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ABSTRACT 

This thesis is to investigate learner trust in an open learner model. Issues of 

trust become more important in an open learner model (OLM) because the 

model is available for learners to inspect and this may increase their 

perceptions of how a system evaluates their knowledge and updates the 

model. It is important to provide learners with a trustworthy environment 

because it can engage them to continue to use the system.  

In this thesis we investigate learner trust in two main perspectives: from the 

perspective of the system as a whole and from the perspective of OLM 

features. From the perspective of the system as a whole, we investigate the 

extent to which learners trust and accept the OLM system on their first use, 

the extent to which learners continue using the OLM optionally after their 

initial use, and the extent to which learner trust and accept the OLM after 

long term of use. From the perspective of OLM features in the OLM 

environment, we investigate learner trust based on most common features: 

(i) complexity of model presentation; (ii) level of learner control over the 

model; (iii) the facility to view peer models and release one's own model to 

peers. 

Learners appear to have a different level of trust in the OLM. Learners trust 

the system more in the short period of time. Learners also trust the different 
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view of model presentation and the different level of learner control in OLM.  

In terms of peer models, the named peer model is trusted more than the 

anonymous model. Based on the findings, a set of requirements is 

established to help the designer in OLM to design a more trustable OLM. 
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Chapter 1  

INTRODUCTION 

Intelligent Tutoring Systems (ITS) are computer-based instructional systems 

that provide adaptive (individualised) teaching, guidance or tutoring. An ITS 

assesses each learner's actions in the interactive environments and develops a 

model of user knowledge, user expertise and skills. The ITS then tailors 

instructional strategies that best suit the learner, based on their inferred learner 

model. The learner model in most adaptive teaching systems exists as a 

machine view and is hidden from the student. However, in open learner models 

(OLMs), the learner model is available for learners to view. Open learner 

models externalise a computer-based learning environment inferences about 

the users’ knowledge according to their recent interaction with the environment. 

Opening the model to the learners may increase their perception of how the 

system evaluates their knowledge and updates the models. This raises 

questions of trust related to whether the learners believe the evaluations are 

correct or whether they trust the system as a whole. Therefore, issues of trust in 

OLM are the main purpose in this research. In this chapter we introduce the 

fields that motivate us into this research, describe the research questions and 

provide the structure of the thesis. 
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1.1   Open Learner Model 

Open learner model is the extension of learner modelling that enables learners 

to access their inferred knowledge or understanding. It is an interactive learning 

where learners can view their knowledge model, difficulties and misconceptions. 

Open learner model has often been argued to support reflection and an active 

learning environment (Bull et al., 2003). This is in line with Kay’s argument that 

student self-knowledge is crucial especially for life-long and self-directed 

learning. She further suggests that giving learners accountability for their 

learning may lead to more effective learning (Kay, 1997). Opening the model to 

the learners can direct them to explore their knowledge and keep track of their 

progress in a specific domain. OLMs can also promote independent learning by 

offering the learners information about their knowledge state that they would not 

usually see (e.g. a breakdown of understanding of concepts at a fine-grained 

level; descriptions of misconceptions held). 

Learner models can be externalised using simple or more detailed 

representations of understanding. Simple representations often display learner 

knowledge using skill meters that show achievements as a set of progress bars 

for a set of domain concepts (Mitrovic & Martin, 2007; Weber & Brusilovsky, 

2001). Simple model views are more limited in information, though they may 

take different forms, they are often similar in content to skill meters. Detailed 

presentations of learner models use different methods of showing the model 

contents, for example: hierarchical tree structures (Kay, 1997); textual 
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descriptions of knowledge and misconceptions (Bull & Pain, 1995); conceptual 

graphs (Dimitrova et al., 2001); Bayesian networks (Zapata-Rivera, 2004).  

There are different levels of control over learner access to their models. For 

instance, users may simply inspect the model contents (Mitrovic, 2003); directly 

provide information to the model (Kay, 1997); be required to demonstrate their 

knowledge or skills in order to change the model (Mabbott & Bull, 2006); and 

jointly negotiate the model with the system (Bull & Pain, 1995). Learners may 

also be able to release their model to peers and instructors (Bull et al., 2007).  

1.2   Trust in Open Learner Model 

In OLM, learners may have more or less control over their learner model 

contents. Some OLMs are inspectable, without allowing more direct user 

contributions to the model information (Mitrovic, 2003, Bull & Britland, 2007); 

some allow or encourage users to contribute additional information to be used 

together with system inferences (Kay, 1997); some allow direct editing 

(overwriting) of model attributes (Mabbott & Bull, 2006); some allow user 

challenges to the model in an attempt to persuade it to change representations 

if they can demonstrate their knowledge (e.g. by attempting a short diagnostic 

test) (Mabbott & Bull, 2006); and some are maintained through student-system 

negotiation of the represented beliefs (Dimitrova, 2003; Kerly, Ellis, & Bull, 

2008). Kay (2001) identified several risks when control is given to learners, 
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which includes when learners enter incorrect information to their model, or 

underestimate or overestimate their knowledge in self-assessments. Tanimoto 

(2005) also suggests the risk of tampering with the model by the student, which 

could affect the validity of the learner model; and the potential of biased design 

where designers avoid modelling the components that are problematic for 

transparency, and thus weaken the model's pedagogical value. Therefore, while 

control may help increase learner trust since they have the opportunity to 

influence the model contents if they disagree with them, such control may also 

reduce system effectiveness. Furthermore, previous research suggests that 

students may be uncomfortable with direct editing of their model, but prefer an 

OLM that offers less direct control as in persuaded and negotiated OLMs 

(Mabbott & Bull, 2006). This would suggest that students can have trust in an 

OLM or, at least, they may have greater confidence in the system to judge their 

knowledge, than in their own self-assessment skills.  

Designing trustable open learner models may be a critical factor in the success 

of the next generation of open learner models (Dimitrova et al., 2007). In 

addition to having confidence in adaptation, this also relates to the right of 

access to personal data and learner control over this data (Kay, 2001). Some 

students are keen to release their learner model to peers, suggesting a level of 

trust not only in their learner model, but also in the manner in which other users 

might use their model data – for example, to help students identify their 

comparative progress, to promote competition amongst peers to increase 

motivation and goal setting, and to facilitate collaborative learning (Bull et al., 
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2007). Therefore, to investigate trust in an open learner model, the definition of 

trust in a learner model has been establish as “the individual user's belief in, 

and acceptance of the system's inferences; their feelings of attachment to their 

model; and their confidence to act appropriately according to the model 

inferences” (Ahmad & Bull, 2008). 

1.3   Objectives of the Research 

The objectives of this research are: 

• To investigate issues of trust in open learner models 

• To identify the features that engender learner trust in open learner 

models 

• To provide a set of requirements for designing an open learner model 

that can incorporate a variety of issues that may enhance trust for a 

range of users. 

Based on the research objectives, this research will contribute a set of 

requirements for designing open learner models that are trustable to the 

learners. The requirements can be one of the useful resources for OLM 

developers in designing trustable OLM system. The requirements also can be 

used together with the existing OLM framework (SMILI☺)(Bull & Kay, 2007) in 

order to increase user trust in the system. 



   6  
 

1.5   Structure of the Thesis 

This thesis is organised into 8 chapters. Chapter 1 introduces the fields that 

motivate this research, the research questions and the importance of the study. 

Chapter 2 explores the literature related to user trust and its characteristics in 

various fields especially in online and adaptive systems. We discussed how 

trust is also relevant in open learner modelling. Chapter 3 describes open 

learner models, their features and issues of trust that are associated in the 

environment. Chapter 4 presents the initial study of trust in OLM systems. From 

here we focus on three features to be included in the investigation of user trust 

in OLM which are (i) the presentation of the learner model; (ii) the learner 

control over the learner model; and (iii) the use of peers models in the 

environment. Chapter 5 describes the system that we used in this research. 

Chapter 6 focuses on the evaluation of the definition of trust in learner models 

and user trust in the system as a whole. We investigate the extent to which 

learners trust (and accept) the OLM in the short-term and long-term use of the 

system and present the relationship between learners trust and several criteria 

that may influence trust in OLM. Chapter 7 describes the evaluations of trust in 

three features of OLM that were identified from Chapter 4. Finally, in Chapter 8 

we illustrate the key findings of this research, the contribution and points to 

directions for future research opportunities. 
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Chapter 2  

USER TRUST 

Trust is a subject that covers many aspects of daily life especially the inter-

personal relationship. It is a common term used in everyday language, but each 

person has a slightly different view of its meaning. Trust has been widely 

studied and a keen interest in many fields including socio-psychology, 

education, e-commerce, automated systems and online transactions. In this 

chapter, we consider trust in various fields by looking into different elements 

and characteristics of trust. Then, we will focus on the study of trust in online 

and adaptive systems which covers adaptive news systems, recommender 

systems and adaptive educational systems. We end the chapter with a 

discussion of how trust is relevant in open learner modelling. 

2.1   Understanding Trust 

Trust is a multidimensional concept that can be studied from a viewpoint of 

many disciplines including social psychology (Deutsch 1960; Rotter 1980; 

Koller, 1988), sociology (Lewis and Weigert, 1985), e-commerce and online 

systems (Gefen, 2000; Kim, Ferrin, & Rao, 2008; Corritore, Kracher, & 

Wiedenbeck, 2003) and human-computer interaction (Madsen & Gregor, 2000). 
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Multidimensional concept means that trust is built from a relationship between 

different trust-building mechanism, and these mechanisms will influence the 

specific trust constructs (McKnight, Choudhury, & Kacmar, 2002). Therefore, 

each discipline offers different perspectives into the condition, its definition, the 

process through which it develops and the ways of utilizing it. This is because 

the term trust itself is quite vague (McKnight & Chervany, 2000) and so far, 

scholars have yet to find a universal definition of trust acceptable in all fields 

(Rousseau, Sitkin, Burt, & Camerer, 1998; Mcknight & Chervany, 2002). Trust 

becomes a weak concept because it is always seen as context-matters. 

However, there are several necessary conditions that lead to the existence of 

trust, as describes in the following section. 

2.1.1   Pre-condition of Trust  

Trust in certain situation only becomes relevant when the condition of risks 

exists. Several authors found that risk is required for the state of trust (Mayer, 

Davis, & Schoorman, 1995; Rousseau, Sitkin, Burt, & Camerer, 1998). Risk can 

be seen as the expected harm due to errors in the system or an attack on the 

system, and it can be measured as a result of this event (Jøsang & Presti, 

2004). Trust has also been defined in terms of acceptance of risks (Sheppard & 

Sherman, 1998). For example, in order to obtain useful information in an online 

health system (Luo & Najdawi, 2004), users have to disclose highly sensitive 

personal information of their medical conditions. Users are also taking a big risk 

if they trust online medical information especially if the information provided is 
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incorrect. Users have to deal with a lot of risks to their health, and their lives 

may be threatened.  

Trust is identified based on the components of risks which are uncertainty and 

vulnerability (Lee & See, 2004). Uncertainty arises from the inability to verify the 

integrity, efficiency, and other actions (Blomqvist, 1997; Mayer et al., 1995), 

while vulnerability refers to the exposure of a person to physical or emotional 

harm.  Trust with the components of uncertainty and vulnerability  can be seen 

in e-commerce because trust often relates to user uncertainty concerning 

vendor activities, and overcoming the perceptions of the risk of sharing personal 

information (McKnight & Chervany, 2002). According to Friedman, Kahn, & 

Howe (2000), customers are vulnerable to certain violations of trust in online 

commercial transactions, such as the loss of money and privacy. Therefore, 

since customers lack direct contacts with the company and have to hand over 

sensitive information in order to complete the transaction, purchasing online is 

considered risky. Table 2.1 summarises the domain of trust definition. 

Table 2.1: Domain of trust definition 

 Domain 

Blomqvist (1997) Uncertainty 

Fogg & Tseng (1999) Credibility 

Friedman et al. (2000) Vulnerability 

Gambetta (1998) Interdependence 

Lee & See, (2004) Uncertainty, vulnerability 

McKnight & Chervany (2002) Uncertainty 

Mayer et al. (1995) Vulnerability 

Rousseau et al. (1998) Interdependence 
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Other than risk and its components, interdependence is also required for the 

state of trust (Rousseau et al., 1998; Gambetta, 1988). Interdependence refers 

to the situation where one party (X) needs something from another party (Y) to 

satisfy its desire, and that party (Y) has the potential to meet the needs. In other 

words, the relationship between the two parties (party who trust (trustor) and the 

trusted party (trustee)) is very important in trusting relationship. The two parties 

may be humans (Rempel, Holmes, & Zanna, 1985), organisations (Blomqvist, 

1997), computer systems (Dhaliwal & Benbasat, 1996), objects like products 

(Wang & Emurian, 2005) and others. The trustor may conceptualise trustor’s 

beliefs and attitudes (Rempel et al., 1985; Blomqvist, 1997), faith (Rempel et al., 

1985), confidence (Tintarev & Masthoff, 2007), intention behaviours and the 

disposition to trust others (McKnight, Cummings, & Chervany, 1998). On the 

other hands, trustee may conceptualise characteristics held by trustee. Mayer et 

al. (1995) suggest that trustee characteristics include ability, integrity, and 

benevolence. Trustees may also possess characteristics like predictability, 

honesty and competency (McKnight et al., 1998) and credibility (Fogg & Tseng, 

1999).  

Therefore, trust can be characterised by the existence of risk conditions that 

involves uncertainty and vulnerability, and the existence of dependency 

relationship between trustor and trustee. Similarly, Wang & Emurian (2005) 

have proposed four characteristics that are accepted by most researchers 

studying trust in both offline and online trust:  
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• There must be a trustor (trusting party) and a trustee (party to be trusted) 

in any trust relationship - these two parties might be persons, 

organisations, or products. The trust will be developed based on the 

ability of the trustee to act and be confident with the trustor, and the 

degree of trust between the trustor and the trustee 

• Trust involves vulnerability – Trust exists in uncertain and risky 

environments. Trustor relies on the trustee not to exploit vulnerability and 

will take the risk of losing something and put themselves in vulnerable 

situation. 

• Trust will affect actions (mostly risk taking behaviours) – the forms of 

actions produced will differ based on the situation. For example A lends 

his money to B because he trusts B will pay back the money. 

• Trust is a subjective matter – the roles of trust are viewed differently by 

different people/discipline in different situations. This is due to individual 

differences and situational factors. 

It is known that trust is the interest of researchers from various disciplines as 

mentioned earlier. In general, studies of trust can be categorised into the 

interactions that involve human-to-human, human-to-machine and human-to-

human mediated by machines. The description of each category can be found 

in the following section. 



   12  
 

2.1.1.1   Human-to-human 

Trust in human-to-human interactions is the focus of researchers in the field of 

socio-psychology. From a sociological perspective, trust may be considered as 

a cooperative relationship which based on cognitive, emotional and behavioural 

aspects (Lewis & Weigert, 1985). Trust is also interpreted as observed agent 

behaviour in potentially risky situations (Worchel, 1979) or as agent 

characteristic perceived by others as trustworthy (Cook & Wall, 1980; Dasgupta, 

1990). However, trust in psychology is more focused on personal traits that deal 

with belief, expectation and feelings. The expectation on another party to 

behave appropriately (with positive consequences) will affect the degree of 

trust. The higher the expectation individuals have in another party, the higher 

their degree of trust in that party (Koller, 1988). Trust between humans is the 

dynamic expectation that will change dynamically as the results of experience in 

the relationship (Rempel et al., 1985). Trust is an important concept in 

psychology because it is crucial for personality development (Erikson, 1993) 

and social life (Rotter, 1980).  

2.1.1.2   Human-to-machine 

Trust between human-to-machine focuses on interactions between human 

operators with automated systems. Lee & See (2004) define automation as 

technology that actively selects data, transforms information, makes decisions, 

and controls processes. Trust in automated systems can be defined as ‘the 

attitude that an agent will help achieve an individual’s goals in a situation 
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characterised by uncertainty and vulnerability’ (Lee & See, 2004). Basically, 

studies on trust between human-to-machine have been drawn from earlier work 

on trust between humans (Rempel et al., 1985). Muir (1987) in his study 

suggested, trust that exists between humans may also be used to trust the 

automated systems. To prove Muir’s statement empirically, Jian, Bisantz, & 

Drury (2000) have done a series of experiments on three conditions of trust: 

general trust, trust between people, and trust between human and automated 

systems. The results obtained reveal that words related to trust are very similar 

among the three conditions of trust (see Table 2.2). 

Table 2.2: Most related words of trust in three conditions of trust (Jian et al., 2000)  

 Words 

Conditions T
ru
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General trust / / / / /   

Trust between people / / / /  /  

Trust between human and automated 

systems 

/  / / /  / 

 

Trust in a human-machine relationship is essential if operators decide whether 

to use automatic or manual control (e.g. Lee & Moray, 1992,1994; Muir & 

Moray, 1996). Previous findings related to trust in process–control systems 

showed that operators’ performance was affected significantly by their degrees 

of trust towards the machines (Sheridan, 1988; Lee & Moray, 1992; Muir & 

Moray, 1996; Jian et al., 2000). Operators’ trust focuses on the automatic 
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control device and is defined as the expectation that the automatic device will 

function properly (Muir 1987, 1994; Jian et al., 2000). However, if the operator 

considers to continue using manual controls when choosing automated 

controls, it proves that self-confidence is a component of trust between humans 

and machines (Lee & Moray 1992, 1994; Riley, 1996).  

2.1.1.3   Human-to-computer 

Trust between human-to-computer focuses on interactions between user and 

computer systems. According to Corritore et al., (2003), trust in e-commerce 

often cited the trust definition by Mayer et al. (1995) which describe trust as "the 

willingness of a party to be vulnerable to the actions of another party based on 

the expectation that the other will perform a particular action important to the 

trustor, irrespective of the ability to monitor or control that other party". Trust in 

e-commerce also referred to as confidence held by a person to what others will 

do (Gefen, 2000). Similarly in recommender systems, trust is referred to as 

increase of confidence (Tintarev & Masthoff, 2007). On the other hands, Cramer 

et al., (2008) refer to trust in recommendation as “user’s willingness to depend 

on a system and its recommendations in the specific context of the user and his 

or her task(s), even though the system might make mistakes.” In a more 

general context, Schmidt-Belz (2005) defines trust in adaptive systems as “the 

believe that in interacting with another party or system, one is vulnerable but 

one’s own interests are adequately respected and protected by the other party 

or system, and the other party or system is capable of performing”. This 

definition clearly shows the relationship of a party who trusts, a party who is 
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being trusted, the vulnerability and the expectation of one party to another. In 

the context of decision aid systems Madsen & Gregor (2000) define trust as "the 

extent to which a user is confident in, and willing to act on the basis of the 

recommendations, actions, and the decisions of an artificial intelligence decision 

aid". This covers both users’ confidence in the system and their willingness to 

act on the system's decisions and advice. Table 2.3 summarises the differences 

on the focus for each definition of trust quoted above.  

Table 2.3: Differences in definition of trust 

 Focus 

Mayer et al. (1995) vulnerability 

Cramer et al., (2008) dependability 

Schmidt-Belz (2005) vulnerability 

Madsen & Gregor (2000) confidence 

 

2.1.2   Measurement of trust 

Jian et al. (2000) have provided empirical evidence that the concept of trust and 

distrust can be measured using the same rating scale. The questionnaires with 

twelve items incorporate seven points rating scale in the range from ‘not at all’ 

to ‘extremely’. Three-phased experimental studies have been done before the 

trust questionnaires were developed. The first phase of the study involved the 

collection of the various words related to concepts of trust and distrust. The 

second phase involved a questionnaire study to examine how close these 

words related to trust or distrust, and the third phase was a study to compare 

pairs of words. Participants were asked to rate the similarity of words that are 
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paired. A multidimensional measurement scale for trust was then constructed 

based on data obtained from the second and third phase of studies. 

Apart from Jian et al. (2000), the subjective measurement of trust using multiple 

rating scales has also been proposed by Muir & Moray (1996) and Madsen & 

Gregor (2000). Muir & Moray (1996) use rating scale to examine the level of 

operator’s trust in a process control pump. The rating scale is between ‘not at 

all’ and ‘extremely high’. Madsen & Gregor (2000) have built a trust measure 

called the Human-Computer Trust (HCT) scale. This scale has been drawn from 

earlier work including Rempel et al. (1985) and Muir & Moray (1996). The HCT 

scale consists of five main constructs which are perceived reliability, perceived 

technical competence, perceived understandability, faith and personal 

attachment. Each main construct has five items, bringing the total to 25 items. 

In this research, we adapt some questions from Jian et al. (2000) and Madsen 

& Gregor (2000). 

2.2   Trust in Online and Adaptive Systems  

The growth of internet technology has changed the way people interact. 

According to Marsh & Dibben (2003), trust between users and technology is 

vital in human-computer interactions because without it, efficiency and 

productivity will not be maximised. Furthermore, the increasing market demand, 

current trend of automation, and intelligent systems make trusting automation 
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an important issue for systems researchers, developers and users (Lee & See, 

2004). Yahoo! Inc., (2006) reported that the internet has become a trusted 

shopping information sources where most customers purchase online at the 

trusted and familiar sites. Customer trust in the web vendor also influences the 

intention to purchase products online (Gefen, 2000; Kim et al., 2008; McKnight, 

Choudhury, & Kacmar, 2002). Moreover, a lack of customer trust is a major 

obstacle in the success of e-commerce (Dayal et al., 2001). Therefore, 

consumer trust has indeed become a crucial factor influencing the success of e-

commerce (Hoffman et al., 1999; Gefen, 2000).   

Literature shows that trust in online systems may be influenced by several 

elements. Among these elements are the experience of using the internet 

(Corbitt et al., 2003; Metzger, 2006; Aiken & Bousch, 2006), perceived ease of 

use of a website (Sillence et al., 2004; Luo & Najdawi, 2004), quality of 

information (Sillence et al., 2004; Luo & Najdawi (2004), reputation of the 

organisation (Sillence et al., 2004, 2007; McKnight et al 2004 ), privacy and 

security (Hoffman et al., 1999; Luo & Najdawi, 2004; Aiken & Bousch, 2006), 

and experience and familiarity (Gefen, 2000; Yoon, 2002; Pavlou, 2003). On the 

other hand, Briggs et al (2002) suggested that users were likely to trust online 

advice systems based on three factors: source credibility, advice 

personalisation and advice predictability. Source credibility refers to the 

completeness of information provided in the site including where the information 

comes from, while advice personalisation refers to whether information provided 

is tailored to user needs. Advice predictability refers to whether information 



   18  
 

presented reflects user’s knowledge and prior experience. This situation leads 

to trust in adaptive systems.  

Adaptive systems can personalise to users based on the activities they have 

done in the environment. Systems are able to adjust their behaviour to the 

expectations of users’ requirement based on the current situation of users (user 

model). It begins by observing and modelling users and this model will be 

updated in accordance with current behaviours. From the user model, systems 

will infer system behaviour that is suited to the users’ current situation. This will 

benefit users because they will get information based on their needs, and avoid 

information that is not relevant to them. In short, an adaptive system is capable 

of matching the appropriate output, using the implicit inferences based on 

interaction with the user. Because of these advantages, adaptive systems have 

been developed and implemented in different areas. Each area applied different 

techniques in terms of user modelling and adaptation.  

Despite the advantages gained from adaptive systems, there are issues that 

need to be considered. The modelling process may provoke a user to question 

the issue of privacy as every action is recorded and noted by the system without 

their permission. The adaptation process may produce questions of whether 

user will follow the system’s recommendation, as this may relate to user trust in 

the system. Schmidt-Belz (2005) suggested that user trust in adaptive systems 

not only relates to privacy issues but also user control, consistency, and system 

competence. Based on qualitative empirical methods, Schmidt-Belz (2005) 
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provides a set of user requirements as guidelines to design a trustworthy 

adaptive system. The requirements are: 

• Users need access to inspect their model as well as the ability to switch 

off the inspections. 

• Users should be allowed to inspect and have the ability to edit the model 

• Users sometimes want to be free from being personalised and filtered. 

System may provide the option to switch off the adaptive behavior and 

offer relevant feedback to users. 

• Users should be allowed to understand the modelling and reasoning of 

the system. 

• Adaptivity is not provided to substitute bad usability design in the system 

but rather users should be helped to understand the adaptivity.  

• The pro-active services (e.g. spam) must be unobtrusive, easy to switch 

off and only provided upon user subscription.  

• Users should be provided with clear benefits from the personalisation 

implemented in a system designed with a high level usability. 

From the above requirements, we can see that user trust in adaptive systems is 

closely related to user understanding of the system and level of control provided 

for them. The following subsections describe trust in several areas in adaptive 

systems. 
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2.2.1   Adaptive News Systems 

The internet is widely known as a source of information that is accessible 

anywhere. Information increases continuously and this causes information 

overload to the reader. Yet the reader does not like to read the entire news 

items which are displayed daily. Therefore adaptive news systems have been 

developed as a mechanism to filter the news based on user requirements. 

