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Abstract 

To meet the demands of higher speed and greater axle load of trains on busy tracks, the 

current rail track inspection procedures across Europe need to be improved in order to 

minimise disruption and enhance reliability. At present, high speed dual purpose rail/road 

vehicles employing fixed non-destructive testing (NDT) sensors are used to inspect rails. Due 

to the uncertainties in characterisation of the defects when they are detected at high speed, 

manual re-visiting of the defects by expert operators is required before any decision 

regarding track maintenance is made. This research has been driven by a desire from the rail 

industry for a robotic system performing faster than human operators and being capable to 

both detect and characterise rolling contact fatigue (RCF) cracks in rails with the aim of 

automating the existing manual inspection and enhancing its accuracy and reliability.  

This thesis combines expert systems technologies with robotic NDT to fulfil this aspiration. 

A great deal of effort has been spent to develop a robotic inspection trolley which can 

automatically detect and characterise the RCF cracks in rails using an alternating current 

field measurement (ACFM) sensor. It uses a rule based expert system (RBES) proposed to 

control the robotic trolley and more importantly process ACFM data for both detecting and 

sizing defects. The developed system can detect the possible presence of defects in railway 

tracks at high speed pass (5-20 km/h) and can automatically return to an identified defect 

location to perform a slower and more detailed scan (up to 20 mm/s) across a rail section to 

determine  the size, depth and number of cracks present in that section. A novel method has 

been proposed which can detect both isolated and clustered RCF cracks from high speed 



 

ACFM scans with a high probability of detection even in the presence of process noise and 

severe sensor lift-off change. The system was evaluated using several laboratory and field 

trials where many artificial and real isolated/clustered RCF cracks were studied. The trials 

included both static and dynamic case where the former was used to assess the 

performance of the robotic system in sizing defects when their locations are known while 

the latter was used to determine the performance of defect detection and accuracy of the 

system in travelling to a given defect location. In doing so, various factors that affect 

determination of an unknown defect (e.g. position with respect to gauge side, length, 

surface orientation and unpredicted rail wear) were studied. The results of static and 

dynamic measurements suggest that the developed robotic system has high reliability 

(detection probability > 90%) and accuracy (characterisation error < 20%) in automatically 

detecting and characterising the RCF defects, therefore, has the potential to replace the 

manual inspection.  
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1 

Chapter 1. Introduction 

1.1. Background  

The increased traffic on the rail network and the growing demand for high speed and high 

capacity trains across the Europe means that the maintenance of railway assets is a 

significant concern to the railway industry [1, 2]. The maintenance should be carried out on a 

regular basis to minimise the threats associated with failure of both tracks and wheels (e.g. 

rail track breaks and/or train derailments). One of the common causes of rail track failure is 

due to the rolling contact fatigue (RCF) crack which is a known threat to the rail industry. 

After the Hatfield accident in 2000, rail industries around the world have begun to treat rail 

track inspection, in particular RCF cracks, more seriously than before [3, 4].   

Increases in train speed and axle load intensify the risk of track failure due to RCF cracks. 

Although there have been considerable improvements in maintenance in the past few 

decades due to employing novel non-destructive testing (NDT) methods to detect defects 

(e.g. guided waves, non-contact ultrasonic etc.), there are large areas for potential 

improvement through increasing the reliability and accuracy of the current NDT inspections 

and hence optimising the maintenance schedule. At present, rail inspection is carried out 

manually using hand-held systems (e.g. ultrasonic Sperry sticks) or by high speed dual 

purpose rail/road vehicles equipped with various NDT sensors. The frequency of inspection 

is dependent on the track category which is obtained from a standard speed-tonnage curve 

(Figure 1.1). The inspection frequency is summarised in Table 1.1. Following the track 



Chapter 1. Introduction 

2 

inspection (either manually or by using high speed trains), the defects found are 

coded (classified) according to an existing standard. Each code contains information about 

the minimum action to be taken and also the time scale. Different codes signify a different 

defect type and severity (size) which is determined based on the amplitude of the measured 

signal. The maintenance action to be taken is then determined from the code. The time scale 

may change from one day to a couple of weeks depending on the size of the defect.   

 

Figure 1.1 Standard rail track speed-tonnage curve used in the UK [5]. 

Table 1.1 Frequency of rail track inspection using Ultrasonic. The intervals indicate months between 
tests [5]. 

Category 

Within Fishplate limits 
Within switches and crossings 

At adjustment switches 
In Tunnels 

Standard Intervals 

Nominal  
Interval 

Maximum 
Interval 

Nominal     
Interval 

Maximum  
Interval 

1 3 3.5 6 7 

2 6 7 12 13 

3 12 13 24 26 

4 12 13 24 26 

5 12 13 24 26 

6 24 26 24 26 
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The reliability of these types of inspections is affected by factors such as human uncertainty 

about defect orientation/location which may cause a large offset in the inspection data (e.g. 

the reduced disturbance to the background signal due to an increased angle offset between 

the defect and eddy current direction, in the electromagnetic case) and low signal-to-noise 

ratio (SNR) due to mechanical vibration in the high speed case (e.g. in ultrasonic 

transducers).  

The nature and time of the maintenance action is directly influenced by the severity of the 

defect. Decision based solely on the high speed inspection data may result in 

misclassification of the defect’s severity which has potential to cause unpredicted 

catastrophic failures. Also, the false detection of defects would mean an unnecessary 

maintenance action which deteriorates efficiency of the maintenance. Therefore, there is a 

need for further manual inspection of the defects found at the high speed inspection stage 

by a highly skilled operator prior to taking any maintenance action.   

1.2. Motivation  

In manual inspection of rail tracks, expert operators (Figure 1.2) are used to interpret the 

inspection data and to distinguish the difference between defect signals from defect-like 

signals. They are also employed to increase the accuracy and reliability of the inspection 

data which is of prime importance when sizing the defect. The collected data is subject to 

human interpretation. Moreover, the operators are subject to factors such as fatigue and 

unpredicted problems. Further, training skilled operators is a time consuming and costly 

process which may impose large constraints on the maintenance strategy. Another major 

issue is the speed at which the operators can inspect the rail (getting them to the right 
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place). In this research AI and robotics are combined together to offer large benefits in 

minimising the use of human operators for rail inspection. 

 
(a) 

 
(b) 

Figure 1.2 (a) Manual inspection of rail using ACFM walking stick [6] and (b) portable ultrasonic flaw 
detector [7].  
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The idea behind this research is to implement the human expert knowledge in a computer 

program so that an automated system could be constructed which can perform the same 

task as an expert operator. In doing so, a great deal of effort has been put to develop a 

robotic rail inspection trolley, which can be used to autonomously inspect the rail tracks for 

RCF cracks.  

1.3. Aims and Objectives 

The main aim is to develop a fully automated system that at a first high speed pass detects 

the possible presence of defects in railway track due to fatigue caused by high speed and 

heavy train axles. It is then required to autonomously return to an identified defect 

position(s) to perform a second slower pass to scan a rail section and determine (without 

human operator intervention) the size, depth and number of cracks in that section. The 

scanning arm should have the ability to calibrate its position relative to a rail that (a) may be 

misaligned with respect to the next rail at a joint gap and (b) have a worn cross-sectional 

profile. It should then raster scan a rail section with a grid pattern by following a possibly 

worn contour (profile) of the rail while maintaining the ACFM probe at  a constant lift-off 

from the rail surface and normal to it to optimize the quality of NDT data. In addition, the 

probe angle should be oriented to align it with the direction of a given crack to obtain 

accurate crack length and depth. The optimized NDT data should be processed by an 

intelligent expert system to characterize the defects (i.e. length, depth, orientation and 

position from a datum point) without human intervention. The following summarises the 

objectives of the research: 
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 Investigate the state-of-the-art of rail inspection systems and NDT techniques; 

 Develop and experimental robotic system that is able to travel autonomously on a track 

at specified speeds. It should be able to measure its position from a datum point. It 

should also carry a scanning arm with sufficient degrees of freedom to maintain an ACFM 

probe normal to the rail surface at a constant lift-off despite variation of the rail profile, 

while holding the probe at the same orientation angle as an inspected crack. Calibration 

procedures should be included to position the ACFM probe in the correct way by 

determining the rail cross-sectional profile and crack orientation; 

 Carry out a study of the static performance of the robotic NDT system in finding and 

characterizing artificially machine single and multiple defects in various scenarios e.g. 

matching and non-matching probe/crack angles, scanning grid size and spacing, effect of 

variation of probe lift-off, and signal noise. Extend the above methods to distinguish and 

size multiple closely clustered defects with an investigation of the performance of the 

automated defect characterising system for different spacing between individual defects. 

1.4. Contributions  

1.4.1. Hardware and Software Development 

The author has developed a robotic inspection system which may be used to autonomously 

inspect the rail tracks for RCF cracks. The robotic system consists of a mechanised four-

wheeled trolley, a developed motion controller unit, a six degrees of freedom (DOF) robot 

arm, a commercial ACFM single probe sensor with instrumentation, a commercial laser 
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triangulation displacement sensor and user interface software which serves as the core of 

the robotic system. The system is capable to both detect and characterise (size) the defects. 

In detection mode, the system moves along the rail track and inspects a specified length 

using the settings set by the user (e.g. inspection speed, sensor lift-off etc.) and finds the 

position of the likely RCF cracks with respect to a fixed datum.  

In characterisation mode, the position of the defects found is imported to the software so 

that a steady and detailed scan with the robot arm can be performed. For this purpose, the 

system automatically travels to the location of the defects and uses the robot arm to first 

measure the local rail profile in the vicinity of the crack and then to perform a user defined 

constant lift-off ACFM measurement over the defective area. 

1.4.2. Novel Contributions 

A systematic methodology for addressing the problem of automatic detection and 

characterisation of the RCF cracks has been proposed and supported by laboratory 

experiments and field trials. Autonomy has been given to the system by implementing a 

piece of knowledge-based intelligent software developed using C++. The software serves as 

the core of the robotic system where all the real-time data logging, analysis, optimisation 

and decision making take place. The system is able to both detect and characterise the RCF 

cracks on rail autonomously while human interaction is largely minimised. 

  



Chapter 1. Introduction 

8 

1.4.2.1. Automatic Defect Detection Algorithm 

In the process of detecting defects using an ACFM walking stick, currently a simple threshold 

approach is employed. This method performs well provided the ACFM background signal 

(i.e. the signal level in the presence of a defect) is steady. However, there are cases where 

this assumption does not hold. For instance, the inevitable ACFM probe lift-off change at 

higher speeds or the change in rail magnetic properties along the inspection direction (owing 

to residual stress) may result in an increase in the background signal which may cause some 

defects to go undetected if the threshold is set too low. On the other hand, setting the 

threshold too high may lead to several false alarms depending on the SNR. An initial 

investigation of both low-speed and high-speed ACFM measurements on rails has shown 

that it is very difficult to adjust the threshold value so as to detect all defects.  

In this research, a novel combined threshold and signature match (CTSM) method has been 

proposed which helps to automatically detect the RCF cracks without human intervention 

even in the presence of severe change to the ACFM background signal.  

1.4.2.2. Automatic Compensation of the ACFM Probe’s Orientation and Lift-off   

As the RCF crack surface angle with respect to the rail length can vary in the range of 35 -70  

[3, 8-10], it is impossible for existing systems to position the ACFM sensor at an appropriate 

angle to obtain optimal data for sizing all defects. Moreover, wear of the railhead results in 

profile changes that will result in variable ACFM sensor lift-off which may significantly reduce 

the sizing accuracy if not taken into account. These uncertainties/ inaccuracies in crack sizing 

due to an unknown RCF crack surface angle has been successfully addressed by using a 

real-time searching algorithm which is able to closely estimate the actual RCF crack surface 
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angle (within 10 ). Therefore the ACFM measurements over the RCF crack may be performed 

at close to the optimum condition (parallel to the crack, with constant lift-off, normal to the 

surface) which significantly improves the reliability and accuracy of RCF crack 

characterisation (sizing).  

To summarise, the developed robotic system has shown high potential in automation of rail 

inspection of RCF cracks which significantly reduces potential human error and therefore, 

increases dependability.  

1.5. Thesis Structure  

The following summarises the contents of the chapters in this thesis: 

Chapter 1 presents a brief background on rail inspection, motivation, the achievements 

presented in this thesis and the thesis structure. 

Chapter 2 gives an overview of the current NDT technology being used in the rail industry 

and the research carried out in this field. It also presents a detailed review on the theory of 

the ACFM technique used in this research. Next, it justifies the need for automating the 

ACFM based rail inspection.   

Chapter 3 starts with a brief review of the requirements of automating the ACFM technique 

for use in railways and proposes a robotic system using a rule based expert system (RBES), as 

a solution. Next the process of design and development of the robotic system in terms of 

both software and hardware methods along with its specifications and limitations is 

systematically given.   

Chapter 4 presents a case study of static robotic ACFM scans on a calibration block 

containing several induced RCF cracks. The effects of the ACFM sensor lift-off, SNR, ACFM 
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probe orientation and rail profile have been investigated. Next the results of an online 

searching algorithm for detection of an unknown RCF crack angle have been studied and 

compared with simulation results. 

Chapter 5 presents a case study of field trials using dynamic robotic ACFM scans on real rail 

tracks at the Long Marston test track. In addition, the proposed CTSM algorithm for 

automatic detection of RCF cracks is studied and validated.  

Chapter 6 presents a case study of the CTSM algorithm extended to deal with multiple-RCF 

cracks. The performance of the algorithm has been studied with low speed ACFM results on 

real RCF cracks and also simulation results on multiple RCF cracks.  

Chapter 7 draws conclusions of the presented work and the key findings of the thesis. The 

strengths and limitations of the proposed robotic system are discussed and the future path 

of the research is presented. 
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Chapter 2. Literature Review  

2.1. Introduction 

This chapter presents an overview of the current state of rail inspection and the NDT 

methods employed in the railway industry. Initially, a brief review of the characteristics of 

RCF cracks is given, as these are the main defects considered for detection in this thesis. 

Different NDT measurement techniques such as visual inspection (VI), ultrasonic transducer 

(UT), electromagnetic acoustic transducer (EMAT), eddy current (EC), magnetic flux leakage 

(MFL), and alternating current field measurement (ACFM) are considered. The principle of 

operation of these methods is discussed and their advantages and disadvantages together 

with the outcome of recent research on their application are summarised. More emphasis 

has been placed on the ACFM approach from a theoretical point of view as it is used later in 

this research as the primary NDT method for inspection of surface breaking defects in rail 

tracks. In the end, a brief review of the research undertaken in the area of robotic NDT is 

given and its potential for use in the rail industry is identified by arguing the issues for the 

ACFM technique in terms of unknown rail grade (shape), lift-off change and unknown crack 

surface angle which must be addressed to enable its automation.    

