form f : t 7→ R3N and if identified
commonalities were Newton’s Laws then the first generalization would assert that all physical systems in our
actual world that are ‘similar’ to the one we studied and can be represented by a function f obeys Newton’s
Laws.

The second generalization asserts that (G2) all representations that obey the identified commonalities are
representations of physical systems that are possible. This generalization is a claim about modalities and it is
not tied to physical systems that appear in our actual world. As an example if mathematical representations
were functions of the form f : t 7→ R3N and if identified commonalities were Newton’s Laws then the second
generalization would assert that all functions f that obey Newton’s Laws represent physical systems that
are possible.

These two generalizations are independent from one another. The first generalization appears more humble
but it suffers from vagueness resulting from the notion of ‘similar’ systems. Unless the identified common-
alities happen to hold for all actual physical systems (which would be characteristic of a fundamental true
physical theory that is yet to be found) the first generalization requires a way of identifying systems as similar
in a non-circular way, that is without relying on the success of the commonalities to hold for the represen-
tations. The first generalization is also merely an assertion about what there actually is and does not imply
claims about what is possible. The second generalization appears to suffer less from vagueness but it operates
with a notion of possibility that outstretches the resources of the actual world. The second generalization is
also ridden with semantic problems as generalization from a small set of mathematical representations to all
mathematically admissible representations does not automatically imply that the semantical link between
members of the small set of mathematical representations and actual physical systems also gets generalized
to a semantical link between the set of all mathematically admissible representations and physical systems
they are supposedly representing.

Reading (A’) of physical possibility is an expression of the permissive attitude of the second generalization:
physical possibility is essentially mathematical compatibility with certain constraints imposed by the laws.
Until proven otherwise any representation is taken as physically possible if it takes the right mathematical
form and if it meets the constraints imposed by the laws of a theory. A physical theory thus identifies two
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Adopting reading (A’) leaves us with fewer options to back up the physicists’ sentiment.

There are examples of physically relevant differential equations with non well posed prob-

lems. If the differential equation represents the law and if the solutions of the differential

equation represent the physical possibilities then, according to reading (A’), there are phys-

ically possible worlds represented by solutions of non well posed problems. Whether reading

(A’) leaves room for arguments for well posedness depends on whether there is room left for

said differential equations not to represent the laws of the physical theory or for solutions of

these differential equations not to represent possible worlds of the physical theory2.

components in a representation of the world: a component which the theory proclaims to be fixed and a
component which the theory may allow to vary. The modal character of the physical theory arises from
associating the fixed component with the necessary and the variable component with the accidental. It is in
this sense we take solutions of a fundamental differential equation to represent physically possible scenarios:
we construct a mathematical representation of an arrangements of facts, we realize that this mathematical
representation can be viewed as a solution of a differential equation, proclaim that the differential equation
is the fixed component – the law – and that the solution is the variable component, and proceed to view
other compatible variable components – other solutions of the same differential equation – as representations
of other physical possibilities.

2This question in turn depends on how narrowly we construe a ‘physical theory.’ Do we allow a ‘physical
theory’ to potentially have different mathematical formulations? Do we allow a ‘physical theory’ to poten-
tially identify different mathematical structures as representations of laws or as representations of possible
worlds?

Mathematical logic is suggestive of answering both questions negatively and construing ‘theories’ narrowly.
A fixed mathematical formulation becomes constitutive of a ‘theory’ if we identify a ‘theory’ with a specific
set of formulas F of a fixed formal language. Identification of a fixed representation of laws and of possible
worlds becomes constitutive of a ‘theory’ if we identify physical laws of a ‘theory’ with this set of formulas F
and if we identify possible worlds with L-structures. With these choices the set of physically possible worlds
of the ‘theory’ according to reading (A’) are the set of L-structures that satisfy F . If for these structures the
question of well posedness can be meaningfully asked then it is either the case that there are possible worlds
which are solutions of non well posed problems or it is the case that there are no such possible worlds. Aside
from tinkering with the definition of well posedness there is little room left to influence the outcome.

‘Physical theories’ can rarely be found as a set of formulas of a fixed formal language. Treatises on
classical and quantum mechanics, electrodynamics and relativity theory present many formal and semi-
formal assumptions and methods but they do not present the theory as an axiomatic system of a specific
formal language. Although for pragmatic purposes the treatises are sufficiently mathematically precise there
seems to be a leeway in how to ground their concepts in formal systems. Shall the underlying language be
first order or second order? Shall the logic be classical or intuitionistic? Shall the language contain countably
many or continuously many of the various logical constants? With each choice we can get a different formal
system. (There are ways to compare and identify formal systems that are formulated in different languages.
The problem is that there are multiple ways to do so; for instance there exist multiple notions of definitional
equivalence of theories (see Szczerba (1977)). Identification of a formal systems thus depends on a choice of
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If there are several ways to identify laws of a physical theory and to identify the possible

worlds that are supposed to satisfy these laws then reading (A’) may allow tinkering with

the set of physically possible worlds. In this Chapter we focus on the laws; in Chapter 5 we

a notion of definitional equivalence and with different choices different formal systems may count being the
same.). If we construe ‘theory’ narrowly then different formal systems become different ‘theories.’ However,
as long as these different formal systems all respect some important features (such as they contain formulas
expressing the laws) we tend to naturally identify them as different axiomatizations of the same physical
theory. This identification of different formal systems as being axiomatizations of the same physical theory
only makes sense if a fixed mathematical formulation is not constitutive of a ‘physical theory’ but a ‘physical
theory’ can have alternative axiomatizations.

A ‘physical theory,’ as presented by standard treatises, may also be consistent with different choices for the
mathematical objects that are supposed to be representations of laws and of possible worlds. Let us briefly
recall one among the many examples we already mentioned in another context in Chapter 2. (Identification
of solutions in the presence of gauge freedom by the ‘same physical theory’ could be another example.) It
is typical to take a solution of a differential equation to represent a physically possible world. There exist,
however, several non-equivalent solution concepts for differential equations and thus the set of physically
possible worlds depends on which of these solutions concepts we choose to represent possibilities. For
instance if we formulate Maxwell’s equations using college analysis and we rely on the notion of a classical
solution of a differential equation then, strictly speaking, there are no physically possible worlds with point
charges as the Dirac delta is not a function in the required sense. However if we consider distributional
solutions for differential equations to be representations of physical possibilities then there are physically
possible worlds with point charges as distribution theory is capable of handling Dirac-delta-like entities.
Understanding ‘theories’ narrowly would imply that these representations belong to different ‘theories’ but
there is a natural sense in which the representations, albeit being different, belong to the same ‘physical
theory,’ namely to Maxwell’s theory.

Suppose it is reasonable to follow these linguistic clues and we take a ‘physical theory’ to be an entity that in
itself lacks complete specification of the mathematical objects that represent laws or represent possible worlds.
Then in order to determine what are the physically possible worlds we need to add such a specification. Thus
instead of talking of

physically possible worlds of physical theory T

we need to talk of

physically possible worlds of physical theory T with specification S.

As highlighted by the examples above for a different specifications S we may end up with a different set of
physically possible worlds.

What is the point of stripping off specification S from the ‘physical theory’ T if we add S back right when
we need to determine the set of physically possible worlds? Separating T and S may illuminate what an
argument for well posedness aims to achieve. For some choices of S physically possible words of T + S may
respect the requirement of well posedness, for other choices of S they may not. Choice of S may not be
completely arbitrary: there might be good reasons to prefer some choices of S to others. If these good reasons
prefer a choice of S so that physically possible worlds of T +S respect the requirement of well posedness and
if they are non-circular then we have an argument for well posedness. This logic behind choosing a particular
mathematical formulation of a physical theory remains hidden if a ‘theory’ is understood in a narrow way.
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treat the possible worlds.

It is commonplace to assume that the mathematical structure which represents the laws

of dynamical physical theories are differential equations. Philosophers often debate the

question what makes laws of nature laws3 but when the question becomes what are the laws

of nature they point in unison with the physicists to a list of well known differential equations,

such as Newton’s F = ma, Maxwell’s equations, Schrödinger’s equation, the Dirac equation,

Einstein’s field equations etc.

Differential equations may arise naturally from empirical studies. When the dominant

physical quantities affecting a given physical system are known one can often make edu-

cated guesses about the relationship of these quantities. Talking of dynamical theories these

relationships typically involve rates of change and displacement of the quantities. As the

number of independently observable quantities and the number of independently entertained

connections among these quantities is often limited the relationship between these rates of-

How wide shall be the reach of freedom for choosing a specification S? A typical way to narrow the set
of physically possible worlds of a theory TL is by imposing additional constraints. An example could be the
imposition of an energy condition C which is not implied by the dynamical laws L of the theory TL. By
imposition of a constraint the set of possible worlds which satisfy laws L gets narrowed to the set of possible
worlds which satisfy laws L and also satisfy the further constraints C. This narrowed set of worlds then
might have desired properties that the wider set of worlds lacks i.e. requirement of well posedness may be
respected in the narrower set even though it is not respected in the wider set.

The ambiguity in the notion of a ‘physical theory’ (the freedom for choosing different specifications of S)
can not be as wide as to allow ambiguity regarding the inclusion of additional laws like an energy condition C.
An energy condition is a statement that evidently alters the physical content of the theory. A theory TL+C

whose laws are L+C is a different ‘physical theory’ than TL whose laws are merely L, and thus discovery of
an additional law C can not be taken as an argument for well posedness for the physical theory TL even if it
produces a different physical theory TL+C which respects the requirement of well posedness. (If we add C to
TL not as a law but merely as a condition that have pragmatic use for calculation for specific scenarios then
TL may remain intact as a theory but then we again do not have an argument for well posedness for TL.
According to reading (A’) the set of possible worlds that satisfy L + C is the same as the set of physically
possible worlds of a theory that has laws L + C; if only L are the laws then the physically possible worlds
are those that satisfy L only and thus C is of no help for narrowing this set.)

I can offer here no principled way to draw a line for deciding what freedom should or should not be allowed
in what a ‘physical theory’ consists of; in general empirical distinguishability seems to be a good guideline
but further elaboration on this issue is needed.

3See our discussion in Chapter 3.
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ten takes the form of a differential equation. These differential equations compactly and

informatively summarize the relationship among the physical quantities and they may often

be generalized to describe other similar physical phenomena as well. Hence from a heuristic

- epistemological standpoint differential equations seem natural candidates when we seek a

mathematical object that is to be interpreted as the modality-generating fixed component –

as the ‘law’ – of a theory.

Differential equations, however, may not be natural choices as objects of interpretation

when we consider one of the strongest intuitions we tend to associate with laws: that laws

‘govern,’ ‘evolve,’ ‘propagate’ or ‘bring about’ the states. A differential equation typically

connects time and spacial derivatives of state variables but it is not straightforward to

interpret this connection as an expression of one thing evolving another thing. There exists

another mathematical object which fits these intuitions better: the so-called propagator.

To fix ideas consider the following abstract differential equation:

u′(t) = Au(t) (4.1)

where A is a densely defined operator in a Banach space E (see Appendix A for a precise

treatment). We can think of E as the set containing the possible states and of a solution

u(t) satisfying (4.1) as a (representation of a) physically possible world according to this

differential equation. Many fundamental differential equations in physics fit this abstract

scheme4. Under certain circumstances – soon to be addressed – the solutions of this differ-

ential equation can be expressed in the following form:

u(t)
.
= S(t)u0 (4.2)

where u0 is an arbitrary element of E. S(t) is called the time evolution operator or propagator

of equation (4.1).

4Examples include the Maxwell equation, the Schrödinger equation, and the Dirac equation for free
particles. See Appendix A for some details.
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The propagator does what its name suggests: it takes a state and a time t as an input

and evolves the state to a new state after t amount of time passes. Thus as long as we

think about laws as entities which ‘govern,’ ‘evolve,’ ‘propagate’ or ‘bring about’ states the

propagator may be a more natural choice for the mathematical object we intend to interpret

as a law.

To find the propagator one needs to solve the differential equation. This is the sweaty

part, the bread and butter of the pragmatics of physics. It can be quite difficult to find the

solution of particular initial value problems – hefty cash prizes await those who solve some

of the outstanding open problems –, let alone expressing a propagator which captures the

time evolution for all initial states. But these problems we face in the course of finding the

propagator are ‘epistemic-pragmatic’ in their origin: we humans have difficulties in finding

solutions or expressing solutions in a compact form which is easy for us to comprehend and

work with (i.e. in an analytic form). The existence of the propagator as a mathematical

object is independent from these epistemic-pragmatic difficulties.

We typically rely on differential equations to dissect descriptions of a particular type of

dynamical system to fixed and variable components: the differential equation is identified as

the fixed component and its solutions are identified as the variable components. A similar

dissection can be achieved via propagators: the propagator is to be regarded as the fixed

component and the solutions generated by the propagator equation (4.2) as the variable

components. Thus we arrive at different notions of of physical possibility depending on

whether we take the differential equation (4.1) or the propagator equation (4.2) to express

the law of our physical theory T :

(Ad’) A physically possible world of a theory T is represented by a solution of T ’s funda-

mental differential equation.
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(Ap’) A physically possible world of a theory T is represented by a solution5 generated by

T ’s fundamental propagator equation.

Both formulations are variants of reading (A’) of physical possibility but they regard

a different mathematical object as the appropriate representation of the dynamical law of

a theory: a differential equation versus a propagator equation. Both formulations rely on

a mathematically sound and unambiguous separation of fixed and variable components of

given physical descriptions. Each formulation has its own advantage and disadvantage: the

differential equation may be easier to find and may be more cogently expressed than the

propagator, which gives an advantage to variant (Ad’) over (Ap’). On the other hand given

the propagator and the state space E the set WTp of (representations of) physically possible

worlds of (Ap’) is straightforwardly generated, while generating the respective set WTd of

(Ad’) requires finding all solutions of the differential equation and to do so we need to face

the same difficulties we had in finding the propagator. In the end the same difficulties arise

in generating WTp and WTd, but the two variants locate the difficulties in different stages

of the generation of the set of physically possible worlds. As we noted these difficulties are

essentially ‘epistemic’ in their origin.

4.2 PROPAGATORS AND WELL POSEDNESS

The choice between these formulation gets interesting when we realize that the sets of physi-

cally possible worlds WTd and WTp may not coincide. The first apparent difference is that we

only required the operator A to be densely defined while the propagator S is defined on all

elements of the underlying space E. Thus apparently WTp contains more worlds than WTd;

this should immediately raise suspicion. This difference, however, can be regarded as a tech-

5The appropriate concept here is that of a weak solution, as explained below.
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nicality, forWTp only contains, besides solutions of (4.1), the so-called weak solutions of (4.1).

Weak solutions are familiar from distribution theory, they are generalizations of the notion

of a solution of a differential equation. The interpretational importance of this difference

should be discussed elsewhere; here we only note that if we wish to take common textbook

examples involving point masses and point charges of field theories as representations of

physically possible scenarios we need to resort to such generalization. Thus broadening our

scope to include weak solutions of (4.1) can probably be regarded unproblematic; allowing

for weak solutions the difference between WTd and WTp seems to disappear. When it does

not lead to confusion we are going to refer to weak solutions and functions generated by the

propagator equation simply as solutions.