Personalisation in adaptive news is to help users reach the content of the news 

that relevant to them. Identification of this relevant information for each user is 

identified by the system through model of user interest. This model is built 

based on user interaction with the system. The system will then recommend or 

categorise related information for a user to reach easily. User modelling and 

adaptation techniques for personalised news have been used in the systems 

such as SeAN (Ardissono, Console, & Torre, 2001) and Daily Learner (Billsus & 

Pazzani, 2000). SeAN is an adaptive system using multi-agents for accessing 

online electronic news. It has three main objectives: first, to select topics and 

news in the server that are highly relevant to users, second to adapt detail level 

of news items to user characteristics, and third to select the most appropriate 

advertising for each page and user. Daily Learner offers nine different 

categories of news which are Top Stories, Politics, World, Business, 

Technology, Science, Health, Entertainment and Sports. Users can select 

stories under the intended category and leave comments or rate the stories, 

whether they are interesting or not. Users can also notify the agent about the 

topic that was known or request more information about the stories. In general, 
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users can rate the story as interesting, not interesting or known. Users are not 

forced to rate the news story but rather it is the user’s own choice. After this 

initial training phase, the system is capable of producing a story according to 

user interest based on categories selected by the user. A list of related titles will 

be displayed in accordance with the current user model. 

Personalised adaptive news is becoming increasingly important because most 

of the portal available in World Wide Web provides access to news and this is 

not limited to company related communications only. For instance, for 

companies that operate primarily through the web, they provide news related to 

companies and news that may be of interest to their clients. The main purpose 

of this personalised news is to attract web users and to gain their loyalty 

(Ardissono et al., 2001). Recently, adaptive news systems have been expanded 

to provide a more transparent system (Wongchokprasitti & Brusilovsky, 2007; 

Ahn, Brusilovsky, Grady, He, & Syn, 2007). This means that the content of 

models is opened to the user for inspection.  

NewsMe (Wongchokprasitti & Brusilovsky, 2007) makes itself transparent by 

allowing users to rate news stories. Users may label news of interest as 

‘Tracked News’ and news to be avoided as ‘Blacklist’. Users may choose not to 

leave any feedback for the articles that have been read and the system will 

assume users do not have a clear view of the articles. Feedback received from 

users is used to build the user model and influence the way the 

recommendation is given to users. NewsMe also allows users to update their 
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profile by moving the articles to another label or remove articles directly from 

their profile. Wongchokprasitti & Brusilovsky (2007) found that excessive 

manipulations of the user model may degrade system performance and that 

system feedback is efficient enough to match explicit feedback (from the user). 

Adaptive news systems also provide user control where they can edit their 

models and improve the adaptation process. YourNews (Ahn et al., 2007) is an 

adaptive personalised news system that allows users not only to view their 

interest profiles in the news but also to edit them. YourNews constructs user 

models based on user reading behaviour, and recommends the most relevant 

news story to users based on this model. In terms of user control, the system 

allows users to remove or add new keywords related to the articles. Users can 

see the effects of adding and removing the keyword as soon as it is done. 

Therefore, users can expect which news will be affected from the changes 

made. In addition, users can see the importance of keywords related to the 

article when the cursor is placed on the title of the article. Keywords that are 

important for an article will appear larger than the other keywords. Ahn et al. 

(2007) suggested that the trust will be higher in a system that is transparent and 

allows users to control the system by editing their profile. However such control 

should be used with caution as it may harm the performance of the system. 

Trust in adaptive news systems is examined using time spent reading the 

articles and the average rank of items clicked by the subjects (Ahn et al., 2007). 
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2.2.2   Recommender Systems  

Recommender systems aim to provide users with items or information that 

might match their preferences, and prevent users from serving one that is not 

relevant to them. The system will build a user model (user profile) for all users 

during their interaction with the system. User profiles are built by collecting data 

obtained either through explicit or implicit data collection. Explicit data collection 

is done by asking users to rate items they like or dislike, while implicit data 

collection is done by observing user behaviors in the system and these 

behaviors are recorded in the system to be analysed. Users will then receive 

items or information that may be off interest based on their profiles. Burke 

(2002) classified three main components that work together to predict 

recommendations for users. They are background data, input data and 

algorithm. Background data is the existing information held by the system and 

input data is the information that should be contributed by users of the systems. 

This information is then combined and compared to the algorithm to generate 

recommendations. Figure 2.1 shows the relationship between these three 

components in order to produce recommendations.  
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Figure 2.1: The relationship between the three components to generate 

recommendations  

 

The recommendation techniques applied in an algorithm could be based on 

collaborative filtering, content-based, or a hybrid of these approaches to gain 

better performance (Burke, 2002, Adomavicius & Tuzhilin, 2005). Previous 

research showed that the accuracy of the recommendation algorithm could 

determine the users trust in the recommender system (McNee, Lam, Konstan, & 

Riedl, 2003). User trust in recommender systems is essential because research 

indicates that users plan to return to trustworthy systems (Chen & Pu, 2005).  

Herlocker, Konstan, & Riedl (2000) found that most users wanted an 

explanation feature added to the system.  This is because explanations in 

recommender systems help users make precise decisions (Bilgic & Mooney, 

2005). In addition, the ability of the system to explain why items were 

recommended to the users is likely to increase user trust (Sinha & Swearingen, 

2002). Explanations provided in the system must be good because bad 

explanations prevent users from accepting individual recommendations 

(Herlocker et al., 2000). Sinha & Swearingen (2002) found that users gave a 

higher rate to a system that provides understandable recommendations. 

Background 

Input data 

Algorithm Recommendations 
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Therefore explanation made the system more transparent and increased the 

probability of trust in the recommender system (Sinha & Swearingen, 2002). 

Sinha & Swearingen (2001) found that more people prefer the 

recommendations made by friends than the systems. Other studies found that 

users prefer to accept recommendation from trusted recommendation systems 

(Swearingen & Sinha, 2001). To meet these preferences, Golbeck (2006) had 

built a recommender system that combines both of them which deployed in a 

system known as FilmTrust. The recommendations are made based on explicit 

trust contributed by users through social networks (social-trust). Therefore 

instead of presenting a list of items to users, FilmTrust suggests the extent of 

possibility that users may be interested in the items they have been found. 

Result shows that the accuracy of prediction based on trust is significantly 

better, and users prefer to use the recommender system with this approach. 

2.2.3   Adaptive Educational Systems 

An adaptive educational environment provides support and enhances learning 

by personalising the materials and teaching environment to the learner. 

Education can be used to tailor information presented to the current state of 

learners’ knowledge, provide navigation support and guide learners in their 

learning process (Brusilovsky & Eklund, 1998).  
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InterBook (Brusilovsky & Eklund, 1998) is an example of an adaptive electronic 

textbook that provides adaptive navigation support. Adaptive navigation support 

provides a suitable learning path by adapting link based on the user’s individual 

characteristics. The characteristics involve the learner’s goal and knowledge. In 

InterBook, colours are used to represent different meanings of adaptive links. A 

white bullet means there is no new topic to be learned, a green bullet means the 

topic is recommended for learners to learn, a red bullet means the topic is not 

ready to be learned, while a checked bullet means the topic has been visited by 

learners. Evaluation of the system shows that participants prefer to use non-

sequential paths with adaptive link annotations, and this reflects their trust in 

annotations. Participants are found more confident using the relevant materials 

under the annotated link. Participants are also willing to allocate more time to 

read a page that appears not ready for them, and this indicates participants 

understand the system’s behaviour and trust the annotations’ integrity 

(Brusilovsky & Eklund, 1998). 

In designing and building future adaptive learning system, Zliobaite et al. (2012) 

have identified six key challenges. One of the challenges is to improve usability 

and trust in the system. Similar to other areas in adaptive systems as describe 

previously, transparency is needed in order to obtain user trust in adaptive 

learning system. The way of how learning and adaptation process implemented 

in the system should be disclosed to the users. Zliobaite et al. (2012) suggested 

that wide deployment of learning systems can improve users trust in the 
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system, and trusting the system relates to users’ understanding of the system 

behaviour.  

Learner control is important if co-operation with the learner is needed in the 

learning. As discussed above, Kay (2001) highlights several risks may occur if 

some control of the model is giving to learners. The risks include inaccurate 

information entered by learners and they may over or under estimate their 

performance in self-assessment. Tanimoto (2005) also suggests the risk of 

tampering with the model by students, which could affect the validity of the 

learner model. However, being in control of their models in adaptive educational 

system can build user trust in the system (Vogiatzis, Tzanavari, Retalis, 

Avgeriou, & Papasalouros, 2005). Therefore, while control may help increase 

learner trust when they have the opportunity to influence the model contents if 

they disagree such control may also reduce system effectiveness. Furthermore, 

previous research suggests that students may be uncomfortable with direct 

editing of their model, but prefer a system that offers less direct control (Mabbott 

& Bull, 2006).  

All three areas of adaptive systems described previously have shown that 

transparency is an important element to build user trust in the system. System 

should allow users to access information on how to implement the process of 

adaptation in the system. For example, in recommender systems they provide 

explanations on how an item is recommended to the users. Therefore, users 

can understand the underlying process involved and thus increase user trust. 
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Schmidt-Belz (2005) also includes transparency as one of the trust elements in 

adaptive systems. However, the elements of trust in adaptive systems are 

mostly drawn from the perspective of user models that is slightly different with 

learner models in adaptive educational systems. User models usually model 

user interest while in an educational context learner models usually model user 

knowledge. Very little research has been made to study user trust in adaptive 

educational systems. This thesis will therefore explore user trust in the context 

of adaptive education specifically for open learner models (OLMs). The next 

section will discuss why trust is relevant in OLMs. 

2.3   Discussions 

In Section 2.1.1 we presented four characteristics of trust accepted by most 

researchers as identified by Wang & Emurian (2005). In order to investigate 

trust in an open learner model (OLM)(described in Chapter 3), we map these 

characteristics to the environment as shown in Table 2.4. 
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Table 2.4: Mapping trust characteristics (Wang & Emurian, 2005) with OLM 

environment 

Characteristics OLM environment 

There must be a trustor 

(trusting party) and a trustee 

(party to be trusted) in any 

trust relationship. 

Trustor in OLM is learners or students. 

Trustee is OLM systems that infer learner 

knowledge. 

Trust involves vulnerability.  

 

In OLM, learners may be uncertain about their 

knowledge level and rely on the system to infer it. 

They also face a risky situation in terms of their 

knowledge level hence put them in vulnerable 

situation. For example:  

• OLM infers learner knowledge based on learners’ 

interactions with the system and if the system 

makes mistakes, the accuracy of the model 

inferred will be affected. Learners will be exposed 

to a vulnerable situation due to this incorrect 

inference. 

• facility to edit their learner model may also put 

them in the incorrect level of knowledge 

  

Trust will affect actions 

(mostly risk taking 

behaviours)  

In situation where learners trust the system inference 

about the model, they may form either positive or 

negative actions. For example learners may study 

hard if they find the knowledge level is low, or they 

may do nothing because they become demotivated 

due to the system inference.  

Trust is a subjective matter  Different learners will have different trust over their 

learner models in OLMs. It may result from their 

attitudes towards machine and technology, 

confidence in their self-assessment skills, etc. 

 

The mapping of trust characteristics to OLMs shows that each characteristic is 

appropriate with OLM environment and this indicates that a study of trust is also 

relevant in OLMs. 
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The potential risks in using OLM are when control is given to learners as 

described in Section 1.2. Other than that, learners can continue to answer the 

questions until the system shows that they have high knowledge in a particular 

topic, and then stop answering questions on that topic. This can happen 

because of concerns that the system’s presentation of their knowledge will 

decrease if they continue to answer the questions. Thus, this situation can give 

a wrong presentation of knowledge to the instructors and also to other students 

especially when they are using the peer models (Section 4.1.1). 

From the perspective of human-machine interaction, a theory of how trust can 

be built by users in automated systems has been produced (Muir, 1987,1994). 

This may also be applicable to OLMs. The following points seem particularly 

relevant:  

• the level of trust will affect user decisions such as the choice of manual 

or automated control and whether they follow the system’s advice;  

• a minimum system performance is necessary for user trust.  

If learners can recognise that their OLM is sufficiently accurate, and if they 

understand the overall purpose of the learner model for adaptation, they will 

likely maintain a higher trust in the system. This is particularly important where 

the learner can see, but not challenge the learner model contents. When users 

have greater control over their model contents, their level of trust in the system 

may help determine the extent to which they accept the system's 
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representations. Learner models that can be challenged by the learner can be 

useful where it is accepted that the model may not always be entirely accurate. 

If learners recognise an incomplete or possibly partially inaccurate model as still 

useful in adaptive tutoring, their trust may be raised if they are allowed to 

change or challenge it in cases where they consider the representations are 

below the minimum level required for effective adaptation. Therefore, trust in 

this context may not necessarily be dependent on the accuracy of the system's 

inferences. A minimum system performance may still be achieved for the 

development of trust by involving the learner in the learner modelling process in 

systems where the modelling can benefit from direct input from the learner,  as 

long as the learner accepts this role. 

While primarily applied to other fields, the definition of trust by Madsen & Gregor 

(2000) can also be relevant in open learner modelling. The evaluation for this 

definition will be described in Chapter 6. 

2.4   Summary 

This chapter has introduced the concept of user trust and its importance to the 

success of the relationship. We have presented trust research in various field 

and come out with pre-condition that makes trust relevant in the situation. Then 

we focus on trust in online and adaptive systems. We mapped characteristics of 

trust accepted by most researchers who study trust to an open learner model 
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(OLM) environment. It shows trust is relevant in an OLMs environment. In OLM, 

learners are allowed to see their learner model, and more importantly, learners 

can see system’s inferences about their knowledge in the environment. 

Therefore, user trust may be even more important than in an environment that 

keeps the model hidden from learners. Next chapter will describe OLMs 

environment and issue of trust that may involve the environment. 
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Chapter 3  

OPEN LEARNER MODEL (OLM) 

Open Learner Models (OLM) can help learners to see their models and keep 

track of their progress in a specific domain as described in Section 1.1.  In this 

chapter, we consider the motivations of open learner models, the environment 

of OLM and its features. We then focus to look at the trust issues in OLMs. 

3.1   Intelligent Tutoring Systems 

Intelligent Tutoring System (ITS) is a computer-based teaching system that 

provides adaptive (individualised) teaching or tutoring. In order to provide 

instructional feedback to learners, ITS requires and depends on several 

components - the domain model (the knowledge of the expert); the student 

model (the knowledge of the learner);  the tutoring model (the knowledge of 

teaching strategies); and the user interface (Nwana, 1990; Nkambou, 

Bourdeau, & Mizoguchi, 2010). The domain model represents subject-matter 

expertise. It comprises all knowledge of a particular domain to be delivered to 

students including the concepts, rules and problem-solving ability. The student 

model is the dynamic representation of the learner’s knowledge, skills and 

expertise in a domain. The tutoring model is the part that designs and regulates 
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instructional interaction with the learner. In other words, it is the method of 

teaching or coaching learners in a system.  ITS assesses each learner's action 

in interactive environments and develops a model of their knowledge, skills, and 

expertise.  ITS tailors the best instructional strategies to the learner based on 

the learner model inferred. 

3.2   Learner Models 

In an adaptive learning system like ITS, the learner modelling process plays an 

important roles in order to achieve the adaptability and personalisation in the 

system. The learner model is inferred by diagnosing learners’ knowledge during 

their interactions with the ITS (Wenger, 1987; VanLehn, 1988). The interaction 

in the modelling process requires learners to answer a series of questions or 

problem solving on a particular domain. The term learner model (or student 

model) is used to describe an abstract representation of the learner within the 

computer program (Holt, Dubs, Jones, & Greer, 1994), which represents the 

learner’s current state of knowledge. 

The learner model is used to track any changes in student knowledge by not 

only observing the interactions but also engaging in various learning situations. 

Wenger (1987) suggested that the learner model has three tasks: 
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• In terms of information, the data gathered must be from learners and 

about learners. It can be in two forms: explicit (by asking students to 

solve specific problems) and implicit (by tracking student interactions with 

the system).  

• In terms of representation, the data gathered must be used to create the 

representation of the student’s knowledge and learning process. 

• In terms of accountability, the data must be accounted by performing 

some types of diagnosis. The diagnosis includes the state of student’s 

knowledge. 

Previously, the learner model was hidden from learners and has been kept and 

used exclusively by the system to affect appropriate adaptation to the learner. 

However, it has been argued that allowing learners to view and access their 

models can encourage learners to be responsible in their learning process 

especially on the awareness of developing knowledge and its difficulties (Kay, 

1997; Bull & Pain, 1995).  Opening the model to learners can direct them to 

explore their current state of knowledge and promote independent learning. In 

addition, learners’ self-knowledge is crucial particularly for life-long and self-

directed learning, and giving learners accountability for their learning may lead 

to more effective learning (Kay, 1997). 
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3.3   Open Learner Models 

Open learner models (OLM) is a field of research that promotes independent 

learning by externalising the learner model contents to the learner (Bull & Kay, 

2007). The aims of OLM are to encourage reflection, independent learning and 

formative assessment/progress monitoring (Bull, Quigley, & Mabbott, 2006). 

Through the OLM, learners may access information about their current state of 

knowledge, difficulties in the subject area and any possible misconceptions 

where this information is modelled.  

In recent years, there has been an increasing interests in opening the learner 

model as a means to support meta-cognitive processes such as planning, 

reflection and self-evaluation (Kay, 2001; Dimitrova, McCalla, & Bull, 2007; 

Kerly, Hall, & Bull, 2007; Mitrovic & Martin, 2007). Other than supporting the 

meta-cognitive skills, Bull & Kay (2007) identified purposes for opening the 

learner model to the learner. This includes improving learner model accuracy, 

promoting learner reflection, helping learners with planning and/or monitoring 

their learning, facilitating collaboration and/or competition between learners, 

supporting navigation, giving the learner right of access to their information, 

supporting learner control, increasing the learner trust in the system by showing 

the learner model contents, and used the learner model as assessment.  

Bull & Kay (2007) mapped the above purposes with 11 elements that should be 

considered in open learner modelling, and established a framework for OLM 
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known as SMILI☺ (Student Models that Invite the Learner In). The elements are 

divided into three categories indicating: What is available? How is the model 

presented? and Who controls access?  

What is available? 

• Extent of model accessible – defines the extent of learner model 

available to the user 

• Match underlying representation – defines the extent of similarity 

between the OLM and the underlying representation of the learner model 

• Access to uncertainty – defines whether the learner model represent 

uncertainty and whether the user can access the information 

• Role of time – defines whether the user can access historical, current or 

predicted future information 

• Access to sources of input – defines the level of access for various 

sources of input used to infer the learner model, and whether users can 

access where the data for inferring comes from. 

• Access to model effect on personalisation - defines whether users know 

the effect of the learner model on their personalised interaction 

How is the model presented? 

• Presentation of the learner model – defines how the learner model is 

presented to the learner, and the level of detail that can be accessed 

• Access methods – defines how the learner model can be accessed, 

whether it is only for viewing or whether user can interact with the model  
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(e.g through edit, provide additional information or negotiate the learner 

model) 

• Flexibility of access – defines whether the learner model can be viewed 

in different formats and whether the user can choose the level of details.  

Who controls access? 

• Who initiates access to the learner model – whether it is the system or 

the learner 

• Controls the accessibility to other users – defines the extent of control  

that the users have over their learner model 

Table 3.1 shows the example how the elements are mapped to purposes of 

opening the model. Three indicators are used in this framework to indicate the 

significant of row elements for the purpose in that column. Indicator ‘X’ means 

the row element is critical, ‘=’ means its importance is questionable and a blank 

indicates the element does not play a significant role for that purpose.  
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Table 3.1: SMILI Framework: HOW is the model presented? (Bull & Kay, 2007) 

 

The elements included in SMILI☺ indicate that in general, development of 

OLMs includes similar features but different functions, which are usually based 

on the purpose of the system. In this research, we are interested in investigating 

user trust in relation to three purposes of opening the model to users:  

• increasing learner trust in the system by showing the learner model 

contents – we are interested in investigating user trust in externalisation 

of the learner model 

• supporting learner control – we are interested in investigating user trust 

when learner control is available in the system and which type of learner 

control the users more trusted in 

• facilitating collaboration and/or competition between learners – we are 

interested in investigating user trust in peers model. 
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In order to investigate user trust as listed above, we shall describe OLM 

features in the next section in three categories: externalisation of the learner 

model, learner control over the learner model and OLM for other users.   

3.3.1   Externalisation of the Learner Model 

Externalisation of learner models is a critical part to be considered in OLM. 

Opening the models to learners means it involves the presentation of the 

underlying model used by the system. The underlying model may be in a 

different form from than that presented to the learner because it is usually 

complex or in a format that can only be understood by the system. For example, 

VisMod (Zapata-Rivera & Greer, 2004) is using a complex Bayesian network for 

the modelling but presenting the model to the learner in a structured graphical 

view; CALMsystem (Kerly et al., 2008) is using a weighted numerical model and 

presenting the model in a range of smiley faces that can be easily understood 

by children; while both SQL-Tutor and e-KERMIT (Mitrovic & Martin, 2007) are 

using a constraint-based model and externalise the model using skill meters.  

A variety of ways to present the model is usually based on the purpose of why 

the system is built and who is the user of the OLM. For example in Subtraction 

Master (Bull & McKay, 2004) the use of a range of smiley faces is appropriate 

for children and may attract and encourage them to explore their knowledge. 

They could easily understand the information in a pictorial form and thus the 

learning process becomes more effective. Due to different purposes and 
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different users within OLMs, various ways are used to present the model 

ranging from simple to more structured representations. 

Simple representations often display learner knowledge using skill meters as 

described in Section 1.1. The early usage of skill meters can be seen in the 

ACT Programming Tutor (Corbett & Anderson, 1995), a practice environment in 

which students write short programming language. Examples of simple 

representations that similar in content to skill meters are the number of arrows 

in a target to represent a level of understanding of a concept (Brusilovsky & 

Sosnovsky, 2005); a list of topics ranked according to level of knowledge (Bull 

et al., 2006); the growth of trees to indicate the level of knowledge and 

misconceptions that may exist (Lee & Bull, 2008) and a range of smiley faces 

shown alongside text descriptors to represent the level of knowledge (Kerly et 

al., 2008). Figure 3.1 shows examples of simple views in OLM. 
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Figure 3.1: Examples of simple views: (a) ranked list (Bull et al., 2006); (b) smiley faces 
(Kerly et al., 2008); (c) growth of trees (Lee & Bull, 2008) 

 

Structured views are usually more complex and provide detailed information in 

the learner models. Just as the diversity of simple views, structured views also 

used different methods of presentation of the model contents. For examples: 

hierarchical tree structures (Kay, 1995; Mabbott & Bull, 2006); tree maps 

(Brusilovsky, Hsiao, & Folajimi, 2011; Kump, Seifert, Beham, Lindstaedt, & Ley, 

2012); textual descriptions of knowledge and misconceptions (Bull & Pain, 

1995); three dimensional network structures (Zapata-Rivera & Greer, 2004), 

and concept maps (Rueda, Larrañaga, Ferrero, Arruarte, & Elorriaga, 2003; 
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Dimitrova, 2003; Mabbott & Bull, 2006). While most presentations in simple 

views are usually based-on or derived from the skill meters, Bull & Kay (2010) 

stated that there are variety of ways for presenting the structured model but the 

most common method is probably the concept map. Figure 3.2 shows examples 

of the presented learner model using concept map in various OLMs.  

The externalisation of learner models for some OLMs are available in multiple 

views. The multiple views in OLM may consist of a combination of simple views, 

a combination of structured views or a combination of simple and structured 

views (Bull, Gakhal, Grundy, & Johnson, 2010; Pérez-Marín, 2007). The 

implementation of multiple views in OLM is driven by several reasons such as: 

• to encourage learners to reflect on their knowledge from different 

perspectives (Kay, 1997),  

• to provide alternative views to be selected by learners according to their 

preferences (Mabbott & Bull, 2006; Xu & Bull, 2010), 

• to complete various aspects of the model information where it is 

displayed in a different view (e.g. Pérez-Marín, 2007; Van Labeke, Brna, 

& Morales, 2007).  
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Figure 3.2: Examples of concept map used in OLMs: (a) Comov (Pérez-Marín, 
2007); (b) Flexi-OLM (Mabbott & Bull, 2006); (c) STyLE-OLM (Dimitrova, 2003) 
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The possibility of multiple views in OLM is first raised by Kay (1997) as a useful 

way of encouraging students to think about their knowledge in different ways. 

She suggests organising the concepts in the Sam coach from different 

perspectives, for example of how well they match the user’s favoured text 

editor, or according to the primitive text-editor functions. 