2.2. Rail Defects  

Rails experience wear and fatigue crack growth due to in-service loading. Rail failures from 

fatigue crack growth can be divided into three categories as follows [2]:  
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1. Those resulting from rail manufacturing defects – typical examples are the tache ovale or 

kidney defects that initiate from inclusions or hydrogen shatter cracks in the rail head as 

shown in Figure 2.1 [2];   

2. Those resulting from improper handling, use and installation. An example of this type of 

defect is illustrated in Figure 2.2 [2];   

3. Those resulting from structural degradation as the consequence of rolling contract fatigue 

(RCF) crack growth. The majority of these types of cracks originate at the rail surface from 

the cyclical loading and unloading of the track rail at the wheel-rail interface caused by 

the rolling contact stresses as shown in Figure 2.3 [2, 11].  

                         

Figure 2.1 Tache ovale or ‘kidney’ rail failure [2]. 

 

Figure 2.2 Surface spalling of the rail surface caused by wheelburn [2].  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.3 Examples of RCF cracks: (a), (b) & (c) head checking (gauge corner cracking) and (d) squats 
[2, 11]. 

The defects associated with the first and second category are currently being greatly 

reduced in the UK, and around the world by improvements in the steel and rail-making 

industry [2]. The third category, however, has been found to be much more common place, 

with RCF cracks being of significant concern [2, 4]. These defects can be effectively mitigated 

by improving the material properties of the rail, performing inspection maintenance and 

grinding on the track on a regular basis, and changing the conditions of operation (e.g. 

applying speed limits, managing the wheel and rail profiles) [2]. 
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2.2.1. RCF Cracks 

The catastrophic failure of rails in recent decades resulting from RCF cracks has meant that 

this type of defect is a major concern to the railway industry. For example in October 2000, 

the derailment of a passenger train at Hatfield, UK [2, 4], showed the severe consequences 

of RCF cracks. In this case, the existing RCF cracks grew and reached a critical depth, 

resulting in rail breakage, which caused the derailment of the train. The presence of RCF 

cracks continues to be a major concern of the railway industry due to increases in demands 

for higher speeds, higher axle loads and higher traffic density [2]. The current standard code 

for classification of RCF cracks (light, medium, heavy and severe) is based on a Network Rail, 

GB guidance chart which classifies the cracks according to their visible surface length [3, 9]. It 

can be also used to predict the maximum crack depth for a given surface length as shown in 

Figure 2.4. 

 

Figure 2.4 Railtrack (now Network Rail, GB) RCF crack visual length/depth guidance [12].  
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RCF cracks are caused by a combination of high normal and tangential stresses at the wheel-

rail interface which causes shear strains in the surface layer of the rail resulting in 

deformation and eventual crack initiation [2]. Some of these high stresses are due to 

imperfect loading conditions at the wheel/rail interface (i.e. non-matching wheel-rail profile) 

due to wear which is termed as ‘cant deficiency’ within the rail industry. They can also arise 

from high dynamic loading as a result of slight corrugation [8]. These problems can be 

mitigated by preserving the wheel/rail profile through grinding on a regular basis [8].  

Head checks, gauge-corner cracks and squats (a defect with an indentation shape having two 

lobes of similar size [13]) are instances of surface-initiated RCF cracks (Figure 2.3) which 

often form as closely spaced groups of cracks. Under repeated loading, the microscopic crack 

initially produced grows through the heavily deformed surface layers of the steel at a 

shallow angle to the rail running surface (usually between 10-30°) until it reaches a depth of 

a few millimetres [2]. At this point the direction of crack growth can turn upwards leading to 

spalling of material from the rail surface.  However, for reasons still not clearly identified, 

isolated cracks can turn down into the rail [9], continue to grow, and, if not detected, cause 

the rail to break.  

RCF initiation is not generally linked to any particular metallurgical, mechanical or thermal 

fault; it is a consequence of the steel’s inability to tolerate the imposed operating conditions 

[2]. These types of surface-initiated RCF result in special inspection difficulties. For both head 

checks and squats the development of a downward-turning fatigue crack leads to rail failure. 

Undesirably, the earlier shallow-crack development phase can mask this from conventional 

ultrasonic examination [1, 2]; this occurrence is known as crack shielding. The use of harder 

rail grades gives rise to more closely spaced cracks, which even makes the UT inspection 
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more challenging than before. The use of EC and ACFM technology and better ultrasonic 

probe arrangements are being considered as potential solutions. The problem of RCF cracks 

can be contained by grinding the rail running surfaces to remove fatigue damaged material 

[2], provided the RCF cracks are detected when they are small enough to be removed by 

grinding. However, as this solution is both costly and time consuming, it is undesirable to 

grind the rail more than necessary. 

2.3. NDT Methods in the Railway Industry 

2.3.1. Visual Inspection 

In conventional visual inspection (VI), trained rail inspectors walk along the rail track and 

search for defects by eye. Despite the high level of subjectivity, VI is still being used by some 

infrastructure managers. However, with the advancements in high speed electronics and 

visual cameras, the manual VI methods are generally being replaced by automated visual 

systems [14]. An example is shown in Figure 2.5. In automated VI, a high speed camera is 

used to capture video images of the rail while the train is moving. It may be used to find 

missing track components such as fastening bolts and fishplates and also surface damage 

such as RCF cracks and rail corrugation [1, 15-17]. Depending on the type of inspection and 

the required quality, different camera resolutions may be used. For example, in VI inspection 

of the rail surface, a higher resolution camera is employed to provide reliable data for 

detection of small defects [1]. Detection of missing objects or surface defects is achieved 

through image analysis of the recorded data offline.   
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Figure 2.5 Experimental setup for automated VI used by Qingyong, et al. [18]. 

The performance of detection by VI is limited by the computational efficiency of the camera 

and also the hardware used for image processing. Thus, for the real-time VI, the inspection 

speed needs to be adjusted to keep pace with the data analysis [1]. 

Singh, et al. [19] developed an autonomous rail track inspection process using a vision based 

system. They used image processing and analysis methods for finding missing clips (used to 

secure the rail to the sleepers) and blue clips used in place of damaged clips. Finding clips is 

based on the density of edge pixels of the recorded frames. The frames experience a pre-

processing short line removal stage and then are placed along the lines symbolizing the 

track. The frame containing the highest density of edge pixels represents the position of the 

clip. Blue clips were also detected by using a colour analysis method. Based on the 

experimental results, the authors claimed that automated image processing is a promising 

and effective approach for visual inspection of rail tracks. 
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Li, et al. [20] also presented a software solution for component-based track inspection using 

machine-vision technology. Their proposed system includes imaging setup for capturing 

multiple video streams, important rail component detection such as tie plates, spikes, 

anchor and joint bar bolts, defect identification such as raised spikes, defect severity analysis 

and temporal condition analysis, and long-term predictive assessment. Their initial 

performance study has revealed an average of 98.2% detection rate, 1.57% false positive 

rate and 1.78% false negative rate on the component detection. 

2.3.2. Ultrasonic Transducers 

The ultrasonic transducer (UT) is one of the most widely used NDT techniques in various 

fields of industry such as power generation, manufacturing and railways. In the ultrasonic 

inspection method, piezoelectric transducers are used to transmit ultrasonic energy in the 

form of sound waves into the specimen [21]. The waves can be generated in two modes: 

transverse (shear waves) and longitudinal (compression waves). In the transverse mode, the 

particles oscillate normal to the direction of wave propagation whereas in the longitudinal 

mode the particles oscillate parallel to the direction of wave propagation. In rail inspection 

using UT, liquid based (usually water) couplant is used in order to assist transfer of 

mechanical waves from the transducer to the rail surface. There are two common 

configurations of UT inspection: pulse-echo and pitch-catch. In the pulse-echo (Figure 2.6 

right) method the transducer is used as both actuator (transmitter) and sensor (receiver) and 

is used to detect sub-surface cracks or discontinuities normal to the rail length. In the pitch-

catch method (Figure 2.6 left), the transmitter and receiver are separate units which are 

placed at different locations of the specimen and are used for detection of cracks or 
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discontinuities parallel to the rail length (e.g. vertical split). For a normal angle of incidence, 

they are placed at opposite sides of the specimen and held collinear.  

The integrity of the structure under inspection is evaluated based on the amplitude of the 

reflected waves along with when they occur in time [7]. In order to improve the chance of 

defect detection, the ultrasonic energy is transmitted at different incident angles, typically, 

0 , 37 , 45  and 70  to maximise the probability of detecting unknown defects [1, 7]. The 

main benefit of this approach is the high depth of penetration leading to detection of 

internal defects such as web and sub-surface defects. The performance of ultrasonic test 

trains is generally high in detecting deep surface-breaking and internal defects, especially in 

the rail head and web [1]. In contrast, RCF defects less than 4 mm deep may be missed at 

high speeds. Besides, smaller surfaces cracks can shadow larger and more critical internal 

defects and therefore produce an invalid representation of the structural integrity of the 

rail [1]. 

 

Figure 2.6 The two basic methods of transmitting and receiving ultrasound:(a) pitch–catch (separate 
transducers) and (b) pulse–echo (single transducer) [22].  
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Bray [23] conducted an experiment by using an UT sensor in order to detect internal defects 

in used track rails. Based on the reflected wave’s data, he recognized that the material 

properties of used rail head are anisotropic; hence the UT sensors that were calibrated for 

isotropic rail failed to locate the transverse (tache ovale) defects in used rails. Moreover, in 

the case of conventional UT inspection methods, several difficulties have been reported in 

the literature with regards to the adjustment of acquisition time and signal threshold 

(amplitude) [1]. In the former case, the acquisition time window is normally expanded more 

than strictly required in order to take into account the sound velocity and material 

inhomogeneties [1]. Setting the time window too close to the origin (corresponding to the 

rail surface) may result in excessive noise while setting it too far may mean some sub-surface 

defects are missed [1]. In a similar way, in the latter case, the signal threshold value needs to 

be carefully set; a high threshold may result in missing some defects while a low value may 

generate several false indications of defects.  

2.3.3. Laser Ultrasound 

Unlike conventional UT methods, which use contact transducers, in the laser ultrasound 

(LUT) method, the ultrasound wave is generated by a modulated laser pulse from a remote 

location. When the laser pulse strikes the rail surface, ultrasonic waves are induced as a 

result of either rapid thermal expansion, which in turn produces thermo-elastic stress, or by 

ablating the medium [24]. The reflected waves are measured using optical probes or by air-

coupled acoustic transducers [1]. Therefore the LUT method offers non-contact inspection of 

rail which comprises the following advantages [1, 24]: 

 Inspection speed up to 15 km/h were reported; 
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 Couplant independent, therefore, the absolute wave displacement may be measured; 

 Small footprint, therefore can be used to inspect most parts of rails with curved surfaces.     

However, the LUT has also some drawbacks; the optical/air-coupled transducers have lower 

sensitivity than contact piezoelectric transducers [24], hence more signal processing effort is 

needed to distinguish the defects from the noise. Further, the high cost of the LUT method 

makes it worthwhile in limited circumstances. 

Kenderian, et al. [25] investigated the application of laser-air hybrid ultrasonic (LAHUT) for 

detection of internal defects such as vertical split head and transverse defects in rail tracks.  

In LAHUT a remote laser source is used to transmit acoustic waves to the surface of rail while 

air-coupled UT transducers are used to record the reflected energy from the specimen (in 

the form of surface shear or bulk waves) in close proximity (few centimetres) of the rail 

surface. The results from field trials at walking speed (using a pushcart) suggested that the 

method was effective (high detection rate) for dynamic inspection of vertical split head and 

rail base cracks where the existing state-of-the-art techniques struggle to detect defects 

[25]. It may be also used for inspection of defects that are unfavourably positioned (e.g. 

transverse defects) for conventional NDT methods.  

2.3.4. Electromagnetic Acoustic Transducers 

Electromagnetic acoustic transducer (EMAT) is another non-contact ultrasound technique. 

Here the ultrasound wave is generated by inducing radio frequency eddy currents in the 

material under inspection in the presence of a strong static magnetic field [26]. According to 

Lorentz’s law, a force is then generated, whose direction is normal to both the induced 

current and the magnetic field in the right hand sense. This results in an ultrasonic stress 
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wave. Different wave modes of ultrasound (e.g. compression, shear and plane) may be 

generated by changing the orientation of the magnetic field and geometry of the inducer 

coil. Similar to LUT, in the EMAT method, there is no need for acoustic matching; therefore it 

has the advantage of non-contact operation which makes it suitable for inspection of rail 

especially at high speeds.  

The use of the EMAT method in the rail industry has been reported in several publications [1, 

27-29]. Edwards, et al. [30] have investigated the use of non-contact ultrasonic pitch-catch 

EMAT sensors generating Rayleigh-like waves for detection of induced RCF defects in rail at 

high speeds (approximately 140 km/h). They suggested that EMATs may be used to detect 

RCF cracks at high speeds but also reported some shortcomings; in the case of multiple-RCF 

cracks, only the depth of the deepest defect may be detected. Besides, the method lacks 

spatial resolution therefore the exact position and number of RCF defects cannot be 

detected.  Therefore high speed EMAT inspection was proposed to be used as a preliminary 

approach for finding areas of rail which require further examination. They also confirmed 

that at walking speed, the EMAT has been able to detect a range of artificial RCF defects 

including clusters of three closely spaced defects and isolated small defects (2-15 mm 

depth). 