We need to address the issue whether the propagator exists at all. Note that the solution

generated by S is unique for all initial states from E. We know, however, that certain initial

value problems have multiple solutions. Are we not facing a contradiction here?

Albeit there is no contradiction there is a tension which leads us to subtle issues in the

theory of differential equations. The existence of a propagator is closely linked with well

posedness of the differential equation. We call the equation (4.1) well posed if a solution

exists for a dense set of initial values and if solutions depend continuously on the initial

values. These conditions for (4.1) entail the uniqueness of solutions; on a dense set one can

then define an operator valued time evolution function via the existing unique solutions, and

extend the operator to the entire space E as due to continuous dependence the operator is

bounded. This everywhere defined operator valued function is the so-called propagator S(.)

we introduced earlier. Such propagator of a well posed problem is a strongly continuous

group. Conversely, if S(.) is a strongly continuous group then there exists a unique closed,

densely defined operator A for which the equation (4.1) is well posed such that S is the

propagator of (4.1). For precise definitions and treatment see Appendix A.

Consequently if the equation is well posed then (allowing for weak solutions) the phys-

93



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

ically possible worlds of (ATd’) and (ATp’) coincide. A not well posed differential equation,

however, does not have a propagator in the sense defined above. If there is no propagator

there are no physically possible worlds generated by the propagator equation and we can’t

take it to represent the fix component of our physical theory. As non well posedness seems

to plague our best physical theories the non-existence of the propagator may seem as a fatal

blow to the (ATp’) view.

Before jumping to conclusions it is worthwhile to contemplate about reasons of failure of

well posedness. Well posedness is sensitive to the mathematical choices we make in formu-

lating the differential equation in the first place. For a mathematically rigorous treatment

of differential equations one needs to make sense of the differential operators involved; this

requires specifying the type of functions on which the differential operators as operators

act; specifying these functions in turn requires specifying the space of states to which the

ostensive solutions map to. Differentiation with respect to the time parameter also requires

that we make sense distance between states; distance of states is typically introduced by

invoking the notion of a norm. The abstract framework presented above makes this logic

quite clear: first we need to specify the space E to which solutions map and then need to

define the differential operator A as one acting on some subdomain of E; E also needs to be

endowed with a norm (implicit in the notion of a Banach space) to allow for differentiation6.

Treatment of differential equations in physics and engineering textbooks often obscures

this logic and leaves the state space E vague and unspecified. Strictly speaking for different

choices of the Banach space E equation (4.1) is a different differential equation; we tend to

lump these different equations together on the basis of similarity of form. This attitude may

be well justified when we only care about heuristically finding individual solutions of a type

of differential equation and we are content with finding post hoc a Banach space to host the

6Typically the norm also plays a role in defining the dense domain on which the operator acts. Requiring
(E, ‖.‖) to be a Banach space adds the additional requirement of closure whose justification is primarily
technical.
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solution. WTd, however, is sensitive to the choice of E and hence if we are interested in the

physical possibilities we do need to nail down the appropriate state space E7.

Well posedness of an equation depends crucially on the choice of the state space E. If

E is too narrow solutions may fail to exist; if E is too wide then uniqueness or continuous

dependence of solutions might fail8. Well posedness can only be achieved when E strikes the

right balance between the two ends of this spectrum.

One can often choose a Banach space E with which equation (4.1) becomes non well

posed. Around the middle of the last century this and other observations led to the view

that non well posedness plagues our best physical theories. Mathematical research since

the 1950’s has also progressively shown, however, that with the exception of certain inverse

problems most dynamical equations in physics do have a well posed formulation if the space

E is chosen wisely9. For this reason such non well posed equations are often referred to as

weakly ill posed, i.e. they become well posed if we choose another, more suitable space E.

Choice of E can often be motivated on independent grounds, i.e. by additional interpre-

tational premises or by additional information about the investigated physical systems. As

7 (A′
Td) and (A′

Tp) can be understood both in a narrow and in a vague way. As we pointed out fixing the
space E is a precondition for making precise sense of an equation and of a solution of this equation, concepts
to which both (A′

Td) and (A′
Tp) makes reference to. The narrow understanding, accordingly, assumes that

the space E is fixed.
The vague understanding does not assume the space E to be fixed but appeals to our sense of identifying

equations which are defined on different spaces on the basis of their formulaic similarity. If there is a Banach
space E with which our equation is meaningful and gives rise to a solution then we shall regard this solution
as a representation of a physical possibility.

Heuristically it is more tempting to adhere to a vague understanding (see also footnote 2 on what a ‘physical
theory’ consists of) but quantifying over possible mathematical structures can be a recipe for philosophical
disaster. The concept of similar differential equations is inherently vague. It is also easy to underestimate
the weirdness of the mathematical structures which may fit our bill. If similarity of equations is the only
limitation there is no reason to exclude, for instance, Tsirelson spaces as candidates for physical possibility
producing Banach spaces. Neither C0 nor Lp spaces can be embedded into a Tsirelson space so interpreting
the resulting solutions in physical terms becomes very problematic.

8This parlance is an oversimplification as choice of norm also has a defining influence.
9For brief historical notes and references see Chapter 2.
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an example consider the familiar Schrödinger equation for a free particle:

−h
i

∂ψ

∂t
= − h2

2M
∆ψ (4.3)

This differential equation can be cast in the abstract form (4.1). Is this equation well posed?

As careful readers surely point out this question can not be answered until we specify the

space E on which the differential operator and the ostensive ψ : t 7→ E solutions are defined.

As it turns out there are many choices of E which make perfect mathematical sense; for

some such choices the Schrödinger equation is well posed, for some other choices it is not.

The Schrödinger equation is not well posed for E = L1 while it is well posed for E = L2;

indeed for E = Lp the Schrödinger equation is well posed if and only if p = 210. The choice

of E = L2, of course, also has a motivation independent from the desirable result that it

implies well posedness: the probabilistic interpretation of the mathematical apparatus and

the Born rule suggests that ψ(t) needs to be square integrable and thus needs to belong to L2.

This motivation, however, does not follow merely from the mathematics of the Schrödinger

equation but from additional physical premises regarding the intended interpretation of ψ.

If it is possible to find a sensible space E that makes our differential equation well

posed then with this space E the equation does have a propagator. If there is a propagator

then there are possible worlds generated by the propagator equation and we can take it

to represent the fix component of the physical theory. Hence for at least weakly ill posed

equations the (A′
Tp) view remains viable.

Thus weakly ill posed differential equations in physics can be viewed through different

looking glasses depending on whether we uphold differential equations or propagator equa-

tions as the modality-generating fixed components (as the laws) of the physical theory. An

adherent of the (A′
Td) view says it might very well be the case that the proper mathematical

10For the result see Proposition 2 of Appendix A. That fact that the differential form of the Schrödinger
equation may allow for indeterminism while the integral form does not have already been noted in the
philosophy of physics literature, see Norton (1999), esp. Proposition 1 and Proposition 6.
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formulation of the physical theory is one in which its dynamical equation is not well posed.

In such cases non well posedness – such as the presence of initial value indeterminism –

genuinely reflect physical possibilities regardless of the ensuing epistemic concerns.

The looking glass of (A′
Tp) shows a different view: as a propagator only exists when the

corresponding equation is well posed the presence of non well posedness does not genuinely

reflect on physical possibilities but on our failure to arrive at a proper mathematical for-

mulation of the physical theory. Differential equations are but epistemically useful tools to

arrive at histories representing physical possibilities but they need to be used wisely to serve

well in this role, that is they need to be formulated in a way which permits the existence

of the propagator. If, given some mathematical choices, our equation turns out to be non

well posed we need to scrutinize our mathematical choices instead of fancying the results as

genuine reflections on physical possibility. In this view well posedness can and should be

taken as a guide to the proper mathematical formulation of differential equations for it is

a necessary condition for identifying the solutions of these equations as representations of

physically possible worlds.

Thus the (A′
Tp) variant of physical possibility supplies an argument for well posedness in

the sense that it limits the choice of the space E to Banach spaces that allow for the existence

of the propagator. The propagator-as-law point of view also has a further philosophical

advantage in allowing for a direct correspondence between elements of the state space E

and physically possible worlds. This is especially desirable since it also allows us to take the

notion of a physically possible ‘state’ (configuration) to be mereologically prior to the notion

of a physically possible world: as it is tempting to think of physically possible worlds as

entities made up from a succession of physically possible ‘states’ it is also tempting to think

of the modality of possible worlds being dependent on the modality of possible ‘states.’ (A′
Tp)

reflects this intuition but (A′
Td) needs to get the relationship backwards. With (A′

Td) in order

to know which elements of the space E represent physically possible states we first need to
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know what are the physically possible worlds. This difference shows when, as (A′
Td) suggests,

we allow ill posed equations to generate physical possible worlds. When ill posedness shows

in the failure of the existence condition for some elements of E solution of the initial value

problem does exist. Such elements of E can not represent physically possible states for they

are not states of any physically possible world: under the assumption that physically possible

worlds are represented by solutions of a differential equation we automagically disqualify

worlds which would only have instantaneous existence from being physically possible. Hence

with (A′
Td) elements of E do not necessarily correspond to physically possible states while

E receives a natural interpretation as the set of physically possible states under (A′
Tp) .

4.3 PEACE BETWEEN GOVERNING AND NON-GOVERNING

INTUITIONS?

When the differential equation is well posed the physically possible worlds of the two variants

of reading (A’) of physical possibility coincide. From a modal perspective there is little gain in

splitting hairs whether we should regard the differential equation or the propagator equation

as the fixed component of the theory: the theory has the same modal character either way

since the variable components end up being the same.

From a philosophical perspective the variants may be taken to express different intuitions

about laws of nature11. According to some Non-Governing intuitions (notably those of the

Best System account) laws of nature are simple and informative systematizers. Differential

equations fit this bill nicely: they provide surprisingly simple descriptions which can be true

of many, seemingly widely different possibilities. This simplicity of the differential equations

may not be present in the propagators. Hence its seems more natural to associate the

11For an overview of the different positions and references to literature see Chapter 3.
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Non-Governing account of laws with the (A′
Td

) view.

Even though simplicity of differential equations may not show up in the propagators they

express more palpably the intuition of some Governing theorists that laws ‘govern,’ or that

they ‘produce,’ ‘evolve,’ or ‘bring about’ the physical states. If so then it seems more natural

to associate the Governing account of laws with the (A′
Tp

) view12.

The Governing and the Non-Governing intuitions are often thought to be in conflict with

each other. Assumption of well posedness may soothe the conflict between Governing and

Non-Governing intuitions: even though they allocate the modality-generating fixed com-

ponent of the physical theory to distinct mathematical structures this distinction does not

show up in any modal difference. Different intuitions about laws match up with emphasizing

different mathematical aspects of the same physical theory.

It this a truce or a détente? We motivated associating Governing intuitions with (A′
Tp

)

and Non-Governing intuitions with (A′
Td

) but this association is not necessary; defenders

of the accounts would need to speak for themselves about their allegiances. Even if the

association is apt well posedness is necessary for soothing the conflict. If well posedness

fails then, as we have seen, modal difference between the two variants resurface and starting

with different intuitions about laws we end up with different judgements about physical

possibilities. Note also that the Governing and Non-Governing theorists intend to give

account not only of laws of our actual world but also of laws of other possible worlds.

Soothing may only touch upon importance of systematizing versus governing aspects of laws

for worlds whose laws can be expressed as differential or propagator equations; it does not

touch upon the general issue of Humean supervenience, a front line between those who attach

metaphysical significance to the methodological separation of laws and initial conditions and

12A Governing theorist who maintains (Ad’) may quickly run into problems when well posedness fails. For
instance the presence of initial value indeterminism poses a challenge for the Governing theorist for in such
cases there is nothing in the differential equation which would set definite path for the states to evolve. It
becomes difficult to maintain the intuition that the differential equation generates the states if it produces
multiple possibilities. Thanks to Barry Loewer for a discussion about this point.
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those who would rather not. Thus in other possible worlds cease-fire between the Governing

and the Non-Governing theorist may quickly be abandoned. We wish them a good fight.

Facing a weakly ill posed equation we need to choose between the two variants: we either

keep our mathematical formulation and rely on (A′
Td) as a guide to physical possibility or we

revamp the mathematical formulation in the spirit of (A′
Tp). Are there any empirical means

to decide in the favor of one variant or the other?

4.4 ARE THE TWO VARIANTS EMPIRICALLY DISTINGUISHABLE?

So far not much had been said about connection to experimental evidence. Does difference of

the (A′
Td) and the (A′

Tp) variants of reading (A’) of physical possibility allow to distinguish

them empirically? For ill posed problems (A′
Td) allows physical possibilities which (A′

Tp)

disavows; could we not simply decide between the variants by experimental means?

Testing the difference may seem straightforward. Let’s call s a treacherous state if s

belongs to a state space E which renders the initial value problem ill posed, the initial value

problem for s in E has at least one solution, and s does not belong to any other Banach space

that renders the initial value problem well posed. Successfully engineering a physical system

whose initial configuration is represented by a treacherous state s could be evidence for the

(A′
Td) variant as this variant allows s to represent a physically possible state while (A′

Td)

does not. Impossibility of engineering a physical system described by any of the treacherous

states could similarly be taken as evidence for the (A′
Tp) variant.

The proposed test faces several problems. First we would need to make sense of the

condition that s does not ‘belong’ to any other Banach space that renders the initial value

problem well posed. This condition presumes that an identification of states of different

Banach spaces on the count that they represent the same physical configurations is available.
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If this physical identification of states is achieved, as it is frequently assumed, by a norm-

preserving isomorphism then in the physically most relevant cases (when the Banach spaces

are separable infinite dimensional Hilbert spaces) such identification always exists for all

elements. Hence there are no examples of states s that ‘belong’ to some of the state spaces

but do not belong to another and hence there are no treacherous states. The test then can

not even get off the ground13.

Even if a treacherous state s existed in its state space E we would still face serious

difficulties in the engineering part of the test. Many worries we raised in Chapter 2 about the

necessity and sufficiency of well posedness for prediction and confirmation could be reiterated;

we only bring up here the issue of measurement inaccuracy. Recall that one of the empirical

limitations typically attributed to observers is that they are only able to prepare and measure

physical systems inaccurately. This inaccuracy gets a mathematical representation by means

of closeness in the norm. The norm of space E is either operationally significant or it is not

operationally significant14. If the norm of E is not operationally significant then it does

not allow to correlate a set of close states with the prepared systems. If the norm E is

operationally significant we still have the problem that any actual measurement has finite

precision and hence our handicapped observers are never in the position to verify whether

the prepared configuration is indeed appropriately represented by the treacherous state or

by some other non-treacherous state close to the treacherous state15. The same problem

would surface if we wanted to empirically test whether initial value indeterminism genuinely

reflects a property of our world: such test would presumably require observers to repeatedly

prepare a treacherous state s that gives rise to multiple solutions in E and check whether

13Physical identification of states of different Banach spaces on the basis of norm preserving isomorphism
may however be problematic as we pointed out in Chapter 2.

14A norm is operationally significant if states are sufficiently close in the norm iff their measurable prop-
erties are also sufficiently close. See Chapter 2 for a discussion of operational significance and approximate
measurability of the norm.