OLMlets (Bull & Mabbott, 2006) is available in five simple formats including skill 

meters, graph, boxes, table and text. Among these formats, skill meters are the 

most common format used by the learners. For language awareness, OLMLA 

(Xu & Bull, 2010) offers four different formats for learners to choose to suit their 

preferences: index, function, example and skill meter (see Figure 3.3). Each of 

the views presented the modal verbs that are used by the user. Evaluation with 

the system found that participants accept the feedback of their language using 

OLM. Learners were able to used different learner views offered in OLMLA and 

claimed that the OLM is useful to represent their current rule use. Instead of 

using different formats, Zapata-Rivera & Greer, (2004) provides different 

visualisation techniques for learners to explore the learner models. Learners 

can use different display parameters in term of colour, size, proximity, link 

thickness and animation to represent causal relationships and marginal 

probability in an OLM using Bayesian network, VisMod (Zapata-Riviera & Greer, 

2004). The use of multiple parameters has shown a strong influence in 

Bayesian network model, and some parameters have been found to be more 

effective than others (Zapata-Rivera, Neufeld, & Greer, 1999).  
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Figure 3.3: Multiple views in OLMLA (Xu & Bull, 2010): index (upper left), function 
(lower left), example (upper right) and skill meter (lower right)  

 

Flexi-OLM (Mabbott & Bull, 2006) offers a selection of simple and structured 

representations of learner models. They are hierarchy, lecture, concept map, 

prerequisite, index, ranked and text summary (see Figure 4.4). Evaluation of the 

system has proven that users can easily select among the views, and use the 

views that are most useful to them. COMOV (Perez-Marin, 2007) also offers a 

range of simple and structured representations in its multiple views model 

including concept map, conceptual diagram, bar graph, table and text summary. 

In contrast with Flexi-OLM, each view in COMOV represents different 

information towards the learner models. Evaluation over four views (concept 
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map, bar graph, table and summary) shows that all views are rated as 

informative by the participant and concept map was selected as a favourite 

representation than the others.  

Table 3.2 summarises some examples of presentation of learner models in 

OLM. As can be seen, some systems provide simple views, some offer 

structured views, and some support the combination of simple and structured 

views.   

Together with the diversity methods in externalising the learner models, colour 

is frequently used to support the presentation of learner models in OLM system 

(e.g Figure 4.1, Figure 4.4). Different colours are used to indicate knowledge 

level, area of difficulty and misconceptions. The use of different colours can 

draw learners’ attention and help them to identify their knowledge directly. In 

presenting the learner models, colours are used together with other parameters 

especially size (e.g. Zapata-Rivera & Greer, 2004; Mitrovic & Martin, 2007). 

Other display parameters used in OLM systems are text (Bull & Pain, 1995; 

Paiva et al., 1995); quantity (Brusilovsky & Sosnovsky, 2005); position (Mazza 

& Dimitrova, 2003) and proximity (Gakhal & Bull, 2008).  
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Table 3.2: Externalisation of learner models 

OLM systems 

Externalisation 

of LM 
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ACT Programming Tutor (Corbett & Anderson, 1995) ■   

AniMis  (Johan & Bull, 2009) ■   

CALMsystem (Kerly et al., 2008) ■   

CosyQTI (Lazarinis & Retalis, 2007) ■  ■ 

COMOV (Perez-Marin, 2007) ■ ■ ■ 

C-POLMILE (Bull & McEvoy, 2003) ■   

EER-Tutor (Mathews, Mitrovic, Lin, Holland, & Churcher, 2012)  ■ ■ 

EI-OSM (Zapata-Rivera et al., 2007)  ■  

E-KERMIT (Hartley & Mitrovic, 2001) ■   

ELM-ART (Weber & Brusilovsky, 2001) ■   

Flexi-OLM (Mabbott, 2009) ■ ■ ■ 

Haptic Learner Model (Lloyd & Bull, 2006) ■   

INSPIRE (Papanikolaou, Grigoriadou, Kornilakis, & Magoulas, 2003) ■   

MusicaLM  (Johnson & Bull, 2009) ■  ■ 

Mr Collins (Bull & Pain, 1995)  ■  

MyExperiences (Kump et al., 2012)  ■ ■ 

OLMlets (Bull & Mabbott, 2006) ■  ■ 

QuizMap (Brusilovsky et al., 2011)  ■  

STyLE-OLM (Dimitrova, 2003)  ■  

Subtraction Master (Bull & McKay, 2004) ■   

SQL-Tutor (Mitrovic & Martin, 2007) ■   

SIV (Kay & Lum, 2005)  ■  

TAGUS (Paiva et al., 1995)  ■  

The Fractionator (Bull, Mangat, Mabbott, Abu Issa, & Marsh, 2005)  ■  ■ 

UM toolkit (Kay,1995)  ■  

VisMod (Zapata-Rivera & Greer, 2004)  ■  

VCM (Cimolino, Kay, & Miller, 2004)  ■  

xOLM (Van Labeke et al., 2007) ■  ■ 
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In recent years, there has been an interest in providing more expressive 

presentation of learner models. In order to facilitate the learner in recognising 

learning difficulties and reconstructing the correct concept in a programming 

subject, Johan & Bull (2009) have presented learners’ misconception using 

animation. Learners get more detail misconception information by using 

animation and step-by-step text description explaining the misconception. 

Figure 3.4 shows the misconception information in animation text and step-by-

step text descriptions side-by-side. An evaluation of the system shows that 

learners are interested in using the animation and find it helpful to their learning. 

My-Pet-Our-Pet (Chen, Chou, Deng, & Chan, 2004) is another OLM using an 

animated avatar. In this system the animal characters which includes behaviour, 

expressions and emotions are used to represent the user’s learning that 

includes the element of cognitive, social and affective. 

MusicaLM (Johnson & Bull, 2009) is an OLM for learners of basic music theory.  

The learner models available in MusicaLM are in the format of text view, music 

notation and audio as shown in Figure 3.5. Evaluation of the system shows that 

participants are willing to use their OLM and that text view is used the most. 

Learners also made use of music notation and audio especially when ‘incorrect 

knowledge’ appears in their learner model. 

 



 

Figure 3.4: Misconception information in animation text and step

 

 

 

Figure 3.5: 

In OLM, the selection

system, the target user group and focus of the externalisation 

However the important aspect 

learner model is that 

Misconception information in animation text and step-by
(Johan & Bull, 2009) 

 

 

: Learner models in MusicaLM (Johnson & Bull, 2009)

In OLM, the selection of LM presentation may vary according to purpose

the target user group and focus of the externalisation 

important aspect that should be considered in

that it should be intuitive and understand
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by-step text in AniMis 

(Johnson & Bull, 2009) 

ng to purpose of the 

the target user group and focus of the externalisation (Mabbott, 2009). 

should be considered in externalising the 

it should be intuitive and understandable to the user 
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(Hartley & Mitrovic, 2001). Therefore the learning process becomes more 

effective because the user understand the information about their learning. In 

this research, we focus on OLM that offers multiple views that comprise both 

simple and structured views. 

3.3.2   Learner Control over the Learner Model 

Giving learners some control in learning may encourage them to be more 

responsible and autonomous. In OLMs, different learner controls are available 

and it may differ from one system to another (refer Section 1.2). Previous 

research shows that giving the learner some control (and allows the learner to 

influence the model) may lead to a more accurate model (Bull, Dong, Britland, & 

Guo, 2008).  

An inspectable OLM is fully controlled by the system. The learner model is 

entirely dependent on system inference based on learner interactions with the 

system. Learner can see the model, but cannot change the contents of the 

model except in the usual way (e.g. by answering further questions). The 

primary goal is to allow the learner to see the model and help identify the 

amount of knowledge possessed and the possibility of knowledge gaps and 

misconceptions (Bull & McKay, 2004). In addition, an inspectable OLM also 

functions to help raise awareness of learner on their knowledge, prompting 

reflection, planning as well as formative assessment (Bull & Kay, 2010). 
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In co-operative models, the modelling process is jointly by both system and 

learners. Learners are required to provide complementary information 

requested by the system to be included in the learner model (Beck, Stern, & 

Woolf, 1997). This model uses learners’ input in order to get a better 

representation of their skills, maintain an accurate model, and provide learners 

with a sense of control of their model by taking part in the modelling process. 

The situation is quite different in the add-evidence models. Learners may 

contribute additional evidence to consider in the modelling process. In ELM-

ART  (Weber & Brusilovsky, 2001), learners can inspect and modify the learner 

model. ELM-ART implements an adaptive interactive textbook in order to 

provide online learning material. If learners already know the particular page or 

section, they can tell the system by providing some evidence. The evidence is 

provided either by solving programming problems, taking the test or doing some 

exercises. ELM-ART will only change the model when learners supply enough 

evidence to the system. TAGUS (Paiva, Self, & Hartley, 1994) also allows 

learners to inspect and when possible to change the learner model contents. 

Updating the learner contents in TAGUS involves four main services: add 

(identify new content to be considered in learner model), revise (modifies 

current learner model by including new information); tell (inform TAGUS about a 

new situation or evidence, but the system will decide what to do with the 

information); and contract (eradicate information from the model). In the 

situation where the information from different sources contradict with the 
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existing model, TAGUS needs to decide the most reliable information using a 

trust function.  

Learners may also challenge the models. This approach can be seen in EI-

OSM (Zapata-Rivera et al., 2007), an OLM implemented based on a formal 

model of argumentation by Toulmin (1958). Toulmin’s model includes six 

elements which play different roles in argument. They are claims, data, 

warrants, backing, qualifiers and rebuttals (Toulmin, 1958). Claims is the 

subject of the argument, data is the information that supports the claims, 

warrants is the generalisation that allows conclusions from data to claims, 

backing is information that supports the warrants, qualifiers is the degree of 

confidence of the conclusions, and rebuttal is the assertion that defeats the 

basic argument (the claims, data and warrant). EI-OSM uses a simplified 

version of Toulmin's argument structure to externalize, organize and evaluate 

assessment claims and supporting evidence. Elements of Toulmin’s argument 

structure used in the EI-OSM are claims, data, warrants, backing and rebuttal. 

EI-OSM used evidence-based argument structures (i.e add new arguments and 

supporting evidence) from a variety of sources to organize information in the 

learner model. Students may challenge aspects of an argument displayed by 

the system. Instead of responding to arguments that come from the system or 

teacher, student may propose a different argument or individual supporting 

evidences (e.g further explanation, or evidence that is not included in the 

system). However, the decision to determine which evidence has the highest 

strength to influence the argument lies in the hands of teachers. Supporting 
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evidence that has been approved by the teacher is considered stronger than the 

one that is provided by students without prior approval. The challenge approach 

has also been implemented in xOLM (Van Labeke et al., 2007). xOLM consists 

three phases of interactions: (a) learners explore the model and select a topic 

for discussion, (b) system justifies its judgment on the topic selected by the 

learner, (c) learners may challenge  some aspects of system’s judgement on 

the model. As learners can see the justification of the selected topic, they may 

question the learner model. If this happens, the system will give learners three 

options for further justification: ‘agree’, ‘disagree’ and ‘move on’. The system’s 

belief will be strengthened if learners  select ‘agree’. If learners select ‘disagree’, 

they have to respond to further information including the confidence of their 

assessment. This response will be calculated into the model. Learners can 

override the system’s belief if they state high degree confidence in their 

assessment. The discussion will end if learners select ‘move on’. 

Editable learner models allow learners to modify the content of the models. 

OLM allows this interaction because of reasons such as improvement of 

knowledge at some point of time resulting from individual reading or studying 

outside the system, or learners might have forgotten recalled information or 

materials. Therefore, learners are entirely responsible for their learner models 

and can directly update theirs as soon as their knowledge changes. Editing can 

be done by simply changing the system’s belief and changes will affect the 

model. Examples of OLM that use this method are C-POLMILE (Bull & McEvoy, 

2003), SASY (Czarkowski, Kay, & Potts, 2005) and Flexi-OLM (Mabbott & Bull, 
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2006). In C-POLMILE, learners may use the system in the desktop PCs or 

Pocket PCs without having to synchronise the model. Therefore, learners may 

update the model manually by directly editing the percentage of knowledge or 

delete the list of problematic topics and misconceptions. In SASY, learners are 

allowed and even encouraged to view and edit their models. Learners may 

directly edit the models by adjusting values in the ‘view profile’ link. In Flexi-

OLM, learners may edit their models if they are aware of any changes in 

knowledge. The system provides evidence or information in support of its belief 

(Mabbott & Bull, 2006); however, learners may proceed with the edit if it is 

contrary to their belief.  

Learners may also change their model contents by persuasion. In contrast to 

editable OLM where learner model will change directly, in persuasion OLMs 

learners have to demonstrate their competence before the system agrees with 

the changes (new model) as requested by learners. Learners usually have to 

take some short tests by answering a series of questions on the specific topic to 

demonstrate their skills. However, this model will remain unchanged if the 

learners are unable to show their skills in the topic. In this situation, the final 

decision still remains with the system even if the learners initiated the system 

first in an attempt to change the system’s belief. A previous study shows that 

students are uncomfortable with an editable OLM but prefer to have an OLM 

that offered less direct control as in negotiate and persuade OLM (Mabbott & 

Bull, 2006).  



   56  
 

In order to achieve a learner model agreed by both learner and system, a more 

collaborative approach is used in which the learner model is developed through 

negotiation. The process of negotiations usually ranges from request 

information, offer information, justify, challenge, argue, confirm and accept. An 

early negotiated learner model has been implemented in Mr. Collins (Bull & 

Pain, 1995). Both learners and the system are involved in a discussion to 

produce agreed model content, where each party maintains a separate belief. 

The system’s belief is based on recent learner’s interactions, while learners 

state their confidence each time they answer the question. Therefore both 

parties can challenge the other’s belief and can provide justification to support 

their belief. The differences between the beliefs are clearly represented in the 

model.  In contrast, STyLE-OLM (Dimitrova, 2003) maintains only one 

representation, in which the model is jointly constructed to reflect the agreement 

of both parties. During negotiations, the agreement reached can be added to 

the model and any conflicts that arise will be resolved through discussion or 

removed. Interest in the negotiation learner model has change the way the 

negotiation is conducted which include menu selection (Bull & Pain, 1995), 

dialogue games (Dimitrova, 2003) and most recently chatbots (Kerly & Bull, 

2008). A chatbot is implemented in CALMsystem to discuss the learner model 

using natural language. Discussions in CALMsystem can be initiated by the 

learner or the system. The system will initiate the discussion if there is a 

difference between beliefs, or the learner does not seem engaged with the 

system.  



   57  
 

Some examples of OLMs and their learner control over the learner model are 

shown in Table 3.3. All systems listed are inspectable, parallel with the main 

purpose of opening the model to students to enable them to inspect. However in 

a system where the learner model is available for learners to view, the accuracy 

of the model presented is crucial. In addition, the approach is very useful for 

learners’ process of learning. Therefore, some OLMs offer learners some 

control to help the system infer a more accurate learner model by several types 

of controls.  

With a given control, we are keen to investigate user trust in editable and 

persuaded OLM. This is because in editable, learners have full control of their 

learner model and can directly change the model contents. Therefore, accuracy 

of the learner model is questionable especially if the learner tampers the 

features. The persuasion OLM gives a learner more medium control and can be 

used to compare user trust between full-control and medium control of the 

learner model. 

 

 

 

 



   58  
 

Table 3.3: Learner control over the learner model  

OLM systems 

Learner control 
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ACT Programming Tutor (Corbett et al., 1995) ■       

AniMis  (Johan & Bull, 2009) ■       

CALMsystem (Kerly et al., 2008) ■      ■ 

CosyQTI (Lazarinis & Retalis, 2008) ■       

COMOV (Perez-Marin, 2007) ■       

C-POLMILE (Bull & McEvoy, 2003) ■    ■   

EI-OSM (Zapata-Rivera et al., 2007) ■  ■ ■    

E-KERMIT (Hartley & Mitrovic, 2001) ■       

ELM-Art (Weber & Brusilovsky, 2001) ■  ■     

Flexi-OLM (Mabbott, 2009) ■    ■ ■  

Haptic Learner Model (Llyod & Bull, 2006) ■       

INSPIRE (Papanikolaou et al., 2003) ■       

MusicaLM  (Johnson & Bull, 2009) ■       

MFD (Beck et al., 1997)  ■      

Mr Collins (Bull & Pain, 1995) ■      ■ 

Narcissus (Upton & Kay, 2009) ■  ■     

OLMlets (Bull & Mabbott, 2006) ■       

STyLE-OLM (Dimitrova, 2003) ■      ■ 

SASY (Czarkowski et al., 2005) ■  ■  ■   

Subtraction Master (Bull & McKay, 2004) ■       

SQL-Tutor (Mitrovic & Martin, 2007) ■       

Sam coach (Kay, 1997) ■  ■     

TAGUS (Paiva et al., 1995) ■  ■     

The Fractionator (Bull et al., 2005) ■       

UM toolkit (Kay,1995) ■ ■      

VisMod (Zapata-Rivera & Greer, 2004) ■   ■    

VCM (Cimolino et al., 2004) ■  ■     

xOLM (Van Labeke et al., 2007) ■   ■    
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3.3.3   Open Learner Models to Other Users 

Kay (1997) and Hansen & McCalla (2003) have suggested that learner models 

are not only for learner viewing, but also to show other users. Students can 

optionally have the option to release all or parts of their learner model to their 

selected peers named or anonymous in OLMlets (Bull & Britland, 2007) and 

UMPTEEN (Bull et al. 2007). All peer models accessible to a user can then be 

viewed together. Releasing the model to peers has been found to be useful to 

help learners identify difficult areas and to initiate collaborations with peers (Bull 

& Britland, 2007). In OLMlets, students can access data on group knowledge for 

each topic, with a star indicating their own knowledge as shown in Figure 3.6. 

Students can identify their position in the group and encourage healthy 

competition among peers, which motivate them to set a new goal (Bull et al., 

2007). Learners can also compare their performance with the rest of their peers 

in a class in QuizMap (Brusilovsky et al., 2011). QuizMap allows learners to 

identify their strengths and weaknesses compared to their peers. The 

integration of social adaptive navigation supports in QuizMap guides learners to 

discover stronger peers to help them in learning and vice versa. 

The other OLM that supports group learning is Narcissus (Upton & Kay, 2009). 

In order to facilitate effective group functioning, Narcissus supports group work 

based on evidence of contributions by each member. Students can see all the 

activities that contribute to the group, which made the group model scrutable. 

This method helps students to identify the main part of the activity in group 
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learning. In addition, the group model is not for the student only but also can be 

seen by the tutor (instructor), which helps solve problems that may occur in the 

group. 

       

Figure 3.6: The OLMlets group comparison view, and individual peer models view (Bull 

& Britland, 2007) 

 

An OLM open for instructors (or teachers) offers them information about the 

progress of the learners. Zapata-Rivera & Greer (2001) suggested that the 

instructors may adapt their teaching to individual learners or groups based on 

information in the learner models. In Subtraction Master (Bull & McKay, 2004), 

the learner model for the individual learners is displayed in a simple form in 

accordance with the intended use for children. A series of smiley faces is used 

to represent children’s skills at different levels of difficulty in subtraction. In order 

to help individual children, more detailed information is provided to the teachers 

in the system. Similarly, instructors in DynMap (Rueda et al., 2003) are 
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presented with detailed information while the students are presented with the 

simpler format. Instructors can access learner models in UMPTEEN (Bull et al., 

2007). However, they can only see the learner models that are released to 

them. Unlike the Subtraction Master, the model shown to the instructors in 

UMPTEEN is the same as the model seen by the learners. CosyQTI (Lazarinis 

& Retalis, 2008) also provides learners’ information for instructors in order to 

help the instructors to understand their learners, as well as review and possibly 

redesign their teaching strategy. CosyQTI can inform the instructor if there are 

changes in the level of a learner’s knowledge by sending an email or if the 

instructor is using the system, a dialog box will appear. Apart from accessing 

learner models, instructors in EI-OSM (Zapata-Rivera et al., 2007) are given the 

authority to assign the strength value for available arguments, and the 

possibility to override the decisions based on available evidence. Other OLMs 

that allow the instructor to see the learner models are INSPIRE (Papanikolaou 

& Grigoriadou, 2008), CourseVis (Mazza & Dimitrova, 2007), PDinamet 

(Gaudioso et al., 2009) and REPro (Eyssautier-Bavay et al., 2009). Table 3.4 

shows examples of OLMs that open the learner models for others to see. 
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Table 3.4: OLMs open to other users 

OLM systems 

OLM open to: 

P
e
e
rs

 

G
ro

u
p

 

In
s
tr

u
c
to

rs
 

P
a
re

n
ts

 

D
e
s
ig

n
e
r 

CosyQTI Lazarinis & Retalis, 2008) ■  ■   

CourseVis (Mazza& Dimitrova, 2007)   ■   

EI-OSM (Zapata-Rievera et al., 2007) ■  ■ ■  

Fraction Helper (Lee & Bull, 2008)    ■  

Narcissus (Upton & Kay, 2009)  ■ ■   

INSPIRE ((Papanikolaou & Grigoriadou, 2008)   ■   

OLMlets  (Bull & Britland, 2007) ■ ■ ■   

PDinamet (Gaudioso et al., 2009)   ■   

QuizMap (Brusilovsky et al., 2011) ■ ■    

REPro (Eyssautier-Bavay et al., 2009)   ■   

Subtraction Master (Bull & McKay, 2004) ■  ■   

TAGUS (Paiva et al., 1995)     ■ 

UMPTEEN  (Bull et al., 2007) ■  ■   

VisMod ( Zapata-Riviera & Greer, 2004)   ■   

 

OLM also opens the learner models to other users like parents (Lee & Bull, 

2008) and system designers (Paiva et al., 1995). Opening the models to 

parents allows them to see their children’s learning progress as offered in 

Fraction Helper (Lee & Bull, 2008). Meanwhile, learner models open to the 

system designers can help them with the learner modelling process during the 

development (Paiva et al., 1995). From Table 3.4, most OLMs open the models 

for the instructor to inspect to help learners in their learning process. However in 

this research we focus on investigating user trust in peers models.  
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3.4   Discussion: Trust in OLMs 

Trust is an important issue particularly when there may be potential risks (Mayer 

et al., 1995), and the topic has been of great interest to researchers in many 

fields as described in the previous chapter.  In open learner modelling, apart 

from issues of privacy and the protection of personal data, the kind of risks that 

might apply result from learner control over their models (refer section 1.2). 

Such inaccuracies introduced into a learner model may affect the 

appropriateness of subsequent adaptations to the user. Inadequate adaptations 

may weaken learner trust in the system if they do not realise that these 

inaccuracies result from their own decisions. However, it has been suggested 

that students may be less comfortable with simply editing the model: they may 

prefer to use an OLM that offers less direct control (Mabbott & Bull, 2006). For 

example, when persuading the OLM, the learners can disagree with the model 

and demonstrate their competencies in order to affect a change in the model – 

i.e. they have the opportunity to challenge their model, but the system makes 

the final decision over whether the model will be changed. It seems, that some 

learners may trust an OLM to infer their knowledge to a greater extent than they 

trust themselves to identify it. We hypothesise, therefore, that persuading the 

learner model may be a more 'trustable' feature than direct editing of it. 

With inspectable learner models, students can view (some of) the information 

about themselves without the possibility of suggesting alterations to it. Trust in 

the system's representations of the learner's understanding may be particularly 
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relevant here – even if some learners do trust the model generally, if they see 

even one thing with which they disagree, this may reduce their trust in the 

system as a whole. Trust in the accuracy of the model may therefore be even 

more important if learners have no control over its contents. 

A different aspect of trust is relevant when considering whether users may be 

likely to release their learner models to others. The facility to release the learner 

model can be useful both for individual learning where learners can identify their 

position in the group, and for collaboration where students may identify peers 

who could help them or may wish to work together with them on a subject (Bull 

& Britland, 2007; Bull et al., 2007). However, this relates to right of access to 

personal data and learner control over this data (Kay, 2001). Furthermore, 

sharing personal information makes one vulnerable to loss of privacy, 

information misuse or even identity theft (Zimmer et al., 2010). Some students 

are keen to release their learner models to peers, suggesting a level of trust not 

only in their learner models, but also in the manner in which other users might 

use their model data. In addition, some learners might release their models to 

others even though they believed the learner model was incorrect, especially 

when there is a choice for them to release the model anonymously. This 

situation may affect the effectiveness of having collaborations between learners. 

Here, the issues of trust are important because they need to identify which 

learners they should trust for having a good collaboration. 
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3.5   Summary 

In this chapter, we began with learner modelling in ITS and then focus on OLM 

and its features. Opening the learner models involves the method of 

externalising the model to the learners. The externalisations range from the 

simple to more structured and detailed format. The ways of presentation may be 

influenced by several factors including the modelling techniques used, the 

target user and the purpose of presentations. Despite factors that lead to the 

format of the externalisation of the learner model, learners’ understanding of the 

presentation is important as learners may reflect about their learning when they 

understand the model. OLM also gives learners the control over their models in 

order to provide more accurate learner models. The level of control over 

learners access to OLM is varied from more control to less or no control. While 

giving learners access may produce a more accurate model, learners may also 

‘abuse’ the learner model. This may happen if learners give incorrect 

information directly to their model. Other than that, OLM is not only for learners 

to inspect but also the other users including peers, group, instructors, parent 

and the system designer to see (view). Learners may also release their learner 

model to other users, and to view the models of those who have released theirs. 

The model that can be viewed by instructors and parents allow them to monitor 

learners’ progress. 

However, opening the model to the learners may increase their perceptions of 

how a system evaluates their knowledge and updates the model. This raises 
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questions of trust related to whether the learner believes the evaluations are 

correct, and whether they trust the system as a whole. For example, can OLM 

make a system more trustable because users can see the information it is using 

to adapt to them; or can it make a system less trustable? Which features of an 

OLM might make a system more 'trustable'?  In the next chapter we investigate 

learner trust with reference to the complexity of the OLM, level of control over 

the model, and the release of the model to others. 
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Chapter 4  

INVESTIGATING TRUST IN OPEN 

LEARNER MODELS 

In Chapter 3, we discussed open learner models and why the trust is relevant to 

OLMs. In order to investigate trust in OLMs, we conduct an initial study to 

identify which OLM features may help to increase levels of trust in a system. In 

this study we are using two OLM systems - OLMlets (Bull et al., 2006) and 

Flexi-OLM (Mabbott & Bull, 2006). Specifically, we investigate learners' trust in 

simple and detailed OLM views, learner control over their model, and the option 

to release the learner model to others.  