2.3.5. Long-range Ultrasound 

In the long-range ultrasound (LRU) method, the ultrasonic transducers have been designed 

to produce bulk waves of different modes, such as Rayleigh, Lamb, and Plate waves, which 

are commonly referred to as ‘guided waves’ or ‘surface waves’. These waves propagate 

along the surface of the rail and thus are capable of detecting transverse surface defects 
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such as RCF cracks or changes in cross-sectional area due to corrosion. Several researchers 

investigated the application of LRU method in the rail industry [31-34]. The major benefit of 

this technique is its long range of coverage and in ideal conditions it can cover up to 30 m of 

rail from the sensor but in some cases the practical covering range may be reduced to a few 

metres because of a considerable reduction of the ultrasound signal caused by various 

factors [1]. The wave mode and operational frequency play a crucial role in determining the 

effective coverage range. The LRU method is sensitive to changes in cross-sectional area of 

the material. Defects must produce at a least 5% reduction in cross section in order to cause 

a distinguishable reflected signal. Bartoli, et al. [33] performed a simulation study of the 

interaction between ultrasonic guided waves and transverse defects on rails using the finite 

element method (FEM). They computed the reflection coefficient (ratio of the energy of the 

reflected wave to that of the transmitted wave) in the frequency range of 20-45 kHz for a 

number of oblique transverse defects. Their simulation results revealed a significant 

reflection from defects as small as 15% of the rail head. They found that in the case of 

oblique defects angled at 20  relative to the rail length, for frequencies above 30 kHz, the 

reflection decreases by increasing the defect’s surface length owing to severe mode 

conversion for 20  cuts [33]. Moreover, they observed that the reflection from defects 

increased by increasing the angle.  Their results indicate that, in order to inclusively detect 

surface defects in rails using the LRU method, different frequency ranges, rather than a 

single frequency, should be used.  

McNamara, et al. [35] used experimental LRU measurements on transverse and oblique 

defects in rails to develop a supervised smart system using a support vector machine (SVM), 

which helped identify the defects automatically. They classified the defects based on the 
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values of their surface angle (angle made by the surface breaking crack length and the rail 

running direction) and their severity (large or small). They repeated their measurements by 

using different wave modes (vertical, transverse and longitudinal) over a frequency range of 

10-40 kHz in order to find the best wave mode most suited (i.e. most sensitive) to a 

particular class of defect. They also confirmed that when a portion of the frequency range 

(rather than the whole range) is used, the number of misclassified defects increases and 

therefore for effective automatic classification the entire frequency range should be used 

when training the classifier. 

2.3.6. Eddy Currents 

This technique relies on the electromagnetic effects when an alternating current (AC) is 

passed through a primary coil; this leads to the induction of eddy currents (EC) in the surface 

layer of the metallic material (skin effect) under inspection (Figure 2.7). Any distortions 

caused to the eddy current (due to the presence of defects) will generate a secondary 

magnetic field, which will in turn affect the impedance of the secondary coil (Figure 2.7a). 

This change in the impedance can be monitored by a voltmeter and continuously displayed 

[36]. The key advantages of the EC method is that, unlike conventional ultrasonic testing, in 

EC testing the sensor is not required to be in contact with the material under inspection thus 

making it suitable for high speed inspection [36]. EC is sensitive to fine cracks and can be 

therefore used to detect RCF cracks such as gauge corner cracking at speeds up to 100 km/h 

[37]. However, despite its broad advantages, this method suffers from a number of 

shortcomings; the EC sensor not only responds to the disturbance to the induced eddy 

current (due to surface defects) but it also responds to undesired signal changes resulting 
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from variation of the material’s properties, such as conductivity and permeability (due to the 

work hardening of the surface or due to the presence of wheel burns or welds). 

Further, special care needs to be given to avoid lift-off change as the EC method is very 

sensitive to lift-off; in practice, it is common to try and control the lift-off to  2 mm 

(maximum) [1]. 

 
(a) 

 
(b) 

Figure 2.7 Illustration of the operation of the eddy current testing; (a) variation of the receiving coil’s 
resultant impedance in the presence of a defect (horizontal and vertical axis display the coil resistance 
and  impedance, respectively) (b) the distribution of EC on the surface of a specimen [37]. 

These undesired responses on the EC sensor are difficult to compensate for and would 

demand complex mathematical algorithms if present and high knowledge of the operator 

[36]. The other disadvantage of this method is that calibration is required in order for defect 

characterization. The common method of processing an EC signal would be to compare the 
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maximum amplitude of the signal to the reference signal; however this method is not robust 

and can lead to an underestimation of length and depth of the crack.  

Bentoumi, et al. [38] presented a novel algorithm for real-time detection of surface defects 

from EC sensors based on differential measurements. They successfully separated the crack-

like signals (resulting from bogie dynamics etc.) from true crack signals (fishplated joints, 

welded joints and shelling) using dual sensor measurements and proposed an automatic 

detection algorithm using a wavelet transform (WT) by means of a mother wavelet which 

resembles the signature of a typical crack signal. The detection of defects was then based on 

the magnitude of the highest modulus of transformation (thresholding). The results from 

their field trials suggest that the WT is capable of detecting surface defects automatically; 

however it struggles to distinguish shelling signals from welded joint signals. 

Pulsed eddy current (PEC) is an improvement to the conventional EC method in which 

excitation of the inducer coil is achieved by a step rather than a single frequency sinusoidal 

voltage. The advantage is that a range of frequencies can be generated at once which means 

that a range of skin depths are obtained. Therefore critical information from a range of 

depths can be attained. For the response signal in the time domain, information about the 

features near the surface of the specimen (e.g. surface breaking defects) are observed first 

while more distant features (e.g. holes or discontinuities below the surface) are observed 

later in time. The PEC method has been recently used in the railway industry as a 

complementary means to UT inspection, which struggles to detect surface or near surface 

breaking defects especially at high speeds [37, 39-42]. The maximum inspection speed for 

the combined PEC and UT methods are reported as 75 km/h [1]. 
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Smid, et al. [43] proposed a post processing algorithm based on a normalization technique 

for classification of defects, detected by the EC sensor. Artificially induced slots in an 

aluminium sample were used to mimic surface breaking defects typical of those found in 

aircraft structures. They employed complex discrete WT for feature extraction and classified 

defects using non-linear classifiers. They demonstrated that their method may be used to 

alleviate the problem of EC impedance change due to inevitable variations in scanning speed 

and probe position during manual scanning.  

2.3.7. Magnetic Flux Leakage 

Magnetic flux leakage (MFL) is a common method for non-destructive evaluation of 

ferromagnetic structural components and is widely used in the petrochemical, oil, energy 

and material industries [44-46]. In the MFL method, DC electromagnets or permanent 

magnets are used to magnetize the material under inspection to saturation, as depicted in 

Figure 2.8, and search coil probes are used to monitor, and quantify, the leakage in the 

magnetic field [44-46].  The MFL probes scan across the surface of the component under 

inspection looking for irregularities in the flux density which designates the location of a 

defect. It can be used to inspect complex geometries and features which are not visually 

accessible (e.g. inside surface of oil and gas pipe lines) [47].  
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Figure 2.8 Principle of operation of MFL method used for pipeline inspection [48].  
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The MFL technique is more beneficial for applications where the defect location is already 

known or the defect location can be predicted with a realistic possibility of success [47]. A 

disadvantage of this method is that the intensity of the magnetic flux is significantly reduced 

by increasing inspection speeds and this reduces the sensitivity of the signal. The maximum 

operating speed for railway applications has been reported as 35 km/h [1]. A simulation 

study of an MFL sensor operating at high speed has been conducted by Li, et al. [49]; 

according to this work, the defect characterization is strongly affected by the speed (Figure 

2.9), thus complex mathematical algorithms are required in order to take into account the 

effect of speed on the feedback signal. Therefore the MFL technique may be applied to 

collect detailed data for characterising known defects [50, 51].  

 

Figure 2.9 Simulation result of magnetic flux response to a rectangular slot at different probe 
speeds [49].  
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2.3.8. Alternating Current Field Measurement 

The alternating current field measurement (ACFM) technique is a more recent NDT 

inspection method to be used in the rail industry and has drawn particular attention because 

of its combined advantages as listed below [1, 6, 52, 53]:  

 High speed inspection capability, speed up to 121 km/h has been reported [11, 54-56]; 

 The capability to both detect and size defects; 

 Reduced sensitivity to lift-off variation compared to the EC method; 

 The ability to detect defects even with the presence of coatings and dirt (similar to the EC 

and MFL method); 

 Non-contact. 

Unlike the MFL method which uses large DC or permanent magnets to excite the specimen 

to saturation, the ACFM technique relies on the fact that an alternating current (AC) can be 

induced to flow in a thin skin near the surface of any conductor. When a remote uniform 

current is introduced into the area of the specimen under inspection, the induced current 

will remain undisturbed provided there is no defect present. Any defect present will force 

the current to flow around the ends and down the faces of the crack (Figure 2.10). The 

changes in the direction of the current will introduce non-uniformity to the magnetic flux 

which is constantly monitored using two sensors measuring the magnetic field in two 

directions. Near the crack ends the current lines become closer as they pass the defect.  This 

gives rise to changes in the component of magnetic flux around the crack ends (  ). A 

rotation of the current around the crack ends also occurs, which produces a non-zero 

component of the magnetic field normal to the surface of the specimen (  ). Further, as the 
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current goes down the face of the crack it produces a trough in the    signal. The reduction 

in the    signal can be related to the crack’s pocket length (i.e. length of crack along the 

direction of propagation below the surface) through inversion of the ACFM signal. The 

inversion process is not straightforward and involves a great deal of complex mathematical 

computations. The approximate crack surface length may be obtained from the distance 

between the characteristic peak and trough in the    signal provided that the ACFM sensor 

is oriented along the crack’s opening. This is quite advantageous as it avoids the need to use 

a human/visual inspection (i.e. helps with automation). It has been shown that in practice 

this would give a reasonable measure of real crack surface length and the parameters such 

as sensor lift-off and crack aspect ratio (surface length to twice pocket length) are found to 

have a small effect on this value [52]. 
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Figure 2.10 Illustration of the ACFM principle [53]. The eddy currents pass around the crack ends and 
down the faces of the crack opening. The graphs correspond to a 1D scan along the crack length.  
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2.3.8.1. Forward Problem 

The interaction of magnetic and electric fields between air and a metal surface is governed 

by four pairs of partial differential equations known as the Maxwell equations, which must 

be solved simultaneously to give the electric and magnetic field distributions due to a defect 

with known geometry. This is hereafter referred to as the forward problem. Assuming the 

time dependency of the fields are harmonic (i.e.     ), it can be shown that in the context of 

ACFM where the AC frequencies vary by up to 10 MHz, the displacement current (which is 

proportional to the frequency) is sufficiently small to be neglected. Therefore the equations 

describing the field variations are given as follows [57]: 

            (2.1) 

       (2.2) 

        (2.3) 

       (2.4) 

within the conductor, and 

            (2.5) 

       (2.6) 

       (2.7) 

       (2.8) 

in the free space above the conductor. In the above equations   is the electric field,   is the 

magnetic field,   is the conductivity of the specimen,   is the AC frequency (rad/s),   is the 

gradient operator and    and   are the permeability of the free space and the conductor, 

respectively. The solution of the forward problem (i.e. the distribution of magnetic flux 
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above the surface when a single scan along the crack opening is performed), for a given 

crack geometry, involves combining equations (2.1) to (2.8) together with appropriate 

boundary conditions at the surface of the conductor and the faces of the crack. Lewis, et al. 

[57] demonstrated that the solution is dependent on a dimensionless number   (known as 

the Michael number) given as:  

 
   

   

  
    

 

√    
 (2.9) 

where   is the crack length scale,   is the skin depth (the depth at which current density 

reaches about approximately 37% of its surface value),   is the AC frequency (Hz). Small 

values of   correspond to ferromagnetic materials for which the 
 

 
 ratio is also small. 

Conversely, for non-magnetic materials with a thin-skin effect,   is large. Lewis, et al. [57] 

then theoretically solved the forward problem for an artificial semi-elliptical crack and found 

good agreement with the experimental results for two limiting cases of very small and very 

large  . However, the complete solution for an arbitrary value of   was later given by 

Michael, et al. [58]. 

2.3.8.2. Inverse Problem 

In the inverse problem, the ACFM response to an unknown crack is experimentally measured 

while the crack geometry is obtained by inverting the ACFM signal. The fact that the solution 

of the forward problem is highly nonlinear and may not be expressed analytically makes the 

inversion process very complicated. Because of this, an analytical solution yielding the crack 

geometry (pocket length) as a function of ACFM measurements may not be 

obtained. However, there are techniques that are being used at both research and industry 
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level to tackle this, such as optimisation, interpolation and neural network based 

approaches. 

In the inversion of the ACFM signal using optimisation, the crack parameter to be predicted 

is given an initial value as the inverse solution and is updated iteratively until a reasonable 

tolerance of error is achieved. The update rule is based on the minimisation of a cost 

function which is generally the sum of the square of the predicted ACFM signal (using the 

forward model at the current solution) minus the measured ACFM signal, over the 

measurement points. This approach has been employed in a study by Amineh, et al. [59], 

[60] where they used a conjugate gradient method for the optimisation and used an existing 

forward model for a U-shaped inducer developed by Sadeghi, et al. [61].  

They have used the same approach for prediction of the unknown sensor lift-off and found 

close agreement between the predicted and the true value of the crack pocket length for 

different lift-off values. However this method suffers from a shortcoming rendering it 

impractical at the industrial level; for non-linear cost functions with multiple minima, the 

optimisation may be stuck at a local minimum if the initial value is not carefully selected. 

Consequently, the optimisation terminates at the wrong solution value. Unless some 

procedures toward the initialisation of the desired parameter are implemented, the method 

would require an experienced user with superior knowledge about the technical aspects of 

the work. Further, the evaluation of the forward solution at each iteration step slows down 

the inversion process.  

The interpolation technique is rather simple but more effective. It is a well-known method in 

industry and is preferred over other techniques where applicable due to its simple principle. 

It relies on a fairly large database containing the ACFM measurements for defects with a 
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given surface length and variety of geometrical aspect ratios. The database is constructed 

from simulation results of ACFM measurements over known crack geometry (usually a semi-

ellipse is assumed) using a fast algorithm solving the forward problem [59, 60]. The 

alternative approach for constructing the database is to use FEM approaches to increase 

accuracy and reliability of the database. When the measurements are fairly close to each 

other, a linear interpolation is used to calculate the crack pocket length from the maximum 

ACFM signal drop     as schematised in Figure 2.11. 
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Figure 2.11 Illustration of ACFM signal inversion using table interpolation. 

Therefore the unknown crack pocket length   is approximated as: 

      
(        )  (     )

         
 (2.10) 

where the subscripted letters denote the values stored in the database. Despite the fact that 

this approach offers acceptable accuracy in sizing defects (within 20% error), it suffers from 

uncertainty about the types of defects (i.e. unacceptable error in sizing complex RCF crack 

shapes as found in rails [3]) as it is impossible to create an inclusive database containing all 

the different types of defects that one could expect. In recent decades, the use of artificial 
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neural networks (ANN) for defect classification and characterisation has been one of the 

topics of research in the NDT community. Generally, ANN is the ideal choice for prediction 

problems where a limited number of measurements are available and the goal is to train an 

ANN so as to closely approximate the output (i.e. crack pocket length) for a given input (i.e. 