15If non-treacherous states are dense in E this problem can not be avoided.
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indeed more than one of the solutions can get realized. Non-uniqueness implies failure of

continuous dependence and without continuous dependence it would be difficult to discern

whether multiple solutions arise from the same treacherous state s or from different states

nearby s16.

Testing failure of continuous dependence seems more promising. One could prepare

many systems whose initial configurations do not differ more than a pre-set measurement

precision and track the behavior of these systems. For an operationally significant norm

such a close set of configurations can be mapped to a close set of states; the theory then

could be used to estimate the maximal deviation of the solutions which (in case the norm is

also approximately measurable) can be compared with the behavior of the system. A system

that exhibits a deviation falling beyond the upper bound for the deviation could be taken

as evidence for the failure of the (A′
Tp) variant.

One problem with such test could be that estimations of maximal deviation are tied to

particular choices for the space E; typically there are multiple choices of E that can make

the initial value problems well posed and it may not be the case that a universal upper bound

exists that would be valid for all such possible E’s17. If there is no universal upper bound

then the existence of a large deviation would not evidence failure of (A′
Tp) as it may only be

an indication that we have not chosen the right space E to begin with18.

A more serious problem with this test, and with any other similar proposals, is that in

order to draw any conclusion from experiments first we would need to be able to identify the

norm or norms that are operationally significant and/or approximately measurable. Without

a link connecting observed deviations with distances of states relating any experimental data

16Albeit see our comments in Chapter 2 about failure of continuous dependence not implying ‘everything
goes.’

17This problem may be moot but I’m not aware of mathematical results settling this question either way.
18The existence of several Banach spaces E that can make the problem well posed also points to a difficulty

shared by both variants: even though (A′
Tp) helps in reducing the number of possible candidates it also faces

the problem of choosing among the rest.
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to the mathematical models is problematic. To my knowledge no systematic study have

been made in correlating norms to available experimental techniques. Sans establishing such

correspondence it is not possible to do justice to the issue of continuous dependence by means

of observation and we need to apply great care when we intend to interpret mathematical

examples of failure of continuous dependence empirically19. This remark also applies to other

empirical means that have less of an operationalist flavor. Although it would be interesting

to see a detailed overview of the possible ways to empirically assess the difference of the

two variants, and without such a detailed overview it would be hasty to conclude that no

empirical means are available to tell them apart, we leave this discussion with the sense that

finding such means is beset by many yet-to-be resolved problems.

4.5 OBJECTIONS

Variant (A′
Tp) of physical possibility supplies an argument for well posedness in limiting the

choice of the state space E to Banach spaces that allow for the existence of the propagator.

This is a formal requirement: it does not imply approximate measurability or operational

significance of the norm of E. Albeit severing ties with empirical justification may seem as

an advantage it also makes the approach suspicious. It may be possible, for instance, that

the equation is well posed in a norm that entails the existence of the modality generating

propagator equation but it is not well posed in the operationally significant norm. This would

then pose difficulties for prediction based on and confirmation of the underlying physical

theory, which is the complaint originally raised against ill posed equations.

In Chapter 2 we argued that well posedness is neither necessary nor sufficient for predic-

19To avoid circularity we should also not base judgement of operational significance on whether a given
norm renders the differential equations well posed. It is difficult to overcome such temptation given the
prejudice for well posedness in the practice of mathematical physics.
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tion and confirmation. Among other objections we pointed out that even though a theory

may not be able to supply prediction with certainty it may still be able to supply proba-

bilities with which certain outcomes get realized. Quantum mechanics is a straightforward

example: it is well confirmed in its probabilistic assertions but it is unable to supply defi-

nite predictions. Quantum mechanics then may also be an example that supposedly should

have raised our suspicion according to the previous paragraph. The Schrödinger equation

is well posed in the operationally not significant L2 norm20; if it were possible to define an

alternative notion of ‘state’ and an operationally significant norm in terms of the measur-

able quantities alone then, since no measurable quantities fix the time evolution of these

quantities uniquely, the initial value problems for this alternative notion of ‘state’ would not

be well posed. Then quantum mechanics would be a theory for which there is an argument

for well posedness even though the argument does not establish that it is the operationally

significant norm in which the theory should be well posed.

The argument presented in this chapter for well posedness has many limitations. Albeit

many fundamental differential equations in physics can be cast in the 4.1 form – i.e. the

Maxwell equation, the Schrödinger equation, and the Dirac equation for free particles (see

Appendix A for some details) – there are others, such as Einstein field equations, that can

not; it remains to be seen whether similar ideas can be pursued for nonlinear cases where no

such straightforward relationship between the existence of propagators and well posedness

of the differential equation is available.

Another contentious issue is that equations of the form 4.1 handle the time parameter in

a distinguished way which is then inherited by the propagator equation. Partial differential

equations, at least prima facie, do not need to distinguish the time parameter from other

physical variables. Thus the preferential treatment of time cries out for justification and so

20See Chapter 2 for an argument why the L2 norm is not operationally significant; for the well posedness
result see Appendix A.
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does the implied assumption of instantaneous states. In special relativity we don’t have a

preferred coordinate system; general relativity even have models not admitting a global time

function21.

The preferential treatment of the time variable may be less problematic than it appears;

an increasing literature on the nature of time points out that many differential equations

of physics do treat the time parameter distinctly and indeed some philosophers, such as

Callender (2008) or Skow (2007), make use of this feature of differential equations to explicate

what makes time special. Coordinate system dependence and abandonment of instantaneous

states may also be less of an issue, although in order to preserve well posedness additional

requirements, such as finite signal propagation speed, might also need to be motivated22.

The main weakness of the approach lies in the arbitrariness of the applied mathematical

concepts. Mathematical physics treats propagators as natural mathematical objects; from

a pragmatic or an aesthetic point of view propagators can be viewed as natural candidates

for representing a fixed component of a theory. But if we make propagators responsible

for the modal character of physical theories and if the issue of well posedness turns on the

propagators then it is natural to ask for a motivation for their mathematical properties. A

propagator is a strongly continuous group23. Both strong continuity (which asserts that a

solution does not have ‘jumps’ and is not to be confused with continuous dependence on the

data) and the group property are, in the end, assumptions about how trajectories generated

by the propagator behave. Any justification that can be given for such assumptions could

likely directly act as a justification for well posedness of the differential equations.

I don’t know how this objection of petitio principii could be conclusively preempted. We

21Note that models of general relativity that do not admit a global time function do not admit a well posed
initial value formulation either. The mathematical framework we use here for abstract differential equations
is not directly capable to handle differential equations of general relativity.

22The assumption of finite propagation speed is typically added to the notion of well posedness in general
relativistic contexts, see i.e. (Wald; 1984, p. 224)).

23See definitions in Appendix A
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have seen above that treating propagators as the modality generating fixed component brings

some philosophical advantages – allowing for a truce between Governing and Non-Governing

intuitions about laws, allowing interpreting the space E as the space of physically possible

‘states,’ etc. – apart from entailing well posedness. These may or may not be sufficiently

compelling to accept the propagators-as-laws point of view. Although it is not a recourse

for a philosopher, history of physics is also a history of well chosen definitions that cleverly

hide conceptual problems, and choosing propagators as representations of laws might be one

such choice to be made.
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5.0 POSSIBLE WORLDS AND WELL POSEDNESS

5.1 INTRODUCTION

The sentiment that well posedness is necessary for physical possibility can be understood in

different ways. Chapter 4 argued that in the propagators-as-laws perspective well posedness

is necessary for physical possibility in the sense that it is a necessary condition for the

appropriate mathematical formulation of the physical theory. Here we are going to take a

look at another way of understanding well posedness as a necessary condition for physical

possibility: we investigate the

Desired Solution Thesis: Solutions of a well posed initial value problem represent physically
possible worlds but solutions of a non well posed initial value problem do not represent physi-
cally possible worlds.

If we accept reading (A’) of physical possibility and if we accept that differential equations

express the laws then the Thesis seems unsalvageable. There exists non well posed initial

value problems whose differential equations are physically relevant: Chapter 2 discusses the

Cauchy problem for the Laplace equation and Appendix A shows that many other physically

relevant differential equations (the Maxwell equations, the Schrödinger equation, etc.) have

formulations that render them ill posed. If such a differential equation represents the law of

a physical theory T and if trajectories represent possible worlds then according to our best

theories and according to reading (A’) of physical possibility, stating that
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(A’) A possible world is physically possible according to a theory T if and only if it satisfies

the physical laws of T ,

there are physically possible worlds represented by solutions (trajectories that satisfy the

differential equation) of non well posed problems.

Does it follow from this conclusion that the Thesis must be false? In this Chapter

we argue that it does not. The premise that physically possible worlds are represented by

solutions can be challenged. We argue that this premise may also be challenged in a way that

leads to the opposite conclusion and vindicates the Thesis. We outline a general argument

that would achieve this goal; we also construct an example that may serve as an alternative to

solutions as representations of physically possible worlds. The Chapter proceeds informally;

a mathematically rigorous presentation is relegated to Appendix B.

5.2 ALTERNATIVE REPRESENTATIONS OF PHYSICALLY POSSIBLE

WORLDS

Choice of the mathematical construction via which possible worlds get represented is cru-

cial for reading (A’). In order to find the set of all physically possible worlds first we need

to specify this mathematical construction. For dynamical physical theories the customary

mathematical construction C used to represent a possible world is a trajectory and the set

of all trajectories that satisfy the fundamental differential equation (the law) of the the-

ory, namely the set of solutions of the differential equation, represent the physically possible

worlds. Trajectories are, however, not the only mathematical constructions that may serve as

representations of possible worlds. If we propose another mathematical construction C ′ – for

instance a certain equivalence class of trajectories – as a representation of a possible world,

and if satisfaction of the fundamental differential equation by C ′ can be meaningfully formu-
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lated, then the set of all physically possible worlds of reading (A’) becomes represented by

the set of all mathematically possible constructions C ′ that satisfies the differential equation.

Challenging the assumption that solutions of differential equations represent physical

possibilities is neither novel nor uncommon. We emphasized in Chapter 2 that what counts

as a ‘solution’ of a differential equation is subject to definition and many different solution

concepts can be relied upon. The so-called classical solution is neither the only nor the

most commonly invoked solution concept in the literature on partial differential equations.

Indeed one can trace a tendency to prefer various weak solution concepts, and one of the

main motivations for the shift towards weak solutions is that they are more successful in

averting failure of well posedness that would result from non-existence of classical solutions.

Lumping together different states or different solutions to form a single representation is

also quite common in physics; states and solutions frequently contain ‘surplus’ mathemati-

cal structure that is washed out by identification of different states or different solutions as

representations of the same physical system. Solutions tied to particular coordinate systems

get identified on the basis of symmetry under Galilean or Lorentz transformation. Field

theories identify functions that differ in a measure zero set of points even though particular

calculations are frequently carried out using a single function of this equivalence class. Ele-

ments of the L2 space are further identified in quantum mechanics when they only differ in

a phase factor. Gauge invariance is also taken as a basis for identifying different solutions as

representations of the same physical scenario. These identifications keep eroding the natural

intuition that representations of possible worlds are straightforward assignments of values of

physical quantities to points in space and time.

Even if some physical theories employ mathematical constructions that are not straight-

forward assignments of values of physical quantities to spacetime points these mathemati-

cal constructions are nevertheless representationally successful in describing observationally

accessible phenomena. Loosely speaking representational success of a mathematical con-
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Figure 1: Solutions of a differential equation.

struction minimally requires that observations or experiments that fit within the descriptive

scope of the theory can be related to said mathematical construction. Solutions of differential

equations of dynamical physical theories are for the most part representationally successful;

we know how to describe appropriately designed experiments so that these descriptions can

be compared with solutions and thus empirical adequacy of solutions can be judged upon.

With other commonly used mathematical constructions – weak solutions, equivalence classes

of solutions – the question of how can they can be interpreted so to make them representa-

tionally successful is more tricky and would deserve its own treatment but for the time being

we assume that their physical application evidences that they can be physically interpreted.

5.3 THE MAIN ARGUMENT

How could the Desired Solution Thesis be argued for if we accept reading (A’) of physical

possibility and if we accept a differential equation to represent the law of a sufficiently

confirmed physical theory? Consider first the following reconstruction of the reasoning that

had been considered in Chapter 2:
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(i) Assume that solutions of the differential equation are representationally successful and empir-
ically adequate in experimental cases we have tested so far.

(ii) Argue that well posedness of initial value problems is a necessary and sufficient condition for
success of experimental testing.

(iii) Conclude that solutions of well posed initial value problems represent physically possible worlds.

(iv) Conclude that solutions of non well posed initial value problems do not represent physically
possible worlds.

Reasoning (i)-(iv) is not sound. The conclusion of (iii) could only go through if we

accepted that trajectories that satisfy the differential equation represent possible worlds.

According to reading (A’) the set of physically possible worlds is the set of all possible

worlds that satisfy the law. If trajectories represent possible worlds then the set of physically

possible worlds is the set of all trajectories that satisfy the law, that is the set of all solutions.

Since whether a trajectory is a solution does not depend on whether initial values determine

it uniquely or whether it continuously depends on initial values (iv) can not follow from the

premises. Epistemic considerations such as (i) do influence initial choice of the mathematical

construction that has a representational role but after the choice is being made the set

of all possible constructions is determined by mathematical constraints; further epistemic

considerations, such as (ii), do not post facto influence the set of all physically possible

worlds1.

The only way getting around this objection seems to lead through tinkering with the

mathematical construction that represents possible worlds. If we accept assumption (i) this

task is not easy but it may be feasible. Consider the following attempt at replacing solutions

as representations with a hypothetical mathematical construction, the ‘wolution:’

1This objection lines up with the separation of two stages in the process of knowledge acquisition we
alluded to in Chapter 2. In the first stage we assume that confirmation of physical theories is an empirical
matter and hence epistemic considerations, such as limitations human observers may face, do play a role in
selection of the right theory. The epistemic ladder is thrown away when we ask, in the second stage, what
would be the physical possibilities if the theory were true. Conceptual clarity favors sticking to this modus
operandi and we do so here; how reasonable maintaining such a strict separation of the two stages can be
from a broader perspective is up for another debate.
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(1) Assume that solutions of the differential equation are representationally successful and empir-
ically adequate in experimental cases we have tested so far.

(2) Introduce another mathematical construction which meaningfully satisfies the differential equa-
tion and thus is another candidate for representing of a physically possible world. For the time
being let us refer to this alternative mathematical construction as a ‘wolution.’

(3) Formulate the wolution counterpart of an initial value, an initial value problem, continuous
dependence of solutions on initial values, and well posed initial value problem: ‘winitial value,’
‘winitial value problem,’ ‘continuous dependence of wolutions on winitial values,’ and ‘well
posed winitial value problem.’

(4) Show that by construction a well posed winitial value problem have a unique wolution that
depends continuously on winitial values.

(5) Show that by construction there are either no non well posed winitial value problems or that
a non well posed winitial value problem do not have wolutions (that a wolution only exists if
it is unique and depends continuously on winitial values).

From (4) and (5) we arrive at the conclusion

(C1) If wolutions represent physically possible worlds then only wolutions of a well posed winitial
value problem represent physically possible worlds.