4.1   The OLM Systems 

In our investigation of user trust, we choose OLMlets (Bull et al., 2006) and 

Flexi-OLM (Mabbott & Bull, 2006) as example OLM systems. We describe each 

system by considering the following features: complexity of model presentation; 

level of control over the model contents; and release of the model to other 

users. We hypothesized that issues of trust is related to the features in OLMs. 
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4.1.1   OLMlets  

OLMlets (Bull et al., 2006) is an example of simple learner model presentation, 

developed as a means to help students identify their strengths and weaknesses 

as a starting point for their independent study in a range of subjects. It has five 

learner model presentation formats to allow learners to view their understanding 

to suit their preferences: skill meter, graph, text, table, and boxes surrounding 

topic names as shown in Figure 4.1. 

Different colours are used in the skill meter, graph and boxes to indicate 

knowledge level, areas of difficulty and misconceptions. Misconception 

statements can be accessed by clicking on the misconception links, for 

example: "you may believe that the '=' operator can be used for comparison". 

Clicking on numbers below the heading displays an additional set of 

representations depicting instructor's expectations for learners’ knowledge at 

that stage of their course for comparison. 

In terms of learner control over the learner model, OLMlets can be viewed, but 

learners cannot change the contents of the model except in the usual way (by 

answering further questions). In other words, OLMlets only allows learners to 

inspect their learner model. However learners can optionally release all or parts 

of their learner model to instructors and other students of their choice (named or 

anonymously). 
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Figure 4.1: Individual learner model views in OLMlets 

 

Learners can set and identity model access using the interface shown in Figure 

4.2. If the anonymous mode is selected, the model is identified by the user 

number, for example ‘User 108’ instead of learner’s name. All peer models 

accessible to a user can then be viewed together as shown in Figure 4.3. 
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Figure 4.2: Set model access and identity 
 
 

 

Figure 4.3: Select peers model  
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Learners can access data on the group's knowledge for each topic, with a star 

indicating their own knowledge (see Figure 3.7). The peer models can be useful 

to help learners identify areas of difficulties generally, and to initiate 

collaborations with peers (Bull et al., 2006).              

4.1.2   Flexi-OLM 

Flexi-OLM (Mabbott & Bull, 2006) is the example of OLM that includes simple 

and complex model presentations. The seven formats are: hierarchy of 

concepts, lecture structure, concept map, pre-requisites, alphabetical index, list 

ranked according to knowledge, and text summary (Mabbott & Bull, 2006) as 

shown in Figure 4.4.  As with OLMlets, learners can use the representations 

that suit them best. Flexi-OLM uses colours to indicate student understanding, 

problematic areas and misconceptions, with misconception descriptions, and 

breakdowns of knowledge accessible from the concept links. Flexi-OLM aims at 

helping students identify the state of their knowledge in order to help them focus 

on their studies appropriately.   
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Figure 4.4: Multiple views in Flexi-OLM (Mabbott & Bull, 2006) 

Besides being inspectable, Flexi-OLM also allows learners to edit or try to 

persuade the system of their knowledge if they disagree with the system 

representations (Mabbott & Bull, 2006). Learners can edit their model by simply 

changing the knowledge level.  The system will provide evidence for its views 



 

but will accept the changes if the learner wishes to override the system's 

viewpoint. Figure 4.5 shows 

‘Tokens’ is very limited 

(b). System will provide some evidence 

some instructions if 

change the level to a

Figure 4.5: Edit 

pt the changes if the learner wishes to override the system's 

Figure 4.5 shows the learner’s level of understanding for topic 

very limited (a) and he/she wishes to change the model to 

(b). System will provide some evidence for current knowledge and provide 

some instructions if the learner wishes to continue the process(c) and will 

change the level to a new desired level directly (d). 

 

Edit the learner model in Flexi-OLM (Mabbott & Bull, 2006)
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pt the changes if the learner wishes to override the system's 

learner’s level of understanding for topic 

(a) and he/she wishes to change the model to excellent 

for current knowledge and provide 

process(c) and will 

(Mabbott & Bull, 2006) 



 

Persuading the system means students need to demonst

do not have) the skill

topic. Only if student

changes in their proposed model

 

Figure 4.6: Persuading the learner model in Flexi

In persuading, the first two steps are used in 

learner requests to change his/her

moderate (a) and the 

learner needs to demonstra

Persuading the system means students need to demonstrate that they have (or 

do not have) the skills by answering a few additional targeted questions about a 

students convince the system the model will be altered based on

in their proposed model.  

Persuading the learner model in Flexi-OLM (Mabbott & Bull, 2

ng, the first two steps are used in editing. Figure 4.6 shows 

learner requests to change his/her knowledge topic from 

the system provide evidence for its beliefs

to demonstrate some additional knowledge for
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few additional targeted questions about a 

be altered based on 

(Mabbott & Bull, 2006) 

editing. Figure 4.6 shows the 

from very limited to 

evidence for its beliefs (b). Then the 

some additional knowledge for further 
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questioning, and lastly the system comes out with the new level somewhat 

limited (c) because the learner does not demonstrate the extent he/she has 

claimed.  

4.2   The Study 

We describe an experimental study using the two OLMs presented above, to 

help identify which aspects of OLMs may increase user trust in a system. 

Specifically we investigate advanced level students' trust in simple and detailed 

OLM views, learner control over their model, and the option to release the 

learner model to others. We hypothesized that users trust in OLMs system. 

4.2.1   Participants, Materials and Method 

Participants were 9 Masters students and 9 beginning PhD students (students 

were in their first 3 months of study in PhD programme): a total of 18 

participants. A study with the master students was conducted during a lab 

session for the ‘Educational Technology’ course, while a study with the PhD 

students performed at their leisure. No reward was given to the students who 

participated in this study. All students had no experience with OLMlets and 

Flexi-OLM. Therefore, students were introduced to both systems before using 

them. The domain for OLMlets and Flexi-OLM is the C programming language 

and students may choose any topics to initiate the interaction with the system. 
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Students begin with using OLMlets and followed with Flexi-OLM. For each 

system, they were instructed to answer questions, explore the learner model 

views and the system-specific features (use of peer models; persuading and 

editing). Then, they continued to use the OLMs to suit their approach to 

learning. Interaction with each system lasted around one and a half hours, 

including completion of a post-use questionnaire for each system (Appendix: 

Questionnaire1). Responses were given on a five point scale (strongly agree, 

agree, neutral, disagree, strongly disagree). 

4.2.2   Results 

Table 4.1 presents the results of students' stated trust in an OLM with reference 

to the issues considered (complexity of the model presentation; level of learner 

control over the model contents; and release of the model for peer viewing). As 

this is the preliminary study of investigating trust in OLM, the results presented 

here are very general. At this stage, some aspects are not being studied yet, 

but will be presented in Chapter 6 and 7. 
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Table 4.1: Learner trust in open learner models (in percentage) 

  <Strongly Agree 2 Strongly Disagree> 

 5 4 3 2 1 

Complexity of model presentation   

O
L

M
le

ts
 

Understand overview of knowledge level 39 11 50 0 0 

Believed overview learner model was accurate 17 33 28 22 0 

Trust overview (simple) model information 22 56 22 0 0 

F
le

x
i-

O
L

M
 

Understand detailed model information 33 33 28 6 0 

Believed detailed learner model was accurate 28 50 17 6 0 

Trust detailed (complex) model information 28 28 39 0 6 

Level of learner control over model contents   

F
le

x
i-

O
L

M
 

Trust because can edit model 6 17 39 22 17 

Edited features believed correct 11 33 22 17 17 

Edited features believed incorrect 11 6 28 39 17 

Trust because can persuade system to change 

model 
17 39 22 17 6 

Tried to persuade features believed correct 28 22 28 22 0 

Tried to persuade features believed incorrect 28 6 39 22 6 

Peer models   

O
L

M
le

ts
 

Trust because can compare to peers 11 39 44 0 6 

Trust because can compare to instructor 

expectations 
17 44 33 0 6 

Believed correct and opened to peers 39 28 33 0 0 

Believed correct and opened to instructor * 41 29 24 6 0 

Believed incorrect and opened to peers * 18 24 29 18 12 

Believed incorrect and opened to instructor * 17.6 17.6 29.4 23.5 11.8 

(* indicates one student did not respond, therefore total response is 17) 
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In terms of the complexity of model presentation, 66% of users claimed to 

understand the detailed learner model views (rated 5 and 4), while half (50%) 

understood the overview representations. 78% of learners agreed that the 

detailed views were accurate but only 56% of learners trust in the detailed 

views. While for the overview information, 50% of learners agreed that the 

overview information was accurate and 78% of learners trust in the overview 

information. In all cases some learners were not positive about these issues 

with regards to overview and detailed model presentations.  

For the level of learner control over model contents, the facility to edit the 

learner model did not appear to foster trust, whereas there was a higher 

percentage of users who placed trust in the persuade feature. Many users 

edited and tried to persuade their learner model when they considered it correct 

more than when they believed it to contain errors - especially for editing. 

In terms of peer models, the ability to compare one's own model to peer models 

and instructor expectations increased some learners' trust in their own model 

(50% in the case of peer models; 61% with reference to instructor 

expectations). The majority would release what they believed to be a correct 

model to instructors (70%) and peers (67%), while fewer would release what 

they considered an incorrect model. 
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4.2.3   Discussion  

This section discusses the results according to the issues under investigation: 

(i) learner trust in relation to complexity of the model presentation; (ii) level of 

learner control over the contents of their learner model; and (iii) use of peer 

models. 

4.2.3.1   Complexity of Model Presentation 

Presentation of the learner model may play an important role in the likely uptake 

of OLMs, as learners must to some extent, understand the model 

externalisations in order to use them effectively. In our study, two thirds of 

learners claimed to generally understand the information in the detailed model 

views, but only half stated that they understood the overview information. Given 

that learners have different preferences for detailed model presentations 

(Mabbott & Bull, 2006), it is not surprising that some learners rated this 

unfavourably. It may be that these users had one or two preferred views (out of 

seven - which is sufficient for successful use), but in general they found the 

majority of views less helpful. However, what surprises us is that so many users 

claimed not to understand the simple representations. We hypothesise that this 

is because users can easily and precisely see the model update in the simple 

view. 
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Learners are accustomed to receiving simple feedback that reflects an overall 

score. As OLMlets models knowledge over the most recent five responses for 

each topic, with heavier weighting on the more recent of these responses, the 

skill meters (and other views) change in noticeable (and perhaps unexpected) 

ways. Therefore, it may be that users did understand that a 'more filled' skill 

meter represented greater understanding on a topic, but did not realise that the 

recent responses affected weightings in the model. This issue is related to the 

question of the user being able to predict the system's adaptive behaviour 

based on their actions in the environment (Jameson, 2007).  

In line with the above, only half of the students believed that the overviews of 

their knowledge were accurate. This may be due to the fact that modelling 

occurs over several questions, a single (or a few) correct responses will not 

immediately eradicate any problems shown in the learner model - although the 

weighting of problematic issues will decrease. Similarly, a misconception will not 

immediately disappear from the model once learners recognises their 

misconception: the weighting of the misconception will first decrease before it 

disappears completely. Thus, learners may know that they no longer have a 

misconception even though it is still shown as possible held. Nevertheless, 

despite half of the students neither fully understanding how the model was 

updated nor believing it as accurate, most learners still trust their overview 

model. The reverse was true for the detailed model views: while more 

understood the representations and had confidence in their accuracy, a lower 

number claimed to trust them. Perhaps the complexity of the views, although 
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fostering confidence in the model, made them harder for some students to use 

and therefore, trust in their utility for supporting students’ learning might be 

reduced. 

4.2.3.2   Level of Learner Control over Model Contents 

We find learners are more comfortable with a system that has greater control 

over the model contents, than one which provides full control to themselves 

(Mabbott & Bull, 2006). Our results suggest this extends to their trust in the 

learner model. Learners do not simply trust their own amendments to the 

model, but have greater trust in a method that requires them to demonstrate 

their skills (or lack of skills) before the model is changed. The interesting thing is 

that users edited and attempted to persuade attributes they considered correct, 

more than those they believed incorrect (despite the limited time of the 

evaluation where models could only be partially constructed, thus leaving areas 

not showing high knowledge where learners may actually have been proficient). 

This may have been due to some curiosities in this particular experimental 

setting. It may also be because learners thought there was little point in 

interacting with their learner model if it was inaccurate. Perhaps, they 

considered it a waste of time to try to change the model contents if the system 

was likely to continue making what they perceived as incorrect inferences. 

Indeed, users may have gained trust in the persuade feature by observing that 

Flexi-OLM will not change an accurate representation to an inaccurate one. 
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4.2.3.3   Peer Models and Instructor Expectations 

Half of the users gained trust in their model by comparing it to the peer models. 

Perhaps, this is because they could identify their position in the group, matching 

what they would expect to see, at a given level of their knowledge. Of course, 

half did not state that their trust was related to the ability to explore others' 

models. It would be interesting to find out whether these users found their 

relative position to be different from their expectations, or whether they simply 

did not regard this information as important for trust. Previous users have used 

peer models extensively (Bull, Mabbott & Issa, 2007), but some did prefer not to 

consult this information. It is unlikely that the latter students would consider the 

ability to use peer models to increase their trust in the system. The figure for the 

facility to compare to instructor expectations was a little higher - for some this 

confirmation of their position in relation to what they were expected to have 

achieved appeared useful for increasing trust. It would be worthwhile 

investigating whether this generally gave them a greater sense of where they 

should be, and trust was related to this feeling of understanding what their 

progress actually meant.  

Most learners were willing to open their learner model to peers and instructors if 

they believed the model inferred by the system was accurate. However, some 

still released what they considered an inaccurate model to others. Since 

students could release their models anonymously, any reluctance to use the 

model would not be due to possibility of others identifying them with inaccurate 

data. The situation a perceived model to be inaccurate may affect use of the 



   83  
 

model in initiating or supporting collaborations between learners: if learners 

have released their own 'incorrect' model (according to their belief) to other 

users, will they trust other models less? Will this make them less inclined to 

seek help according to the contents of peer models? Another obvious issue is 

that peers might make their own model - trust in colleagues is particularly 

important in this kind of context. 

4.3   Implications 

We have raised many questions related to trust in OLMs. In terms of the 

complexity of the model, learners seem to understand detailed presentations 

better; however they seem to have greater trust in an overview. We have 

suggested that learners may not have understood the manner in which the 

overview model was updated, but since they did seem to trust it, this suggests 

understanding the manner in which the model is inferred, may not be crucial in 

creating trust. In Chapter 3, we describe a variety of externalisations used in 

OLMs ranging from simple to detailed and structured presentation. Despite the 

existence of a variety of OLMs, some have had extensive use (e.g. Bull et al, 

2006; Mitrovic & Martin, 2007; Weber & Brusilovsky, 2001), to date there has 

been little investigation into the extent to which learners may trust different 

types of OLM representations. Therefore, our questions in investigating this 

issue are: 
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• Do students understand and trust open learner model externalisations? 

• Do students trust simple or more structured view? 

• Are there any features that makes open learner models view more 

trustable? 

In terms of learner control, some learners edited or endeavoured to persuade 

their models even though they believed the model content was correct, but 

fewer students challenged what they perceived to be incorrect attributes. We 

have hypothesised that this may be due to lower trust in the system's ability to 

continue modelling them correctly after the model was changed. To consider 

this issue further, our questions are:  

• Do learners use and trust the edit function in OLM? 

• Do learners use and trust the persuade function in OLM? 

Finally, many learners appear to trust their model because they could compare 

it to instructor expectations and some also because they could compare to peer 

models. It would be useful to investigate how trust might be developed amongst 

learners who have access to each other learner models. Therefore we will focus 

on learner trust in peer models and our questions regarding this issue are: 

• Do learners use and trust peer models? 

• Do learners trust the named learner model or anonymous learner model? 
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Trustable OLMs are likely to be important to encourage users to continue using 

them, in order to gain the educational benefits that can be derived (e.g. 

metacognitive skills such as supporting planning, reflection, and formative 

assessment). In studying trust, different fields have established different 

definition of trusts that are appropriate for the fields as discussed in Chapter 2. 

Therefore, to investigate trust in OLM, a definition of trust in OLMs needs to be 

established. While primarily applied to other fields, the definition of trusts by 

Madsen & Gregor (2000) can also be relevant in open learner modelling. When 

studying trust in open learner models, we adapt and define trust in the learner 

model as the individual user's belief in, and acceptance of the system's 

inferences; their feelings of attachment to their model; and their confidence to 

act appropriately according to the model inferences (Ahmad & Bull, 2008). The 

formulation of trust definition in OLM is described in Chapter 6. Based on this 

definition, the key issues investigated for user trust in OLM are: 

• The extent to which students trust (and accept) the OLM system on their 

first use. 

• The extent to which students continue using the OLM optionally after 

their initial use. 

• The extent to which students trust (and accept) the OLM after longer 

term of use. 

Therefore the research question related to this study is: “What are the elements 

of trust in open learner models?” 
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In this chapter we have investigated trust issues in OLMs using two systems, 

OLMlets and Flexi-OLM, and the results gathered are totally based on learners’ 

responses to the questionnaires. At this stage we did not have any access to 

the log files that seem important to investigate trust issues in OLM. With log 

files, the correlation between learners’ responses to the questionnaires and 

what is actually logged by the system can be seen. Therefore, we extend 

OLMlets to a system that combines features that might build user trust in OLM 

as identified in this study, and we call it tOLMlets. With tOLMlets, we can 

access the logs files for all interactions in the system. 

4.4   Summary 

This chapter has considered trust issues in OLMs, focusing on (i) complexity of 

model presentation; (ii) level of learner control over the model; (iii) the facility to 

view peer models and release one's own model to peers. Results suggest that 

different users may find different features of OLMs important for developing 

trust. As designing trustable OLMs may be crucial for their maintained use, a 

key issue is how to design an OLM that might be trustable for a variety of users. 

Therefore, we have come out with several questions relating to trust in OLM 

and also decided to extend OLMlets to a system known as tOLMlets.  We 

further investigate trust in OLM and for each feature identified we use an 

extended system called tOLMlets. The descriptions of tOLMlets will be provided 

in the next chapter. 
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Chapter 5  

tOLMlets 

In Chapter 4, we have described the investigation of user trust in OLM using 

two OLM systems, OLMlets (Bull et al., 2006) and Flexi-OLM (Mabbott & Bull, 

2006). Initial results suggest that different users may find different features of 

OLMs which are important for developing trust. In this chapter, we present 

tOLMlets to consider these issues further, where t refers to trust. As mentioned 

in the previous chapter, tOLMlets is an extension of OLMlets (Bull et al., 2006). 

It comprises some features of simple OLMs and peer models based on OLMlets 

and detailed OLM representations and learner control based on Flexi-OLM. As 

with OLMlets and Flexi-OLM, tOLMlets was developed with the aim of 

encouraging metacognitive skills and independent learning, by showing 

students representations of their strengths and weaknesses in a subject.  

5.1   Why OLMlets?  

OLMlets (Bull et al., 2006) has been developed to support students learning and 

help them to reflect on their knowledge (including lack of knowledge and 

misconceptions) immediately. With OLMlets, students are also expected to plan 

their future learning event and be more responsible for their learning. The 
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learner model environment in OLMlets is programmed using the PHP scripting 

language and hosted in Apache web server. It is connected to the MySQL 

relational database engine where all model data in OLMlets including subject 

domain topics, questions, answers, misconceptions and system logs are stored. 

This application is running on a Sun Solaris system (Bull, Gardner, Ahmad, 

Ting, & Clarke, 2009). Users can access the system through graphical user 

interface (GUI). Figure 5.1 shows the general architecture of the OLMlets. 

 

 

Figure 5.1: General architecture of OLMlets 
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In this research we decided to extend OLMlets as a system that combines 

features, which may contribute to trust in OLM as identified in Chapter 4. In 

addition to the fact that OLMlets is owned and hosted in the School of 

Electronic, Electrical & Computer Engineering, University of Birmingham, the 

decision to extend OLMlets was influenced by the following factors: the 

extensive use of OLMlets in university courses indicates that this system is 

useful and successful in the environment, the modelling technique used in 

OLMlets, and the fact that OLMlets provides other functions than just viewing 

owned model, but also allows students to see peers models and release theirs 

for others to view. The next section will describe each of these factors further. 

5.1.1   The Extensive Use of OLMlets 

OLMlets has been used extensively in the actual learning environment (Bull et 

al., 2006; Bull & Britland, 2007; Bull et al., 2009). OLMlets is used alongside a 

lecture course to support learning for university students. Evaluation using the 

system shows that users have  good interactions with the system in which 

students attempt questions, quite often view their model, and view the 

comparisons of their knowledge with peers and instructors expectations (Bull et 

al., 2006; Bull & Britland, 2007). OLMlets is also a practical resource for 

learning while helping to stimulate students to take part in the formative 

assessment. Over time, the use of OLMlets to support learning for university 

student is increasingly widespread. In the early deployment, OLMlets only 

supported five university courses for engineering students (Bull et al., 2006), but 
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it continued to grow and support up to 18 courses (Bull et. al., 2009). Extensive 

use of OLMlets in the actual learning environment and the responses shown by 

users indicate that OLMlets has been successful in supporting students 

learning. This makes OLMlets as a good choice for studying trust in OLM. 

5.1.2   The Modelling Technique in OLMlets 

OLMlets supports a variety of courses for engineering students as described in 

the previous section because the modelling technique used is rather simple. It 

can be used by any subject as long as appropriate multiple-choice questions 

can be constructed even though the structure and conceptual relationships of 

each subject is different (Bull & Mabbott, 2006). 

OLMlets uses a weighted numerical to construct a model of learners’ knowledge 

(Bull & Mabbott, 2006). The construction of this model requires students to 

answer multiple-choice questions. The learner’s knowledge level in each topic is 

managed by the system as a continuous value between 0 and 1. A value of 0 

indicates that no knowledge exists, and a value of 1 indicates mastery of 

knowledge may exist. The possibility of misconceptions is also stored as a 

continuous value between 0 and 1 in the misconceptions library; where 0 

indicates no misconceptions and 1 indicates a high probability that students 

hold misconceptions. The misconceptions library is defined by the instructor. 

The system identifies a misconception by comparing learners' input to the 

system with the misconceptions library. The model for each learner is displayed 
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for the last five attempts on the questions. Taking into account that the learner’s 

understanding may change from time to time, the heavier weighting is given to 

the most recent attempts (each is assigned a weighting of 0.3 times the 

previous response). For the purpose of opening the model for users to see, 

these values are converted to representations that are easily understood by 

users.  

OLMlets uses two ranges of knowledge level to externalise the model. For the 

skill meter and graph, these values are changed to ‘known’, ‘misconception’, 

‘problematic’ or ‘not covered’. While for the boxes, table and texts, these values 

changed to ‘very high’, ‘high’, ‘ok’, ‘low’, ‘very low’ or ‘misconception’ (see 

Figure 4.1). OLMlets is a domain-independent OLM. It depends entirely on the 

input of questions set by the instructor and the learner model is built as defined 

based on instructor input. In order to extend the system for investigating issues 

of trust in OLM, the simple modelling technique used in OLMlets is an 

advantage because it is easy to understand the modelling process and thus 

quicken the process. Furthermore, Muir (1987) suggests that user trust in a 

system can be built using the minimum system performance, therefore, simple 

modelling technique used in OLMlets to study trust in OLM is not a problem as 

long as it can function properly. 
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5.1.3   Features of Comparing to Peer Model 

In OLMlets, learners can view not only their own model but also can access to 

peers models that are released to them (Bull & Britland, 2007). Features to view 

models of other users are not only implemented by OLMlets but also by other 

OLM systems (refer to Section 3.3.3). These features have several advantages, 

such as students may seek collaboration with peers, while instructors and 

parents can view student learning progress. In the pilot study, it is found that 

users gained trust in their model and able to compare it to the peer models. 

Hence, this research focuses on the model that involves interactions among 

students (peers models). 

5.2   Extensions to OLMlets 

OLMlets is currently available in five simple views which are skill meter, graph, 

boxes, text and table (Bull et al., 2006). As discussed in Chapter 3, OLMs are 

not limited to the simple views, but also more structured and detailed. Initial 

work suggests students may trust an OLM specifically the presentation of the 

LM. The simple views in OLMlets (Bull et al., 2006) may be trusted even if  

users do not fully understand them or have complete confidence in their 

accuracy. Whereas the structured views in Flexi-OLM (Mabbott & Bull, 2006) 

were less trusted by some learners although the LM is understood better and 

considered more accurate. The above results were with two OLMs with different 

architecture. Users may have a different perception of each system and thus 



   93  
 

affect their trust in the presentation of the learner model. Therefore, we added a 

structured view in OLMlets, and made both simple and structured views 

available in a single system known as tOLMlets to further investigate user trust 

in OLM presentations. Section 5.2.1 will describe these further.  