ACFM signal) which may fall outside the training database. Ravan, et al. [62] developed an 

ANN for inversion of the ACFM signal to crack pocket length profile from single ACFM 

measurements along the crack opening. They trained their ANN from the results of a fast 

simulator predicting the ACFM signal over a number of individual semi-elliptical multi hump 

cracks as shown in Figure 2.12. 

 

Figure 2.12 Variations of the real part of the crack signals,      superposed by additive white 
Gaussian noise with various SNRs when scanning the cracks along    = 0.5 mm at lift-off distance    = 
0.1 mm for (a) Rectangular depth profile (b) Triangular depth profile (c) Symmetrical triple-hump 
depth profile and (d)  Asymmetrical triple-hump depth profile [62].  
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They demonstrated that their ANN can accurately predict the crack pocket length profile for 

several simulated and real measurements of ACFM over common or complex crack 

geometries that were not in the database. The performance of the ANN was also studied on 

several simulated measurements superposed by additive noise at a number of SNRs and it 

was found that the presence of noise would lessen the accuracy of inversion. While their 

approach works reasonably well at laboratory level for isolated multi-hump cracks, it may 

produce unacceptable error in sizing complex RCF crack shapes where the ACFM signal is not 

responsive to some part of crack geometry [3].   In addition this approach has not been used 

for clusters of RCF cracks, which are commonly seen in the rail industry. 

Hasanzadeh, et al. [63] similarly used a fuzzy logic based approach for inversion of the ACFM 

signal to crack pocket length profile and achieved high accuracy from their inversion model 

(in the absence of noise) and proposed that their inversion algorithm may be used to 

compensate for the lack of a complete database. However, they also reported that while 

their method reduces the need for large database, it requires at least two cracks with the 

same length or depth to predict a piecewise linear equation. Besides, their results were 

based on laboratory rail samples which did not contain real RCF cracks.  

Nicholson, et al. [3], [64] performed a FEM study on the ACFM response to light-moderate 

RCF cracks using COMSOL Multiphysics®. They modelled the RCF cracks as semi-ellipses of 

varying aspect ratios and found close agreement with the experimental ACFM 

measurements. Based on the simulation results, a sizing curve was then constructed which 

may be used for inversion of the ACFM signal to crack pocket length when the crack’s 

surface length is known (Figure 2.13). The calculation of crack pocket length relies on the 

assumption of a semi-elliptical crack, which has been found to be valid for light and some 
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moderate RCF cracks in rail [9], i.e. surface lengths up to 20 mm [12]. Thus, for more 

complex geometries where this assumption does not hold, the pocket length may be 

over/under estimated by a greater margin of error. They also investigated the ACFM 

response to a crack when there is an angle offset between the ACFM probe and crack 

surface length - hereafter referred to as a non-matching case - at a range of angles (Figure 

2.14) and found that for angle offsets beyond 10 , the reduction in the ACFM    signal drop 

due to the crack is significant enough to cause an unacceptable error in sizing the defects 

(i.e. error > 20%). The larger the angle offset, the larger the error in sizing the crack and thus 

it is crucial to know the crack orientation (within ±10°). The knowledge of angle offset 

becomes very important when unmanned automation of ACFM for crack characterisation is 

desired.  

 

Figure 2.13 Normalized maximum change in    value against crack surface length at zero lift-off for 
semi-elliptical cracks of elliptical ratios 1:1, 1.25:1, 1.5:1 and 1.75:1 [3].  
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Figure 2.14 The sensitivity of the maximum change in    value at zero lift-off to changes in the 
orientation of the ACFM probe relative to surface crack angle for a 15 mm surface length, 5 mm 
pocket length semi ellipse [65]. 

2.3.8.3. Application of ACFM in the Railway Industry 

The first commercial ACFM instrument for use in the rail industry was developed through a 

joint effort between Bombardier Transportation and TSC Inspection Systems [66]. They 

developed an ACFM walking stick device that could be used to manually detect and 

characterise surface breaking defects in rails (Figure 2.15). The device consists of a user 

interface unit (usually a dedicated laptop), an AMIGO ACFM instrument unit, an array ACFM 

probe and an odometer for measuring the distance travelled.  

  

Figure 2.15 Image of the Bombardier and TSC ACFM walking stick [66].  
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Papaelias, et al. [54] have investigated the possibility of using ACFM sensors for inspection of 

surface breaking defects in rails at high speed. Their experiment was carried out on a 

spinning test piece containing several single spark eroded notches (Figure 2.16). The 

experiment used a high frequency 50 kHz single probe developed by TSC Inspection Systems 

along with dedicated high-speed data acquisition hardware. It was found that under 

constant lift-off conditions, the detectability of defects remained unaffected by the increase 

in the inspection speed and the defects were detected at speeds up to 121 km/h (Figure 

2.17). 

 

Figure 2.16 Experimental setup for the turning lathe tests using the rotary test piece [54]. 

 

Figure 2.17 ACFM data plots showing the resulting signals at 20.25 and 121.5 km/h with 0.8 mm 
lift-off. The different signals (magnitude of A/D conversion signal change) are for machined defects of 
4 mm and 2 mm depth [54].  
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A similar experiment was also conducted on a rotating rail rig containing clusters of artificial 

RCF defects (ranging from 2 to 15 mm in pocket length) at different spacings, to mimic the 

real scenario of rail inspection (Figure 2.18). A specially designed trolley was used to hold the 

ACFM probe in place; however during operation there was significant lift-off variation during 

the rotation of the rig. It was found that the defects were detected at moderate speed 

(30 km/h) even in the presence of the significant lift-off change (up to 5 mm), although some 

of the multiple defects could not be resolved from the ACFM signature and the amplitude of 

the signal was found to be dependent on the number of defects in a cluster (Figure 2.19). 

Further, as the sensor lift-off increased to about 8 mm (due to a further increase in the 

inspection speed), some defects went undetected [54]. Recent work has been carried out to 

include an ACFM sensor on a train for high speed inspection  but no results have yet been 

published [67].  

In conclusion, detection of surface breaking defects using ACFM at high speed is possible; 

provided that sensor lift-off variation is minimised, or at least known.  During high speed 

inspection using the EC method, the EC probe is held in place by a rigid housing between the 

train’s wheel sets where the lift-off variations due to bogie dynamics is a minimum, this 

approach would also be appropriate for ACFM inspection. When lift-off change occurs a 

variable background signal is observed, which means that simple methods to automatically 

detect cracks, such as the threshold method, become inappropriate, thus a more 

sophisticated signal processing technique must be considered.  
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Figure 2.18 Experimental setup during the spinning rail rig tests [54]. 

 

Figure 2.19 Raw and normalized filtered data plots for test rails where the 5, 10 and 15 mm spacing 
refers to the distance between each defect for clusters of three defects of varying depth (2, 4, 10 mm) 
[54]. The defects used in this experiment are later explained in Chapter 5 (Figure 5.11).  

2.4. Robotic NDT 

In recent decades, with the enhancement of sensor technology, robotics and artificial 

intelligence (AI), there has been a great desire from industry to use robots for inspection and 
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quality monitoring [68-82].  This is due to several shortcomings arising from manual 

inspection using human operators such as high level of subjectivity, tediousness of 

operation, high risk of operation in hazardous environments and high costs associated with 

training skilled operators. An example is the oil and petrochemical industry where the use of 

in-pipe inspection robots has been commonplace [83]. These robots may be used to either 

repair damaged welds in the interior surface of the pipe or inspect the surface of pipe for 

defects. Choi, et al. [84] developed a robotic system for inspection of underground urban gas 

pipelines utilizing UT sensors. The robot has excellent flexibility in order to steer in pipelines 

with different configurations such as in branches and elbows (Figure 2.20). It is being further 

developed to use different NDT sensors for inclusive assessment of pipelines. 

 
(a) 

 
(b) 

Figure 2.20 Pipeline inspection robot using a UT sensor adapting to different configurations: (a) elbow 
and (b) branch [84]. 

Miller, et al. [85] also developed a robotic system for automatic monitoring of weld quality 

on metal components using an EMAT sensor. The system consists of a laser ultrasound signal 

generator and EMAT reception system (Figure 2.21). The laser generates an ultrasound pulse 

on one side of the specimen and an EMAT receptor is placed on the other side of the 
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specimen to measure the time of flight (TOF) of the ultrasound signal in order to evaluate 

the weld quality. They proved that their system can be used to measure weld reinforcement 

distance and therefore monitor and control weld quality in real-time. 

 

Figure 2.21 Automatic monitoring of weld quality using the EMAT technique [85]. 

Sattar, et al. [77] developed a robotic system for under-water inspection of oil tanks using an 

ACFM array probe for assessment of the weld surface (Figure 2.22). The robot is capable of 

maintaining its equilibrium and aligning its position over the weld surface by using four 

ultrasonic sensors. It is designed to operate both in air as well as under-water. The buoyancy 

tank on top of the robot maintains the robot’s balance through adjusting the buoyancy near 

to equilibrium by controlling its mass. The depth at which the robot operates is regulated 

using a depth sensor. The propulsion system consists of a servo controller along with a 

position encoder which gives position and velocity feedback to the robot’s main controller. 

Depth and horizontal position is controlled simultaneously to steer the robot to the 

inspection site on a wall or above a floor area.  
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Figure 2.22 Underwater robotic system using an ACFM array probe developed by Sattar, et al. [77]. 

They also developed a ring climbing robot prototype for inspection of offshore wind turbine 

blades using X-ray tomography in order to detect and characterise internal defects. The 

robot was primarily designed to reduce the high inspection cost and risk for human 

operators [78]. It can move in three different ways (straight up-down, spiral and rotation at 

constant height) by using adhesion forces provided by springs which push it against the 

climbing surface (Figure 2.23a). This has the advantage of reduced cost and simplicity of 

operation over other existing solutions used for climbing robots (e.g. vacuum suction, air 

vortex or magnets) [78]. The robot can therefore orient itself around the wind turbine blade 

at a given height and perform a series of 2D X-ray measurements over the desired section of 

the blade. 3D X-ray measurements are made possible by taking advantage of the rotation of 

the turbine blade along its long axis (Figure 2.23b). 
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(a) 

 
(b) 

Figure 2.23 (a) Demonstration of the ring climbing robot prototype used for inspection of wind 
turbine blades (b) Conceptual design for full scale climbing robot that takes tomographic scans by 
using rotation capability of the turbine blade along its long axis [78]. 

The idea of robotic NDT can be extended to the rail industry. According to the literature, this 

is not yet a broad area of research, as most rail inspections are carried out by human 

operators or by train mounted inspection systems. Although automation of rail inspection 

for defect detection has been made possible using trains carrying non-contact NDT sensors 

(e.g. EC, UT, EMAT), the defects found would need to be re-inspected by a skilled operator 

(using a walking stick type systems) for the detailed data needed for crack sizing.  Therefore 

there is a gap for an unmanned system, which could replace human operators and perform 

faster inspections, while the reliability of the inspection is not sacrificed. To date, 

automation of defect sizing has not yet been made possible because of several technical 

problems as follow: 

 Interpretation of data collected from NDT sensors is complex.  For example, in the case of 

the EC method, the sensor may also respond to changes in the rail’s metallurgical 

properties and therefore the location of the defect found needs to be confirmed visually; 
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 Uncertainties about unknown defects makes automatic sizing very challenging. For 

example, in the case of EC, MFL and ACFM the direction of induced current /flux would 

have to be normal to the crack length in order to produce optimal data for sizing;  

 Fundamentally, developing robots for automation of defect sizing requires multi-

disciplinary knowledge and access to different resources which must be gathered 

together in order to achieve such a system. Designing a system which keeps user 

interaction to a minimum in a semi-constrained environment as in the railway industry, 

demands expert’s knowledge which must be implemented on machines.  This makes it 

very challenging to achieve at the industry level.  

Recent research has proved that ACFM is a good candidate for automation of rail inspection 

(for both detection and sizing) for RCF cracks, as discussed in section 2.3.8.  However, in 

order for an unmanned system to collect reliable and accurate data for an unknown crack on 

a rail which may be subject to an unpredicted level of wear, the following requirements have 

to be met:  

 The ACFM scan must be performed at a constant lift-off;  

 The ACFM scan must be performed along the crack opening; 

 The ACFM probe must be oriented normal to the rail surface. 

These requirements have been graphically explained in Figure 2.24.  
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Figure 2.24 Graphical illustration of automatic ACFM scan for crack sizing. 

2.5. Summary 

In this chapter the current state of rail inspection using the NDT techniques along with their 

associated signal processing has been reviewed, a summary is presented in Table 2.1. Each 

technique has its own strength making it suitable to target a specific type of defect for either 

detection or characterisation or both depending on the nature of the technique used. For an 

inclusive assessment of the rail, however, different NDT techniques may be combined 

together (known as NDT data fusion [26, 86]). 

RCF cracks are a major concern to the rail industry and should be taken more seriously than 

before as the demand for higher speed and axle load trains is increasing.  

Amongst other NDT techniques (e.g. MFL, EC and PEC), ACFM has shown to be most feasible 

for both detection and characterisation of RCF cracks due to its combined advantages as 

discussed earlier in this chapter.  

At present, expert rail inspectors are used in order to manually verify the defects detected at 

speed. This must take place before any decision on track maintenance is made in order to 

minimise track down-times and also unnecessary repairs due to non-critical defects. The 
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combined advantages of the ACFM technique enables its automation and hence, robotics 

and AI can be combined together to enhance the speed, reliability and accuracy of the 

automated ACFM inspection. 

Table 2.1 Summary of the NDT methods and their associated signal processing.  

Method Signal processing Applications 

VI 
Image processing + machine vision technology [19], 

Image processing + local normalisation [18] 

Rail component detection and  defect 

identification, discrete surface detection 

UT 

guided 

waves 

WT  + ANN [34, 87], WT + SVM [35] 
Automatic detection and classification of 

transverse and oblique defects 

EC, PEC 
FT + WT + ANN + SVM  [43, 88], 

WT + time heuristic + inverse filtering [38] 

Automatic detection and classification of 

surface and near surface defects 

MFL WT [89, 90] 
Automatic detection of vertical split head 

type defects in rails 

ACFM 
Fuzzy logic [63], Non-linear optimisation [59, 60], 

ANN [62, 91] 

sizing of surface breaking cracks, 

estimation of crack depth profile 
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Chapter 3. Development of a Robotic System 
for Inspection of RCF Cracks in Rails  

3.1. Introduction 

The primary aim of this research is to develop an unmanned system to enable automation of 

RCF crack inspection using the ACFM technique. Specifically, a robotic trolley is desired 

which should be capable of performing both detection and characterisation where the 

former is used to locate RCF cracks in rail while the latter is needed to collect more detailed 

data on the unknown cracks for accurate sizing. These functionalities may be performed by 

machines provided they are given the required knowledge.  