Conclusion (C1) bears similarity to the Thesis yet (2)-(5) are not be sufficient to motivate

replacing solutions with wolutions as representations of physically possible worlds. Why

would we do so? According to (1) solutions are representationally successful; wolutions are,

so far, merely mathematical constructions. We would further need to

(6) Argue that wolutions share the representational success and empirical adequacy of solutions in
the experimental cases we have tested so far.

Given (1)-(6) we have an alternative mathematical construction, the wolution, with

which we could replace solutions as representations of physically possible worlds. Assuming

(6) in itself would be puzzling; if (6) were true then solutions and wolutions would need to

be related to each other some way since otherwise they could not be both representationally

successful and empirically adequate. Let us choose a particular ways solutions and wolutions

could be related that will serve our purposes. So let us further assume that we can

(7) Show that by construction a wolution, a winitial value, and a winitial value problem reduces, in
an appropriate sense, to a solution, an initial value, and an initial value problem, respectively.
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Thus if wolutions represent physically possible worlds then a solution s that has a wolution
reducing to s can be regarded as an indirect representation of a physically possible world. If
however there is no wolution that reduces to s then s does not represent a physical possible
world neither directly nor indirectly.

(8) Show that by construction if an initial value problem is well posed then the corresponding
winitial value problem is also well posed.

(9) Show that by construction if an initial value problem is not well posed then there is either
no corresponding winitial value problem or the corresponding winitial value problem has no
wolution.

From (1)-(9) we can then conclude that

(C2) If wolutions represent physically possible worlds then a solution of a well posed initial value
problem does (indirectly) represent a physically possible world.

(C3) If wolutions represent physically possible worlds then a solution of a non well posed initial
value problem does not represent a physically possible world neither directly nor indirectly.

Given (1)-(9) wolutions are alternative mathematical constructions that could represent

physically possible worlds; furthermore if they did then we would have an argument for

the Desired Solution Thesis. Albeit in this case solutions would only represent physically

possible worlds indirectly – a solution of a well posed problem would only stand in as a

representational short-hand for the wolution that do represents the physically possible world

– (C2) and (C3) would still conform to the spirit of the Desired Solution Thesis.

To argue for the Thesis we need to supplement (1)-(9) with an argument for choosing

wolutions to be the mathematical constructions that represent physically possible worlds.

On the basis of (1)-(9) alone one could still decide to stick to solutions as constructions that

represent physical possibilities. One would further need to

(10) Argue that wolutions are better motivated as mathematical representations of the experimental
cases we have tested so far than solutions.

(11) Argue that (6), (7), and (10) provides sufficient reason to prefer wolutions as representations
of physically possible worlds.

Given (C2), (C3), and (11) it then follows that

(C4) A solution of a well posed initial value problem does (indirectly) represent a physically possible
world.
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(C5) A solution of a non well posed initial value problem does not represent a physically possible
world.

Conclusions (C4) and (C5) vindicate the Desired Solution Thesis in a slightly modified

yet faithful form. Premise (11) is the tricky bit and to establish (11) a lot depends on how

strong the arguments for (10) are. Yet if we assume that theories are confirmed on the basis

of experimental tests (of the sort (10) argues wolutions fare better in representing) then it

should be possible to motivate change of representation from solutions to wolutions on the

basis of (10).

The existence of a wolution with the properties required by (1)-(11) would then provide

a general argument that could vindicate the Desired Solution Thesis. In the rest of this

paper we attempt to give an example for a wolution : the bolution (named after a bundle

of solutions). The bolution is a particular construction for abstract differential equations;

other constructions may also serve in the role of a wolution.

5.4 BOLUTION-CHUNKS, BOLUTION-PATHS, AND BOLUTIONS

To keep an eye on (10) we invoke certain assumptions about experiments that have been

conducted so far to confirm the physical theory. We assume that the obtained experimental

results do not falsify the differential equation given the limitations that observers who con-

duct the experiments face. The basic idea is to take into account some of these limitations in

the construction of our mathematical representation. If certain limitations characterize the

observation of experiments then it would be prudent if our mathematical construction that

represents the experiments took these limitations into account. Building in observational

limitations to the mathematical representation may protect us from surplus mathematical

structure that reflect unobservable features or properties of the world.
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Table 2: An argument for the Desired Solution Thesis.

(1) Assume that solutions of the differential equation are representationally successful and empirically ade-
quate in experimental cases we have tested so far.

(2) Introduce another mathematical construction which meaningfully satisfies the differential equation and
thus is another candidate for representing of a physically possible world. For the time being let us refer
to this alternative mathematical construction as a ‘wolution.’

(3) Formulate the wolution counterpart of an initial value, an initial value problem, continuous dependence
of solutions on initial values, and well posed initial value problem: ‘winitial value,’ ‘winitial value prob-
lem,’ ‘continuous dependence of wolutions on winitial values,’ and ‘well posed winitial value problem.’

(4) Show that by construction a well posed winitial value problem have a unique wolution that depends
continuously on winitial values.

(5) Show that by construction there are either no non well posed winitial value problems or that a non
well posed winitial value problem do not have wolutions (that a wolution only exists if it is unique and
depends continuously on winitial values).

(C1) If wolutions represent physically possible worlds then only wolutions of a well posed winitial value
problem represent physically possible worlds.

(6) Argue that wolutions share the representational success and empirical adequacy of solutions in the
experimental cases we have tested so far.

(7) Show that by construction a wolution, a winitial value, and a winitial value problem reduces, in an
appropriate sense, to a solution, an initial value, and an initial value problem, respectively. Thus if
wolutions represent physically possible worlds then a solution s that has a wolution reducing to s can
be regarded as an indirect representation of a physically possible world. If however there is no wolution
that reduces to s then s does not represent a physical possible world neither directly nor indirectly.

(8) Show that by construction if an initial value problem is well posed then the corresponding winitial value
problem is also well posed.

(9) Show that by construction if an initial value problem is not well posed then there is either no corre-
sponding winitial value problem or the corresponding winitial value problem has no wolution.

(C2) If wolutions represent physically possible worlds then a solution of a well posed initial value problem
does (indirectly) represent a physically possible world.

(C3) If wolutions represent physically possible worlds then a solution of a non well posed initial value problem
does not represent a physically possible world neither directly nor indirectly.

(10) Argue that wolutions are better motivated as mathematical representations of the experimental cases
we have tested so far than solutions.

(11) Argue that (6), (7), and (10) provides sufficient reason to prefer wolutions as representations of physically
possible worlds.

(C4) A solution of a well posed initial value problem does (indirectly) represent a physically possible world.
(C5) A solution of a non well posed initial value problem does not represent a physically possible world.
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On the other hand we should also strive to disengage a representation of the world

from the particular viewpoint of the potential observers since we want the representation

to be a representation of the world and not a representation of the world-as-seen-by-a-

particular-observer. A way to achieve a balance may be to construct our representation on

the basis of the following recipe: in the first step we create a mathematical representation

that respects the limitations of particular observers and in the second step we disengage

particular observers from the representation by removing the limitations we imposed in the

first step.

What are the limitations faced by observers of the experiments that have been conducted

so far? Recall from Chapter 2 that the main motivation cited for the requirement of con-

tinuous dependence is the assumption that an observation is limited to finite measurement

precision; another such limitation is that an observation only lasts for a finite time. Accord-

ingly we are going to assume that any potential observer (any observer who is or who could

potentially be in the position to confirm the physical theory) faces two kinds of limitations:

that her observation lasts for a finite time and that her measurements have a finite precision.

Our mathematical construction then implements the two-step recipe sketched above for local

dynamical theories of classical physics. First we define the notion of a bolution-chunk that

takes finite time and finite precision limitations into account; then in two steps we remove

these limitations to arrive at the notion of a bolution.

5.4.1 Bolution-chunks

Assume that all observations of experiments share a common feature, namely that they last

for some finite time and that data is available with finite measurement accuracy. Since

local dynamical theories of classical physics rely on continuous representation of at least

some physical quantities it is typically the case that measurement data is compatible with
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more than one solution of the governing differential equation – that measurement data is

compatible with all solutions which are so close to each other that we can’t discern them

within a given measurement precision. Hence it seems that any particular experiment should

be represented by not one solution of a differential equation, but by what we are going to

call a bolution-chunk: a maximal set of solutions of a differential equation defined on a finite

time interval which stay within some finite distance from each other throughout this time

interval2. The greater the measurement precision the narrower the bolution-chunk’s width;

some bolution-chunks are proper subsets of other bolution-chunks, some pairs of bolution-

chunks have non-zero intersections, and yet some other pairs are disjoint or can have different

time intervals with different lengths.

Figure 2: Bolution-chunk: a maximal set of ε close solutions throughout time interval T .

A bolution-chunk thus represents the viewpoint of a particular observer who conducts

her observation for a given finite time and with a given finite precision. On the other hand

a bolution-chunk is laden with the limitations of the particular observer; the observation

could have lasted for a longer period of time and that the measurement precision could have

2We carry out the construction using the framework developed for abstract differential equations in
Appendix A. Appendix B also recalls the basic details. Thus the differential equation is assumed to take
the form B.0.1. For definition of a bolution-chunk and length and width of bolution-chunks see Definition
13. We assume that the distance between solutions is given by the norm ‖.‖ of the Banach space E. See
discussion later.
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been more refined3. We now thus proceed to remove these limitations.

5.4.2 Bolution-path

Assume that our observer extended the length of her observation. As she would still face

observational limitations her longer observation would still be compatible with a set of solu-

tions that stayed close to each other. Thus her longer observation would still be adequately

represented by a bolution-chunk of a particular width. This new, longer bolution-chunk

needs to be consistent with the older, shorter bolution-chunk in the sense that the longer

bolution-chunk can only consist of solutions whose segments were already contained in the

shorter bolution-chunk.

The observation could be continued even further, potentially up to any given point in

time; the observation could also have been conducted for a shorter time. Hence the adequate

representation for a potential observer who has a limited measurement capability but who

lives long enough to see how the world unfolds is an assignment, to any given length of time,

of a bolution-chunk of this length, with the restriction that a longer bolution-chunk can only

consist of continuation of solutions which are already present in a shorter bolution-chunk.

Such an assignment of bolution-chunks to time-lengths will be called a bolution-path4.

Given mild technical conditions bolution-chunks exist and any bolution-chunk can be

extended to a bolution-path5. Whether this extension is unique depends on the differential

equation. If the time evolution preserves distance between the solutions, e.g. when the

time evolution is unitary, then extension of a bolution-chunk to a bolution-path is unique.

If the time evolution does not preserve distance between solutions, then extension of a

3Chapter 2 calls attention to the dangers of this assumption. Here we go along with intuitions from
classical physics and assume that an ideal observer’s measurement precision could be arbitrarily refined;
adding a lower boundary to our construction is feasible but it would change the results we end up with esp.
regarding conclusion (C4).

4See Definition 14.
5See Proposition 6 and Proposition 7.
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Figure 3: Bolution-path: an assignment of bolution-chunks to all points in time.

bolution-chunk to a bolution-path may not be unique (if solutions diverge it is not). In

case a bolution-chunk does not determine the bolution-path then having represented the

experiment only up to a certain point in time puts limits on how the observed system can

behave in the future but it could still behave in discernibly different ways.

5.4.3 Bolution

The bolution-path removes the limitation that particular observations are only conducted

for a finite length of time. Observations could have been made with better precision as well.

Had our observer made her observations with a better precision her adequate representation

of the experiment would still be a bolution-path but it would be a bolution-path with a

narrower width. This new, narrower bolution-path needs to be consistent with the older,

wider bolution-path in the sense that the narrower can only contain solutions which were

contained in the wider.

We may assume that measurement precision could have been even better, potentially

reaching any finite accuracy. Hence a representation that removes the assumption that

the measurement precision is a given finite value is an assignment, to any given positive

119



B
al
az
s
G
ye
ni
s:

W
el
l
po

se
dn

es
s
an

d
ph

ys
ic
al

po
ss
ib
ili
ty

Figure 4: Bolution: an assignment of bolution-paths to all levels of precision.

measurement precision, of a bolution-path with a width defined by this precision, with the

restriction that a bolution-path with better precision is contained in a bolution-path with

worse precision. Such an assignment of bolution-paths to levels of measurement precision is

a bolution6.

Again, given some mild technical conditions, any bolution-path can be extended to a

bolution7. The extension is not unique; a series of bolution-paths can “zoom on” many

solutions in the bolution-path, leading to different bolutions8.

What is a bolution, then? We can think of a bolutions as a more elaborate mathematical

representation of a possible world than a solution; a bolution also tells, for any measurement

precision and for any length of time, how observations would be represented if we took into

account the limitations of the observer who conducts her measurement with said precision

for the said length of time.

We offer the considerations leading to the definition of the bolution as evidence that (6)

bolutions share the representational success and empirical adequacy of solutions and (10)

bolutions are better motivated as representations of the experiments through which we tested

6See Definition 15.
7See Proposition 8.
8For a more precise statement see Proposition 9.
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the theory. If we then generalize and (11) take bolutions to represent physically possible

worlds then we should not let ourselves be led astray by the fact that bolutions are defined

via solutions. Logical primacy should not be conflated with representational primacy; if

bolutions are the mathematical constructions that represent physical possibilities then the

representational role some solutions might have is only derivative from the representational

role of bolutions. As the next section shows some solutions do indeed have such indirect

representational role as in certain circumstances a bolution reduces to a solution.

5.5 THE RELATIONSHIP BETWEEN SOLUTIONS AND BOLUTIONS

Prima facia there seems to be little difference between generalizing from a few solutions to

all solutions versus generalizing from a few bolutions to all bolutions; it may seem that for

all practical purposes solutions could be identified with bolutions that “zoom on” them.

Reducing bolutions to solutions by means of the “zooming in” property of bolutions may

suggest that bolutions are only an unnecessary complication which can be entirely dealt

away with.

It turns out that this identification depends on whether the solution is explosive, that

is, whether the norm of the solution approaches infinity in a finite time9. Any non-explosive

solution has a bolution counterpart which zooms on it10. Hence, for all practical purposes,

we can rely on non-explosive solutions as indirect representations for their corresponding

bolutions. There is no harm in thinking about a non-explosive solution as a (short-hand)

representation of a physically possible world.

But there is a twist: there are no bolutions zooming on explosive solutions11. This means

9See Definition 10.
10See Proposition 9.
11See Proposition 10.
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that an explosive solution can not be thought of as a short-hand for a bolution. Thus if we

accept bolutions as representations of physically possible worlds then we can not think of

an explosive solution as an indirect representation of a physically possible world.

This doesn’t mean that explosive solutions are entirely worthless; they still have use for

prediction. Any explosive solution, for any time t before its norm becomes infinite, and

for any desired level of measurement precision, belongs to a bolution-chunk with named

precision12. Hence an explosive solution may be used for prediction until time t by an

observer with observation capabilities limited by named precision. However, as there is no

bolution to which the entire explosive solution belongs an explosive solution can not stand

as an indirect representation for a physically possible world.

In short not all solutions are equal; if bolutions represent physically possible worlds then

some solutions can be though of as indirect representations of a physically possible world

but some others can only be thought of as tools for prediction up until a certain point in

time.