In terms of interactions, OLMlets allows learners to attempt questions and 

examine their models. Learner models are inferred solely by the system based 

on the responses of learners, and learners do not have control over their model.  

However, giving some controls to learners can raise issues of trust towards the 

accuracy of the model (refer section 1.2). Therefore, control features are added 

and available in tOLMlets in order to further investigate learners' trust in the 

models if learners are given such controls. Section 5.2.2 will describe these 

further. 

5.2.1   Externalisation of the Learner Model 

The development of a structured view in tOLMlets is based on the structure of 

the concept map. This is because most OLMs that implemented a structured 

approach are using a concept map for presenting the learner model (e.g. Rueda 

et al., 2003; Dimitrova, 2003; Mabbott & Bull, 2006; Pérez-Marín, Alfonseca, 

Rodríguez, & Pascual-Nieto, 2007). The more recent research can even 

generate the concept map learner model automatically from learner answers 

(Pérez-Marín & Pascual-Nieto, 2010). Therefore, in order to investigate user 

trust in the presentation of a learner model, we chose a structured approach 
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that is commonly used in OLMs to be applied in tOLMlets, alongside some of 

the simple views. 

The contents of the learner model in a structured view will change in line with 

changes in other views available in OLMlets. Boxes containing topic’s names 

will be filled with different colours according to learner’s knowledge. This is 

similar to the ‘boxes’ view in OLMlets (see Figure 4.1), but with more structured 

layout which is linked based on the relationships between topics in the course. 

When students hold misconception, the related box will be filled with red colour 

and a small box with word ‘misconception’ will appear on the left of the screen. 

Clicking on this box will reveal brief description of the misconception as shown 

in Figure 5.2. 
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Figure 5.2: Structured view in tOLMlets 

5.2.2   Learner Control over the Learner Model 

In open learner modelling, aside from issues of privacy and protection of 

personal data, the kind of risks that may occur is from learner control over their 

model (refer section 1.2). Hence, to study user trust in learner control over the 

learner model, we implement edit and persuade features in tOLMlets. We 

describe these functions in the next section. 
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5.2.2.1   Edit 

OLM allows learners to edit the model content considering that learner may 

improve their knowledge outside the system as explained in Section 3.3.2. In 

tOLMlets, learners may perform edit function by selecting the edit tab in the 

system and the interface shown in Figure 5.3 will be displayed. Let say the 

learner wants to change the knowledge level for topic ‘Domain Model’. He or 

she can start the step by clicking ‘[edit]’ beside the topic’s name.  

 

Figure 5.3: Learner selects the topic to edit 

Next it will take the learner to second interface as shown in Figure 5.4. This 

interface displays the learner’s current knowledge on the selected topic 

(Domain Model), together with the evidence that has contributed to this 

knowledge. Providing the evidence of the current state of the model in the edit 
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function has found to be more useful to students than those without (Mabbott, 

2009). The ability to view the evidence not only encourages users to edit, but 

also makes them more confident to edit. Therefore providing an edit function 

with evidence is a useful way to explore trust in OLMs. 

 

Figure 5.4: Interface showing current level of knowledge and some evidences 

If learners wish to change the model, they may select a new knowledge level 

and tOLMlets will automatically replace it. Let say learners wish to change the 

current knowledge level under the topic ‘Domain Model’ from ‘low’ to ‘high’ (see 

Figure 5.4); they simple click the ‘[continue]’ button.  This change will be 

displayed either in the edit page or in the view options (skill meter for this 

example) as shown in Figure 5.5. 
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 Figure 5.5: The knowledge level after learner edit the model content showed in skill 
meter (left); and in edit page (right) 

5.2.2.2   Persuasion 

In addition to direct edit, persuasion features is also built in tOLMlets. It is based 

on persuasion features in Flexi-OLM (Mabbott & Bull, 2006). In order to 

persuade the system, learners start the process by choosing the topic (see 

Figure 5.6) and the new level of knowledge that they desired (see Figure 5.7). 

In this example learner choose to persuade the topic ‘Intelligent tutoring 

System’. 
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Figure 5.6: Interface for select which topic to persuade 

 

 

Figure 5.7: Interface for select a new level of knowledge  

Learners are shown the evidence that contribute to their current knowledge as 

shown in Figure 5.8. This is very similar to Figure 5.4. After reviewing the 

evidence, if learners still wish to change the content model, they need to take a 

short test about the topic to demonstrate their skills (see Figure 5.9). 
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Figure 5.8: The evidence of current knowledge 

 

The contents of the model will not be changed as desired by learners unless 

they prove their skills. tOLMlets will maintain or change the content model 

based on learners response to the system in a short test. Let say learners want 

to persuade the system to change the model under the topic ‘Intelligent Tutoring 

System’ from ‘OK’ to ‘very high’ (see Figure 5.7), and after taking a short test it 

is found that learners only have knowledge that is categorised as ‘high’, the 

learner knowledge in this topic will change from ‘OK’ to ‘high’ and not to ‘very 

high’ as desired (shown in Figure 5.10). Learners can view the changes (of the 

new level) in the learner model views that are available in tOLMlets, or in the 

‘persuade’ page itself (see Figure 5.11) 
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Figure 5.9: Short test to convince tOLMlets  

 

 

 

Figure 5.10: Reviews the outcome after the attempt to convince tOLMlets  
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Figure 5.11: The level after learner persuade the model displayed in skill meter (left); 
and in persuade page itself (right) 

 

Table 5.1: Comparison between OLMlets, Flexi-OLM and tOLMlets features 

 OLMlets Flexi-OLM tOLMlets 

Externalisation of learner 
model 

Simple 
 

Simple 
Structured 

Simple 
Structured 

Learner control over the 
learner model 

- Edit 
Persuade 

Edit 
Persuade 

OLM to other users Peer  
Instructor 

- Peer 
Instructor 

 

Table 5.1 shows the comparison between OLMlets, Flexi-OLM and tOLMlets 

features. Apart from simple presentation, tOLMlets also provides learners with 

structured presentation of learner model. In tOLMlets, learners can change the 

learner model if they do not agree with the system inference as in Flexi-OLM. 

Learners may edit the model directly if they are confident about their learner 

model, or otherwise, use the persuasion function and try to persuade the 

system to change the model. In terms of other users that can see the model, 

OLMlets and tOLMlets allow access from peers and instructors. tOLMlets 
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inherits this feature from OLMlets and the description of this feature can be 

found in Section 4.1.1. In order to investigate user trust in OLM, tOLMlets now 

represents all three features considered in this research. 

5.3   Summary 

In this chapter we extend OLMlets to tOLMlets to investigate issues of trust in 

OLM instead of developing a new system. The selection is made on the basis 

that the system is widely used, applying simple modelling techniques and 

having additional features for others to access the model (that focus to peers 

model in this research).  

There are different types of OLM representation as discussed in Chapter 2. 

However until now there has been little investigation into the extent to which 

learner may trust different types of OLM representation. OLMlets provides 

students with five simple views, and in the extended version, tOLMlets, we 

incorporate both simple and structured views in one system. This allows us to 

investigate user trust towards simple and structured view of the learner model. 

In Chapter 2, we also discussed various types of control in OLM system. 

Different types of controls over the learner model will affect the model inferred 

by the system. Giving learners some control over their learner model may 

produce a more accurate model or vice versa. This invited to the question of the 
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model produced, and may involve user trust towards the resulting model. 

Therefore, we implemented features for student to control their model in 

tOLMlets. In order to investigate trust, we add a full control feature of the model 

(through edit the model directly) and a limited control feature through 

persuasion. Features that are implemented in tOLMlets are features that usually 

available in other OLM systems. Therefore this makes tOLMlets represent most 

common features in OLM and allows us to investigate user trust in the OLM. 

Next chapter will describe the evaluation of user trust using the system. 
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Chapter 6  

EVALUATION: USER TRUST IN 

OLM 

In this chapter, we investigate users’ trust in OLM as a whole system based on 

two modes of studies: laboratory study and deployed study. We start with the 

evaluation of the definition of trust in the learner model as mentioned in Chapter 

2. The definition consists of 3 main components: (i) user belief and acceptance 

of information inferred by the system; (ii) user feeling of attachment with the 

system; and (iii) user confidence to act appropriately based on information 

inferred. We evaluate user trust on each of these components. Next we assess 

the relationship of user trust with several items that may influence trust in the 

system. The key issues investigated are: 

• The extent to which learners trust (and accept) the OLM system on their 

first use. 

• The extent to which learners continue using the OLM optionally after their 

initial use (preliminary use). 

• The extent to which learners trust (and accept) the OLM after long-term 

use of the system.  

• The relationship between learner trust and several criteria that may 

influence trust in OLM. 
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6.1   Users’ Trust in OLMs 

We did the study in two settings: laboratory and deployed study. In the 

laboratory study learners were using tOLMlets in a short period about two hours 

lab session. While in the deployed study learners were introduced to tOLMlets 

in a lab session and they may continue using the system for 6 weeks. We 

hypothesized that users trust in OLM system as a whole. 

6.1.1   Participants, Materials, Method 

This subsection will explain the participants, materials and method involved in 

the study. 

6.1.1.1   Laboratory study 

Participants were 42 MSc. students from the School of Electronic, Electrical and 

Computer Engineering, University of Birmingham. All participated during a 

course entitled ‘User Models & Models of Human Performance’ (UMMHP). The 

students were introduced to tOLMlets by using the system in an about two-hour 

laboratory session. Some participants had experience using the previous 

version of tOLMlets (OLMlets), while most of them were new to the system.  

Participants began the session with the registration and logged in into the 

system. Upon the login, students were presented with an ‘empty’ learner model 
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showing the topics of the UMMHP course. They were instructed to answer 

questions provided in the system to build the learner model and view the learner 

models available for them. Students were asked to consider using the other 

functions provided in the system such as releasing their model to peers, viewing 

peers model available to them, and viewing the group model. The system 

logged all interactions. 

At the end of the session, participants completed questionnaires regarding their 

interaction with the system. The questionnaires comprised statements requiring 

participants to indicate their level of agreement on a 5-point Likert scale with 

further open-ended questions (Appendix: Questionnaire2). 

6.1.1.2   Deployed study 

Participants were third-year undergraduate students taking a course called 

‘Adaptive Learning Environments’ in the School of Electronic, Electrical and 

Computer Engineering, University of Birmingham. A total of 26 students were 

enrolled in the course. Participants were introduced to tOLMlets in a laboratory 

session in the second week, and they were asked to continue using the system 

to support their learning throughout the course. The system was available for 

six weeks and students could use the system in their own time. The final state 

of the model the students achieved was counted and it contributed 5% to the 

overall course marks. At the end of week seven, questionnaires with the same 

components in Section 6.2.1.1 were used and distributed to get participants 

insight towards their use and trust in the system.  
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6.1.2   Results: Logs data 

In this section we present students' interactions with tOLMlets.  

6.1.2.1   Laboratory study 

Participants attempted between 14 and 267 questions, with the average number 

of questions attempted being 83 (SD=58). Table 6.1 shows the number of 

questions answered before the first inspection of the model. The majority of the 

learners attempted the questions before viewing the model, except for the six 

learners. They started with inspecting the blank model before attempting the 

questions. 

Table 6.1: Number of questions attempted for the first time 

Questions attempted 0 1 2 3 4 5 6+ 

Number of students 6 6 3 2 1 7 17 

 

The learner model was inspected a total number of 2597 times, between 16 and 

141 by an individual user. The average number of inspections was 62 (SD=35). 

Table 6.2 shows that more than a quarter of students inspected the learner 

model once before continuing with further questions. 
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Table 6.2: Number of models viewed for the first time 

Model viewed 1 2 3 4 5 6+ 

Number of students 17* 4 6** 1 3 11 

* 3 views the blank model;  ** 3 views the blank model 

The number of questions answered between inspections also varies among 

users. Table 6.3 shows that some users inspect the model after every question 

while others wait after a few questions.  

Table 6.3: Frequency of questions attempted between inspections 

Questions 
attempted 

1 2 3 4 5 6 7 8 9 10 - 26 

Number of 
attempted 

734 122 89 54 51 40 24 16 12 81 

Percentage (%) 60 10 7 4 4 3 2 1 1 7 

 

The frequency of inspecting the model after each question is high, which is 734 

times. Most participants inspected the model after they have tried each 

question. The maximum number of questions before the model was inspected 

was 26 questions. 

6.1.2.1   Deployed study 

A total number of 26 students logged into the system. Table 6.4 shows the total 

number of logins over six weeks when the system was available. These include 
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logins when the students were first introduced to the system. Students log into 

the system frequently in the fifth week when the system was available.  

Table 6.4: Number of logins per student 

 No. of login Mean SD 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 

S15 

S16 

S17 

S18 

S19 

S20 

S21 

S22 

S23 

S24 

S25 

S26 
 

8 

18 

10 

14 

5 

13 

10 

16 

18 

9 

9 

14 

8 

21 

7 

3 

14 

3 

3 

12 

8 

19 

7 

9 

9 

15 
 

1.3 

3.0 

1.7 

2.3 

0.8 

2.2 

1.7 

2.7 

3.0 

1.5 

1.5 

2.3 

1.3 

3.5 

1.2 

0.5 

2.3 

0.5 

0.5 

2.0 

1.3 

3.2 

1.2 

1.5 

1.5 

2.5 
 

1.9 

2.5 

3.1 

4.3 

1.2 

3.9 

2.3 

4.6 

2.8 

1.6 

2.7 

3.4 

2.0 

1.2 

1.2 

0.5 

3.0 

0.8 

1.2 

1.7 

1.5 

2.8 

1.2 

1.5 

2.3 

1.8 
 

 

Table 6.4 also indicates that all students logged in multiple times. The minimum 

number of logins was 3 and the maximum number of logins was 21. Half of the 

participants logged into the system more than ten times. 
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Participants were able to attempt a large number of questions and made more 

inspections on the learner models due to a longer timescale compared to a 

laboratory study. Participants attempted between 191 and 1340 questions, with 

a mean of 439 (SD=277). Learner models were inspected a total number of 

9836 times, while the highest number of inspections made by an individual user 

was 1114. The mean number of inspections was 378 (SD=234). The number of 

questions answered before the inspection of the model varies among students. 

They inspected the learner model after attempting between 1 to 20 questions. 

However, most of them ended up checking the model after every question. 

6.1.3   Results: Questionnaires 

In this section, we present questionnaire results related to use and trust in the 

OLM system. For the laboratory study, all 42 responses were available while for 

deployed study only 16 (out of 26 users) responses were available. Some 

participants did not attend the session in week 7 (during which users filled in the 

questionnaires) and some did not return the questionnaires. In order to get the 

questionnaires back, we asked the participants via email, however without luck, 

no one is replying to the email. For clarity of comparison we present the results 

in percentages. 

First, we present users’ response based on the definition of trust in learner 

models (refer Section 1.2) that involves three key points: (i) individual user's 

belief in, and acceptance of the system's inferences; (ii) feelings of attachment 
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to their model; and (iii) their confidence to act appropriately according to the 

model inferences. Results are presented in Table 6.5, Table 6.6 and Table 6.7 

respectively.  

6.1.3.1   Acceptance of the system inferences 

Table 6.5 shows user response on acceptance of the system’s inferences for 

the laboratory study and deployed study.  

Table 6.5: Acceptance of the system inferences (in percentage) 

 
<str. agree ^ str. disagree>   

 5 4 3 2 1 Mean SD 

Laboratory study (N=42)        

Believed tOLMlets when:        

user uncertain about owned 
knowledge 

19 50 24 7 0 3.8 0.8 

it shows a high level of knowledge 17 40 40 2 0 3.7 0.8 

it shows a low level of knowledge 14 43 33 7 2 3.6 0.9 

it shows a higher level of knowledge 
than expected 

17 33 40 10 0 3.6 0.9 

it shows a lower level of knowledge 
than expected 

12 36 38 12 2 3.4 0.9 

Deployed study (N=16)        

Believed tOLMlets when:        

user uncertain about owned 
knowledge 

0 56 38 6 0 3.5 0.6 

it shows a high level of knowledge 25 63 13 0 0 4.1 0.6 

it shows a low level of knowledge 25 44 25 6 0 3.9 0.9 

it shows a higher level of knowledge 
than expected 

6 69 25 0 0 3.8 0.5 

it shows a lower level of knowledge 
than expected 

13 50 38 0 0 3.8 0.7 
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Laboratory Study: 

In the laboratory study, 69% of users believe the system evaluation when they 

are uncertain about their knowledge. Only 7% of users do not believe in system 

evaluation when they are uncertain about their knowledge, while 24% remain 

neutral in the circumstances. About half of the users believed in the system 

when a higher level of knowledge is shown or when a lower level of knowledge 

is shown. 

The actual knowledge (from logs in laboratory study) shows that 40% of the 

users have more knowledge than the problematic knowledge (including 

misconceptions). 79% (33 users) provided the same rating whether tOLMlets 

shows high or low level of knowledge (22 agree, 10 neutral, 1 disagree). For 17 

users who hold actual high knowledge (as recorded in the system), 10 of them 

claim that they believe tOLMlets when knowledge is high, while 7 claim that 

they believe tOLMlets when knowledge is low. For 25 users who hold actual low 

knowledge, the number who believe the system, whether it shows high or low 

level knowledge is the same which is 14 users. In terms of expectations about 

the knowledge, half of the users believe in the system when higher level of 

knowledge is shown. For the lower level of information than expected, nearly 

half of the users believe the system and 14% refuse to believe it.   
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Deployed Study: 

In the deployed study, results show that 56% of users believe the system 

evaluation when they are uncertain about their knowledge. 6% of users do not 

believe in system evaluation when they uncertain about their knowledge, while 

38% remain neutral with the situation. The acceptance of the system inference 

is high when tOLMlets shows a higher level of knowledge with 88% of users 

believe the system. For the low level of knowledge 69% believe in the system 

inference. However 6% refuse to believe tOLMlets when low level of knowledge 

is displayed. 

The actual knowledge (from logs in deployed study) shows that all 16 users 

have more knowledge than the problematic knowledge (including 

misconceptions). 13 users rated the same value for whether tOLMlets shows 

high or low level of knowledge (11 agree, 2 neutral). 14 users claim that they 

believe tOLMlets when knowledge is high, while 11 users claim that they 

believed tOLMlets when knowledge is low. 

 In terms of expectations about the knowledge, 75% of the users believe the 

system information when it shows a higher level of knowledge (M=4.1, SD=0.6) 

and 63% believe when it shows a lower level than what they expect (M=3.9, 

SD=0.9). There are no users who do not agree with both cases. Next is the 

results for feeling of attachment to the model. 
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6.1.3.2   Feeling of attachment to the model 

The feeling of attachment to the model is shown in Table 6.6.  

Table 6.6: Feeling of attachment to the model (in percentage) 

 
<str. agree ^ str. disagree>   

 5 4 3 2 1 Mean SD 

Laboratory study (N=42)        

Continue using tOLMlets if:        

the information was higher than 
expected 

17 40 38 5 0 3.7 0.8 

the information was lower than  
expected 12 31 38 19 0 3.4 0.9 

Deployed study (N=16)        

Continue using tOLMlets if:        

the information was higher than 
expected 

19 31 31 19 0 3.5 1.0 

the information was lower than  
expected 44 19 31 6 0 4.0 1.0 

 

Laboratory Study: 

In the laboratory study, 57% of users claim they continue using the system 

when the information displayed by the system is higher than what they 

expected. Meanwhile 43% of users continue using the system although the 

information is lower than what they expected. 5% of users refuse to continue 

use the system when the knowledge is higher than expected, and the 

percentage increases to 19% when the knowledge is lower than expected. The 

percentages of users who remain neutral are the same in both cases. More 



   116  
 

users continue using tOLMlets if the information is higher than expected 

(M=3.7, SD=0.8) compared to when the information is lower (M=3.4, SD=0.9). 

This difference is significant (t=2.21, p<.05). 

Deployed Study: 

In the deployed study, there is higher percentage of users who continue using 

the system when the information is below expectation than when it shows 

higher information than expected. However 19% of users will not use the 

system when the knowledge shown is over expectation, and the percentage 

decreases to 6% when it is below expectation. Same as in laboratory study, the 

percentages of users who remain neutral are the same in both cases. However, 

in this study more users continue using tOLMlets if the information is lower than 

expected (M=3.5, SD=1.0) compared to when the information is higher (M=4.0, 

SD=1.0). This difference is significant (t=1.94, p<.05). 

Next, we assess users’ actions when they find the information in tOLMlets is 

lower than expected.  
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6.1.3.3   Actions when information in tOLMlets is lower 

than expectations 

Figure 6.7 shows that users will do something about their learning if the 

information in tOLMlets is low.  

Table 6.7: Actions when information in tOLMlets is lower than expectations (in 
percentage) 

 
<str. agree ^ str. disagree>   

 5 4 3 2 1 Mean SD 

Laboratory study (N=42)        

If tOLMlets information is lower than 
expected: 

      
 

search for new information  40 38 19 2 0 4.2 0.8 

answer more questions to better 
understand the topics 

29 36 29 7 0 3.9 0.9 

answer more questions to get the 
right answers (but not necessarily to 

understand the topics) 
7 43 31 5 14 3.2 1.1 

talk to friends about the difficulties 26 36 33 2 2 3.8 0.9 

find somebody to help/discuss 
difficulties using the peer models 

24 31 38 7 0 3.7 0.9 

Deployed study (N=16)        

If tOLMlets information is lower than 
expected: 

       

search for new information  31 44 19 6 0 4.0 0.9 

answer more questions to better 
understand the topics 

50 38 6 0 6 4.3 1.1 

answer more questions to get the 
right answers (but not necessarily to 

understand the topics) 
25 31 19 19 6 3.5 1.3 

talk to friends about the difficulties 19 44 13 13 13 3.4 1.4 

find somebody to help/discuss 
difficulties using the peer models 

19 31 25 13 13 3.2 1.3 
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Laboratory Study: 

For the five options provided in the questionnaires, the majority of users in the 

laboratory study choose to search for new relevant information outside the 

system (e.g. through the library, internet). 65% of users will answer more 

questions in tOLMlets to get a better understanding about the topic. There are 

also users who answer more questions in tOLMlets in order to get the right 

answer. In addition, users will also discuss the difficulties they face with friends 

(62%), and 55% look for help by using the peer models available in the system. 

Deployed Study: 

Meanwhile in the deployed study, the majority choose to answer more 

questions in tOLMlets to get a better understanding about the topic. This is 

followed by 75% of users seeking new relevant information outside the system. 

Finding somebody to help for the difficulties using peer models is the last action 

taken when information was lower than expected with only 44% of users 

choosing to do so.  

Comparison of using peer models to discuss difficulties in the deployed study 

(M=3.2, SD=1.3) and in the laboratory study (M=3.7, SD=0.9) reveal a 

significant differences between the groups (t=1.72, p<.05). This is possibly due 

to the different levels of groups in the study. Users in laboratory study are 

master students that only take a year to complete their programs of study. 

Therefore, they may find that using peer models is a better option to discuss 
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their difficulties because of the limitation in knowing their friends more closely. 

Meanwhile, users in the deployed study are undergraduate students where they 

know each other better because their period of study is longer than those in the 

master programs. Therefore they may prefer to discuss their difficulties face-to-

face instead of using peer models. 

6.1.3.4   Users’ definition of trust in OLM 

Users were also asked to give a brief description of what trust in OLM means to 

them. Responses obtained are as follows: 

Table 6.8: Users’ definitions of trust in OLM 

Laboratory  study: 

� The system knows accurately how much I know, system gives the correct 

answers and does not mislead me 

� How willing I am to act on the feedback from the system. For example, if I trust 

the model and misconceptions I am likely to act on it and research those areas 

to improve my learner model 

� Trust means that the system correctly measures my learner model and has a 

correct domain model 

� Questions the system gives are well related to the  topic and the levels the 

system show can really show how I know about the topic 

� Trust would be knowing the content, questions and answers are accurate and 

the model generated is created using the correct and relevant information 

gathered about the user 

Deployed study: 

� It means a lot as the more I trust the learner model, the more frequently I would 

use it. Also I'm more likely to learn more after having trusted the system in the 

first place 

� Trust means that the knowledge is being represented correctly 

� How much I can believe and rely on the open learner model 

� Confidentiality and privacy in the publication of my test data, and that of others 

� Do I think what I'm being told is a correct representation of the truth 
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6.1.3.5   Users’ opinion related to the use and trust in 

tOLMlets 

Next, we present users’ opinions related to the use and trust in tOLMlets based 

on several criteria. Table 6.9 shows user opinions in tOLMlets in the laboratory 

study and deployed study. 