For detection scanning, the necessary knowledge are the initial ACFM sensor lift-off, initial 

orientation of the ACFM sensor with respect to the rail length, the inspection distance and 

speed which are all fixed throughout the detection process. For characterisation scan, the 

ACFM sensor trajectory, orientation of the ACFM sensor relative to the defect and scanning 

speed are the required knowledge. These are (except the last one) not initially known due to 

uncertainties in rail profile and defect’s orientation which may cause significant sizing 

inaccuracy, if not accounted for.  

Therefore, the main objective of this research is the design of a platform for implementing 

the necessary AI and its integration with a machine which is capable of performing 

inspection tasks and also minimising its reliance on expert operators, especially when the 

knowledge is not present. This need has been accomplished by developing a robotic trolley 

utilising a number of commercially available and developed hardware components, sensors, 
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sophisticated signal processing/algorithms and a software interface developed for 

unmanned control of the robotic trolley.  

3.2. Rule-Based Expert System 

In a rule-based expert system (RBES), human knowledge is given to machines as a rule that is 

“defined in an  IF-THEN structure that relates given information or facts in the IF part to some 

action in the THEN part” [92]. In these rules, the IF parts are called the antecedent (premise 

or condition) while the THEN part is called the consequent (conclusion or action) [92]. A rule 

can generally be constructed by combining many antecedents joined by the logical AND 

(conjunction), OR (disjunction) or both. It should be noted that the action may represent 

relations, recommendations, directives, strategies and heuristics [92].  

In RBES, an inference engine (i.e. computer software) is used to derive the actions from the 

knowledge base (i.e. IF-THEN rules) which in turn acts on the facts that are provided either 

by prior knowledge or by sensor measurements. The explanation facility informs the user of 

the rules that are being fired and also it keeps track of how the system arrived at a certain 

conclusion. It also helps with troubleshooting and debugging the system upon its failure. This 

is facilitated by, for example, displaying a specific message on the user interface or by an 

event logging mechanism. Figure 3.1 shows the block diagram representation of a RBES.  
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Explanatation 
Facilities

User Interface

User

 

Figure 3.1 Structure of a rule-based expert system [92]. 

Researchers have applied RBES to a wide range of applications including: production 

planning [93], automobile process planning [94], system development [95], knowledge 

representation [96], communication system fault diagnosis [93], probabilistic fault diagnosis 

[97] and robotics [98],  just to name a few.  RBES is an ideal choice for domain specific 

problems where knowledge is directly tied to the inference engine (i.e. no separation 

between knowledge and problem solving) and is therefore very feasible for implementation 

[92]. Its disadvantages, however, are (a) it fails once the application domain is expanded (b) 

updating the knowledge base requires re-programming. 

3.3. Software/Hardware Developments and Methods 

To serve the purpose of this research, using C++, intelligent user interface (IUI) software has 

been developed (Figure 3.2). The software has been based on the conventional RBES as the 

aim is to develop a system specifically for rail inspection with predetermined functionalities.   
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The IUI is used to autonomously control the inspection trolley as shown in Figure 3.3 and 

serves as an inference engine where all the real-time data logging, analysis, optimisation, 

decision making and supervision occur. It exploits the multi-threading capability of the C++ 

language (best performed on a multi-core CPU computer) so as to communicate with the 

sensor and actuator agents concurrently. Figure 3.4 shows the block diagram of the IUI.  

 

Figure 3.2 Screenshot of the developed IUI software. Labels: 1  explanation facility, 2  function for 
aligning the robot’s tool centre point with the global coordinate system (manual mode), 3  function 
for moving the tool centre point to a predetermined reference point (manual mode), 4  function for 
setting the current location as a reference point (manual mode), 5  functions for changing the 
alignment of the robot’s tool centre point relative to its current pose defined by three rotational 
components (manual mode), 6  function for translating the tool centre point relative to its current 
location defined by three linear components (manual mode), 7-11  see Appendix, 12  function for 
switching between manual and automatic mode, 13  function for measuring the rail head profile 
(manual & automatic), 14  function for performing a 3D ACFM grid scan following the rail head 
profile at a constant lift-off (manual & automatic), 15  function for performing an ACFM detection 
scan along a rail at a constant speed using the motorised trolley (automatic mode).               
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Figure 3.3 Image of the developed robotic trolley at the University of Birmingham. Labels: 1  Motion 
Controller Agent, 2  Robot Arm Agent, 3  ACFM Sensor Agent, 4  Laser Sensor Agent, 5  IUI 
Software. 

Motion 
controller  

agent (3.3.4)

Robot arm 
agent (3.3.1)

Laser sensor 

agent (3.3.3)

ACFM sensor 
agent (3.3.2)

Ethernet
RS232

RS232 RS232

IUI Software

 

Figure 3.4 The block diagram representation of the IUI software communicating with the sensor and 
actuator agents. RS232 is the standard protocol used for serial communication with a PC.  
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The laser sensor, ACFM sensor and robot arm are commercially available, whereas the 

motion controller agent has been developed by the author. The IUI operates in either 

manual or automatic mode. The manual mode has been extensively used to acquire ACFM 

measurements in the laboratory (static test) and also to demonstrate the following 

functions:  

 Robot arm alignment and calibration with respect to the rail; 

 Rail profile measurement and conditioning; 

 1D/3D ACFM scan using the robot arm over defects following the measured rail profile at 

the user specified lift-off value; 

 Crack surface angle calculation from 3D ACFM grid scan data. 

The automatic mode is designed for dynamic inspection of a rail and includes both detection 

and characterisation scans. In this mode the IUI acts in a supervision mode where it 

automatically controls the flow and order of the mentioned functionalities. 

The sensor and actuator agents used in the robotic rail inspection system are controlled by 

software agents which are essentially routines. These are the main routines that run on 

separate threads dedicated to them and are created upon request from the main 

supervisory thread. This allows the agents to be controlled simultaneously, resulting in 

improvement of the software’s real-time performance and reduction of latency. However, 

there are cases where some routines would have to wait for others to finish processing. The 

number of required routines is dependent on the nature of the task requested by the user.  

These are illustrated in Table 3.1. The main routines may also call other sub-routines which 

are hidden from the user.  
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Table 3.1 Explanation of the software agents (routines) used to communicate with the hardware 
(sensor and actuator) agents. Parallel blocks represent the multi-threading characteristics. 

Tasks Name of routine 
The order in which hardware agents are 

accessed 
Prerequisite 

Robot arm 
calibration 

“Calibrate” 
Laser sensor

Robot arm
 

- 

Rail profile 
measurement 

“MeasureProfile” 
Laser sensor

Robot arm
 

Call to routine 
“Calibrate” 

3D ACFM scan 
over rail 

“RScan” 
ACFM sensor

Robot arm
 

Call to routine 
“MeasureProfile” 

Automatic 
detection scan 

“LScanDetect” 

ACFM sensor

Motion 
controller

 

The user must input 
the corresponding 

data 

Automatic 
characterizatio

n scan 
“AutoScan” 

Motion 
controller

Laser sensor

Robot arm Robot arm

ACFM sensor

 

The user must input 
the corresponding 

data 

3.3.1. Robot Arm Agent 

The ACFM sensor, from the point of view of automatic RCF crack characterisation, needs to 

be given enough flexibility so as to adapt itself with different conditions arising from either 

changing rail track geometry (due to wear) or unknown RCF crack (e.g. varying crack surface 

angle) which may not be predicted. Specifically, a robot with at least five DOF is required in 

order to meet the requirements set out earlier in Chapter 2 (section 2.4). The required DOFs 

are explained in Table 3.2 with regards to a fixed Cartesian coordinate reference frame     

where the   axis is aligned with the rail length.  
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Table 3.2 Explanations of the DOFs required by the ACFM sensor for automatic RCF crack 
characterisation. 

DOF No. Purpose 

1 Moving the ACFM sensor along   axis 

2 Moving the ACFM sensor along   axis 

3 Moving the ACFM sensor along   axis 

4 Aligning the ACFM sensor  parallel to the crack length 

5 Aligning the ACFM sensor normal to the rail surface 

These necessities have been facilitated by using an existing six DOFs Kawasaki FS02N robot 

arm which is equipped with a controller. It is worth mentioning that, desirably, a customised 

robot fit for purpose could have been developed. However, this has not been considered in 

this research due to time limit.  

The robot may be controlled by calling a series of instructions written in the AS language. 

These instructions are transmitted to the robot through the TCP/IP internet protocol. 

Multiple instructions may be also executed by calling a dedicated program saved in the 

robot’s memory which stores all the desired instructions. This approach is beneficial where 

the number of instructions is relatively high and it therefore offers faster execution because 

of reduced data transfer time. The instructions may be a movement or sending feedback on 

a desired parameter such as the tool centre point’s position or orientation. There are two 

modes of movements defined for the robot; they are       and      . The former 

initiates a linear interpolated motion and the robot tool centre point moves along a straight 

line path whereas the latter initiates a joint interpolated (point-to-point) motion. The robot 

moves in a path that interpolates respective joint angles between the current position and 
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the destination position. However, in this study, the       mode is used since the linear 

motion between consecutive data points on the rail head is desired; moreover, the target 

position and orientation of the robot’s tool centre is known (through a priori rail profile 

measurement and calibration of alignment). 

3.3.1.1. Robot’s Coordinate System 

The position of the robot’s tool centre point can be represented either by six joint angles or 

by defining its 3D position along with orientation, altitude and tool (   ) angles all 

measured with respect to the fixed     reference frame at the robot base as illustrated in 

Figure 3.5. The positions can either be defined with respect to the fixed reference frame 

    or they can be defined with respect to the robot’s tool reference frame     which is 

referred to as a compound transformation. When the latter is used, all the data points are 

measured with respect to a reference point (Figure 3.6). This is quite advantageous in 

dynamic environments where objects change their position with respect to the robot. Using 

the compound transformation, the data points on the desired object can be easily accessed 

by updating only the position of the reference point. 
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Figure 3.5 Illustration of the Kawasaki FS02N robot arm and its coordinate system.  
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Figure 3.6 Illustration of compound transformation. 

3.3.1.2. Data Transformation 

The profiles of rails to be inspected will be measured by the laser sensor agent in terms of 

discrete data points in a 2D Cartesian coordinate system with respect to the robot’s fixed 

reference frame     (explained later in section 3.4.2). The OAT angles are then calculated in 

the software in such a way as to satisfy the following conditions: 

 The ACFM probe needs to be normal to the rail head profile; 

 The ACFM probe’s orientation needs to match the crack surface angle. 

These conditions are illustrated in Figure 3.7.  

t
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(b) 

Figure 3.7 Graphical representation of the ACFM probe’s conditions being: (a) normal to rail surface 
and (b) parallel to the crack opening.  
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 The above conditions are mathematically expressed as: 

   ⃗⃗⃗⃗  [

   ( )

    ( )   ( )

    ( )   ( )
]

   

 (3.1) 

where    ⃗⃗⃗⃗  is the tool reference frame’s    direction measured with respect to the robot’s fixed 

reference frame    ,   is the crack surface angle with respect to the rail length and   is the 

angle of tangent line to the rail head profile with respect to   axis, at the desired point. 

Using the     notations, it follows that:  

   ⃗⃗⃗⃗  [

   ( )   ( )

   ( )   ( )
   ( )

]

   

 (3.2) 

Equations (3.1) and (3.2) may be solved simultaneously to give the angles   and  . As 

anticipated, it can be observed that the tool angle   has no effect on the   ⃗⃗⃗⃗  direction. 

However, it appears in the tool reference frame’s   direction   ⃗⃗⃗⃗  with respect to the fixed     

frame given as: 

   ⃗⃗ ⃗⃗  [

   ( )   ( )   ( )     ( )   ( )

   ( )   ( )     ( )   ( )   ( )

    ( )   ( )
]

   

 (3.3) 

The tool angle   may then be obtained by setting the   component of    ⃗⃗⃗⃗   direction to zero 

in order to orient the ACFM probe normal to the rail surface. Therefore, the     angles are 

calculated in the software in the closed form as:  

 {

       (    ( )   ( ))

        (    ( )   ( ))

        (   ( )   ( ))

 (3.4) 
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In Equation (3.4),   is fixed while   varies across the rail head and needs to be updated for 

every single point on the rail head profile. Using the compound transformation, the points 

on the rail profile may be given as: 

 
[

  

  

  

]    (
 

 
)  [

 
  

  

] (3.5) 

where    is the 3D rotation matrix about the   axis and     and    are the   and   coordinates of 

the rail profile at a certain point measured with respect to the fixed frame. Therefore the points 

are given to the robot as: 

    (              )         (3.6) 

where   is the number of the points on the measured rail head profile. The robot arm 

controller then computes the corresponding individual joint angles through its built-in 

inverse kinematic model. 

3.3.2. ACFM Sensor Agent 

The 5 kHz single probe ACFM sensor (Figure 3.8a) along with the AMIGO instrument (Figure 

3.8b) supplied by TSC Inspection Systems have been used in this research. The sensor 

features two coils measuring the component of magnetic flux in two directions    and   . It 

interfaces to a PC via a standard RS232 serial port at 19200 bps and can be set to either 

sample the data (16 bits resolution) once or continuously at a controlled interval 

(minimum 10 ms). The latter has been used as it best suits the application. The sensor can be 

also set to output the moving average data over an adjustable number of data points (the 

default is 20). This helps to improve the resolution of the data when the speed of the probe’s 

movement is relatively low (20 mm/s with the robot arm). However, for the detection scan 



Chapter 3. Development of a Robotic System for Inspection of RCF Cracks in Rails 

62 

where the robot arm is fixed and the trolley moves at much higher speeds (e.g. 5 km/h) this 

value has been set to its minimum. The maximum inspection speed      (km/h) is dependent 

on operating frequency of the ACFM probe and can be approximated by the following 

equation: 

      
   

   
 (3.7) 

where   is the sampling frequency (kHz) and   is the ACFM signal wavelength (mm) due to a 

crack. For a 50 kHz probe and a wavelength of 10 mm, the maximum inspection speed is 

approximately 139 km/h provided that the sampling frequency is the same as the operating 

frequency. In practice, however, the actual limit is lower than the predicted value as the 

sampling frequency is reduced to improve the signal quality (e.g. down-sampling and 

averaging). The sensor transmits the data in packets of seven bytes, Table 3.3. The IUI 

dedicates a separate thread for ACFM data sampling which is initialised before the ACFM 

scan is started.  