5.6 STATES, INITIAL VALUE PROBLEMS

We motivated the introduction of bolution-paths by assuming that an observation could

potentially be continued; we also assumed that an observation could have potentially been

conducted for a shorter length of time. Hence we required a bolution-path to be an as-

signment of a bolution-chunk to any length of time. Consequently, since a bolution is a

collection of narrowing bolution-paths, a bolution is also an assignment of a narrowing set

of bolution-chunks to any length of time. By taking this time length limit to zero we arrive

at what can be naturally regarded as the corresponding notion of an initial value in the

12See Corollary 2.
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Figure 5: A set of ε-close initial values and a binitial value.

bolution-terminology: an assignment of a maximal set of close initial values to every level

of precision, with the condition that the set belonging to a better precision needs to be a

subset of the set belonging to a worse precision. Let us call such an assignment a binitial

value13. A state of the world thus gets represented, instead of a single initial value, by a

binitial value. As it can be readily suspected, a binitial value “zooms on” a single initial

value, similarly to how some bolutions zoom on a single solution14.

By making use of binitial values we can formulate the analog an initial value problem

in the language of bolutions. Recall that a solution of an initial value problem is a solution

of the differential equation which satisfies the given initial value. Similarly, we want to say

that a bolution of a binitial value problem is a bolution which satisfies the given binitial

value. Bolutions by definition satisfy the differential equation (as all solutions contained in

them do so). However it is not yet clear what would satisfaction of a given binitial value by

a bolution mean.

To massage intuitions let’s recap how a bolution-path behaves. Recall that a bolution-

path tells, for any given time, what is the bolution-chunk – what is the maximal set of close

solutions – compatible with the observations of an observer. As this time increases, the

13See Definition 17.
14See Proposition 11.
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Figure 6: As t→ 0 the set of initial values from which solutions in the bolution-path originate

gets larger and larger.

assigned bolution-chunk contains (not strictly) fewer and fewer solutions, and in turn the

set of initial values from which these contained solutions originate gets smaller and smaller.

We can think of this behavior in informational terms: learning more about how a physical

system evolves, if its governing laws are known, may entail learning more about its initial

state. Conversely if we shorten the time elapsing after the initial state the assigned bolution-

chunk contains more and more solutions, and in turn the set of initial values from which

these solutions originate gets larger and larger. Again, we can think of this limiting behavior

in informational terms: assuming that the bolution-chunk is given what are the initial values

from which the solutions within the bolution-chunk originate from? In the zero limit the

set of originating initial values becomes the whole set of initial values which are within the

distance set by the bolution-path’s width and which give rise to an existing solution15.

Thus the set of solution-originating initial values starts with the whole set of close initial

values defined by the bolution-path’s width and, as time moves forward, it narrows down

to a smaller and smaller subset of these initial values. We want to grasp this behavior in

the definition of satisfaction. Reversing the limiting process and thinking about it in causal,

15See Proposition 12.
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rather than informational terms, we can ask the question: what happens with solutions

originating from a certain set of initial values? In particular, as we are given a binitial value,

what happens with solutions originating from a maximal set of close initial values? Are these

solutions going to be compatible with the measurements of the observer, at least for a while?

Translating this question to technical terms: suppose we are given a binitial value. Is it the

case that, for any bolution-chunk (assigned to a certain length of time by the bolution-path)

there is a maximal set of close initial values (assigned to a level of precision by the binitial

value) so that all solutions originating from this set of close initial values stay within the

bolution-chunk? If the answer is affirmative, then we say that the bolution-path satisfies the

binitial value16. And if in turn all bolution-paths of a bolution satisfy the binitial value then

we can say that the bolution satisfies the binitial value, or that the bolution is a bolution

of the binitial value problem with the given binitial value17.

Assuming this definition of a bolution of a binitial value problem, we can now think

of binitial value problems as producing representations of the world similarly to how we

ordinarily think of initial value problems producing representations of the world. If a binitial

value problem has no bolution, then it does not produce a possible world; if it has exactly

one bolution, then it produces one possible world, and we say that the world is deterministic;

if it has multiple bolutions, then it can produce many possible worlds, and we say that the

world is not deterministic, according to the physical theory under consideration.

5.7 WELL POSEDNESS RESULTS AND DISCUSSION

There is a close relationship between properties of initial value problems and properties

of the corresponding binitial value problems. One can formulate the natural counterpart

16See Definition 18.
17See Definitions 19 and 20.
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of the requirement of continuous dependence of solutions on initial data for bolutions and

hence the natural counterpart of a bolution well posed problem18. Suppose that the initial

value problems are well posed19. Then the corresponding binitial value problems also turn

out to be well posed20. This then entails that a solution of an initial value problem can

be identified with the bolution solution of the corresponding binitial value problem which

establishes premise (8).

The situation is different when the initial value problem is not well posed. If an initial

value problem has an explosive solution then the corresponding binitial value problem does

not have a bolution21. Failure of continuous dependence also yields similar result: if a

solution of an initial value problem exists but it does not depend continuously on its initial

value then the corresponding binitial value problem again does not have a bolution22. These

two results come close to establish premise (9) that if an initial value problem is not well

posed then there is either no corresponding binitial value problem or the corresponding

binitial value problem has no bolution. (Premise (9) is not established in its full generality

because we operate with a strict definition of well posedness that requires uniform continuity

on the initial data. Hence in this sense an initial value problem may fail to be well posed

due to failure of uniform continuity and yet it may still be the case that all solutions depend

continuously on their initial values. Relaxing the definition of well posedness may help

establishing (9) in its full generality but this have yet to be worked out.)

With this minor remark we can sum up the results by saying that bolutions seem to

validate premises (1)-(10) and thus if we accept them as representations of physically possible

worlds then a close kin of the Desired Solution Thesis becomes vindicated: solutions of well

posed initial value problems do represent physically possible worlds while explosive solutions

18See Definition 21.
19See Definition 11.
20See Proposition 13.
21See Proposition 14.
22See Proposition 15
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or solutions that fail to depend continuously on their initial value do not.

Let us consider an example. As it is shown in Appendix A the Maxwell equation is not

well posed in the supremum norm. The reason is that in the supremum norm explosive

solutions of the Maxwell equation exist: for a particular choice of initial values the electro-

magnetic field at a certain spatial point may approach infinity in finite time. A physically

intuitive example is a specially aligned spherical electromagnetic wave that focuses on a point

in finite time23. If we take solutions to represent physical possibilities then, according to the

Maxwell equation formulated with the supremum norm, such converging spherical waves are

physically possible. As the solution only exists for a finite time we would accordingly need

to draw the conclusion that some physically possible worlds of electrodynamics cease to exist

after a finite period of time. If however we accept bolutions to represent physical possibilities

then these specially designed spherical wave solutions do not represent physical possibilities

for they have no bolution counterparts. Bolutions do not blow up and so physically possible

worlds of electrodynamics do not cease to exist after a finite period of time.

To add to the puzzle recall that the Maxwell equation is well posed in the L2 norm

(again see Appendix A for details). Thus as long as we take the state space to consist of

elements of the L2 space there are no explosive solutions in the L2 norm24. Thus if we

take solutions to represent physical possibilities then according to the Maxwell equation

formulated with the L2 norm all solutions exists globally and hence there are no physically

possible worlds of electrodynamics that would cease to exist after a finite period of time.

All of these solutions then have a bolution counterpart and thus if we take bolutions to

represent physically possible worlds all familiar solutions would be indirect representations

of physically possible worlds.

23For an example of focusing of waves for the wave equation see (Bers et al.; 1964, p. 13).
24Note that while the supremum norm blows up due to divergence of the electromagnetic field at a single

point the L2 norm is not determined by field values at singular points: states are equivalence classes of
functions that may disagree at a set of measure zero points. Hence the L2 norm of a solution may stay finite
even if a representative of the equivalence class assigns infinite value to the electromagnetic field at a point.
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This example calls attention to the importance of the choice of the norm. As the example

of the Maxwell equation shows if we take solutions to represent physically possible worlds

then different choices of norms produce different sets of physically possible worlds, some of

which contain physically possible worlds with only finite lifespan while some others don’t.

Bolutions are not immune from norm relativity either. As we have seen if a solution of an

initial value problem does not depend continuously on its initial value then the corresponding

binitial value problem have no bolution. In the extreme case when there are no initial value

problems with solutions that depend continuously on their initial values this entails that none

of the binitial value problems have bolutions. A change of norm that renders the initial value

problems well posed would however entail that bolutions of binitial value problems exist.

Thus the existence of bolutions of binitial value problems does depend on the choice of the

norm.

It is not apparent what would motivate a choice of norm if we take solutions to represent

physically possible worlds. Without some principled choice the best we can do is to give a

conditional analysis of the form ‘if we understand electrodynamics to be a theory with norm

‖.‖X then the physically possible worlds are WX , but if we understand electrodynamics to

be a theory with norm ‖.|Y then the physically possible worlds are WY ’ etc.

Bolutions, however, do motivate a specific choice of the norm. Bolution-chunks were

motivated by the limitation observers face in telling different solutions apart: we assumed

that observers can only measure the values of physical quantities imprecisely. This motivation

only makes sense if the norm which measures closeness of states is operationally significant25:

if closeness of states in the norm does not imply closeness of observable properties then a

maximal set of solutions that are close in the norm does not represent the possibilities that are

consistent with observers’ measurements. Thus bolutions do offer a motivation for choosing

a specific norm for the theory: the chosen norm needs to be operationally significant.

25See Chapter 2 for a discussion.
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The question then becomes whether for specific differential equations an observationally

significant norm exists and whether an operationally significant norm would render the equa-

tion well posed. If so then taking bolutions to represent physical possibilities would offer a

motivation for choosing a mathematical formulation of the theory that renders its equation

well posed. This would then be a justification of well posedness that is more akin to the one

given in Chapter 4. Unfortunately we know little about which norms of which theories are

operationally significant and thus whether bolutions or constructions similar to bolutions

would be of help in motivating well posedness is unclear.

5.8 OBJECTIONS

Consider first the claim that there is no bolution zooming on an explosive solution, and

that a binitial value problem with binitial value zooming on an initial value which would

produce such an explosive solution has no bolution. One can point out that this feature

follows from defining bolution-paths as assignments of bolution-chunks to all lengths of time

and explosive solutions evidently can not stay in a set of solutions which have close norms

for a time after the explosion takes place. Thus one can argue that we exclude explosive

solutions by simply requiring that a solution should not be explosive, which seems as a tight

petitio princiipi.

There is, however, a difference between the cases when initial value problems vs. when

binitial value problems are taken to produce representations of possible worlds. When an

initial value problem gives rise to an explosive solution there seems little reason to doubt

the physical possibility of its originating initial value in the sense that it could be the case

that the world is such that at a given moment of time its state is represented by this

originating initial value. There exists a local solution of this initial value problem, which
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tells a story about how the world unfolds for a finite period of time in perfect agreement

with the physical laws, which could even be consistent with our limited experiences. A blow

up would be uncomfortable but raising blow up as an evidence against physical possibility

would come with the heavy baggage of retrocausality, an arguably high price to salvage

global determinism. Hence the aversion against an ad hoc requirement on future behavior

of the world in order to save the philosophical doctrine of determinism seems apt.

In the case of a binitial value problem, whose binitial value zooms on an initial value

which originates an explosive solution, we do not need to face such objections from retro-

causality, since the binitial value problem simply does not have a bolution. Albeit it is true

that this non-existence of a bolution is entailed by a future behavior of a solution which

would need to be a constituent of the bolution, if we accept bolutions as the mathematical

construction that have representational role then, even though solutions as mathematical ob-

jects are used in the construction of a bolution and hence are logically prior to the bolution,

they are representationally merely derivative. Retrocausal considerations could apply to the

bolutions, but they don’t touch mere mathematical constituents of the bolution representa-

tion, which are in themselves devoid of meaning. (Some of the solutions may function as an

indirect representation but this role would be derived from the representational role of the

bolution.)

In defense of the definition a more technical consideration can also be brought up. Given

mild conditions any bolution-chunk can be extended to a bolution-path26 and any bolution-

path can be extended to a bolution27, hence we can always find a bolution which gives

rise to the particular bolution-path which is experienced by a given observer. Since for

any observation length and precision the world looks to an observer as a bolution-chunk

this means that forever-continuation of the world is always going to be compatible with

26See Proposition 7.
27See Proposition 8.
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the experience of all of its potential observers. Thus, as long as we rely on bolutions as

representations of the world, there is no reason why any of the observers should doubt global

existence. This is in sharp contrast with relying on solutions as representations.

The original objection can be sharpened by pointing out that excluding explosive solu-

tions as short-hand representations follows from the particular way we arrived at the def-

inition of a bolution. The notion of a bolution-chunk came with two limitations: that

experiments can only be conducted for a given length of time, and that they can only be

conducted at a given level of precision. We removed the time limitation first and removed the

precision limitation second. However, if we switched this order of removing the limitations

we would end up with a notion of a bolution which may zoom on explosive solutions but

which may only be defined until the explosion takes place, thereby mirroring the behavior of

the explosive solution. Binitial value problems based on this alternative definition then could

have bolution solutions which are not globally extendable, similarly to initial value problems.

And so the objection is that the order in which we removed limitations is unmotivated.

At this point it is worthwhile to ask which limitation removal has better inductive sup-

port: that an observation can be continued, or that the same observation could have been

conducted with a better precision? Every observation conducted so far seems to support

the continuability of observations. However the idea that the very same observation could

have been conducted with a better precision is at best supported indirectly by conducting

other similar experiments with better precision, for the exact same circumstances can never

be repeated. And, as we know from quantum mechanics, even this indirect support is on

shaky grounds. On this basis one may argue that we have firmer motivation to remove the

time limitation first and hence to adopt the bolution definition we gave above.

We should also take a critical look at the definitions leading to the non-existence of a

bolution of a binitial value problem corresponding to non well posed initial value problems.

Arguably the main issue arises with the notion of satisfaction (see Definition 18 in Appendix
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B). The definition of satisfaction was motivated above by a conjunctive-objective interpre-

tation of the possibilities present in a maximal set of close initial values: all initial values in

this set are taken as objectively possible for the observer with the corresponding capabilities

and hence all solutions stemming from this set should be, at least for a while, present in

the bolution-path produced by this set of close values. However one could have a different,

disjunctive-subjective interpretation of the possibilities present in a maximal close set of

initial values, namely that these initial values should only be taken as subjectively possible,

and it is only due to the ignorance of the observer that she can’t tell, at the given moment

of time, which one of these possibilities is actually real.

This latter interpretation, which is closer to our original way of thinking about initial

values and solutions as adequate representations would suggest another definition of satis-

faction, one which only requires that at least one of the solutions stemming from the close

set of initial values should stay in the bolution-path. Although results regarding the non-

existence of bolutions in the explosive case would stay intact, with this alternative definition

some not well posed binitial value problems would end up having bolutions. For instance in

the important case when the initial value problems do have an existing and unique solution

which nevertheless fails to depend continuously on the initial value the corresponding binitial

value problems would also have an existing bolution. Interestingly, however, this bolution

might not be unique, despite that the solution to which the bolution zooms on was unique.