Table 6.9: User opinions in tOLMlets (in percentage) 

 
<str. agree ^ str. disagree>   

 5 4 3 2 1 Mean SD 

Laboratory study (N=42)        

I trust the information in tOLMlets 24 47 24 5 0 3.9 0.8 

tOLMlets is easy to use 28 60 10 2 0 4.1 0.7 

I know what will happen the next 
time I use tOLMlets because I 

understand how it behaves 
36 52 10 2 0 4.2 0.7 

I am interested to see my 
knowledge information in tOLMlets 

38 26 28 7 0 4.0 1.0 

I like using tOLMlets in my learning 26 38 33 2 0 3.9 0.8 

I understood the information given 
by tOLMlets 

41 52 5 2 0 4.3 0.7 

The information in my learner model 
is accurate 

33 60 7 0 0 4.3 0.6 

Deployed study (N=16)        

I trust the information in tOLMlets 25 31 38 6 0 3.8 0.9 

tOLMlets is easy to use 31 38 19 13 0 3.9 1.0 

I know what will happen the next 
time I use tOLMlets because I 

understand how it behaves 
56 25 19 0 0 4.4 0.8 

I am interested to see my 
knowledge information in tOLMlets 

63 31 6 0 0 4.6 0.6 

I like using tOLMlets in my learning 38 19 31 6 6 3.8 1.2 

I understood the information given 
by tOLMlets 

63 25 13 0 0 4.5 0.7 

The information in my learner model 
is accurate 

31 56 13 0 0 4.2 0.7 
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Laboratory Study 

Table 6.9 clearly shows that the majority of users trust the information in 

tOLMlets. The majority of users also find that tOLMlets is easy to use and claim 

that they understand how the system behaves (M=4.2, SD=0.7). More than half 

of the users are interested to see their knowledge information in tOLMlets and 

like to use tOLMlets in their learning. In terms of the learner model, majority of 

the users claim that they understood the information (M=4.3, SD=0.7) and 

perceive the learner model is accurate (M=4.3, SD=0.6). In overall, users in 

laboratory study showed a very positive response about their opinions on 

tOLMlets.  

Deployed Study 

Meanwhile, for deployed study, more than half of users trust the information 

while 38% remain neutral, and 6% do not trust the information. 69% of users 

find that tOLMlets is easy to use and 94% claim they understand how the 

system behaves. The majority of users are interested to see their knowledge 

information in tOLMlets (M=4.6, SD=0.6) but only more than half of them like to 

use the system in their learning (M=3.8, SD=1.2). In terms of the model 

presented, a lower percentage is obtained compared to the percentage in the 

laboratory study. 88% claims that they understood the information and 87% 

perceive the learner model is accurate.  

In order to consider patterns between the questionnaire items, we assess the 

relationship between trust and each criteria is listed in Table 6.9.  
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The relationship between trust and ease of use of the system for laboratory and 

deployed study is shown in Figure 6.1. There are relationship between trust and 

ease of use of the system for both settings. For laboratory study, 26 users 

agree (rated 4 and 5) that tOLMlets is easy to use and trust the system. Four 

users remain neutral with the ease of use of the system but trust the information 

provided. There is a significant correlation of 0.4 (p<.05) between trust and 

ease of use of the system in laboratory setting. Meanwhile for deployed study, 7 

users agree tOLMlets is easy to use and trust the system. 4 users find tOLMlets 

is easy to use but remain neutral with trust on the system. There is a not 

significant correlation of 0.5 (p>.05) between trust and ease of use of the 

system in the deployed study. 



 

Figure 6.1: Relationship

(In this and subsequent ‘bubble

participants providing the assessment

Relationship between trust and ease of use of

(In this and subsequent ‘bubble-plot’ figures, the bubble size reflects the number of 

participants providing the assessment-answer pair located at the centre of the bubble).
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of use of tOLMlets.  

plot’ figures, the bubble size reflects the number of 

located at the centre of the bubble). 



 

Figure 6.2: Relationship

Figure 6.2 shows the relationship

behaviour. For laboratory study, 28 users agree that they understood tOLMlets 

behaviour, and for deployed study

the system behaves. 

(correlation=0.6; p<.05) between trust and 

Relationship between trust and understanding the system 

he relationship between trust and understanding the system 

For laboratory study, 28 users agree that they understood tOLMlets 

behaviour, and for deployed study 9 users claimed that they understood how 

the system behaves.  There is a significant positive relationship 

p<.05) between trust and understanding the system behaviour 
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the system behaviour  

between trust and understanding the system 

For laboratory study, 28 users agree that they understood tOLMlets 

claimed that they understood how 

ificant positive relationship 

rstanding the system behaviour 



 

in laboratory study. Meanwhile, 

positive relationship (

the system behaviour.

Figure 6.3: Relationship

 

. Meanwhile, in the deployed study, there 

positive relationship (correlation=0.4; p>.05) between trust and 

the system behaviour. 

Relationship between trust and interest to see the knowledge information in 

tOLMlets  
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there is a not significant 

>.05) between trust and understanding 

 

between trust and interest to see the knowledge information in 
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Figure 6.3 shows that in laboratory study trust has a strong and significant 

relationship with user interest in viewing the knowledge in open learner models 

(correlation=0.7; p<.05). 25 individuals agree that they trust and interest to see 

their knowledge in tOLMlets while 4 learners trust in the information but remain 

neutral whether they are interested to see the information or not. 7 learners 

chose to be neutral for both items. In contrast to the laboratory study, results in 

deployed study show a positive but very weak and not significant relationship 

(correlation=0.1; p>.05) between the two items.  

 

In the lab study, results show that trust has a strong and significant relationship 

with users liking to use the system in their learning (correlation=0.6; p<.05) 

(Figure 6.4). 24 users claim they like using tOLMlets and trust the information. 6 

users trust the information in tOLMlets but remain neutral whether they like 

using the system or not. In deployed study, there is a positive but not significant 

relationship between trust and users liking using the system in their learning 

(correlation=0.4; p>.05).  

 



 

Figure 6.44: Relationship between trust and like to use tOLMlets 
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between trust and like to use tOLMlets  



 

Figure 6.5: Relationship

Results also show that trust has a positive relation

the information displayed in OLM for both studies (see Figure 6.5). In lab

study, 28 out of 42 users agree that they trust tOLMlets and underst

information given by the system. While in the deployed study, 9 out 

trust and understand the tOLMlets information. Both studies show th

correlation which is 0.4, 

Relationship between trust and understanding information displayed in OLM

Results also show that trust has a positive relationship with an understanding of 

the information displayed in OLM for both studies (see Figure 6.5). In lab

study, 28 out of 42 users agree that they trust tOLMlets and underst

information given by the system. While in the deployed study, 9 out 

trust and understand the tOLMlets information. Both studies show th

correlation which is 0.4, however there is a significant correlation in 
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between trust and understanding information displayed in OLM 

ship with an understanding of 

the information displayed in OLM for both studies (see Figure 6.5). In laboratory 

study, 28 out of 42 users agree that they trust tOLMlets and understand the 

information given by the system. While in the deployed study, 9 out of 16 users 

trust and understand the tOLMlets information. Both studies show the same 

there is a significant correlation in the 



 

laboratory study (correlation

deployed study (correlation

Figure 6.6: Relationship between trust and perceive

Figure 6.6 depicts the relationship between trust and perceived accuracy of the 

model. In laboratory

correlation=0.4; p<.05) and a not significant correlation in 

correlation=0.4; p>.05). 

Relationship between trust and perceived accuracy of information displayed 

in OLM  

Figure 6.6 depicts the relationship between trust and perceived accuracy of the 

oratory study, 29 out of 42 users agree that they trust tOLMlets 
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significant correlation in the 

 

accuracy of information displayed 

Figure 6.6 depicts the relationship between trust and perceived accuracy of the 

study, 29 out of 42 users agree that they trust tOLMlets 
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and perceive the information in the learner model as accurate. Meanwhile, 10 

users perceive their learner model is accurate but one user did not trust the 

information and 9 are neutral about it. In deployed study, half of the users agree 

that they trust tOLMlets and perceive the information in the learner model as 

accurate. 6 users perceive their learner model is accurate but one user did not 

trust the information and the rest remain neutral in trusting the information.  

Both settings show a positive correlation of 0.4, however there is a significant 

relationship in laboratory study (p<.05) and not significant relationship in the 

deployed study (p>.05). Next is the discussion of the results obtained. 

6.2   Discussions 

In terms of acceptance of the system’s inferences, both studies show a 

sufficient level of belief. High and low level of knowledge displayed in the 

system show an impact on users feeling of attachment to the model, or in more 

general, on the engagement with the system. In the lab study, more users keep 

using the system when a higher level of knowledge than expected is displayed 

by the system. Meanwhile 41% continue using the system when information 

shown was below expectation. The opposite situation happens in the deployed 

studies where more users continue to use the system when the information 

displayed is lower than expected. This indicates a great engagement between 

users and the system as they continue to use the system in order to obtain a 

better information/model. In addition, it can be concluded that users in a short-



   131  
 

term use of the system (laboratory study) will engage with the system when it 

shows a high level of information. Meanwhile for a long-term use (deployed 

study), more users will engage with the system when the information shown is 

below expectations. Here we may suggest that there is a different way of how 

users develop trust in open learner models in the short-term and the long-term 

of use of the system. 

At the end of the questionnaires, we asked the users to provide the definitions 

of trust in OLM. The definitions obtained are similar with ours. Trust is related to 

the accuracy of the model presented, the willingness to accept system 

inferences and rely on it, and the willingness to act based on the system 

feedback about the learning. Users also claim that they were likely to have more 

trust in the first place. 

The relationship between trust and several criteria assessed shows a positive 

relationship in both studies. One of the criteria is a perceived ease of use which 

is required for trust in internet activity (Gefen et al., 2003). In studying trust in 

open learner models, a perceived ease of use of the system shows a positive 

relationship to trust the information in the system. The result obtained in the lab 

study is slightly less than in the deployed system. This may be due to the 

duration of use of the system that may slightly affect the relationship between 

trust and ease of use of the system  
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Jameson (2007) suggested that users can predict the system's adaptive 

behaviour based on their actions in the environment. The duration of use of the 

system may also affect the level of trust as they understand how the system 

behaves. Trust in lab study has a strong relationship with the users' 

understanding of how the system behaves. However, in the deployed studies 

trust has only a weak relationship. This means that in the short term of usage, 

users may not realise how the model is being calculated and they think that they 

really understand the system behaviour. While in deployed study, users may 

realise how the calculation is done and they have more understanding of how 

the system behaves, as well as could predict them as suggested by Jameson 

(2007).  

In the laboratory study, users’ interests to see the knowledge information in the 

system shows a strong relationship with user trust. The same figure is obtained 

in the relationship between trust and users who like the use of the system, 

however, the short period of use affects the correlation in the relationship. Both 

studies show that trust has a positive relationship with the understanding in the 

information displayed in the system. This is in line with the purpose of opening 

the model in open learner model, which is to let users to inspect, understand the 

importance of information presented, and have a relationship with user trust. In 

terms of perceived accuracy of the learner model, results in deployed study 

shows a sufficient relationship with trust. This may be due to the use of a longer 

lead where learners are more aware of the accuracy of the information.  
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6.3   Conclusions 

Back to the three keys investigated: 

• The extent to which learners trust (and accept) the OLM system on their 

first use. 

Most learners in their first use of the system, have sufficient trust (and 

accept) the information inferred by the system. This is clearly shown 

especially when they are uncertain about their knowledge in the 

laboratory study. 

• The extent to which learners continue using the OLM optionally after their 

initial use. 

Learners continue using the open learner models because it helps them 

in their learning. Although some of them do not trust the system, they 

continue using the system to know their level of knowledge evaluated by 

the system. However, giving some rewards based on the final model 

might influence student to continue use the system, especially in 

deployed study.  

• The extent to which learners trust (and accept) the OLM after longer term 

of use. 
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Most learners in the longer term of use of the system have a sufficient 

trust in OLM. Even though trust is slightly lower compared to short term 

of use, most learners trust and accept the information in OLM. 

• The relationship between learner trust and several criteria that may 

influence trust in OLM 

The relationship between trust and several criteria assessed shows a 

positive relationship in both studies. 

In the next chapter, we will consider user trust with each feature provided in the 

open learner models. 
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Chapter 7  

EVALUATION: USER TRUST IN 

OLM FEATURES 

As described in Chapter 3, OLMs have various features including the 

complexity of the model presentation, the learner control over the model 

contents, and the facility to view peer models and release one’s own model for 

peer viewing. This chapter describes the evaluations of each feature mentioned 

above. The chapter starts with the evaluation of user trust in the presentation of 

learner models in Section 7.1, followed by users trust in the learner control over 

the learner model in Section 7.2. Section 7.3 describes the evaluation of user 

trust in viewing peer’s model and releasing their own model. The chapter ends 

with the conclusion of the finding in each section. 

7.1   User Trust in Externalisation of Learner 

Models  

 

Externalisation of the learner model may play an important role in the likely 

uptake of open learner models (OLMs), as students must to some extent 

understand the model externalisations in order to use them effectively. In 
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Chapter 3, we describe a variety of externalisation of learner models available 

in OLMs. In this section, we describe a study to investigate user trust in 

externalisation of open learner models that we categorised as simple and 

structured views. Using tOLMlets, we investigate learner consultations of the 

model views and their level of trust in each view. In this study, our key questions 

is whether learners may trust open learner model externalisations and identify 

certain features that make learner model presentation more ‘trustable’. We 

hypothesized that user trust in externalisation of learner models. Our key 

questions are: 

• Do learners understand and trust OLM externalisation? 

• Do learners trust simple or more structured view? 

• Are there any features that makes OLMs view more trustable? 

7.1.1   Participants, Materials, Methods 

Participants were 42 students from the University of Birmingham in Electronic, 

Electrical and Computer Engineering Department. These were the same 

participants as described in Section 6.1.1.1. Therefore, the same material and 

methods were used. Results reported in the next section are only for the 

laboratory study because we have similar data for the deployed study, and the 

results were very similar but for a smaller number of users. 
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7.1.2   Results 

In this section we present the logs data of students' interactions with tOLMlets, 

and the questionnaires related to use and trust in externalisation of the learner 

model. 

7.1.2.1   Logs Data 

The logs data in Section 6.1.2.1 are also applied here. Apart from logs data in 

Table 6.1, Table 6.2 and Table 6.3, the usage of each view in the system is 

presented in Table 7.1. 

Table 7.1: Usage of each view 

Views Total Inspections Mean SD Range 

Skill meter 2047 49 25.6 12 - 101 

Structured 397 10 6.4 0 - 25 

 

All users inspect their learner model using the skill meter view, with a minimum 

of 12 inspections. However there are users who do not use the structured view 

to examine their learner model. A total inspections for skill meter is 2047 while 

for structured view is 397. Table 7.1 also shows the average number of 

inspections made of each view. The skill meter was viewed the most with a 

mean of 49 times per user (SD=25.6) followed by structured with a mean of 10 

times per user (SD=6.4).  
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7.1.2.2   Questionnaires Results 

Table 7.2 depicts user responses on the usefulness of each view in relation to 

four tasks: identifying knowledge, identifying areas of difficulty, identifying 

misconceptions (where defined) and identifying what to study next.  

Table 7.2: Usefulness of each view (in percentage) 

Views: 

Identify 
knowledge 

Identify 
difficulties 

Identify 
misconceptions 

Identify next 
topic to be 

learned 

Skill meter 81 62 69 71 

Structured 62 57 52 64 

 

The majority of users find that all views are useful in terms of identifying the 

knowledge, areas of difficulty, misconceptions and which topic to study next. 

The skill meter shows the highest percentage in all four tasks with 81% of users 

finding it useful to identify knowledge (rated 4 and 5), 62% of users finding it 

useful to identify difficulties, 69% of users finding it useful to identify 

misconceptions and 71% of users finding it useful to identify next topics to be 

learned. Among four tasks assessed, the skill meter is very useful to identify 

knowledge (with 81% of users agree on this), while structured view is very 

useful to identify topics to be learned next. The skill meter is found more useful 

in identifying the knowledge (significant t=3.52, p<.05) and the misconception 

(significant t=2.71, p<.05) compared to structured view. No significant 
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differences were found in the other two tasks (identifying difficulties and identify 

next topic to be learned) between the skill meter and structured view. 

Next, we present user opinions regarding trust, understanding and accuracy of 

the learner model externalisation in Table 7.3. Results shows similar mean 

response between the skill meter and structured view. Most of the users claim 

to understand the information given by the skill meter, with a mean of 4.1 

(SD=0.8). Meanwhile, in the structured view, the percentage of users that claim 

they understand the information given by the skill meter is slightly less (67%), 

with a mean of 4.1 (SD=0.9). 29% of the users are neutral about their 

understanding using the structured view while 5% of the users claim they do not 

understand the externalisation. In terms of accuracy, 76% of the users think that 

the information in the skill meter and structured view is accurate. There is no 

user who disagree that the structured view is not accurate. For trusting the 

information, more than half of the users trust the information in both views (79% 

in the skill meter and 74% in the structured view). For each criteria accessed, 

there is no significant differences between the skill meter and structured view.  
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Table 7.3: User opinions on understanding, perceived accuracy and trust of the learner 

model presentations (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

I understood the information given by:        

the skill meter view 33 50 14 2 0 4.1 0.8 

 the structured view 29 38 29 5 0 3.9 0.9 

The information in my learner model is 

accurate in:        

the skill meter view 19 57 21 2 0 3.9 0.7 

 the structured view 21 55 24 0 0 4.0 0.7 

I trust the information in tOLMlets about 

my understanding using:        

the skill meter view 31 48 19 2 0 4.1 0.8 

 the structured view 26 48 16 10 0 3.9 0.9 

 

 

 

For each externalisation, we consider the relationship between trust and 

understanding, and between trust and perceived accuracy of the models.  

In Figure 7.1, 30 users agree (rated 4 & 5) that they trust the information using 

skill meter and understand the information given by the skill meter. Trust in the 

skill meter is significantly correlated with the level of users understanding of the 

learner model (correlation=0.5, p<.05).   

 



 

Figure 7.1: Relationship between trust and understanding of infor

For the structured view

information displayed and trust it. There are 8 users who trust the information 

using the structured view but remain neutral on whether they under

information given. There is a significant correlation between understanding and 

trust in information di

the structured view, the number of users who trust the information but remain 

neutral or disagree with the understanding of view is more than those who 

understood the information but neutral or distrust the information. 

 

: Relationship between trust and understanding of infor

skill meter view.  

For the structured view (shown in Figure 7.2), 23 users claim to understand the 

information displayed and trust it. There are 8 users who trust the information 

using the structured view but remain neutral on whether they under

There is a significant correlation between understanding and 

trust in information displayed using structured view (correlation

the structured view, the number of users who trust the information but remain 

l or disagree with the understanding of view is more than those who 

understood the information but neutral or distrust the information. 
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: Relationship between trust and understanding of information by using the 

(shown in Figure 7.2), 23 users claim to understand the 

information displayed and trust it. There are 8 users who trust the information 

using the structured view but remain neutral on whether they understand the 

There is a significant correlation between understanding and 

correlation=0.4, p<.05). In 

the structured view, the number of users who trust the information but remain 

l or disagree with the understanding of view is more than those who 

understood the information but neutral or distrust the information.  



 

Figure 7.2: Relationship between trust and understanding of inform

In terms of the relationship between perceived accuracy and trust in the 

information displayed, all views show a positive relationship. 

meter has a strong relationship with perceived accuracy of the mo

correlation value of 0.7

perceived that skill meter shows accurate information and they trust the 
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using the structured view is accurate and also trust the information. Trust is 

significantly correlated with the accuracy of the learner model presented by 

structured view with the correlation value of 0.4 (p<.05). The discussion of the 

result obtained is in the following section. 

7.1.3   Discussion 

In this study, learners generally get the benefit through the use of the learner 

model views available in the system. All views are useful to identify knowledge, 

difficulties, possible misconceptions and the next topic to be learned. Among 

the four tasks assessed, learners find structured view is very useful to identify a 

topic for the next learning. This maybe because the view is arranged based on 

the relationships between concepts in the subject. The relationships between 

topics are clearly shown in the structured view and thus help the learners to 

identify the next topics to be learned. 

Learners claim to generally understand the information in the simple view and 

structured view. As learners have different preferences for model presentations 

(Mabbott & Bull, 2006), the number of usages for each view is different. 

However, there is no significant difference that can confirm that the students 

understand the information in simple view compared to structured view. The 

availability of simple and structured views in a single system may help learners 

to easily compare their understanding in both presentations. Meanwhile, a low 

percentage of learners claim that they understand the information in the 
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structured view. Perhaps learners are having difficulty with the concept in the 

subject, and thus affect their understanding when viewing the information using 

the structured view. However, the number of learners who trust in the 

information although they disagree or are neutral with regards to understanding 

of the view is more than in the simple views.  

In terms of accuracy, learners believed that both simple and structured views 

were accurate. However the strength of the relationship is different from one to 

another. The perceived accuracy of the skill meter view has a very strong 

relationship with learner trust in the view with a correlation of 0.7 (p<.05), while 

the relationship with the structured view is slightly weak with a correlation of 0.4 

(p<.05).  

Our evidence also proves that both simple and structured views contribute to 

trust in OLM system. Therefore, we propose that the use of various 

externalisations of the learner model not only complement each other in 

presenting a model (e.g Perez-Marin, 2007; VanLabeke et al., 2007) or as an 

alternative view in the system (e.g Mabbott & Bull, 2006; Johnson & Bull, 2009; 

Xu & Bull, 2010), but it also contributes to trust in the OLM system.  

In the next section we will describe the evaluation of trust in learner control over 

the learner model. 
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7.2   User Trust in Learner Control over the 

Learner Model 

 

Learner control is an important aspect of the OLM environments in order to 

develop more accurate learner model. It has been explained that there are 

many types of learner control in the OLM including cooperatives, add-evidence, 

challenge the model and negotiation with system about the model inferred. In 

this study we hypothesized that users will trust the control they get over the 

learner model. 

Our key investigations are: 

• Do learners use and trust the edit function in OLM? 

• Do learners use and trust the persuade function in OLM? 

7.2.1   Participants, Materials, Methods 

In this study, participants were from two different groups of MSc. students from 

the School of Electronic, Electrical & Computer Engineering, University of 

Birmingham, UK. All participated during one of the laboratory session for a 

course called ‘User Model and Models of Human Performance’. Participants in 

Group A consist of 29 students and they were using the version of editable 
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tOLMlets. Meanwhile, participants in Group B consist of 18 students and they 

were using the version of tOLMlets that allows the persuasion function.  

Students were instructed to answer questions about topics available in tOLMlets 

to review their understanding of the course content, explore the learner model 

views, and use features of editing (for Group A) and persuading (for Group B) 

the model when they think necessary. The final model obtained by the students 

does not contribute to the course marks. Interaction with the system lasted 

around one and a half hours, including completion of a post-use questionnaire 

(Appendix: Questionnaire3. Responses were given on a five point scale 

(strongly agree, agree, neutral, disagree, strongly disagree). 

7.2.2   Results 

In this section we present the log data of user interactions with tOLMlets, and 

the questionnaires related to use and trust in learner control over the learner 

model. 

7.2.2.1   Log Data 

Edit 

Table 7.4 shows the number of edits performed by the users in Group A. A total 

of 120 edits logged by the system. The maximum number of edits made by the 
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user is 16 times. 23 users edit the information equal or less than six times, and 

3 users edit the information between seven to eight times.  

Table 7.4: Number of edits 

 1 - 2 3 - 4 5 - 6 7 - 8 9 - 10 > 10 

Number of students 9 8 6 3 1 2 

 

Table 7.5: Edit Level – current knowledge and the new level 

Current level 
New level 

Very high High OK Low Very Low 

Very high - 5    

High 15 - 4   

OK 13 21 - 3  

Low 12 11 6 -  

Very low 4 9 6 3 - 

Blank  4 4   

 

Table 7.5 shows the mapping between the current knowledge levels that users 

had and the new level after the editing. Most of the editing performed is to 

improve the knowledge level, or in other words to a higher level from the 

existing knowledge. The highest number of edit was made from level ‘OK’ to 

level ‘High’ which is 21 times, followed by edit from level ‘High’ to level ‘Very 

High’ which is 15 times. There is also a situation where users edit their model to 

a lower level from what is inferred by the system. Some users also edit from the 



   149  
 

topic with a blank model (user not even attempt any question yet from the 

topic). 

Persuade 

Table 7.6 shows the number of persuasion performed by the users in Group B. 

A total of 58 attempts of persuasion have been logged in the system. The 

maximum number of persuasion made by the user is 7 times. 17 users 

persuade the information equal or less than five times, and only 1 user 

persuade more than five times.  

Table 7.6: Number of persuasion 

 1  2 3 4 5 > 5 

Number of students 2 5 4 4 2 1 

 

Table 7.7: Persuasion Level – current knowledge and the proposed level 

Current level 
Proposed level 

Very High High OK Low Very Low 

Very high - 1    

High 8 -    

OK 10 7 -   

Low 6 5 3 - 1 

Very low 3 3 2 3 - 

Blank  2  1 3 

 

Table 7.7 shows the mapping between the current knowledge levels that users 

had and the proposed level for attempts to persuade. Similar to results in the 
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editing, most of the persuasion performed is to improve the knowledge level. 

However, not every persuasion made is successful. Table 7.8 shows the 

outcomes of attempts to persuade the system. Half of the attempts to change 

the knowledge level resulted in no change while around a quarter were 

completely successful.   