Inducer coil

Bx sensor coil
Bz sensor coil

 
(a) 

 
(b) 

Figure 3.8 (a) The ACFM 5 kHz micro pencil probe and (b) the ACFM AMIGO instrument [99].  
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Table 3.3 The representation of ACFM sensor data format. 

Data Number of bytes 

> Character 1 

Checksum 1 

   2 

   2 

Carriage return character 1 

3.3.3. Laser Sensor Agent 

Laser sensors have been widely employed in unknown environments for various purposes 

such as object recognition, obstacle detection and localisation, pose estimation and surface 

pattern extraction [100-105]. In this research, the ILD 1302-20 laser triangulation 

displacement sensor supplied by Micro-Epsilon® has been used. It helps to accurately 

measure the rail head profile (Figure 3.9). It also assists the robot arm to calibrate its 

orientation with respect to the rail; this eliminates any uncertainties about the correct 

alignment of the robot (and hence the ACFM probe) when a characterisation scan is to be 

performed. Further, it ensures the desired ACFM probe lift-off and orientation are achieved, 

which plays a crucial factor in the reliability of the ACFM data in the absence of an expert 

human operator.  

The laser sensor is interfaced to a PC via a serial port (a library file is provided) and transmits 

the moving averaged data (10 μm resolutions) at 115200 bps sampled at 750 Hz. In order to 

correctly measure a distance, objects (in this case the surface of rail) must be placed in the 

range of 30-50 mm from the measuring lens otherwise the sensor outputs a negative value. 

The distance is measured by issuing a polling instruction to the sensor which stores the 

measurement in a double precision floating point number in the range 0-20 mm which must 

be added to 30 to provide the actual distance from the object. It should be noted that the 
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resultant accuracy of the profile measurement is decreased to 0.1 mm (accuracy of the 

robot) when the laser sensor is integrated with the robot arm’s end effecter. A dedicated 

thread is used in the IUI for reading the data from the laser sensor. 

 

Figure 3.9 Image of the Micro-Epsilon ILD 1302-20 laser triangulation displacement sensor [106].  
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3.3.4. Motion Controller Agent 

Using a PIC18F4431, a programmable interface controller (PIC) based closed loop control 

sequence has been developed to control the trolley’s speed and position (Figure 3.10). The 

developed firmware and hardware regulates the speed of the variable frequency drive (VFD) 

through an analogue input to propel the motorised trolley. It also provides the IUI with 

information on instantaneous position and speed of the trolley. Figure 3.11 shows the block 

diagram representation of the motion controller agent.  

 

Figure 3.10 Illustration of the motion controller agent and its components. Labels: 1  Developed 
position/speed controller, 2  position feedback signal from odometer, 3  RS232 serial I/O port, 4  
Analogue output, 5  emergency stop signal, 6  ABB VFD inverter, 7  three-phase AC motor used to 
propel the trolley.  
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Figure 3.11 Block diagram of the closed loop motion controller agent. 

3.3.4.1. Motion Feedback 

Rotary encoders have been widely employed at both research and industry level to provide 

cheap and accurate position/velocity measurement at millimetre-level accuracy [100-103, 

107]. However, the likely wheel-slip (due to a reduced adhesion force at the measuring 

wheel contact surface) may result in significant position/velocity error which reduces their 

reliability. A number of solutions have been proposed in the literature to tackle this problem. 

In this research, the problem of wheel-slip has been avoided by attaching the sensor to a 

separate measurement wheel spring loaded to avoid wheel slippage. The amount of spring 

pre-load has been calculated based on a maximum expected acceleration/ deceleration and 

a worst case scenario where adhesion force (static friction coefficient) at the wheel-rail 

contact are reduced to its minimum. 

 A Miniature Type 2400 encoder supplied by Kubler Group has been used which generates 12 

bits resolution pulses representing the incremental rotation of the measuring wheel. The 

encoder produces three logical signals in the form of quadrature that are QA, QB and INDEX. 

The incremental position of the rotating shaft connected to the measuring wheel may be 
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obtained by counting the number of pulses generated by QA or QB. The absolute position 

may also be obtained by counting the INDEX pulses representing the number of revolutions. 

Further, there is a 90  phase offset between the QA and QB signals. This information is 

exploited to give the direction of rotation; if the former lead the latter then the direction of 

travel is forward otherwise is backwards (Figure 3.12).   

 

Figure 3.12 Quadrature encoder interface signals [108]. 

The microcontroller used supports a quadrature encoder interface (QEI) hardware module 

which has been used to decode these three signals to provide real-time information on 

position and velocity of the trolley. The QEI module enjoys a 16 bits time-base register which 

can be configured to be incremented on every rising edge of the QA signal. The counter is 

reset when its value reaches the maximum number of pulses per revolution specified by the 

user (1024 in this case) and is stored in another 16 bits register. The QEI module also 

features a number of hardware interrupt-driven registers which are used in the firmware to 

provide information about the absolute position of the rotating shaft. The QEI registers are 

described in Table 3.4. This information has been put together in the firmware to calculate 

the instantaneous position and speed of the trolley and transmit it to the IUI. 
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Table 3.4 Summary of the hardware registers used in the QEI module for PIC18F4431. 

Register name Size (bits) Function 

MAXCNT 16 
Storing the maximum number of pulses per revolution specified by 

the user upon initialization of the IUI 

POSCNT 16 
Storing the accumulated pulses generated by QA. It resets to zero 

once the maximum number of pulses is reached 

QEICON (UP/ DOWN ) 1 
A bi-state register indicating the direction of rotation, 1 for forward 

and 0 for reverse 

PIR3 (IC2QEIF) 1 
The register flag is set at every INDEX pulse and must be cleared in 

the firmware 

3.3.4.2. Position Controller 

A proportional (P) controller has been found to be appropriate for this application due to its 

relatively rapid response time, simplicity and easy implementation. The controller output is 

linearly proportional to position error ( ) which is defined as difference between target 

position (  ) and the current position (  ) measured using the rotary encoder as given by 

Equation (3.8). The P controller has been tuned online using the Ziegler-Nichols method 

[109]. For a specific location on the rail track where a characterisation scan is required, the 

IUI moves the trolley to the desired location. In the process, the set point signal (target 

position) is transmitted to the controller which continues regulating the speed of the trolley 

until the steady state position error (SSPE) < 30 mm. Meanwhile, the IUI goes into an idle 

state until it is informed that the position convergence criterion has been met. The SSPE may 

then be compensated for by the robot arm (a SSPE beyond 50 mm will not be tolerated by 

the system as some scan points may fall outside the work space of the robot). Figure 3.13 

shows the control strategies implemented in the microcontroller.  
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 {
        

             (3.8) 

where     is the proportional constant (experimentally tuned) and   is the corresponding 

control voltage output from the controller.  
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Figure 3.13 Flow chart demonstration of the control sequences implemented on the microcontroller 
running at 20 MHz (using external clock).  
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3.4. Functionalities of the Developed Robotic System 

The functionalities of the software agents used in the IUI are discussed here. These include 

robot arm calibration, rail profile measurement, 3D ACFM scan, crack surface angle 

detection and 1D ACFM scan for sizing the defect. These functions are used in both manual 

and automatic modes. In the manual mode, for a 3D ACFM scan, they should be called in 

sequence; firstly the robot arm is calibrated to avoid any misalignment (the users may skip 

this step if not needed but is always performed in automatic mode), then the rail profile is 

measured with the robot arm and lastly the 3D ACFM scan over the measured profile may be 

initiated.  

3.4.1. Calibration 

The robot arm should be calibrated to alleviate the adverse effect of the robotic system’s 

lateral movement introduced during travel of the trolley to the defect location. This helps 

increase the reliability of the rail profile measurement and also the automatic ACFM scans in 

the process of automatic defect characterisation. The calibration is required for both the   

and   angles which are initially set at 0  and 90 , respectively.  

3.4.1.1. Orientation Angle 

Initially, the robot arm is instructed to move from its current location point   , to point    as 

shown in Figure 3.14. Then, using the laser sensor and robot arm, a two-point based 

calibration is carried out. These two points (   and   ) are apart by distance   along the tool 

direction (  ⃗⃗⃗⃗ ). In the first measurement the laser sensor records the current height    at the 
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point   . The second measurement (  ) is then taken after the robot arm has moved to the 

point   . The orientation angle offset    may be calculated as: 

          (
     

 
) (3.9) 

 

Top view

d

h0

h1

The field side

P2

∆O 

P1

P3

 

Figure 3.14 Two-point based calibration approach for the orientation angle. The robot’s tool angle for 
points    and    has been set to -90  to make the laser sensor face the field side of the rail. 

3.4.1.2. Attitude Angle 

Subsequently, the robot arm moves to its initial location (   ) at the corrected orientation 

angle (  ) defined by Equation (3.9). Then the   angle is calibrated similarly using the 

previous approach; the current height is first measured as    at the point   , then the robot 

arm moves to the point    followed by the new measurement of height     at this point 

(Figure 3.15). The attitude angle offset is therefore calculated as: 

          (
     

 
) (3.10) 

 

∆A 

d h2

h3 P1

P4

Side view
 

Figure 3.15 Two-point based calibration approach for the attitude angle.  
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A specific program has been developed to facilitate the robot’s movement to the points at 

which the laser measurement is taken. The program is stored in the robot’s memory and 

contains a number of instructions written in AS language. It may be called through the IUI 

software by sending an appropriate command. The robot first moves to the desired location 

and informs the IUI of its arrival by sending a specific message and goes into an idle state 

until notified to proceed to the next point. At the same time, the IUI takes a laser 

measurement of the current height, once the message is received. It then informs the robot 

to move on to the next point. The process is repeated until all the necessary measurements 

are taken. The algorithm is described in Figure 3.16. 

Start

Initialise the laser 
sensor and start 

the sampling

Call the calibration 
program in the robot 

memory (AS)

Measure the current height and 
assign it to hi

Increment i
Send “STATE =1” to the robot

i = 0

N

End

Wait until the “OK” 
message is received 

  i == 4 ?

Y

Wait until the 
“Program completed” 
message is received 

 

Figure 3.16 Process flow chart representation of the “Calibrate” function in the IUI.  
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3.4.2. Profile Measurement 

It is known that in order to accurately characterise the detected defects the ACFM probe lift-

off should remain constant and also that the ACFM probe should be normal to the surface of 

the specimen under inspection. The fact that RCF cracks often appear on the gauge corner of 

the rail, where the curvature changes significantly, makes it essential to measure the rail 

head profile to take into account the lift-off variation caused by any geometry change. A 

local measurement of the profile is required, rather than using a standard 'new' rail profile, 

as the repeated wheel-rail contact in service results in wear and changes to the rail profile 

(Figure 3.17). 

 

Figure 3.17 Rail head profile of in-service rails (BS113A) subject to different amount of wear. Rail A 
represents a new rail. 

The “MeasureProfile” function has been developed to receive and process the real-time data 

from both the robot and laser sensor. The function calls an AS program in the robot 

controller which when executed, moves the laser sensor from left to right in the   direction  

and sends the instantaneous horizontal coordinates ( ) back to the IUI software. Meanwhile, 

the IUI waits for incoming data from the robot and measures the distance from the rail 

surface once the data has arrived. The data from the robot and laser sensor are then 

combined to form a 2D rail head profile. These steps are outlined in Figure 3.18.  
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Y
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End
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Figure 3.18 Process flow chart representation of the “MeasureProfile” function in the IUI. 

It has been demonstrated that the accuracy of the laser profile measurement with the robot 

arm is comparable to that obtained using MiniProf, the commercial equipment for this 

purpose (Figure 3.19).  

 

Figure 3.19 Comparison between the robot and MiniProf measurement on UIC54 rail.  
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3.4.2.1. High Order Polynomial Fitting 

The rail profile is smoothed by fitting a high order polynomial defined by Equation (3.11) to 

the measured profile (Figure 3.20) which reduces the inaccuracies introduced due to surface 

noise (owing to surface roughness) and quantisation error, which have the potential to 

affect the alignment of the ACFM probe. The unknown coefficients of the fitted polynomial 

   (     ) are optimised using the Levenberg-Marquardt approach (a library file was 

provided) on the basis of minimising the quadratic cost function   expressed in Equation 

(3.12): 

   
   ∑    

 

 

   

     (3.11) 

   ∑ (     
 )

 

 

   

 (3.12) 

where     is the order of the polynomial to be fitted,   is the number of points on the rail 

profile and    and   
  are the measured value and the fitted value, respectively. There is no 

fixed rule for finding the optimum value of   , however, it may be experimentally found by 

plotting a standard deviation (SD) of residuals against polynomial order. An example is 

shown in Figure 3.21. It can be observed that the reduction in the SD of residuals for 

polynomial of orders beyond 16 is insignificant, thus a 16th order polynomial has been found 

to be appropriate in this study. The tangent angle (i.e. the angle made between normal to 

the rail surface at a given point and the   axis, as shown in Figure 3.7a) denoted by 

   (     ) is given by:  

         (
   

 

  
)       (∑     

   

 

   

)  (3.13) 
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In Equation (3.13) the derivative term is determined based on the fitted curve using an 

analytical approach rather than the numerical differentiation. This technique has the 

advantage of suppressing the measurement error and results in a smoother trajectory for 

the ACFM probe (Figure 3.22). 
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Figure 3.20 Demonstration of a 16th degree polynomial fitted to the measured rail profile. 

 

Figure 3.21 Plot of standard deviation of residuals against order of polynomial. 