(One can easily give sufficient conditions which entail such non-uniqueness, although it is

unknown to me what portion of not well posed initial value problems in physics would satisfy

such conditions.) Thus, although with this alternative definition of satisfaction one would

again arrive at the conclusion that some not well posed initial value problems produce in-

direct representations of physically possible worlds, the epistemic problem of prediction due

to failure of continuous dependence in the solution-based representation would translate to

a non-epistemic problem of indeterminism in the bolution representation. Hence the contin-
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uous dependence property of the underlying initial value problem could then be understood

as a condition necessary for maintaining determinism.

We end this discussion with a similar tone to that of Chapter 4. In the end of the day

definitions are what they are: definitions. We gave at least a partial defense to motivate

them, but the crucial question is whether they can deliver the job, that is whether they lead

to representations which are able to account for the experimental support we have for our dy-

namical theories. Bolutions may be able to do so and hence they are candidate replacements

of solutions as representations of physically possible worlds; there might be other such con-

structions. Even if we ultimately reject shifting representation from solutions to bolutions

we can think of bolutions as a proof-of-concept: it is possible to change representation in

such a way that, even though we remain faithful to all possible and actual experimental

results, the set of physically possible worlds becomes more narrow, leaving out some of the

craziest examples produced by philosophy of physics.
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6.0 CONCLUSIONS

There is a sentiment shared widely across the physics community that well posedness is

a necessary condition for physical possibility; evidence offered for this sentiment typically

takes the form of a claim that we would not be able to predict or to confirm physical theories

based on non well posed problems. In Chapter 2 we argued that well posedness is neither

necessary nor sufficient for prediction and confirmation, and even if it were arguments based

on pragmatic difficulties would still not succeed in establishing physical impossibility as they

conflate epistemic and metaphysical concerns.

The question remained open whether the physicist sentiment could be vindicated without

conflation of epistemic and metaphysical concerns. In order to talk clearly about modality

we summoned the received view of physical possibility: according to the received view state-

ments invoking physical possibility are to be understood as an existential quantification over

a set of possible worlds determined by the laws of a physical theory T . With the aid of

the received view a strong argument against the physicist sentiment can be formulated as

follows. Examples reviewed in Chapter 2 and in Appendix A show that our best physical

theories feature differential equations whose problems are not well posed. If such a differen-

tial equation represents the law of theory T and if solutions of differential equations represent

possible worlds and if

(A’) A possible world is physically possible according to a theory T if and only if it satisfies

the physical laws of T
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then, according to our best physical theories, there are physically possible worlds represented

by solutions of non well posed problems.

To vindicate the physicist sentiment it would not be sufficient to challenge this conclusion

by challenging one of its three premises; one would also need to replace the premises with

credible alternatives that allow reaching the opposite conclusion. The dissertation undertook

this task and attempted to replace each of the premises with a suitable alternative. Chapter

3 pointed out that reading (A’) is not the only way how the received view of physical

possibility can and have been understood and argued that coupling an alternative reading

with a certain Non-Governing account of laws could validate the physicist sentiment. Chapter

4 argued that Governing intuitions about laws may prefer a different mathematical object,

the propagator, as representation of laws, and contended that from a propagator-as-law

perspective well posedness becomes a condition for appropriate mathematical formulation

of a theory. Chapter 5 advocated replacing solutions as representations of possible worlds

with another mathematical object, the bolution, which only happens to exists when the

corresponding initial value problems are well posed. These three are independent and novel

attempts to defend the physicist sentiment. Along the way we introduced distinctions which

so far have escaped philosophers and showed that these distinctions matter for attempts at

justifying well posedness.

Why do we need three separate arguments when a single good one should suffice? Argu-

ments are only as strong as their premises and as we have pointed out all three arguments

have premises that are problematic. These problems are also opportunities for further re-

search. Better appreciation of the main argument of Chapter 3 requires a better understand-

ing of the approximative relationship of different physical theories and a further analysis of

the special status of initial conditions in a Best System account and of issues of simplicity

and strength. Chapter 4 calls for a further investigation of dynamical systems, in particular

of non-linear differential equations for which the relationship between existence of a propa-
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gator and well posedness of the equation is less straightforward. Chapter 5 poses the task of

creating mathematical constructions that serve better in the role of defending the Desired

Solution Thesis than does the bolution.

In general this dissertation calls for a more careful understanding of physical theories

that does not neglect the role norms play in their mathematical formulation, advocates a

systematic study of relating these norms to available experimental procedures, and points

out that understanding how well posed problems of one theory approximates non well posed

problems of another theory does not merely improve our understanding of inter-theoretical

relationships but may also shed light on physical possibilities offered by these theories on

their own. We hope that our investigation helped appreciating the potentials and limitations

of vindicating the physicist sentiment and showed that there are many interesting puzzles

to tackle and lessons to be learned along the way.
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APPENDIX A

MATHEMATICAL PRELIMINARIES

A.1 WELL POSEDNESS FOR ORDINARY DIFFERENTIAL EQUATIONS

A.1.1 Basic definitions

We are going to denote a system of simultaneous first order differential equations of the form

x′1 = f1(t, x1, ..., xn)

...
...

x′n = fn(t, x1, ..., xn)

(A.1.1)

using the vector notation

x′ = f(t,x) . (A.1.2)

Here the functions f1, ..., fn are defined on D ⊆ Rn+1. x(t) is a solution of (A.1.2) in the

interval J if its component functions xi(t) are differentiable in J and if they satisfy equations

(A.1.1) identically; naturally we require that (t,x) ∈ D for t ∈ J .

An initial value problem for (A.1.2) asks for a solution that passes through a given point

(t0,x0) ∈ D:

x′ = f(t,x), x(t0) = x0 . (A.1.3)
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Definition 5. A vector function f(t,x) satisfies a Lipschitz condition with respect to x in

D with Lipschitz constant L if

|f(t,x1)− f(t,x2)| ≤ L|x1 − x2| (A.1.4)

for all (t,x1), (t,x2) ∈ D. We say that f(t,x) satisfies a local Lipschitz condition with respect

to x if for every point (t,x) ∈ D there exists an open neighborhood U such that f satisfies a

Lipschitz condition in D ∩ U .

Note: As all norms in Rn+1 are equivalent the question whether f satisfies a Lipschitz

condition is independent from the chosen norm.

Theorem 1. Existence and uniqueness. Let f(t,x) be continuous in a domain D ⊆ Rn+1

and satisfy a local Lipschitz condition with respect to x in D. For any (t0,x0) ∈ D the initial

value problem (A.1.3) has exactly one solution. The solution can be extended to the left and

right up to the boundary of D.

Example: when f and ∂f/∂x are continuous in D then f satisfies a local Lipschitz

condition and hence the conditions of theorem (1).

We call a problem of mathematical physics well posed when its solution exists, when its

solution is unique, and when its solution depends continuously on the data that is given.

To formulate the third requirement we need to decide which properties of the problem we

take to vary with data. For partial differential equations of physics we typically take initial

(and perhaps boundary) values to represent given data. For ordinary differential equations

in physics the right hand side f typically also expresses empirically determined information

regarding the modeled physical system (such as the shape of a surface on which a ball is

rolling). Hence besides initial values we also require the solution to depend continuously on

f . We have the following sufficient condition for the well posedness of a system of first order

ordinary differential equations:
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Let Sx̂
α denote the α-neighborhood of the graph of a vector function x̂(t), that is the set

of all points (t,x) with t ∈ J , |x− x̂(t)| ≤ α.

Theorem 2. Continuous dependence. Let J be a compact interval with t0 ∈ J and let

the function x̂(t) be a solution of the initial value problem (A.1.3). Suppose there exists

α > 0 such that f(t,x) is continuous and satisfies the Lipschitz condition (A.1.4) in Sx̂
α.

Then the solution x̂(t) depends continuously on the initial values and on the right-hand side

f .

That is, for every ε > 0 there exists δ > 0 such that if g is continuous in Sx̂
α and the

inequalities

|g(t,x)− f(t,x)| < δ in Sx̂
α, |y0 − x0| < δ (A.1.5)

are satisfied, then every solution y of the “perturbed” initial value problem

y′ = g(t,y), y(t0) = y0 (A.1.6)

exists in all of J and satisfies the inequality

|y(t)− x̂(t)| < ε in J . (A.1.7)

Example: when D is open and f and ∂f/∂x are both in C0(D) the conditions of theorem

(2) (and of theorem (1)) are satisfied.

The Lipschitz condition in theorem (2) can be replaced with significantly weaker condi-

tions; discussion and proof of theorem (1) and (2) can be found e.g. in Walter (1998).
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A.2 BASIC DEFINITIONS FOR ABSTRACT DIFFERENTIAL

EQUATIONS

A.2.1 Lp space, Lp norm

Let Rm be the m-dimensional Euclidean space, Ω be a Borel subset of Rm and µ a positive

Borel measure in Ω. Given a 1 ≤ p <∞ real number Lp(Ω, µ) is the space of all µ-measurable

funtions u in Ω with norm

‖u‖p = ‖u‖Lp(Ω,µ) =

(∫
Ω

|u(x)|pµ(dx)

)1/p

; (A.2.1)

for p = ∞ the Banach space L∞(Ω, µ) consists of all µ-measurable, µ-essentially bounded

functions u with the norm

‖u‖∞ = ‖u‖L∞(Ω,µ) = µ ess sup{|u(x)|; x ∈ Ω}. (A.2.2)

Strictly speaking the elements of Lp(Ω, µ) are not functions but equivalence classes of func-

tions, the equivalence relation being equality almost everywhere with respect to µ. When

µ is the Lebesgue measure we simply write Lp(Ω, µ) = Lp(Ω); when Ω is clear we further

simplify to Lp(Ω, µ) = Lp. When it is unambiguous we also write the norm ‖u‖Lp(Ω,µ) simply

as ‖u‖p.

For all 1 ≤ p ≤ ∞ the space Lp(Ω, µ) is a Banach space, which is also separable if p 6= ∞.

For p = 2 the space L2(Ω, µ) is also a Hilbert space with the scalar product

(u, v)2 =

∫
Ω

ū(x)v(x)µ(dx). (A.2.3)

The Lp(Ω, µ)ν space of vector-valued functions for finite integer ν consists of all vector-valued

functions u(x) = (u1(x), ..., uν(x)) where each of the components is µ-measurable and

‖u‖p =

(∫
Ω

ν∑
j=1

|uj(x)|pµ(dx)

)1/p

<∞

in the case 1 ≤ p <∞. Again Lp(Ω, µ)ν is a separable Banach-space and for p = 2 the scalar

product can be defined similarly to (A.2.3).
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A.2.2 C(K) space of continuous functions

Another important space is that of continuous functions. Let K be a compact subset of Rm.

The space C(K) consists of all continuous functions u in K endowed with the supremum

norm

‖u‖C = sup{|u(x)|; x ∈ K}. (A.2.4)

The so-defined C(K) is a Banach space. When K is closed but not compact we define C0(K)

to be the space of all continuous functions in K with

lim
|x|→∞

u(x) = 0,

again endowed with the supremum norm

‖u‖C0 = sup{|u(x)|; x ∈ K}. (A.2.5)

Both C(K) and C0(K) are separable.

For the Banach space C0(K)ν of all vector functions u = (u1, ..., uν) where all components

uj belong to C0(K) we define the supremum norm as

‖u‖C0 = sup
1≤j≤ν

‖uj‖C0 . (A.2.6)
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A.2.3 Sobolev spaces, Sobolev norm

A multi-index α is an m-tuple α = (α1, ..., αm) of non-negative integers αi; for multi-indices

we write |α| = α1 + ... + αm. In what follows let Dα = (D1)α1 · · · (Dm)αm be an arbitrary

differentiation monomial with Dj = ∂/∂xj.

Let Ω ⊆ Rm be an arbitrary domain, j ≥ 0 integer and 1 ≤ p < ∞ real. The Sobolev

space W j,p(Ω) is defined as the space of all functions u ∈ Lp(Ω) such that

Dαu ∈ Lp(Ω)

for all |α| = α1 + ...+αm ≤ j (the derivatives understood in the sense of distributions). The

space W j,p(Ω) is a Banach space with the norm

‖u‖j,p = ‖u‖W j,p(Ω) =

∑
|α|≤j

∫
Ω

|Dαu(x)|pdx

1/p

. (A.2.7)

Hj(Ω) = W j,2(Ω) is also a Hilbert space for any j, the scalar product defined by

(u, v)j,2 =
∑
|α|≤j

∫
Ω

Dαū(x)Dαv(x)µ(dx). (A.2.8)

For Ω = Rm and alternative characterization of Hj(Rm) can be given using the Fourier-
Plancherel transform in L2(Rm),

Fu(σ) = ũ(σ) = lim
a→∞

1
(2π)m/2

∫
|x|≤a

ei(σ,x)u(x)dx (A.2.9)

where σ = (σ1, ..., σm), (σ, x) = σ1x1 + ... + σmxm, and the limit in (A.2.9) is understood in the
L2(Rm) norm. The operator F is an isometric isomorphism from L2

x(Rm) to L2
σ(Rm) (we use the

subindices to signal the change in variables). The inverse of F is given by

u(x) = F−1ũ(x) = lim
a→∞

1
(2π)m/2

∫
|σ|≤a

e−i(σ,x)ũ(σ)dσ. (A.2.10)

A function u ∈ L2 satisfiesDαu ∈ L2
x if and only if σαFu ∈ L2

σ (where σα = σα1
1 ···σαm

m ). We also
have F(Dαu)(σ) = (−iσ)αFu(σ). It follows that u ∈ Hj(Rm) if and only if (1+ |σ|2)j/2ũ ∈ L2 and
the norm ‖u‖′j,2 = ‖(1+|σ|2)j/2ũ‖2 is equivalent to the norm of Hj(Rm) (where |σ|2 = σ2

1 +...+σ2
m).

These remarks make natural the introduction of the spaces Hs(Rm) – s now being an arbitrary
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nonnegative parameter – that consists of all u ∈ L2
x such that (1 + |σ|2)s/2ũ belongs to L2

σ. These
are Hilbert spaces under the scalar products

(u, v)s,2 =
∫

Rm

(1 + |σ|2)s ¯̃u(σ)ṽ(σ)dσ (A.2.11)

corresponding to the norm
‖u‖s,2 = ‖(1 + |σ|2)s/2ũ‖L2(Rm). (A.2.12)

The Hs(Rm)ν spaces of vector-valued functions can be introduced with the scalar product
(u(σ), v(σ)) being in the integrand of (A.2.11).

A.2.4 Operators

An operator A is closed if and only if whenever {un} is a sequence in D(A) such that un → u

and Aun → v for some u, v ∈ E, it follows that u ∈ D(A) and Au = v.

Theorem 3. Closed Graph Theorem. Let A be closed and everywhere defined. Then A

is bounded.

A.2.5 Well posedness in the sense of Lax

Let A be a densely defined operator in an arbitrary Banach space E with a norm ‖.‖.

Consider the equation

u′(t) = Au(t) (−∞ < t <∞) (A.2.13)

A solution of (A.2.13) is a function t→ u(t) such that u(t) is continuously differentiable for

−∞ < t <∞, u(t) is in the domain D(A) of A, and (A.2.13) is satisfied for −∞ < t <∞.