Table 7.8: Outcome of persuading 

Outcome  (final model) Total 

Lower than original 4 

Same as original 29 

Higher than original & lower than proposed 10 

Lower than original & higher than proposed 0 

Same as proposed 14 

Lower than proposed 1 

 

7.2.2.2   Questionnaires Results 

Edit 

Table 7.9 shows user responses related to the edit features in the OLM. In the 

situation where users believed the information in the system is inaccurate, more 

users edit the information (M=3.5, SD=1.1) compared to when they believed the 

information is accurate (M=2.8, SD=1.1). This difference is significant, t=3.91, 

p<.05.  However 17% of the users edit the model even though they believed the 

information presented is accurate. Unfortunately we did not have any qualitative 

insight from the users because of the time constraints during the study. 
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Table 7.9: Edit the model when believed information accurate and inaccurate (in 

percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Edit the information believed accurate  10 7 45 24 14 2.8 1.1 

Edit the information believed inaccurate 14 45 21 17 3 3.5 1.1 

 

Table 7.10 shows the edit function in the situation when users trust or distrust 

the information. 62% of the users edit the information when they did not trust 

the model. The number of users who edits the model when they trust the 

information is relatively small which are only 10% of the users. There is a 

significant different, t=4.51, p<.05 between edit the information when users did 

not trust the model (M=3.6, SD=1.0) and when they trust the model (M=2.4, 

SD=1.0). 

Table 7.10: Edit the model when trust and distrust the information (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Edit the information when trust the 

model 0 10 48 17 24 2.4 1.0 
Edit the information when did not trust 

the model 14 48 21 14 3 3.6 1.0 

 

Table 7.11: The usefulness and trust in editing the model (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Usefulness 31 28 31 10 0 3.8 1.0 

Trust 17 28 31 14 10 3.3 1.2 



 

Meanwhile in Table 7.11, 59% of the users agree that the edit feature is useful 

for their learning. 45% of the users trust the edit function in the system. The 

relationship between usefulness and trust in the editing the model is depicted in 

Figure 7.5. 

Figure 7.5: Relationship between usefulness 

9 users agree (rated 4 and 5) 

they trust it. Meanwhile, 8 users agree that the edit function is useful but did not 

trust the function. The relationship between usefulness and trust the edit 

function shows a posi

Persuade 

For the persuasion function

persuade the information when they believed the information is inaccurate 

Meanwhile in Table 7.11, 59% of the users agree that the edit feature is useful 

for their learning. 45% of the users trust the edit function in the system. The 

n usefulness and trust in the editing the model is depicted in 

: Relationship between usefulness and trust in editing the information

(rated 4 and 5) that the edit function in tOLMlets is useful and 

trust it. Meanwhile, 8 users agree that the edit function is useful but did not 

trust the function. The relationship between usefulness and trust the edit 

function shows a positive significant relationship (correlation=0

For the persuasion function (as shown in Table 7.12) more

persuade the information when they believed the information is inaccurate 
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Meanwhile in Table 7.11, 59% of the users agree that the edit feature is useful 

for their learning. 45% of the users trust the edit function in the system. The 

n usefulness and trust in the editing the model is depicted in 

 

editing the information.  

tion in tOLMlets is useful and 

trust it. Meanwhile, 8 users agree that the edit function is useful but did not 

trust the function. The relationship between usefulness and trust the edit 

=0.4, p<.05).  

more users tried to 

persuade the information when they believed the information is inaccurate 
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(M=3.5, SD=1.0) compared to when they believed the information is accurate 

(M=2.4, SD=1.2), t=3.03, p<.05). This is similar to results in edit function where 

more users carry out the editing when they believed the information is 

inaccurate. Table 7.13 shows that 34% of users tried to persuade the model 

when they did not trust the information and 17% tried when they trust the 

information. Comparison of tried to persuade the model when user did not trust 

the information (M=2.9, SD=1.1) and when user trust the information (M=2.5, 

SD=1.0) revealed no significant differences between the situations t=0.92, 

p>.05. 

Table 7.12: Tried to persuade the model when believed information accurate and 

inaccurate (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Tried to persuade the information 

believed accurate  6 11 33 22 28 2.4 1.2 
Tried to persuade the information 

believed inaccurate 22 28 28 22 0 3.5 1.0 

 

 

 

Table 7.13: Tried to persuade the model when believed information trust and distrust 

(in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Tried to persuade the information when 

trust the model 6 11 28 39 17 2.5 1.01 
Tried to persuade the information when 

did not trust the model 6 28 28 28 11 2.9 1.13 

 



 

Table 7.14 shows that 

useful for learning and 27% of the users trust the function

Table 7.14: Usefulness and trust for feature persuading the model

 

Usefulness 

Trust 

 

We assess the relationship between usefulness and trust in the persuasion 

function as shown in Figure 7.6. Results show that there is a strong and 

significant relationship (correlation=0.8; 

trust of the persuasion function in tOLMlets

Figure 7.6: Relationship between 

shows that 38% of the users agree that the persuasion feature is 

useful for learning and 27% of the users trust the function. 

Usefulness and trust for feature persuading the model

<str. agree ^ str. disagree> 

5 4 3 2 1

14 24 10 10 3

10 17 10 21 3

We assess the relationship between usefulness and trust in the persuasion 

function as shown in Figure 7.6. Results show that there is a strong and 

ificant relationship (correlation=0.8; p<.05) between the usefulness and 

trust of the persuasion function in tOLMlets 

: Relationship between usefulness and trust in 
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38% of the users agree that the persuasion feature is 

Usefulness and trust for feature persuading the model (in percentage) 

Mean SD 1 

3 3.6 1.2 

3 3.2 1.3 

We assess the relationship between usefulness and trust in the persuasion 

function as shown in Figure 7.6. Results show that there is a strong and 

<.05) between the usefulness and 

 

trust in persuasion.  
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After trying the persuasion function, the learner model is not necessarily 

changed to the new level as desired by the users. Table 7.15 shows users trust 

the persuasion function in certain situations. 61% of the users (rated 4 and 5) 

trust in the persuasion function if the model is changed to the higher level that is 

in line with user belief about their knowledge. In the situation when the model is 

changed to the lower level (in line with user belief), only 45% of the users trust 

it. 

Table 7.15: Users trust the persuasion functions in certain situations (in percentage) 

 

<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

model changed to higher level (in line 

with belief) 11 50 17 17 6 3.4 1.1 
model changed to lower level (in line 

with belief) 6 39 28 22 6 3.2 1.0 
model changed to higher level (not in 

line with belief) 0 11 50 28 11 2.6 0.9 
model changed to lower level (not in 

line with belief) 0 11 44 33 11 2.6 0.9 

model stayed at the same level 6 22 44 22 6 3.0 1.0 

 

Users seem to trust the persuasion function less if the model is changed to a 

level that not in line with their belief of knowledge, whether it is a higher or lower 

level. Meanwhile 28% of the users trust the persuasions function if the model 

stayed at the same level. The next section is the discussion of the results. 
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7.2.3   Discussion 

The feature of learner control in open learner models is to provide a platform 

that allows learner involved in developing the model. Although providing 

learners with this feature may affect the accuracy of the model especially if 

learners provide wrong information, this feature actually help learner to be more 

responsible to their model, and at some point may affect the degree of learner 

trust in open learner model systems.  

Results obtained in this study show that learners can use the edit and persuade 

function appropriately. Learners edit the knowledge information when they 

believed the information in their model was inaccurate. The same situation 

happened in the persuasion where learners tried to persuade the system to 

change their model when they believed the information to be inaccurate. 

However, there are learners who edit or tried to persuade the model when they 

believed the information is accurate. Although the numbers of learners who did 

this are not many, their action is surprising.  

62% of the learners in Group A edit the model when they did not trust the model 

inferred by the system. Meanwhile 34% of the learners in Group B tried to 

persuade the system to change the model. Again, this indicates that learners 

use the feature appropriately.   
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In terms of relationship between usefulness and trust, both functions edit and 

persuade shows a significantly positive relationship. Trust found highly 

correlated with usefulness of the persuasion feature (correlation=0.8; p<.05). 

However, comparison between trust in edit (M=3.3, SD=1.2) and in persuasion 

(M=3.2, SD=1.3) revealed no significant differences t=0.29, p>.05. 

Learners seem to trust the persuasion function when the model changed to a 

level that in line with their belief. The changes may to the higher level or lower 

level from the old model.  

7.3   User Trust in Releasing Own Model and 

Viewing Peer Models 

 

OLM for others to see is one of the features available in OLM as described in 

Chapter 3. Viewing peer models and releasing own model for others is a useful 

feature in OLM because learners can compare their models with peer models, 

and can support collaborative learning. In this chapter, we describe a study to 

investigate user trust in viewing peers models and releasing owned model to 

peers. We hypothesized that user trust in peer model. Our key questions are: 

• Do learners trust the peer model? 

• Do learners trust the named or anonymous peer model? 
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7.3.1   Participants, Materials, Methods 

Participants were 44 MSc. students from the University of Birmingham in 

Electronic, Electrical and Computer Engineering Department, who participated 

in the ‘Educational Technology’ course. Some students had prior exposure to 

OLMlets during their undergraduate study. Participants were instructed to use 

tOLMlets and attempt questions on the subject available in the system. 

Participants were also asked to consider the features available in tOLMlets 

including the facility to release owned model to peers and views peer models for 

comparison. In order to enable peers to see the model, users can release the 

model with names or anonymous, for all or selected peers. Therefore the peer 

models that are available to them may be with names or anonymous from the 

friends who release their models to the user. Participants interacted with the 

system for about 1.5 hours and all interactions were logged by the system. 

Then they completed the questionnaires at the end of the session. The 

questionnaires comprised of statements requiring participants to indicate their 

level of agreement on a 5-point Likert scale (strongly agree, agree, neutral, 

disagree, strongly disagree), and a free-response area for users to give 

opinions (Appendix: Questionnaire4). 

7.3.2   Results 

In this section, we present the results from the system logs and responses from 

the questionnaires. 
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7.3.2.1   Logs Data 

Table 7.16 shows the number of users that login into the system and release 

their models to be viewed by peers. 30 users open their model to be viewed by 

peers, and 14 users close their model. 

Table 7.16: Number of students who closed and open the model 

 Closed model Open model 

Number of students 14 30 

 

Table 7.17 gives an idea of how the users release their models to the peers. 15 

users fully open their model named, and 7 users partially open with the name, 

and 3 users with a partial-open unidentified model. 5 users release their models 

in a combination of full or partial open and name or anonymous model.  

Table 7.17: Users released their models 

 
Partially open Fully open 

Mixed 
open named anonymous named anonymous 

Number of students 7 3 15 0 5 

 

 

Table 7.18: Users interactions with peer models 

 Closed model Open model 

Compare the model 31 39 

Not compare the model 13 5 
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Figure 7.18 shows the number of users interaction with peer models. 39 users 

open their models and compare the model with peers. Users who open their 

models to peers do not necessarily see the peer models that are available for 

them. Conversely, users who close their models are apparently viewing peer 

models for comparison. 31 users who close their models do not use the 

comparison function. 

7.3.2.2   Questionnaires Results  

Our aim in this study is to explore learner trust in releasing their learner model 

and viewing peer models in OLM. We divide the questionnaire findings into two 

sub-sections: (i) releasing model to peers, and (ii) viewing and comparing peers 

models. 

Releasing Model to Peers 

In this section, we present Likert-rated and free-response questionnaire items 

related to releasing the model to peers, whether users released the model with 

names or anonymous in a certain condition. We begin with user opinions 

regarding how they release the model to peers, as shown in Table 7.19. The 

majority of users prefer to release the model to everybody (M=4.0, SD=1.0) 

compared to peers whom they know well (M=2.9, SD=1.3). This difference is 

significant, t=3.43, p<.05. The same results were found in previous studies in 

which the majority of students have released their model to everybody (Bull et 

al., 2007). 
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Table 7.19: Release the model to peers (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Model released to everybody  34 39 20 7 0 4.0 1.0 

Model released to peers that known 
well 9 30 25 18 18 2.9 1.3 

 

73% of the users release the model to everyone in the group and only 39% 

release the model to the selected people that they know well. 36% disagree to 

release the model to the known peers.  

Table 7.20: Believed and preferences in opening the model (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Believed the information was accurate 
and opened it to peers named  20 50 25 5 0 3.9 0.8 

Believed the information was accurate 
and opened it to peers anonymously 9 27 36 9 18 3.0 1.2 

Believed the information was inaccurate 
and opened it to peers named 9 18 39 14 20 2.8 1.2 

Believed the information was inaccurate 
and opened to peers anonymously 7 20 32 20 20 2.7 1.2 

 

Table 7.20 shows that most users open their models to peers when they 

believed the information in tOLMlets was accurate. 70% release the model with 

names while 36% release the model anonymously. Some users release the 

model to peers though they believed the information was inaccurate. However, 

the percentage who did this is small. Most users remain neutral or disagree in 

this matter. Similar results were obtained when users trust or distrust their 
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models (as shown in Table 7.21). The majority open the model to peers with 

names when they trust the model and most of them remain neutral or disagree 

to open the model if they did not trust the model. 

Table 7.21: Trust and release the model to peers (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Trust the model and release to peers 
named  30 39 23 2 7 3.8 1.1 

Trust the model and release to peers 
anonymously 14 34 30 11 11 3.3 1.2 

Did not trust the model and release to 
peers named 3 28 36 28 15 2.7 1.1 

Did not trust the model and release to 
peers anonymously 8 23 28 28 13 2.9 1.1 

 

User opinions of why they release their models to everybody or selected peers 

shown in Table 7.22.  

Table 7.22: Opinions on releasing the model to everybody or selected peers 

Released model to everybody: 

� I don't care what they think of my model, I want to encourage them to release 

their models for comparison 

� I find no reason to discriminate somebody 

� No peers are special so why release model to specific people 

� Because it doesn't matter who see my model 

� I thought it was the nice thing to do 

� I think all learners must have the same opportunities  

� I don't care if people I don't know have access to my model 

 

Released model to peers that known well: 

� Because I know the peers  

� They may help me with what I have misconceptions 
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Viewing and Comparing Peers Model 

We present user opinion about the features of comparing their models to peers 

in Table 7.23. Users find that comparing the model with peers in the group and 

comparing the model to individual peer model (whether named or anonymous) 

are useful for their learning. Users also seem to trust all the functions of 

comparison.  

Table 7.23: Features of comparing the model to peers (in percentage) 

 
<str. agree ^ str. disagree> 

Mean Median 5 4 3 2 1 

Comparing model to peers in group is 
useful 39 32 27 2 0 4.1 0.9 

Comparing model to named peers is 
useful 36 20 36 7 0 3.9 1.0 

Comparing model to anonymous peers 
is useful 36 27 30 5 2 3.9 1.0 

Trust tOLMlets because can compare to 
peers in group 34 39 20 5 2 4.0 1.0 

Trust tOLMlets because can compare to 
individual named peers 30 39 23 7 2 3.9 1.0 

Trust tOLMlets because can compare to 
individual anonymous peers 23 41 25 9 2 3.7 1.0 

 

For each type of comparison in this study, we examine the relationship between 

usefulness and trust built. In Figure 7.7, 27 out of 44 users claim that tOLMlets 

is useful for comparing the model to the whole group and trust it. There are 6 

users who trust to compare their model to peers in the group but are neutral 

about the usefulness. The relationship between trust and usefulness of 
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comparing models in the group is positive and significantly correlated 

(correlation=0.4; p<.05). 

 

Figure 7.7: Relationship between trust and usefulness in comparing models in a group.  

 

Figure 7.8 shows the relationship between trust and usefulness in named peer 

models. 22 users agree about the usefulness of comparing the model to named 

peers and trust it. Meanwhile, 8 users trust in comparing the model to named 

peers but disagree or remain neutral in terms of its usefulness. Trust is 

significantly correlated with the usefulness of comparing the model to the 

named peer models (correlation=0.4; p<.05). 
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Figure 7.8: Relationship between trust and usefulness in comparing the model to 

named peers.  

There is a stronger relationship between trust and usefulness of comparing the 

model to the anonymous peer models with correlation value of 0.5 (p<.05) as 

shown in Figure 7.9. Similar to results in named peer models, 22 users agree 

about the usefulness of comparing models to anonymous peer model and trust 

it. 6 users trust in comparing the model to anonymous peers model but disagree 

or remain neutral about the usefulness. The same number of students agrees 

with the usefulness but disagrees or remains neutral in trusting it.  
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Figure 7.9: Relationship between trust and usefulness in comparing the model to 

anonymous peers.  

We also assess whether users trust peer models that appear with the name or 

anonymous. The results obtained are shown in Table 7.24. Generally, users 

trust peer models when it released with the name (M=3.8, SD=0.9) compared to 

the one that released anonymously (M=3.4, SD=1.0). This difference was 

significant, t=2.72, p<.0.05. 

Table 7.24: Trust in peer models – named and anonymous (in percentage) 

 
<str. agree ^ str. disagree> 

Mean SD 5 4 3 2 1 

Trust peer models when it released with 
named 23 48 20 9 0 3.8 0.9 

Trust peer models when it released 
anonymously 14 32 36 16 2 3.4 1.0 
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Users also provide some comments on why they trust or do not trust in named 

or anonymous peer models. Table 7.25 shows the opinions in three categories.  

Table 7.25: Opinions of why trust the named and anonymous peer models 

Named peer models: 

� Hard to explain but people always trust someone who shows his first, but no 

one who doesn't show his name  

� They can try  few questions and got high marks  

� I trust peer models when released with their names because the models are 

open to positive criticism based on the understanding 

 

Anonymous peer models: 

� Anonymous means it's less trustworthy for me  

� Don’t trust anonymous people as much  

� If anonymous, questions raised as to why? 

� If someone doesn’t put his/her name, it means either he’s not satisfied with the 

results or he is really not good at the entire subject 

� Anonymous is more likely to be fake, but there is no reason to do that so it's ok 

 

Named and anonymous peer models: 

� I trust it equally, named or anonymous  

� It doesn’t bother me who it is, as I only look at how high the knowledge level is 

in the skill meter  

� The identity doesn’t affect the model  

� It’s doesn’t matter to me whether they declare their name or not. I’m more 

caring about their performance 

� It helps me compare my levels with others 

� I believe everybody (anonymous or named) is trying to do their best  

7.3.4   Discussion  

In this study we found that the majority of users prefer to release their model to 

everyone in the group. This would be a good sign towards an effective 

collaboration in learning. Only few users release their model only to people that 
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they know well. In terms of releasing the model to everybody, learners claim 

that they like to share theirs without worrying about what people say about the 

model because they want to encourage others to release the model as well. 

They also assume that all peers are equal, and they should have equal 

opportunities (in this case the opportunity to see the peers model). Therefore, 

they emphasised the purpose of releasing the model is for comparison. Users 

who release their model only to people they know well, is simply because they 

know the peers and this enables them to get help if they have a problem in the 

subject (e.g. misconceptions). 

In terms of the user beliefs and their motivations in opening the model to the 

peers, the majority of users open their model when they believe the model is 

accurate. More than two-thirds of the users open the model with their names, 

and less than half of users open their models anonymously. However, at the 

same time, users still release their models even if they feel the model is not 

accurate. This may be motivated by the desire to share their models with peers 

even though they are not sure about the accuracy of the model. In terms of 

identification of the model, most students release their models to the peers with 

their names.  

In terms of usefulness, users find the functions of comparing their own model to 

peer models useful in their studies. Users show some level of trust for peer 

models in the group and in the individual peer models (named and anonymous). 

In terms of the relationship between usefulness and trust to the model, 
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comparing in a group model shows a positive relationship with a correlation of 

0.4 (p<.05). The usefulness of comparing the model with anonymous peers 

correlated with trust in peer models (with correlation=0.5; p<.05), and with the 

named peer models (with correlation=0.4; p<.05). Based on these results we 

can conclude that there is a positive relationship between the trust and 

usefulness of comparing peer models, whether in group or individual names 

and anonymous.  

In terms of whether users trust peer models that appear with the name or 

anonymous, most of the users trust peer models that are released with the 

name. Among the responses of why learners trust the named peer model 

because it can open to discuss for better understanding. Learners less trust the 

anonymous peer models because it seems that the model is less trustworthy 

and indicates that the owner is not satisfied with their models. However, there 

are learners who stated that the identity of the peer model is less important as 

long as the comparison can be done for the benefit of learning. 
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7.4   Conclusion 

The conclusion is based on the key questions for each feature. 

7.4.1   Externalisation of Learner Models 

• Do learners understand and trust OLM externalisation? 

Learners appeared to understand the content of learner models used in the 

OLM system, for both simple and structured view. Learners are able to identify 

the learning benefits they get from using the learner model externalisation in the 

systems. Understanding the learner model is found to correlate to trust in the 

externalisation of the learner model. Therefore, we can conclude that learners 

understand and trust the externalisation of open learner models. 

• Do learners trust simple or more structured view? 

Learners show sufficient trust in both simple and structured view. However, 

there is a high correlation between trust and criteria assessed in the simple 

view. Therefore we conclude that learners trust simple and more structured 

view. 
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• Are there any features that makes OLMs view more trustable? 

Accuracy is essential in open learner models. It is not only the underlying model 

should be accurate but also the way in which the information is presented to the 

user. In this study, we find that trust the externalisation of the model has a 

strong relationship with the perceived accuracy of the model presented. This 

may be the fact that students can see what is inferred by the system, and 

probably could predict the results of the system evaluation.  Therefore, we can 

conclude that perceived accuracy of learner models has an impact on learner 

trust in the externalisation of the learner model. 

7.4.2   Learner Control over the Learner Model 

• Do learners use and trust the edit function? 

Learners are able to use the edit function appropriately. A higher percentage of 

learners edited the model they believed inaccurate, and edited the model they 

do not trust. Trust has a positive relationship with the usefulness of the edit 

function. Therefore, we conclude that learners use and trust the edit function in 

OLM. 
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• Do learners use and trust the persuade function? 

Similar to the edit function, learners are able to use the persuade function 

appropriately. A high percentage of learners tried to persuade the model they 

believed inaccurate, and the model they do not trust. Trust has a positive strong 

relationship with the usefulness of the persuade function. Therefore, we 

conclude that learners use and trust the persuade function in OLM. 

7.4.3   Peer Models 

• Do students trust peers models? 

Learners appear to trust peer models. These include trust in the group and 

individual peer models (named and anonymous). The usefulness of each peer 

model in the learning process has contributed to trust in the model itself. 

Therefore we can say that students trust their peer models. 

• Do student trust the named peers model or anonymous peers model?  

Both peer models with names and anonymous are useful for comparing the 

model for the purpose of learning. Although some learners stated that 

identification is less important to compare the model, the majority of the learners 

have more trust in the peer model that is released with peers’ names. 
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Therefore, we suggest that trust can be built in the OLM when more peer 

models are released with names in the environment. 

In the next chapter, we provide conclusions and limitations of the research. We 

also provide possible future work. 
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Chapter 8  

CONCLUSIONS AND FUTURE 

WORKS 

In this chapter we review the context of the thesis, and integrate the findings in 

each evaluation in order to provide a series of requirements for OLM designers 

towards a trustworthy environment. Next, we discuss the limitations of the study 

and suggestions for future research. 

8.1   Context 

The focus of this thesis is to investigate learners’ trust in an open learner model. 

It is important to provide learners with a trustworthy environment because it can 

engage them to continue using the system. Issues of trust become more 

important in an open learner model because the model is available for the 

learner to inspect and this may increase their perception of how a system 

evaluates their knowledge and updates the model. Furthermore, designing 

trustable open learner models may be a critical success factor of the next 

generation of open learner models (Dimitrova et al., 2007). 
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In this thesis, we investigated learner trust in two main perspectives: from the 

perspective of the system as a whole and from the perspective of OLM features. 

From the perspective of the system as a whole, we investigated the extent to 

which learners trust and accept the OLM system on their first use, the extent to 

which learners continue using the OLM optionally after their initial use and the 

extent to which learner trust and accept the OLM after longer term of use. In the 

perspective of OLM features, we investigated learner trust in three main 

common features in OLM environment, namely:(i) complexity of model 

presentation; (ii) level of learner control over the model; (iii) the facility to view 

peer models and release one's own model to peers. 

8.2   Findings  

In investigating learner trust in OLM, we established the definition of trust in the 

learner model. Trust in the learner model is defined as the individual user's 

belief in, and acceptance of the system's inferences; their feelings of attachment 

to their model; and their confidence to act appropriately according to the model 

inferences (Ahmad & Bull, 2008). 

Most learners have trust the system in their first use of the system. This is 

especially when learners are uncertain about their knowledge and relies on the 

system to carry out the evaluation. Although some of the learners have less 
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trust in the system after the first use, they continue to use the system in order to 

know their level of knowledge which is evaluated by the system. 

The relationship between trust and several criteria assessed shows a positive 

relationship in both studies. Perceived ease of use of the system shows a 

strong relationship to trust the information in the system in the short term of use. 

The duration of use of the system is likely to affect the relationship between 

trust and ease of use of the system. In the short term of use, a strong 

relationship is also found between trust and understanding of the system’s 

behaviour, in users’ interest to see the information presented and liking in using 

the system. However the longer term of use shows a strong relationship 

between the perceived accuracy of the learner model with trust. 

 

Figure 8.1: Main significant correlations coefficients in laboratory study 
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We found that there is a significant correlation between trust and the six criteria 

(refer Table 6.10) in the laboratory study (Figure 8.1), but not in the deployed 

study. This may be due to the small number of participants in the deployed 

study. Figure 8.2 shows the correlations between trust and OLM features.  