 

 

Figure 3.22 Comparison between the numerical and analytical approach for calculating the ACFM 
probe’s tangent angle  .  
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3.4.3. RCF Crack Characterisation 

3.4.3.1. 3D ACFM Grid Scan 

Following the calibration of the robot arm and rail profile measurement, a 3D scan may be 

initiated. The scan is performed at constant ACFM probe lift-off and speed (defined by the 

user) while the ACFM probe follows the rail head profile. This condition is crucial in 

determining the orientation of an unknown crack and hence the accuracy and reliability of 

the crack sizing process. A scan region with uniform spacing in the   direction (Figure 3.23) is 

specified by the user through lower and upper limits on the rail head profile, although in 

automatic mode a default range is used. To accomplish this, the IUI first transforms the 

smoothed rail profile data using Equations (3.4) to (3.6) and then successively transfers them 

to the robot’s memory (using the TCP/IP protocol). Subsequently, the IUI calls an AS program 

(stored in the robot’s controller memory) developed for the ACFM 3D scan and records the 

ACFM signal at regular intervals (every 15 ms) once an appropriate signal is received from 

the robot. The process starts at the beginning of each longitudinal path on the measurement 

grid and terminates once the path has been swept (Figure 3.23). Consequently the ACFM 

probe advances to the next point on the rail profile and the procedure is repeated until the 

region is completely scanned. These sequences are depicted in Figure 3.24.  

 

Figure 3.23 Illustration of the scan region on the rail profile. Labels: 1  start of recording, 2  end of 
recording.   
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Figure 3.24 The process flow diagram of the “RScan” function in the IUI.  
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3.4.3.2. Crack Surface Angle Detection 

An angle offset between the ACFM sensor and crack results in an underestimation of the RCF 

crack's pocket length since the change of probe angle causes a reduction in the ACFM 

maximum signal reduction (   ) which is inverted to give the pocket length. This has been 

confirmed by a finite element method simulation study of the ACFM signal over a semi-

elliptical crack by Nicholson, et al. [65] as demonstrated  in Figure 3.25. The characteristic 

peaks in the    signal near the crack ends (due to an increase in the eddy current density) 

may be exploited to locate the crack ends and hence the crack surface angle by performing a 

3D scan (2D for flat surfaces) over the region encompassing the crack. It will be shown in the 

next chapter that in practice, the crack surface angle may be detected within an error of 5  

where the variation of the     signal to the angle offset between the probe and the crack is a 

minimum.  

 

Figure 3.25 The sensitivity of the maximum change in    value at zero lift-off to changes in the 
orientation of the ACFM probe relative to surface crack angle for a 15 mm surface length, 5 mm 
pocket length semi ellipse [65].  
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3.4.3.3. Searching Algorithm 

A fast searching algorithm has been developed that takes the 3D ACFM scans as an input and 

returns the crack surface angle as its output. The algorithm first finds the location of the 

minimum    signal within the scan region corresponding to the maximum depth of the crack 

and then the scan region is narrowed down by two searching windows based on a maximum 

possible crack length (25 mm in this case). These are the north-west and south-east regions 

(from the middle of the crack) where the crack ends are surrounded as shown in Figure 3.26. 

Then, the crack ends are found by searching the location of the maximum    signal within 

these windows. This method is beneficial as it eliminates the need for searching the entire 

scan region once the location of the maximum defect depth is identified. Alternatively, the 

crack ends may be found by searching the location of highest peak and lowest trough in the 

   signal where the rotation of eddy current takes place, nonetheless, it has been 

experimentally observed that this approach works reasonably well only for small angle offset 

and results in unacceptable error as the angle offset is increased. The accuracy of both 

approaches is discussed in detail in chapter 4 (4.3.2).  

X

Y

Searching 
windows

 

Figure 3.26 Demonstration of the searching algorithm and the    waveforms developed in the middle 
and near the ends of the crack. The location of maximum    signal indicates the crack ends in each of 
the searching windows.  
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3.4.3.4. 1D ACFM Scan 

The knowledge of a crack’s surface length is vital in the determination of the crack’s pocket 

length from the    signal. The surface length can be closely approximated by the distance 

between the characteristic peak and trough in the    signal [52] provided the measurements 

are taken along the crack opening at the correct probe angle.  

After the crack surface angle is detected through the searching algorithm discussed earlier, 

the IUI instructs the robot arm to move the ACFM probe in the corrected direction (Figure 

3.27) while the ACFM probe is maintained normal to the rail surface at the constant probe 

lift-off. In the meantime the ACFM measurements (   and   ) and the distance data are 

recorded in the IUI for accurate crack sizing.  

In the process, the ACFM probe’s path (discretized points) is constructed in the IUI software 

and transmitted to the robot’s memory. Then an AS program developed for moving the 

ACFM probe along the crack opening and sending back the probe’s current position is called. 

The ACFM measurements are recorded when an appropriate signal is acknowledged from 

the robot. Figure 3.28 schematises the ACFM sizing process in the IUI.   

ACFM probe

Direction of scan

Crack

 

Figure 3.27 Illustration of 1D ACFM scan for crack sizing.  
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Figure 3.28 The process flow representation for the 1D ACFM scan for crack sizing. 

3.4.4. RCF Crack Detection 

When operating in the detection mode, the robotic system travels at a moderate speed 

(4-20 km/h, set by the operator) whilst the robot arm holds the ACFM sensor in a fixed 

position at a pre-determined angle with respect to the running direction of the rail (e.g. 

this is typically set at an average angle of 52  based on reported range of RCF crack 



Chapter 3. Development of a Robotic System for Inspection of RCF Cracks in Rails 

84 

orientation [3, 8-10]) in order to maximise the likelihood of detecting RCF defects present in 

the rail.  

Any difference in the ACFM probe sensor angle and the crack’s surface breaking component 

with respect to the rail running direction will result in a reduction in the magnitude of the 

ACFM signal change (i.e. deviation from the background signal). However, the resultant 

crack signal should still be detected for probe offset angles of ±20° since the change in signal 

(with respect to the background) is predicted to be approximately 2.5% for a 5 mm pocket 

length crack at  ±20° offset [3], as discussed in Chapter 3 (section 3.4.3.2). The majority of 

RCF type cracks are reported to have an angle between 30° and 75° to the rail running 

direction [3, 8-10]. 

After the settings for the crack detection operation have been applied by the user (e.g. 

trolley speed, inspection distance and ACFM probe orientation), the IUI instructs the motion 

controller module to move the trolley over the inspection distance at a controlled speed 

whilst the ACFM sensor signal along with the position signal are sampled and stored in the 

software memory. Using 2GB of RAM, the software can store the inspection data for up to  

31 km of track running at an average speed of 5 km/h. A flow diagram for the detection scan 

is given in Figure 3.29.  
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Figure 3.29 The process flow representation for an automatic detection scan. 

3.5. Summary 

In this chapter, the process of design and development of a robotic trolley for automatic 

detection and characterisation of RCF cracks in rails using the ACFM technique has been 

systematically presented. The robotic trolley is autonomously controlled by the developed 

IUI software using AI based on a conventional RBES architecture. It can automatically deploy 

the robot arm to perform constant lift-off 3D ACFM grid scans conforming to the rail profile 

at a speed of 1-20 mm/s over unknown RCF cracks to obtain critical data needed for 

accurate sizing (e.g. crack surface angle, length). Using even grid spacing of 0.5 mm, a 3D 
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ACFM scan over a single defect takes approximately 240 s. This is followed by an automatic 

non-contact rail profile measurement at a repeatability error of 0.1 mm prior to the ACFM 

scan. These are demonstrated in Chapter 4.  

The robotic system can also inspect the rail track at a constant speed of 4-20 km/h to locate 

the RCF defects (automatic detection scans). Besides, it can automatically travel to the 

location of the detected defects with a position error of 30 mm and automatically use the 

robot arm to collect reliable and detailed data to characterise them (automatic 

characterisation scans).  These are demonstrated in Chapter 5.  
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Chapter 4. Case Study: Static Results 

4.1. Introduction 

This chapter discusses the first of the three case studies designed to demonstrate the results 

of several static experiments that have been carried out on rail samples containing artificial 

RCF cracks. The experiments mimic the real scenario of automatic crack characterisation 

where the position of the crack along the rails is identified using an initial detection scan run, 

as discussed in Chapter 3 (section 3.4.4) and later in Chapter 5 (section 5.4.1) while the 

inspection trolley is deployed to automatically survey the defective area to collect more 

detailed information, enabling accurate sizing of the cracks found. For each test, the robot 

first measures the rail profile near the defect and then performs a constant lift-off 3D ACFM 

scan over a user-specified region of the rail containing the crack. Several important factors, 

such as ACFM sensor lift-off, SNR, ACFM probe orientation and grid spacing have been 

investigated. Further, the performance of the searching algorithm for determination of an 

unknown RCF crack angle (i.e. the angle the surface breaking part of the crack makes with 

the rail direction) has been studied and compared with the simulation results. 

4.2.  Experimental Setup 

A UIC54 rail containing eight artificially-induced semi-elliptical cracks typical of light RCF 

cracks in rails [64] has been used as a calibration block for assessment of the accuracy of the 

crack sizing procedure (see Table 4.1). For each defect, the robot first measures the rail head 

profile using the laser sensor, as described in section 3.4.2, and then performs a 3D ACFM 
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scan over the rail profile in the 3D grid region specified by the user. Investigation on samples 

taken from in-service rail show that the RCF cracks form just above the gauge corner of the 

rail [110]. Therefore, in automatic mode, a default range of 30% of the rail profile width is 

used to ensure the scan region aligns with the RCF crack region.  Also, the accuracy of the 

searching algorithm has been assessed based on    and    signals for cases of both 

matching and non-matching probe angle. Further, the experimental measurements (   and 

  ) have been compared against predicted values based on COMSOL simulations of the 

ACFM signals for the same cracks used in the calibration block with the assumption of a flat 

rail surface [111]. 

Table 4.1 Schematic diagram and details of the calibration block. 

L

Top view

Side  view

a

b

(1) (2) (3) (4) (5-8)

K

 
 

Crack Number 1 2 3 4 5 6 7 8 

Surface angle (b) [   ] 48 45 37 34 32 32 32 32 

Surface length (L) [mm] 5 7 5 9 10 10 10 10 

Pocket length (K) [mm] 2 2 2 3 4 4 4 4 

Vertical angle (a) [   ] 90 30 20 25 25 25 25 25 
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4.3. Results 

4.3.1. Matching Probe Angle  

It is known that the ACFM probe’s initial angle   (Figure 3.7b), and hence angle made 

between the probe and the crack surface breaking length, affects the sensitivity of the signal 

to crack pocket length [64] and hence SNR in the case of experimental data given that the 

noise level remains constant. In this part of the study the probe angle was set to match the 

crack surface angle in order to obtain maximum field perturbations leading to optimisation 

of the SNR. 

Furthermore, the probe was held normal to the surface of the rail to ensure a constant lift-

off. The probe’s lift-off was held at 2 mm while moving along the length of the rail at 

10 mm/s. To acquire a reasonable level of background signal (  ), unaffected by the crack, 

the scan lines were chosen to be 70 mm long (defect centrally positioned within the scan 

lines which were spaced apart by 0.5 mm). Figure 4.1 shows the contour plots of the ACFM 

scans over cracks 1-4. For each case, the magnetic flux distributions    and    have been 

normalised based on Equations (4.1) and (4.2) and plotted over the scan region, where   and 

  directions are clarified in Figure 4.2.  

    
  

  

   

     
(4.1) 

    
 

        

     
     

     
(4.2) 
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Crack 1 

 
Crack 2 

 
Crack 3 

 
Crack 4 

Figure 4.1 3D representations of the robotic ACFM scans over UIC54 calibration rail at 2 mm lift-off, 
matching probe angle, 0.5 mm spacing between scan lines and scan speed of 10 mm/s.  
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Figure 4.2 Direction of the magnetic flux components as measured by the ACFM sensor.  
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The    and    contour plots shown in Figure 4.1 for each crack have similar general 

characteristics due to the distribution of the magnetic field in the   and   directions, as 

described in section 2.3.8. For the    signal, the magnitude deviates from its background 

value (i.e. signal in the absence of a defect) as the current passes the defect and reaches its 

minimum (the lowest value on each contour map) at the deepest point of the crack. For the 

   plot, the highest and lowest values on each contour map correspond to the defect ends, 

where the induced current rotates to pass the crack.  

It is known that the locations of the maximum and minimum    signals are associated with 

the crack ends (i.e. the crack surface length) [52] and this can be used to determine the 

angle of the defect to the rail length. The crack surface length may be roughly estimated 

simply by measuring the distance between the maximum and minimum    signal on the 

contour map (in practice, however, this calculation is based on a 1D ACFM measurement 

along the crack opening at a matching probe angle rather than grid scans). The crack ends 

are automatically found by the searching algorithm as described in section 3.4.3.3. It should 

be noted that the accuracy of the results are affected by noise as the searching algorithm 

works on the basis of maximum/minimum values. To reduce the adverse effect of noise, a 

simple first order low-pass filter defined by Equation (4.3) has been designed and applied to 

both    and    data.   

 
  

      

     
 

 

  (     )
    

 
(4.3) 

 
    

     

 
 

(4.4) 

where   is the filter gain (also known as filter transfer function),    is the sampling frequency, 

   is the normalized cut-off frequency given by Equation (4.4),   is the frequency components 

of the signal to be filtered,   is a complex number defined as √  ,   is the speed of probe 



Chapter 4. Case Study: Static Results 

92 

movement along the scan lines (mm/s),    is the sampling time (s) and   is the signal drop 

region due to crack (mm). A first order low-pass filter attenuates magnitude of signals whose 

frequencies are above the cut-off frequency    in a linear fashion (slope of -20 dB in 

logarithmic scale) as shown in Figure 4.3.  

 

Figure 4.3 Response of a first order low-pass filter using a cut-off frequency of 1 rad/s corresponding 
to   = 10 mm/s and   = 10 mm.  

While the calculation of approximate crack surface length is straightforward, there is not a 

single expression to relate the    signal to the crack pocket length, using the crack length, as 

the relationship depends on the crack shape. The existing methods either are based on a 

lookup table [112] containing different crack geometries that relate the    signal to the 

depth profile for a given crack surface length that were calculated theoretically, and for only 

a limited range of geometries, or are based on complex signal inversion algorithms; for 

example using neural network approaches [62, 63, 91]. In this experiment, the crack surface 
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estimated by curve-interpolation using first order (linear) approximation based on COMSOL 

simulations that have been carried out for semi-elliptical cracks (i.e. geometrically similar to 

those in the calibration rail) of different aspect ratios1 (Figure 4.4). The inaccuracy on crack 

pocket length can be further improved given they are aspect ratios reported for rail RCF 

cracks. 

Table 4.2 Comparison between the estimated and real crack parameters. 

Crack  

L (mm) b (  ) K (mm) 
L 

relative 
error 

% 

b 
relative error % K 

relative 
error % Est. Real 

Est. 