Definition 6. We say that the Cauchy problem for (A.2.13) is well posed in the sense of

Lax (or simply well posed) in −∞ < t <∞ if the following two assumptions hold:

(1) Existence of solutions for sufficiently many initial data: There exists a dense subspace

D of E such that, for any u0 ∈ D, there exists a solution u(.) of (A.2.13) in −∞ < t < ∞

with

u(0) = u0. (A.2.14)
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(2) Continuous dependence of solutions on their initial data: There exists a function C(t)

defined for −∞ < t <∞ such that C(t) and C(−t) are nondecreasing, nonnegative, and

||u(t)|| ≤ C(t)||u(0)|| (−∞ < t <∞) (A.2.15)

for any solution of (A.2.13).

Condition (2) can be given an equivalent (but more palpable) formulation as:

(2’) Let {un(.)} be a sequence of solutions of (A.2.13) with un(0) → 0. Then un(t) → 0

uniformly on compacts of −∞ < t <∞.

Note that we treat initial value problems and mixed initial-boundary value problems

within the same abstract framework. Boundary values, if given, are incorporated as restric-

tions on E or on the domain D(A) of the operator A.

In this framework the distribution-theoretic idea of a weak solution of a differential

equation can be formulated as follows. (Motivation: an otherwise appropriate u(t) might

not belong to the domain of A.) Let A be closed and let u(t) be a locally integrable function

in −∞ < t < ∞. Denote the adjoint of A by A∗. We say that u(t) is a weak solution

of (A.2.13) and (A.2.14) if and only if, for every u∗ ∈ D(A∗) and for every Schwartz test

function ϕ ∈ D (consisting of all infinitely differentiable functions whose support is compact

and contained in Rm) we have∫ ∞

0

〈A∗u∗, u(t)〉ϕ(t)dt = −
∫ ∞

0

〈u∗, u(t)〉ϕ′(t)dt− 〈u∗, u0〉ϕ(0) . (A.2.16)

A.2.6 Propagators

A useful consequence of the definition of well posedness is the existence of the so-called

propagator. Let us assume that equation (A.2.13) is well posed in −∞ < t <∞, let u0 ∈ D,

and define the operator valued function S(.), for all such t, by

S(t)u0
.
= u(t), (A.2.17)
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where u(.) is the only solution of (A.2.13) with u(0) = u0. Due to condition (A.2.15) S(t) is a

bounded operator in D, and since D is dense in E we can extend S(t) to a bounded operator

S̄(t) in E. This extended function S̄(.) is called the propagator of equation (A.2.13).

Note that due to the extension to E the E-valued function S̄(t)v0 makes sense for all

v0 ∈ E; writing now

v(t)
.
= S̄(t)v(0) (−∞ < t <∞) (A.2.18)

where v(0) = v0 we arrive at the notion of a generalized solution of equation (A.2.13). A

generalized solution is identical to a solution when the latter exists, but it does not need

to be a genuine solution of (A.2.13) i.e. when v0 does not belong to the dense subset D on

which we assumed the existence of a solution.

The notion of a generalized solution is equivalent with the notion of a weak solution in

the sense defined above, see (Fattorini; 1983, p. 30) and onwards.

Definition 7. We call a group any functions S(.) with values in the set of bounded operators

over E defined in −∞ < t <∞ which satisfy the equations

S(0) = I (A.2.19)

S(s+ t) = S(s)S(t) (A.2.20)

for −∞ < s, t <∞.

Definition 8. A group S(.) is strongly continuous if

∀u0 ∈ E : ‖S(t)u0 − u0‖ → 0 as t→ 0 . (A.2.21)

The propagator of equation (A.2.13) for which the Cauchy problem is well posed is a

strongly continuous group (see (Fattorini; 1983, p. 81)), and in general any strongly contin-

uous group is called a propagator. The converse relationship between well posedness and the

existence of a propagator also holds:
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Theorem 4. Let S(.) be a strongly continuous group. Then there exists a (unique) closed,

densely defined operator A for which the Cauchy problem of (A.2.13) is well posed in the

sense of Lax in −∞ < t <∞ such that S is the propagator of this equation (A.2.13).

A.3 BASIC RESULTS FOR THE CAUCHY PROBLEM

A.3.1 The general case

Let A be a densely defined operator in an arbitrary Banach space E with a norm ‖.‖; we

denote the domain of A as D(A). The resolvent set σ(A) of A is defined as the set of all

complex λ such that λI−A has a bounded inverse R(λ); the spectrum of A is the complement

of σ(A).

Consider again the equation

u′(t) = Au(t) (−∞ < t <∞). (A.3.1)

We have the following general

Theorem 5. Let A be closed. The Cauchy problem for (A.3.1) is well posed in the sense of

Lax in (−∞,∞) and its propagator S satisfies

‖S(t)‖ ≤ Ceω|t| (−∞ < t <∞) (A.3.2)

if and only if σ(A) is contained in the strip |Reλ| ≤ ω and

‖R(λ)n‖ ≤ C(|Reλ| − ω)−n (|Reλ| > ω, n ≥ 1). (A.3.3)
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Existence and uniqueness of solutions, coupled with an additional technical condition,

as the following result shows, ensures continuous dependence:

The resolvent set ρ(A) of a densely defined operator A is the set of all complex λ such

that λI − A has a bounded inverse R(λ); the spectrum of A is the complement of ρ(A).

Theorem 6. Let A be a densely defined operator in the Banach space E such that ρ(A) 6= ∅.

Assume that for every u ∈ D(A) there exists a unique solution of

u′(t) = Au(t) (t ≥ 0) (A.3.4)

with u(0) = u. Then the Cauchy problem for (A.3.4) is well posed in the sense of Lax in

t ≥ 0.

A.3.2 The case of symmetric hyperbolic systems

More can be said about symmetric hyperbolic systems

Dtu =
m∑

j=1

AjD
ju+Bu, (A.3.5)

where u = (u1, ..., uν) and A1, ..., Am, B are complex constant matrices, A1, ..., Am self-

adjoint, B skew-adjoint.

Let’s define the operator A as

Au =
m∑

j=1

AjD
ju+Bu (A.3.6)

where the domain D(A) is the space of all u ∈ Hs(Rm)ν such that Au (understood in the

sense of distributions) belongs to Hs(Rm)ν . Consider now the Cauchy problem for

u′(t) = Au(t) (−∞ < t <∞) (A.3.7)

with the so-defined operator A. We have:
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Theorem 7. The Cauchy problem for (A.3.7) is well posed in the sense of Lax in −∞ <

t <∞ in all spaces E = Hs(Rm)ν, s ≥ 0 (in particular in E = L2(Rm)ν); if u is a solution

in L2 such that u(0) ∈ Hs, then u(t) ∈ Hs for all t and

‖u(t)‖s,2 = ‖u(0)‖s,2 (−∞ < t <∞). (A.3.8)

For s > m/2, u(t) (modified in a null set if necessary) belongs to C0(Rm), and

‖u(t)‖C0 ≤ C‖u(0)‖s,2 (−∞ < t <∞) (A.3.9)

holds with C = (2π)−m/2K
1/2
s , Ks =

∫
Rm(1 + |σ|2)−sdσ.

If s ≤ m/2 and p satisfies

2 < p <
2m

m− 2s
≤ ∞

then u(t) belongs to Lp, and

‖u(t)‖p ≤ C(p)‖u(0)‖s,2 (−∞ < t <∞) (A.3.10)

holds with C(p) = (2π)−dK(p), K(p) = (Kps/(p−2))
(p−2)/2p.

The condition that B is skew-adjoint can be relaxed to the case where B is an arbitrary

complex ν × ν matrix. Let ω be the maximum of the absolute value of the eigenvalues of

1
2
(B +B∗); instead of the equality (A.3.8) we end up with the estimate

‖u(t)‖ ≤ eω|t|‖u(0)‖ (−∞ < t <∞), (A.3.11)

which still guarantees continuous dependence on the initial data, etc.
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A.3.3 Perturbation results

Theorem 8. If the Cauchy problem for

u′(t) = Au(t) (−∞ < t <∞). (A.3.12)

is well posed in the sense of Lax then the Cauchy problem for

u′(t) = (A+ P )u(t) (−∞ < t <∞). (A.3.13)

is also well posed in the sense of Lax for any bounded operator P .

The condition of boundedness of P can be significantly weakened. For proof of theorem

(8) and other results see (Fattorini; 1983, p. 268-272).

A.4 EXAMPLES

A.4.1 The Schrödinger equation

The Schrödinger equation for a particle of massM under the influence of an external potential

U is

−h
i

∂ψ

∂t
= − h2

2M
∆ψ + Uψ (A.4.1)

where h is Planck’s constant.

We consider here the free particle case in m ≥ 1 dimension. Then equation (A.4.1) can

be abstractly written as

u′(t) = Au(t) (−∞ < t <∞) (A.4.2)

with operator

Au = iκ∆u = iκ
(
(D1)2u+ ...+ (Dm)2u

)
(A.4.3)
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where κ 6= 0 is a real number. We ask how we need to choose the Banach space E and the

domain D(A) of the operator A to make the Cauchy problem for (A.4.2) well posed.

We know from Theorem 7 that

Proposition 1. The Cauchy problem for the Schrödinger equation (A.4.2) is well posed in

the sense of Lax when E = Hs(Rm) and when the domain of A consists of all u ∈ Hs(Rm)

such that Au (understood in the sense of distributions) belongs to Hs(Rm). In particular this

is true for E = L2(Rm).

However this is not the case when we consider other Banach spaces and other norms.

Consider first Lp spaces in general. Let S(Rm) consists of all infinitely differentiable functions

on Rm dying down at infinity faster than any power of |x| together with all their derivatives.

We have

Proposition 2. The Cauchy problem for the Schrödinger equation (A.4.2) is not well posed

in the sense of Lax when E = Lp(Rm) (1 ≤ p < ∞, p 6= 2) and when the domain of A is

D(A) = S(Rm).

Let’s consider now the case of the supremum norm. We have

Proposition 3. The Cauchy problem for the Schrödinger equation (A.4.2) is not well posed

in the sense of Lax when E = C0(Rm) and when the domain of A is D(A) = S(Rm).

Proposition 2 is a consequence of a result of Hörmander ((Hörmander; 1960, p. 109), see

also in Fattorini (1983)); Proposition 3 can be found in (Fattorini; 1983, pp. 45-49).

Remark: the choice of L2(Rm) norm has a physical motivation, as the function |ψ|2 is

interpreted in quantum mechanics as the probability density of the particle. This interpre-

tation imposes ∫
Rm

|ψ(x, t)|2dx = 1 (A.4.4)

for all t and suggests that L2(Rm)C is the proper space to study (A.4.1). However the
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differential equation itself has solutions for other function spaces as well, and in some contexts

it is applied to classical fields as well (e.g. for studying a coherent matter wave of a Bose

condensate or of a superfluid).

A.4.2 The Maxwell equation

The case for the Maxwell equation is similar.

Let E ,B be three dimensional vector functions of x = (x1, x2, x3) and t. We consider the

case of propagating electromagnetic field in a homogeneous, isotropic medium in the absence

of charges and currents:

∂E
∂t

= c ∇× B (A.4.5)

∂B
∂t

= −c ∇× E (A.4.6)

∇E = 0 (A.4.7)

∇B = 0, (A.4.8)

where c is a constant.

Let’s define the operator A as

A =



0 0 0 0 −cD3 cD2

0 0 0 cD3 0 −cD1

0 0 0 −cD2 cD1 0

0 cD3 −cD2 0 0 0

−cD3 0 cD1 0 0 0

cD2 −cD1 0 0 0 0


= A1D

1 + A2D
2 + A3D

3, (A.4.9)

where Dj = ∂/∂xj; A1, A2, A3 are 6 × 6 symmetric matrices. The abstract formulation of

Maxwell’s equations (A.4.5)-(A.4.6) becomes the familiar

u′(t) = Au(t) (−∞ < t <∞). (A.4.10)
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Again, we know from Theorem 7 that

Corollary 1. The Cauchy problem for the Maxwell equation (A.4.10) is well posed in the

sense of Lax when E = Hs(R3)6 and when the domain of A consists of all u ∈ Hs(R3)6 such

that Au (understood in the sense of distributions) belongs to Hs(R3)6. In particular this is

true for E = L2(R3)6.

We neglected conditions (A.4.7)-(A.4.8); note however that they are satisfied for all t if

they are satisfied by the initial conditions E(x, 0), B(x, 0).

However the situation changes when we consider other Banach spaces and other norms.

Consider first Lp spaces in general. Again let S(R3) consists of all infinitely differentiable

functions on R3 dying down at infinity faster than any power of |x| together with all their

derivatives, and let S(R3)6 be all 6-vectors with components in S(R3). We have:

Proposition 4. The Cauchy problem for the Maxwell equation (A.4.10) is not well posed

in the sense of Lax when E = Lp(R3)6 (1 ≤ p < ∞, p 6= 2) and when the domain of A is

D(A) = S(R3)6.

Remark: the solution exists; the problem is the failure of continuous dependence. Propo-

sition 4 follows from a result of Brenner (1966). One might be tempted to think that taking

into account the further constraints (A.4.7) and (A.4.8) may improve the situation, but this

is not so, see (Fattorini; 1983, pp. 46-48).

Let’s consider again the case of the supremum norm. Let Fs be the subspace of C0(R3)6

consisting of all vectors u which satisfy the constraints div(u1, u2, u3) = div(u4, u5, u6) = 0.

We have

Proposition 5. The Cauchy problem for the Maxwell equation (A.4.10) is not well posed in

the sense of Lax when E = Fs and when the domain of A is D(A) = S(R3)6.

Remark: For a proof of Proposition 5 see (Fattorini; 1983, pp. 46-48).
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Remark: the choice of L2(Rm) norm has a physical motivation, since the function

1

8π
‖u(t)‖2 =

1

8π

∫
R3

(
|E(x, t)|2 + |B(x, t)|2

)
dx (A.4.11)

is interpreted as the total energy of the electromagnetic field, which one would hope to

remain constant in time in the absence of external influences. This is thus also a motivation

for application of an energy norm. One would however hope to prove the constancy of the

total energy on the basis of Cauchy data rather than assuming it.

A.5 A REMARK ON THE CHOICE OF THE APPROPRIATE BANACH

SPACE

Consider again the Maxwell equation. Suppose our measurement devices can directly mea-

sure the strength of the E and B fields at spatial points1 but we can’t directly measure the

values of their derivatives.

Then the operationally significant norm is the supremum norm and Proposition 5 shows

that the initial value problem for the Maxwell equation is not well posed for the space of

continuous functions that die off at infinity. This poses then a threat to prediction and

confirmation (but: see our discussion of necessity of well posedness for prediction in Chapter

2.).

We may change the set of possible initial values to the functions space L2(R3)6, and

change the norm to the L2 norm. Then, according to Proposition 4 the initial value problem

becomes well posed. However closeness in the L2 norm is not helpful in carrying out the

prediction task of establishing value of the field in a certain point, for it only provides mean

1This is questionable as arguably we never measure values of fields at exact single points but we rather
measure average values in open domains. However this is interpretation-dependent and it is customary to
ask what are the values of fields in given spatial points.
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square estimate for the outcome. In order to predict values at points we need bounds in the

supremum norm; the technical result that the initial value problem is well posed in the L2

norm is of no pragmatic use.