 

Figure 8.2: Main significant correlations coefficients in OLM features 

In terms of externalisation of the learner model, learners seem to understand 

both the simple and structured view. The understanding of the learner model is 

found to correlate with trust in the externalisation of the learner model. Learners 
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simple view is found to have a higher correlation between understanding and 

trust as compared to the structured view. In addition, trust in externalisation of 
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model presented especially when using the simple view as shown in Figure 8.2. 

This is not a surprise because accuracy of the model presented is one of crucial 

aspects in an open learner models environment. Our evidence shows that both 

simple and structured view contributes to trust in OLM system. Therefore, we 

propose that the use of various externalisations of the learner model not only 

complement each other in presenting a model (e.g Perez-Marin, 2007; 

VanLabeke et al., 2007) or as an alternative view in the system (e.g Mabbot t& 

Bull, 2006; Johnson & Bull, 2009; Xu & Bull, 2010), but it also contributes to 

trust in the open learner models system. 

In terms of control over the model, learners seem to be able to utilize the 

functions provided. More learners are found to be using the function of edit and 

persuade when they believe the model is not accurate or when they do not trust 

the model. This result is contra with the initial result where learners edit the 

model when they believe the model is accurate. It is likely that learners in the 

recent study have more understanding on when to use the features and this 

also indicate that they trust the features, with the condition that they not cheat 

themselves especially when using the edit function. Learners are found to have 

more trust in the persuade function when the final model after persuasion is 

equivalent to what they believe. These include whether the new model after 

persuasion is lower or higher than their old model. In this study we also found 

that there is a significant positive relationship between trust and the edit and 

persuasion function a depicted in Figure 8. 
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In terms of the facility of peer models, more learners released their own model 

that they consider accurate to everybody in the group. One reason is because 

they consider that comparing the model with others is useful in learning. 

Therefore learners trust the named or anonymous peer model. Learners show 

trust in the group and individual peer model. Although some learners stated that 

identification is less important as compared to the model, the majority of the 

learners have more trust in the peer model that is released with peers’ name. 

Therefore we suggest that trust can be built in the OLM when more peers 

models are released with names in the environment. 

In summary, our proposed requirements are: 

• Learners have trust in a simple and structured view of OLM. Therefore 

providing multiple externalisations consisting of simple and structured 

views may increase learner trust in the system. 

• Learners have trust in both edit and persuade function in OLM. Therefore 

providing the function that allows users to contribute to their learner 

model may increase learner trust in the system. However, if the full 

control feature like edit is to be considered in the system, the designer 

may be can limit them to certain amount.  

• Learners trust the system because they can compare the model with 

others. The comparison maybe in group or individual. Therefore the 

feature of comparing the knowledge may increase learners’ trust in the 

system. 
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• Learners trust more in the model that released with name. Learners also 

prefer to open their model to everybody with name. The model with 

known identity help learners in learning especially to find peers that can 

help them in learning outside the system. Therefore, identifiable model 

can encourage learner trust in the system. 

8.3   Limitations and Future Work 

This thesis has several limitations that can be improved in future work.  

Most of the evaluations done in this thesis are based on experimental studies 

especially on the common features in the open learner models environment. As 

trust is developed over time, the results may be different if it is done in the real 

setting. Therefore, future works may investigate learner trust in open learner 

models in the real setting. 

This thesis is focused on comparing the model to peers, however the 

comparison with an expert is lacking in this study. Therefore future work may 

investigate learner trust in comparison with instructor expectation. 

In summary, this thesis has considered the issues of learner trust in open 

learner model, criteria that may effect trust in the open learner models and open 

learner models features that are common in the environment 
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Appendix: Questionnaire1 

 

 

 
This questionnaire is designed to get feedback on OLMlets. Please answer honestly based on your 

experience while using the application. Data will be stored anonymously. 
 

Instruction: Tick (√) at the appropriate box. 

Background/General 

1. Student ID number:  

 

Instruction: Rate the following statements by placing a tick (√) in the appropriate box. 
 

                         strongly agree strongly disagree 
 5 4 3 2 1  

 

A I am good at self-assessment       

 

B OLMlets helped me identify my: 

         - knowledge (things I did not know I knew)       

         - misconceptions       

         - difficulties       

         - what to learn next       

 

C OLMlets is easy to use       

 

D I understood the information given by OLMlets       

 

E I know what will happen the next time I use OLMlets because I 

understand how it behaves 
     

 

 

F OLMlets accurately evaluates my current knowledge       

 

G When I am uncertain about my knowledge, I believe OLMlets       

 

H When OLMlets shows a high level of my knowledge, I believe 

OLMlets 
     

 

 

I When OLMlets shows a higher level of my knowledge than I 

expected, I believe OLMlets 
     

 

 

J When OLMlets shows a low level of my knowledge, I believe 

OLMlets 
     

 

 

K When OLMlets shows a lower level of my knowledge than I 

expected, I believe OLMlets 
     

 

 

 

OLMlets Questionnaire 
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L I believed my knowledge information in OLMlets was correct and 

          - I opened it to my peers        

          - I opened it to my instructor       

 

M I believed my knowledge information in OLMlets was incorrect 

and 
 

         - I opened it to my peers        

         - I opened it to my instructor       

 

N OLMlets suits my style of learning       

 

O I like using OLMlets       

 

P I am interested to see my knowledge information in OLMlets        

 

Q I trust the information about my understanding in OLMlets       

 

R I trust OLMlets because it shows me how much I know       

 

S I trust OLMlets because it shows me my misconceptions       

 

T I trust the information because I can compare it to peers       

 

U I trust the information because I can compare it to lecturer 

expectations 
     

 

 

V I trust the information because it is a simple overview       

 

Please add any general comments regarding your use of OLMlets: 

 

 

 

Please tick (√) as appropriate 
 My data MAY be used anonymously for research 

 My data MAY NOT be used for research 

 

 

Kindly sent this questionnaires to n  

- THANK YOU – 

 
 
 
 

 

 

 

 

 

 

 



   194  
 

This questionnaire is designed to get feedback on FlexiOLM. Please answer honestly based on your 

experience while using the application. Data will be stored anonymously. 
 

Instruction: Tick (√) at the appropriate box. 

 

Background/General 

 
1. Student ID number:   

 

 

Instruction: Rate the following statements by placing a tick (√) in the appropriate box. 

 

               strongly agree     strongly disagree 
  5 4 3 2 1  

 

A I am good at self-assessment       

 

B FlexiOLM helped me identify my: 

         - knowledge (things I did not know I knew)       

         - misconceptions       

         - difficulties       

         - what to learn next       

 

C FlexiOLM is easy to use       

 

D I understood the information given by FlexiOLM       

 

E I know what will happen the next time I use FlexiOLM 

because I understand how it behaves 
     

 

 

F FlexiOLM accurately evaluates my current knowledge       

 

G When I am uncertain about my knowledge, I believe 

FlexiOLM 
     

 

 

H When FlexiOLM shows a high level of my knowledge, I 

believe FlexiOLM 
     

 

 

I When FlexiOLM shows a higher level of my knowledge than 

I expected, I believe FlexiOLM 
     

 

 

J When FlexiOLM shows a low level of my knowledge, I 

believe FlexiOLM 
     

 

 

 

K When FlexiOLM shows a lower level of my knowledge than I 

expected, I believe FlexiOLM 
     

 

  

 
     

 

L I believed my knowledge information in FlexiOLM was 

correct and 
     

 

          - I edited the information        

          - I tried to persuade FlexiOLM to change the 

information 
     

 

FlexiOLM Questionnaire 
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M I believed my knowledge information in FlexiOLM was 

incorrect and 
 

         - I edited the information       

         - I tried to persuade FlexiOLM to change the 

information 
     

 

 

N FlexiOLM suits my style of learning       

 

O I like using FlexiOLM       

 

P I am interested to see my knowledge information in 

FlexiOLM  
     

 

 

Q I trust FlexiOLM because it shows me how much I know       

 

R I trust FlexiOLM because it shows me my misconceptions       

 

S I trust the information about my understanding in FlexiOLM       

 

T I trust the information because I can edit it       

 

U I trust the information because I can try to persuade 

FlexiOLM to change it 
     

 

 

V I trust the information because it is detailed       

 

Please add any general comments regarding your use of FlexiOLM: 

 

 

 

 

 

 

 

Please tick (√) as appropriate 
 My data MAY be used anonymously for research 

 My data MAY NOT be used anonymously for research 

 

 
Kindly sent this questionnaires to  

- THANK YOU - 
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Student ID: ________________________

 
 

Please rate the following statements by placing a tick (

appropriate box. 

 

1 I am good at self-assessment

 

2 The information in my learner model is accurate

 

3 The information in my 

 The information in my learner model is accurate in 

 

4 I understood the information given by 

 I understood the information given by 

  

5 The skill meter vie

 The skill meter view helped me identify areas of difficulty

 The skill meter view helped me identify my misconceptions

 The skill meter view helped me identify what to study next

  

6 The structured view help

 The structured view helped me identify areas of difficulty

 The structured view helped me identify my misconceptions

 The structured view helped me identify what to study next

  

7 The following features are useful

      - I can see how much of the subject I know

      - I can see my misconceptions 

      - I can compare my model to the group as a whole

      - I can compare my model to individual anonymous peers

      - I can compare my model to indi

      - I can try to persuade my model to change the information

  

8 tOLMlets is easy to use

  

9 I know what will happen the next time I use tOLMlets because 

I understand how it behaves

  

10 I trust the information in t

  

11 I trust the information in tOLMlets about my understanding 

using skill meter  

 I trust the information in tOLMlets about my understanding 

using structured  

  

Appendix: Questionnaire2

________________________ 

Please rate the following statements by placing a tick (√) in the 

assessment 

The information in my learner model is accurate 

The information in my learner model is accurate in skill meters 

The information in my learner model is accurate in structured 

I understood the information given by skill meter view 

I understood the information given by structured view 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify what to study next 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify what to study next 

 

The following features are useful:  

how much of the subject I know 

I can see my misconceptions  

I can compare my model to the group as a whole 

I can compare my model to individual anonymous peers 

I can compare my model to individual named peers 

I can try to persuade my model to change the information 

 

tOLMlets is easy to use 

 

I know what will happen the next time I use tOLMlets because 

I understand how it behaves 

 

I trust the information in tOLMlets 

 

I trust the information in tOLMlets about my understanding 

 

I trust the information in tOLMlets about my understanding 

 

 

tOLMlets  Questionnaire 

   196  

tionnaire2 



 

12 When I am uncertain about my knowledge, I believe tOLMlets

  

13 When tOLMlets shows a 

tOLMlets 

 When tOLMlets shows a 

tOLMlets 

  

14 When tOLMlets shows a 

expected, I believe OLMlets

 When tOLMlets shows a 

expected, I believe OLMlets

  

15 I would keep using tOLMlets if the information was 

than I expected 

 I would keep using tOLMlets if the information was 

I expected 

  

16 I am interested to see my 

  

17 If my tOLMlets information is lower than I expected, I 

      - search for new information (e.g. in the library, using 

       google) 

       - answer more tOLMlets questions to better understand 

        the topics 

      - answer more tOLMlets questions to get the right 

        answers (but not  necessarily to understand the topics)

      - talk to my friends about my/our difficulties

      - find somebody to help/discuss difficulties using the 

       peer models 

      - other (please state): ___________________________________________

  

18 I like using tOLMlets in my learning

  

 

 

Please provide definition of trust in OLM.

 

 

 

 

 

 

 

 

When I am uncertain about my knowledge, I believe tOLMlets 

 

When tOLMlets shows a high level of knowledge, I believe 

When tOLMlets shows a low level of knowledge, I believe 

 

When tOLMlets shows a higher level of knowledge than I 

expected, I believe OLMlets 

When tOLMlets shows a lower level of knowledge than I 

expected, I believe OLMlets 

 

I would keep using tOLMlets if the information was higher 

I would keep using tOLMlets if the information was lower than 

  

I am interested to see my knowledge information in tOLMlets 

 

If my tOLMlets information is lower than I expected, I   

search for new information (e.g. in the library, using  

answer more tOLMlets questions to better understand    

answer more tOLMlets questions to get the right  

answers (but not  necessarily to understand the topics) 

talk to my friends about my/our difficulties 

find somebody to help/discuss difficulties using the  

other (please state): ___________________________________________

 

I like using tOLMlets in my learning 

Please provide definition of trust in OLM. 
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other (please state): ___________________________________________ 



 

Appendix: Questionnaire3

 
 
 
Student ID: ______________

 
 

Please rate the following statements by placing a tick (

appropriate box. 

 

1 I am good at self-assessment

 

2 The information in my learner model is accurate

 

3 The information in my learner model is accurate in 

meters 

 The information in my learner model is accurate in 

 

4 I understood the information given by 

 I understood the information given by 

  

5 The skill meter view helped me identify my knowledge

 The skill meter view helped me identify areas of difficulty

 The skill meter view helped me identify my misconceptions

 The skill meter view helped me identify what to study next

  

6 The structured view helped me identify my knowledge

 The structured view helped me identify areas of difficulty

 The structured view helped me identify my misconceptions

 The structured view helped me identify what to study next

  

7 tOLMlets is easy to use

  

8 I know what will happen the next time I use tOLMlets 

because I understand how it behaves

  

9 I trust the information in tOLMlets

  

10 I trust the information in tOLMlets about my understanding 

using skill meter  

 I trust the information in tOLMlets about my understanding 

using structured  

  

11 I am interested to see my knowledge information in 

tOLMlets 

  

12 I believed my knowledge information in tOLMlets was 

accurate and 

          - I edited the information

  

13 I believed my knowledge information in tOLMlets was 

Appendix: Questionnaire3

________________________ 

Please rate the following statements by placing a tick (√) in the 

assessment 

The information in my learner model is accurate 

The information in my learner model is accurate in skill 

The information in my learner model is accurate in structured 

I understood the information given by skill meter view 

I understood the information given by structured view 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify what to study next 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify what to study next 

 

tOLMlets is easy to use 

 

I know what will happen the next time I use tOLMlets 

because I understand how it behaves 

 

information in tOLMlets 

 

I trust the information in tOLMlets about my understanding 

 

I trust the information in tOLMlets about my understanding 

 

 

I am interested to see my knowledge information in 

 

I believed my knowledge information in tOLMlets was 
 

I edited the information 

I believed my knowledge information in tOLMlets was inaccurate and

tOLMlets  Questionnaire – Edit 
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Appendix: Questionnaire3 

and 



 

          - I edited the information

  

14 I trust the information in tOLMlets because :

          - I edited the information

  

15 I trust my model and

          - I edited the information

  

16 I did not trust my model and

          - I edited the information

  

17 If my tOLMlets informati

   - search for new information (e.g. in the library, using 

    google) 

   - answer more tOLMlets questions to better understand 

    the topics 

    - answer more tOLMlets questions to get the right 

     answers (but not necessarily to understand the topics)

   - talk to my friends about my/our difficulties

   - find somebody to help/discuss difficulties using the 

     peer models 

   - other (please state): _________________________________________________

  

18 I like using tOLMlets in my learning

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I edited the information 

 

e information in tOLMlets because :  

I edited the information 

 

I trust my model and  

I edited the information 

I did not trust my model and  

I edited the information 

 

If my tOLMlets information is lower than I expected, I   

search for new information (e.g. in the library, using  

answer more tOLMlets questions to better understand  

answer more tOLMlets questions to get the right  

ut not necessarily to understand the topics) 

talk to my friends about my/our difficulties 

find somebody to help/discuss difficulties using the  

other (please state): _________________________________________________

 

I like using tOLMlets in my learning 
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other (please state): _________________________________________________ 



 

 
 
 
 
Student ID: ________________________

 
 

Please rate the following statements by placing a tick (

appropriate box. 

 

1 I am good at self-assessment

 

2 The information in my learner model is accurate

 

3 The information in my learner model is accurate in 

meters 

 The information in my learner model is accurate in 

structured 

 

4 I understood the information given by 

 I understood the information given by 

  

5 The skill meter view helped me identify my knowledge

 The skill meter 

difficulty 

 The skill meter

misconceptions 

 The skill meter view

next 

  

6 The structured view helped me identify my knowledge

 The structured 

difficulty 

 The structured 

misconceptions 

 The structured view helped m

next 

  

7 tOLMlets is easy to use

  

8 I know what will happen the next time I use tOLMlets 

because I understand how it behaves

  

9 I trust the information in tOLMlets

  

10 I trust the information in tOLMlets abou

understanding using 

 I trust the information in tOLMlets about my 

understanding using 

  

11 I am interested to see my knowledge information in 

tOLMlets 

  

12 I believed my knowledge information in tOLMlets was 

________________________ 

Please rate the following statements by placing a tick (√) in the 

assessment 

nformation in my learner model is accurate 

The information in my learner model is accurate in skill 

The information in my learner model is accurate in 

I understood the information given by skill meter view 

od the information given by structured view 

 

view helped me identify my knowledge 

 view helped me identify areas of 

skill meter view helped me identify my 

view helped me identify what to study 

 

view helped me identify my knowledge 

 view helped me identify areas of 

 view helped me identify my 

view helped me identify what to study 

 

tOLMlets is easy to use 

 

I know what will happen the next time I use tOLMlets 

because I understand how it behaves 

 

I trust the information in tOLMlets 

 

I trust the information in tOLMlets about my 

understanding using skill meter  

I trust the information in tOLMlets about my 

understanding using structured  

 

I am interested to see my knowledge information in 

 

I believed my knowledge information in tOLMlets was  

tOLMlets  Questionnaire – Persuade 
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accurate and 

          - I tried to persuade tOLMlets to change my model

  

13 I believed my knowledge information in tOLMlets was 

          - I tried to persuade tOLMlets to change my model

  

14 I trust the information in tOLMlets bec

          - I can try to persuade tOLMlets to change my 

model 

  

15 I trust my model and

          - I persuaded the information

  

16 I did not trust my model and

          - I persuaded the information

  

17 I trust the ‘persuasio

         - it changed my model to higher level (in line with 

          my belief)   

          - it changed my model to lower level (in line with 

          my belief)   

         - it changed my model to higher level

          with my belief)   

          - it changed my model to lower level (

          with my belief)   

         - my model stayed at the same level

  

18 If my tOLMlets information is lower than I expected, I 

        - search for new information (e.g. in the library, 

         using google)

       - answer more tOLMlets questions to better 

        understand the topics

       - answer more tOLMlets 

         answers(but n

         topics) 

       - talk to my friends about my/our difficulties

        - find somebody to help/discuss difficulties using 

         the peer models

       - other (please state): ___________________________________

  

19 I like using tOLMlets in my learning

  

 

 

 

I tried to persuade tOLMlets to change my model 

I believed my knowledge information in tOLMlets was inaccurate and

I tried to persuade tOLMlets to change my model 

 

I trust the information in tOLMlets because :  

I can try to persuade tOLMlets to change my 

 

I trust my model and  

I persuaded the information 

I did not trust my model and  

I persuaded the information 

 

I trust the ‘persuasion’ function when I used it if  

it changed my model to higher level (in line with  

my belief)    

it changed my model to lower level (in line with  

belief)    

it changed my model to higher level (not in line  

with my belief)    

it changed my model to lower level (not in line  

my belief)    

my model stayed at the same level 

 

If my tOLMlets information is lower than I expected, I   

search for new information (e.g. in the library,  

using google) 

answer more tOLMlets questions to better  

understand the topics 

answer more tOLMlets questions to get the right  

(but not necessarily to understand the  

talk to my friends about my/our difficulties 

find somebody to help/discuss difficulties using  

the peer models 

other (please state): ___________________________________

 

I like using tOLMlets in my learning 
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and 

other (please state): _________________________________________________ 



 

Appendix: Questionnaire4

 
 
 
Student ID: ________________________

 
 

Please rate the following statements by placing a tick (

appropriate box. 

 

1 I am good at self-assessment

 

2 The information in my learner model is accurate

 

3 The information in my learner model is accurate in 

meters 

 The information in my learner model is accurate in 

 

4 I understood the information given by 

 I understood the information given by 

  

5 The skill meter view helped me identify my knowledge

 The skill meter view helped me identify areas of difficulty

 The skill meter view helped me identify my misconceptions

 The skill meter view helped me identify my misconceptions

  

6 The structured view helped me identify my knowledge

 The structured view helped me identify areas of difficulty

 The structured view helped me identify my misconceptions

 The structured view helped me identify what to study next

  

7 The following features are useful:

      - I can see how much of the subject I know

      - I can see my misconceptions 

      - I can compare my model to the group as a whole

      - I can compare my model to individual anonymous peers

      - I can compare my model to individual named peers

  

8 tOLMlets is easy to use

  

9 I know what will happen the next time I use tOLMl

because I understand how it behaves

  

10 I trust the information in tOLMlets

  

11 I trust the information in tOLMlets about my understanding 

using skill meter  

 I trust the information in tOLMlets about my understanding 

using structured  

  

12 When I am uncertain about my knowledge, I believe 

Appendix: Questionnaire4

________________________ 

Please rate the following statements by placing a tick (√) in the 

assessment 

The information in my learner model is accurate 

The information in my learner model is accurate in skill 

The information in my learner model is accurate in structured 

I understood the information given by skill meter view 

I understood the information given by structured view 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify my misconceptions 

 

view helped me identify my knowledge 

view helped me identify areas of difficulty 

view helped me identify my misconceptions 

view helped me identify what to study next 

 

The following features are useful:  

how much of the subject I know 

I can see my misconceptions  

compare my model to the group as a whole 

I can compare my model to individual anonymous peers 

I can compare my model to individual named peers 

 

tOLMlets is easy to use 

 

I know what will happen the next time I use tOLMlets 

because I understand how it behaves 

 

I trust the information in tOLMlets 

 

I trust the information in tOLMlets about my understanding 

 

I trust the information in tOLMlets about my understanding 

 

 

When I am uncertain about my knowledge, I believe 

tOLMlets  Questionnaire – Peer Models 
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Appendix: Questionnaire4 



 

tOLMlets 

  

13 When tOLMlets shows a 

tOLMlets 

 When tOLMlets shows a 

tOLMlets 

  

14 When tOLMlets shows a 

expected, I believe tOLMlets

 When tOLMlets shows a 

expected, I believe tOLMlets

  

15 I would keep using tOLMlets if the information was 

than I expected 

 I would keep using tOLMlets if

than I expected 

  

16 I am interested to see my knowledge information in 

tOLMlets 

  

  

17 I believed my knowledge information in tOLMlets was 

accurate and 

          - I opened it to peers named

          - I opened it to peers anonymously

          - I opened it to instructors named

          - I opened it to instructors anonymously

  

18 I believed my knowledge information in tOLMlets was 

          - I opened it to peers named

          - I opened it to peers anonymously

          - I opened it to instructors named

          - I opened it to instructors anonymously

  

19 I trust the information in tOLMlets because :

          - it shows me how much I know

          - it shows me my misconceptions 

          - I can compare my model to individual anonymous 

peers 

          - I can compare my model to individual named peers

          - I can compare my model to peers in the group

          - I can try to persuade t

  

20 I trust my model and

          - I opened it to peers named

          - I opened it to peers anonymously

          - I opened it to instructors named

          - I opened it to instructors anonymously

  

21 I did not trust my model and

          - I opened it to peers named

          - I opened it to peers anonymously

          - I opened it to instructors named

          - I opened it to instructors anonymously

  

 

When tOLMlets shows a high level of knowledge, I believe 

When tOLMlets shows a low level of knowledge, I believe 

 

When tOLMlets shows a higher level of knowledge than I 

expected, I believe tOLMlets 

When tOLMlets shows a lower level of knowledge than I 

expected, I believe tOLMlets 

 

I would keep using tOLMlets if the information was higher 

I would keep using tOLMlets if the information was lower 

  

I am interested to see my knowledge information in 

 

 

I believed my knowledge information in tOLMlets was 
 

I opened it to peers named 

d it to peers anonymously 

I opened it to instructors named 

I opened it to instructors anonymously 

I believed my knowledge information in tOLMlets was inaccurate and

I opened it to peers named 

I opened it to peers anonymously 

I opened it to instructors named 

I opened it to instructors anonymously 

 

I trust the information in tOLMlets because :  

it shows me how much I know 

ows me my misconceptions  

I can compare my model to individual anonymous 

I can compare my model to individual named peers 

I can compare my model to peers in the group 

I can try to persuade tOLMlets to change my model 

 

I trust my model and  

I opened it to peers named 

I opened it to peers anonymously 

I opened it to instructors named 

I opened it to instructors anonymously 

I did not trust my model and  

I opened it to peers named 

I opened it to peers anonymously 

I opened it to instructors named 

I opened it to instructors anonymously 
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and 



 

22 I trust other users’ mo

           - released with their names 

           - released anonymously

 Please explain your answer: ___________________________________________________

  

23 I released my model only to people that I know well

 I released my model to everybody in the group

  

24 I like using OLMlets in my learning

  

 

 
 

 

 

 

 

 

 

 

 

I trust other users’ models when they are:   

released with their names  

released anonymously 

Please explain your answer: ___________________________________________________

 

I released my model only to people that I know well 

ed my model to everybody in the group 

 

I like using OLMlets in my learning 
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Please explain your answer: ___________________________________________________ 