This is where turning to Sobolev norm results could become useful. As Theorem 7 shows

(see Proposition 1) the initial value problem for the Maxwell equation is well posed in the

Sobolev space Hs(R3)6. Furthermore, when s > m/2 (in our case: s > 3/2, say, s = 2) then

estimates in the Sobolev space Hs(R3)6 become estimates in the C0(R3)6 space as well (see

(A.3.9)). Hence if we take our ‘physically reasonable’ space to be H2(R3)6 then we could

both get well posedness in the norm of the space as well as the ability predict values of fields

in given spatial locations.
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APPENDIX B

BOLUTIONS AND SOLUTIONS

This Appendix is a supplement to Chapter 5. We recap and slightly modify some of the

definitions of Appendix A – for reasons of convenience we only deal with the case when t ≥ 0

but with suitable changes discussion could be extended to the t ≤ 0 or to the −∞ < t <∞

case.

Thus let T + be the set of all nonnegative [0, b) or [0, b] time intervals (b > 0, b = ∞

allowed) and let T +
f ⊆ T + denote the set of all finite time intervals (b = ∞ is not allowed).

Let A be a densely defined operator in an arbitrary topological vector space F , let E ⊆ F

be a Banach space with norm ‖.‖, and let T ⊆ [0,∞) be an interval. Consider the equation

u′(t) = Au(t) (t ≥ 0) (B.0.1)

A solution of (B.0.1) in T ∈ T + is a function t → u(t) such that u(t) is continuously

differentiable, u(t) is in the domain D(A) of A, and (B.0.1) is satisfied for all t ∈ T . When

T = [0,∞) we will simply call a solution of (B.0.1) in T a solution of (B.0.1).

Definition 9. Let u1(t) be a solution of (B.0.1) in T1, T1 ⊆ T2 ∈ T +, and let u2(t) be a

solution on T2 which agrees with u1 everywhere in T1. Then we say that the solution u2

extends u1 and that u1 is extendable to T2. When a solution can not be extended to t ≥ 0

we say it is not globally extendable.
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Definition 10. Suppose T ∈ T +
f ; we call a solution u(t) in T explosive if ‖u(t)‖ → ∞ when

t approaches the boundary of T . Solutions which are not explosive for any T ∈ T +
f are called

non-explosive. (Note: u(t) may be non-explosive even though ‖u(t)‖ → ∞ as t→∞.)

We now define the notion of a well posed problem (this is the same as definition 6 for

t ≥ 0).

Definition 11. We say that the equation (B.0.1) is well posed in t ≥ 0 (in the sense of Lax)

if the following two assumptions hold:

(1) Existence of solutions for sufficiently many initial data: There exists a dense subspace

D of E such that, for any u0 ∈ D, there exists a solution u(.) of (B.0.1) (in t ≥ 0) with

u(0) = u0. (B.0.2)

(2) Continuous dependence of solutions on their initial data: There exists a function C(t)

defined for t ≥ 0 such that C(t) is nondecreasing, nonnegative, and

||u(t)|| ≤ C(t)||u(0)|| (0 ≤ t <∞) (B.0.3)

for any solution u(t) of (B.0.1).

Condition (2) can be given an equivalent (but more palpable) formulation as:

(2’) Let {un(.)} be a sequence of solutions of (B.0.1) with un(0) → 0. Then un(t) → 0

uniformly on compacts of 0 ≤ t <∞.

A useful consequence of well posedness is the existence of the so-called propagator. Let

us assume that equation (B.0.1) is well posed in t ≥ 0, let u0 ∈ D, and define the operator

valued function S(.), for all t ≥ 0, by

S(t)u0
.
= u(t), (B.0.4)
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where u(.) is the only solution of (B.0.1) with u(0) = u0. Due to condition (B.0.3) S(t) is a

bounded operator in D, and since D is dense in E we can extend S(t) to a bounded operator

S̄(t) in E. This extended function S̄(.) is called the propagator of equation (B.0.1).

Note that due to the extension to E the E-valued function S̄(t)v0 makes sense for all v0 ∈ E;

writing now

v(t)
.
= S̄(t)v(0) (t ≥ 0) (B.0.5)

where v(0) = v0 we arrive at the notion of a generalized solution of equation (B.0.1). A

generalized solution is identical to a solution when the latter exists but it does not need to

be a genuine solution of (B.0.1) i.e. when v0 does not belong to the dense subset D on which

we assumed the existence of a solution. The notion of a generalized solution is equivalent

with the notion of a weak solution (in the sense of distributions); for a further discussion see

Appendix A.

We now define the notion of a bolution friendly differential equation. Bolution friendliness

is a significant weakening of the notion of well posedness; it already implies basic results

regarding bolutions but it is not as strong as to make the argumentation circular by pre-

supposing well posedness.

Definition 12. We say that the equation (B.0.1) is bolution friendly in t ≥ 0 if the following

two assumptions hold:

(1) Existence of solutions for sufficiently many initial data: There exists a dense subspace

D of E such that, for any u0 ∈ D, there exists a solution u(.) of (B.0.1) (in t ≥ 0) with

u(0) = u0. (B.0.6)

(2) Approximation of solutions in a finite time interval: for every solution u(.) of (B.0.1)

defined in a closed interval T ∈ T +
f there exists a sequence of solutions {un(.)} of (B.0.1)

(in t ≥ 0) with un → u uniformly in T .
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Bolution friendliness is a weak property of differential equations; it only requires that

for any solution there are some non-explosive solutions of the differential equation which

stay close to it in a closed time interval. It’s easy to see that every well posed differential

equation is bolution friendly (but not the converse). I’m not aware of examples of differential

equations appearing in non-relativistic physics which satisfy condition (1) but not (2).

We now define the notion of a bolution-chunk, bolution-path, and bolution:

Definition 13. Let T ∈ T + and let ε > 0. A bolution-chunk B̆
ε,T

of (B.0.1) is a maximal

set of solutions of (B.0.1) in T which stay within ε distance throughout T . That is B̆
ε,T

is

a bolution-chunk if

(a) for all u1, u2 ∈ B̆
ε,T

: ‖u1(t)− u2(t)‖ < ε for all t ∈ T and

(b) whenever we have a solution u1 of (B.0.1) in T for which for all u2 ∈ B̆
ε,T

: ‖u1(t) −

u2(t)‖ < ε for all t ∈ T then u1 ∈ B̆
ε,T

.

We refer to T as the time interval, |T | as the (time) length, and ε as the width of the

bolution-chunk B̆
ε,T

.

Let’s denote the set of solutions in the bolution-chunk B̆
ε,[0,t′]

restricted on the [0, t]

interval as B̆
ε,[0,t′]

|[0,t] .

Definition 14. A bolution-path B̂
ε
(t) is an assignment t 7→ B̆

ε,[0,t]
of a bolution-chunk with

time interval [0, t] to a length of time t ≥ 0 such that B̂
ε
(t′)|[0,t] ⊆ B̂

ε
(t) whenever t′ ≥ t.

Definition 15. Let ε > 0. A bolution B̃(ε, t) is an assignment ε 7→ B̂
ε
(t) of a bolution-path

to an ε level of precision such that for all t > 0: B̃(ε, t) ⊆ B̃(ε′, t) whenever ε ≤ ε′.

We also want to refer to the values taken by the solutions in a bolution at time t: we write

B(ε, t) for the set {u(t) : u ∈ B̃(ε, t)}. When it is not confusing we also refer to B(ε, t) as

a bolution.

We say that the bolution satisfies the equation (B.0.1) with respect to which it is defined.

The proofs of the following Propositions are self evident.
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Proposition 6. For every solution u of (B.0.1) in [0, t∗] there exists at least one bolution-

chunk B̆
ε,[0,t∗]

which contains u.

A bolution-chunk can be extended to a bolution-path:

Proposition 7. Let equation (B.0.1) be bolution friendly, ε > 0. For any bolution-chunk

B̆
ε,[0,t∗]

there exists a bolution-path B̂
ε
(.) such that B̂

ε
(t∗) = B̆

ε,[0,t∗]
.

B̂
ε
(.) is unique if the time evolution preserves the norm.

A bolution-path can be extended to a bolution:

Proposition 8. Let equation (B.0.1) be bolution friendly, ε > 0. For any bolution-path

B̂
ε
(.) there exists a bolution B̃(.) such that B̃(ε, .) = B̂

ε
(.).

Every (non-explosive) solution has a bolution “zooming on” it:

Proposition 9. Let u(t) be a non-explosive solution of a bolution friendly differential equa-

tion (B.0.1) in t ≥ 0. There exists a bolution B(ε, t) such that for all t: limε→0 B(ε, t) =

{u(t)}.

If it exists, we denote the solution u(t) on which a bolution B zooms – in the sense of

Proposition 9 – as B.

Corollary 2. Let u(t) be an explosive solution or a not globally extendable solution of a

bolution friendly differential equation (B.0.1) in [0, T ). For any ε > 0 and any 0 < δ < T

there exists bolution-chunk B̆
ε,[0,T−δ]

such that u|[0,T−δ] ∈ B̆
ε,[0,T−δ]

.

Note: according to Proposition 7 this bolution-chunk B̆
ε,[0,T−δ]

can be extended to a

bolution-path. No bolution zooms however on an explosive solution:

Proposition 10. Let u(t) be an explosive solution of a bolution friendly differential equation

(B.0.1) in [0, T ) with limt→T‖u(t)‖ = ∞, and let ε > 0. There exists no bolution-path B̂
ε
(.)

such that u|[0,T−δ] ∈ B̂
ε
(T − δ) for all δ > 0. Consequently there exists no bolution B(ε, t)

such that for any t ∈ [0, T ]: limε→0 B(ε, t) = u(t).
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The interpretation of Proposition 10 is that even though explosive solutions are not

short-hand representations of physically possible worlds, up until any moment before the

explosion happens there is a possible world and a possible observer who may use the solution

for purposes of non-precise calculation until that moment. However for different moments

the world and the observer for whom the solution up until this point has pragmatic use may

differ!

Let us now define the notion of a binitial value-chunk and of a binitial value:

Definition 16. A binitial value-chunk is a maximal set of close initial values. That is, a

B0
ε ⊆ E is a binitial value-chunk if

(a) for all u1, u2 ∈ B0
ε: ‖u1 − u2‖ < ε, and

(b) whenever for a u1 ∈ E we have ‖u1 − u2‖ < ε for all u2 ∈ B0
ε then u1 ∈ B0

ε.

Definition 17. A binitial value is an assignment of a narrowing set of binitial value-chunks

to a level of precision. That is, a B0(ε) : ε 7→ B0
ε is a binitial value if B0(ε) is a binitial

value-chunk for all ε > 0 and if B0(ε) ⊆ B0(ε
′) whenever ε ≤ ε′.

As can readily be suspected, a binitial value “zooms on” an initial value:

Proposition 11. Let B0(ε) be a binitial value. There exists a unique u0 ∈ E such that

u0 ∈ B0(ε) for all ε > 0.

Conversely, for any u0 ∈ E there exists a binitial value such that u0 ∈ B0(ε) for all ε > 0.

On the basis of Proposition 11, we denote the unique u0 on which the binitial value B0

zooms as B0.

The zero time limit of a bolution path is a (subset of a) binitial value-chunk:

Proposition 12. Let ε > 0 be fixed and let B(ε, t) be a bolution. limt→0 B(ε, t) = B0
ε\X,

where B0
ε is a binitial value-chunk and X ⊆ E is a set of u0 initial values for which the

initial value problem (B.0.1), (B.0.2) has no solution. B0
ε is unique.
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Similarly, we can regard a binitial value B0(.) as a zero time limit of a bolution B(., t)

if, for all ε > 0, the binitial value-chunk B0(ε) is the zero time limit of B(ε, t) in the sense

of Proposition 12.

The inverse of this limiting process motivates the following definition:

Definition 18. A bolution-path B̂ satisfies the binitial value B0 if for all T > 0 there is an

ε > 0 such that all solutions of the initial value problems with initial values in B0(ε) stay in

B̂(T ).

Definition 19. A bolution B satisfies the binitial value B0 if for all ε > 0 the bolution-path

B̃(ε) satisfies the binitial value B0.

Again, let A be a densely defined operator in an arbitrary topological vector space F ,

let E ⊆ F be a Banach space with norm ‖.‖. Consider the equation

u′(t) = Au(t) (t ≥ 0) (B.0.7)

Definition 20. Let B be a bolution of (B.0.7). If

B satisfies bolution initial value B0 (B.0.8)

then we say that the bolution is a bolution of the binitial value problem (B.0.7)-(B.0.8) with

binitial value B0.

We can also define the natural counterpart of the notion of well posedness for binitial

value problems.

Definition 21. We say that the equation (B.0.7) is bolution well posed in t ≥ 0 if the

following two assumptions hold:

(1) Existence of bolutions for sufficiently many binitial data: There exists a dense subspace

D of E such that every initial value B0 ∈ D has a corresponding binital value B0, and for

all such B0 there exists a bolution B of (B.0.7) satisfying the binitial value B0.
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(2) Continuous dependence of bolutions on the binitial data: For every ε > 0 there exists a

function Cε(t) defined for t ≥ 0 such that Cε(t) is nondecreasing, nonnegative, and

||u(t)|| ≤ Cε(t)||u(0)|| (0 ≤ t <∞)

for any solution u(.) in any bolution B̃(ε, .) of (B.0.7) when 0 < ε < ε∗ is suitably small.

Proposition 13. Let (B.0.1) be an equation whose initial value problems are well posed in

t ≥ 0. Then the binitial value problems of (B.0.7) are bolution well posed in t ≥ 0.

Proposition 14. Let u0 ∈ E be an initial value such that the initial value problem (B.0.1)-

(B.0.2) has an explosive solution u(t). Then the binitial value problem (B.0.7)-(B.0.8) has

no bolution.

Definition 22. Let u(.) be a solution of (B.0.1), and let u0 = u(0). We say that the

solution of equation (B.0.1) depends continuously on its initial value u0 in t ≥ 0 if there

exists a neigborhood E ′ ⊆ E of u0 such that

(1) There exists a dense subset D of E ′ such that, for any v0 ∈ D, there exists a solution

v(.) of (B.0.1) (in t ≥ 0) with

v(0) = v0.

(2) For all sequence {un(.)} of solutions of (B.0.1) for which un(0) → u(0), un(0) ∈ E ′ we

have un(t) → u(t) uniformly on compacts of 0 ≤ t <∞.

Note that if equation (B.0.1) is well posed in the sense of Definition 11 then all of its

solutions depend continuously on their initial values. The converse is not necessarily true as

the continuous dependence might not be uniform.

Proposition 15. Let B0 be a binitial value, let u0 = B0. Suppose that a solution of equation

(B.0.1) does not depend continuously on its initial value u0 in t ≥ 0. Then the binitial value
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problem (B.0.7)-(B.0.8) has no bolution for the binitial value B0 even if the initial value

problem (B.0.1)-(B.0.2) had a solution.
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