Real Est. Real Based 
on    

Based 
on    

Based 
on    

Based 
on    

1 5.7 5 42.8 49.3 48 1.6-2.4 2 14 10.8 2.7 0-20 

2 6.9 7 46.8 48.1 45 1.6-2.4 2 1.4 4 6.9 0-20 

3 5.9 5 41.5 33.5 37 1.3-2.0 2 18 12.2 9.5 0-35 

4 7.8 9 36.3 34.7 34 2.2-3.2 3 13.3 6.8 2.1 7-27 

 

 

Figure 4.4 Relationship between the normalised    signal and crack pocket length obtained from 
COMSOL simulations of the ACFM signal for semi-elliptical cracks of different aspect ratios and 
dimensions [65].  

                                                      
 

1
 The aspect ratio is defined to be the surface length divided by twice the pocket length. 
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For cracks 1-4, the estimated surface length and angle to the rail length agrees well (within 

20% error) with that of the actual crack surface length and angle. It should be noted that the 

accuracy of the results is influenced by the spacing between the successive ACFM scan lines. 

In this case a spacing of 0.5 mm has been used in order to achieve a good compromise 

between accuracy and scan time (a 3D scan over a single defect takes approximately 240 s).  

 

Despite good agreement (i.e. maximum error of 7% for pocket length using a known aspect 

ratio) being found for the estimation of crack surface length and angle to the rail axis, it is 

not feasible to estimate the crack propagation angle into the rail ( ) as the results do not 

show significant change for varying crack propagation angle (Figure 4.1 Crack 1 vs. Crack 2). 

This is however due to a fundamental limitation of the ACFM technique in predicting the 

crack propagation angle from the    signal, and has been reported in the literature [3].  

For the scans over the multiple cracks 5-8 with a nominal 4 mm spacing between each crack, 

the results do not show any clear indication (e.g. individual peaks and troughs as for isolated 

cracks) of multiple cracks (Figure 4.5a). Identification of separate defects in a cluster 

depends on spacing between individual defects  and also lift-off during inspection [113].  

 

As there is no differentiation of the separate cracks, using the    signals to determine a 

crack surface length and angle (based on the location of maximum and minimum values in 

the contour map) gives significant error (estimated surface length of 18.4 mm compared to 

each individual crack of 10 mm, and estimated angle of 10  compared to actual of 32 ). It 

can be seen from Figure 4.5a that the    signal shows a much broader signal, compared to 

the signal for cracks 1-4, indicating the presence of a wide defect.  The magnitude of the    

signal suggests a crack pocket length of 3.4 mm using a known aspect ratio of 1.25:1 on the 
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calibration curve, or of 2.8-4.0 mm based on the calibration curve and unknown aspect ratio, 

which compares to the true individual crack pocket length of 4 mm. 

 
(a) 

 
(b) 

Figure 4.5 (a) Contour plots for the ACFM scan over multiple cracks 5-8 and (b) comparison between 
single scan line data showing the maximum change in    signal for the multiple cracks and single 
cracks (1-4).  
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4.3.2. Non-matching Probe Angle 

To investigate the real scenario of automatic characterisation of an RCF crack at an unknown 

surface angle, a number of ACFM grid scans at different ACFM probe angle offsets have been 

carried out on cracks 1-4. The aim of the experiment was to assess the accuracy of the 

searching algorithm described in Chapter 3 (section 3.4.3.3) for prediction of an unknown 

crack surface angle and use this value for correction of the ACFM probe’s initial angle. The 

offset angles used were chosen in such a way as to include a typical deviation of 22.5  from a 

mid-range angle of 52  with respect to the rail length, as reported for the RCF cracks [3, 8-

10]. The values used in this experiment include -30, -25, -22, 10, 15 and 25  relative to the 

crack where the negative sign indicates an anti-clockwise direction. In each case, the ACFM 

probe was held at a constant lift-off and normal to the rail surface while the ACFM probe’s 

movement conformed to the rail head profile. The results were then compared against 

COMSOL simulations [111] using similar crack geometries and angle offsets used for the 

experiment except that an assumption of a flat surface was used in the model (Figure 

4.6 - Figure 4.9).  
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Figure 4.6 Comparison between experiment and simulation of 2D ACFM scans at two probe angle 
offsets for crack 1. The offset angles are measured relative to the crack. The white and black lines 
show the direction of crack length based on    and    signals, respectively.  
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Figure 4.7 Comparison between experiment and simulation of 2D ACFM scans at two probe angle 
offsets for crack 2. The offset angles are measured relative to the crack.  
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Figure 4.8 Comparison between experiment and simulation of 2D ACFM scans at two probe angle 
offsets for crack 3. The offset angles are measured relative to the crack.  
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Figure 4.9 Comparison between experiment and simulation of 2D ACFM scans at two probe angle 
offsets for crack 4. The offset angles are measured relative to the crack.  
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It has been shown in section 4.3.1 that in the case of matching probe angle, the crack surface 

length and angle may be obtained within an error of 20% and 13%, respectively. In contrast, 

in the case of non-matching probe angle, as the    contour maps suggest, the presence of an 

angle offset influences the location of maximum and minimum    in the contour map (the 

black line on the contour maps indicates the direction of the crack as calculated on the basis 

of maximum and minimum    points) owing to the fact that the rotation of eddy current 

occurs at locations other than the crack ends. This effect can be observed for both positive 

and negative offset angles and is more prominent for larger angle offsets (> 20 ). Hence, it 

would result in an unacceptable error (> 10 ) for calculation of crack surface angle using the 

   signal (Table 4.3).  

On the other hand, when using the    signal for the angle approximation, the error has been 

observed to be bounded within an acceptable range (  10 ) even for larger angle offsets 

(> 20 ) owing to the fact that the location of maximum intensity of the induced current 

density is still near the crack ends (approximately along the crack length) regardless of the 

decreased angle of attack to the crack length.  

Consequently, using the    signal for crack horizontal angle calculation suggests that the 

angle offset may be closely compensated for (within 10 ) and therefore the 1D ACFM scan 

for sizing may be performed at close to the optimum angle. This hypothesis has been also 

supported by the numerical results of the searching algorithm based on the COMSOL 

simulations [111] (Table 4.4).  
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Table 4.3 The numerical results of crack surface angle calculation based on the experimental 
measurements for cracks 1-4 using uniform grid spacing of 0.5 mm.  

Crack 
number 

Angle offset (  ) Real angle (  ) 

Angle est. abs. error (%) Angle est. abs. error (  ) 

Based on    Based on    Based on    Based on    

1 -22 48 5.4 26.4 3.0 13.0 

1 +25 48 9.5 30.1 5.0 14.0 

2 -25 45 0.1 41.6 0.0 19.0 

2 +25 45 11.8 47.3 5.0 21.0 

3 -25 37 10.8 48.9 4.0 18.0 

3 +10 37 5.2 10.4 2.0 4.0 

4 -30 34 8.9 23.5 3.0 8.0 

4 +15 34 3.2 22.4 1.0 8.0 

Table 4.4 The numerical results of crack surface angle calculation based on the COMSOL simulation 
for cracks 1-4 using a uniform grid spacing of 0.5 mm. 

Crack 
number 

Angle offset (  ) Real angle (  ) 
Angle est. abs. error (%) Angle est. abs. error (  ) 

Based on    Based on    Based on    Based on    

1 -22 45 7.2 29.1 3.0 13.0 

1 +25 45 7.1 40.5 3.0 18.0 

2 -25 45 2.0 30.3 1.0 14.0 

2 +25 45 8.0 25.0 4.0 11.0 

3 -25 28 15.0 43.3 4.0 12.0 

3 +10 28 3.1 33.3 1.0 9.0 

4 -30 37 7.7 31.1 3.0 12.0 

4 +15 37 2.7 15.3 1.0 6.0 

4.3.3. Effect of Grid Spacing 

The performance of the searching algorithm for different grid spacings and probe angle 

offsets is presented in Figure 4.10. In each case, the original data at 0.5 mm spacing has been 

re-sampled at wider spacings that are multiples of 0.5 mm. It should be noted that the scan 

region was chosen in such a way as to contain the crack while the starting position was 

selected randomly in order to mimic the uncertainty due to an unknown RCF crack. The 

results suggest that the grid spacing may be increased to 1.5 mm where the reduction of 

accuracy in crack surface angle is insignificant. Therefore the characterisation process may 

be performed three times faster than when using initial grid spacing of 0.5 mm. However, it 
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should be noted that the optimum grid spacing will vary with the crack surface length. It can 

be also seen from Figure 4.10 that for crack 4 (surface length of 9 mm) the grid spacing may 

be increased up to 4 mm where the error is bounded within 10 . For smaller surface lengths, 

closer grid spacings should be used to ensure the critical data corresponding to the middle of 

the crack and crack ends are sampled. In this study the minimum crack surface length of 

5 mm allows the use of wider (1.5 mm) grid spacing. However, in a real experimental 

scenario where the crack’s surface length is unknown to the robotic system, a closer spacing 

(e.g. 0.5 mm) should be used. It is also evident that the performance of the searching 

algorithm becomes unreliable for a grid spacing of greater than 2 mm. In fact, the accuracy 

of the algorithm is associated with the chance of performing a scan at the distance from the 

rail’s gauge corner that produces the maximum change in    signal. Increasing the grid 

spacing leads to a reduction of the probability at which a scan line containing the maximum 

   signal is achieved. 

 

Figure 4.10 Effect of grid spacing on crack angle calculation by the searching algorithm for different 
probe angle offsets.  
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4.3.4. Effect of ACFM Sensor Lift-off and Signal to Noise Ratio 

The probe’s lift-off plays a vital part in the accuracy of crack characterisation. Increasing the 

sensor lift-off lessens the sensitivity of the    signal to a defect, Figure 4.11. It can also be 

analytically shown [59, 91, 114] that in the frequency domain; a non-zero value of lift-off has 

a low-pass filtering effect on the crack surface signal (i.e. signal measured at zero lift-off) 

attenuating sharp variations in the    signal due to crack ends. For the scans along the crack 

opening at a non-zero lift-off, the surface    signal may be restored by the following 

equation: 

 {
 ̃ (     )    ̃ (      )     

   √     
 (4.5) 

where    is the lift-off,  ̃ (     ) is the two dimensional Fourier transform (FT) of the    

signal at the surface of the specimen,  ̃ (      )  is the two dimensional FT of the    signal 

measured along the crack at the lift-off    while   and   are the Fourier variables 

corresponding to   and   coordinates, respectively. Therefore the surface    signal may be 

computed by applying an inverse FT to the left hand side of Equation (4.5). 

 

Figure 4.11 Reduction of    signal due to increasing probe lift-off. The measurements were taken on 
UIC54 rail using the robot arm at different probe lift-offs and in the absence of a defect.  
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Equation (4.5) becomes very helpful in applications where a zero lift-off ACFM scan is not 

feasible, but for accurate crack sizing it is still required to use zero lift-off as the reference 

signal.  However, in this research, with the aid of the laser sensor and robot arm, the ACFM 

sensor lift-off can be accurately controlled at a desired value about which a reference signal 

(calibration curve) is available. Increasing the probe’s lift-off is a hardware-based approach 

in smoothing the data collected at the cost of attenuating the non-noise high frequency 

components in the    signal owing to crack ends where the induced current intensity 

increases. As the searching algorithm works on the basis of the existence of peaks in the 

scan lines, the lift-off may be increased to a maximum value where the peaks are still 

detectable.   

For this purpose, a number of transverse ACFM scans across the UIC54 rail head were 

recorded in order to determine the repeatability and accuracy of the robotic scans. The 

measurements were taken in the absence of defects at three different locations along the 

UIC54 rail and repeated three times each. The accuracy of the ACFM point measurements 

using the robot arm has been found to be 5 A/D units (16 bits resolution) as shown in Figure 

4.12. This enabled finding the maximum appropriate value for the probe’s lift-off.  In doing 

so, several robotic scans along the opening of a semi-elliptical crack at different lift-off 

values were taken as shown in Figure 4.13. It is evident that for the first and second crack 

(10x5 mm and 5x2 mm), the peaks in the    signal  are still detectable at lift-off value of 

3 mm while for the third defect (2x1 mm) they are missed for even 1 mm lift-off as the 

increment in the    signal is close to the measurement accuracy. Therefore, the maximum 

tolerable lift-off will depend on the crack pocket length. For characterisation of an unknown 

crack, it is therefore suggested to use the minimum lift-off possible (e.g. 0.2 mm).    
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(a) 

 
(b) 

 
(c) 

Figure 4.12 Demonstration of the repeatability of the ACFM point measurement (transverse scan 
from left to right) using the robot arm for three different locations along the UIC54 rail: (a) first (b) 
second and (c) third location.  
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           Robotic ACFM measurements over a flat plate containing semi-elliptical cracks 

 

Figure 4.13 Comparison of    signal for different lift-off values for robotic scans along the opening of 
three semi-elliptical cracks having aspect ratio of 1:1.  

4.4.  Summary 

In this chapter the results of static ACFM measurements on series of artificial RCF cracks 

using the developed robotic system have been discussed. It was shown that the ACFM 

probe’s lift-off and orientation must be controlled in order to accurately size the cracks 

(within 7% error based on a known crack aspect ratio).  It was also demonstrated that the 

ACFM probe’s lift-off and orientation can be accurately controlled by the robot arm through 

a priori rail profile measurement.  

In order to mimic the real scenario of an automatic ACFM scan over an unknown RCF crack, 

different initial ACFM probe angle offsets – based on a reported range of angles for real RCF 

cracks - were used. It was found that using the    signal, the unknown crack surface angle 

can be approximated to within 10  (where the change of the signal drop     due to angle 

offset is insignificant) by performing constant lift-off grid scans (using random starting 

points) over the measured rail profile for grid spacings of up to 1.5 mm. 
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Chapter 5. Case Study: using the Robotic 
System for Automatic Detection and 
Characterisation of RCF Cracks   

5.1. Introduction 

This chapter discusses the second of three case studies that builds on Chapter 4. It is 

designed to study the dynamic results of trials carried out at the Long Marston Railway line. 

The trials include both automatic detection runs to locate defects, automatic positioning 

over the defect and characterisation scans of the defect. Additionally, a combined threshold 

and signature match (CTSM) algorithm developed for automatic detection of RCF cracks is 

presented and the results of applying the CTSM algorithm to the field trial results to 

automatically identify defects are discussed.  

At present, the detection of surface breaking defects using ACFM is carried out manually 

using human operators (see section 2.3.8.3). For example as the ACFM walking stick is 

pushed along the rail track the output ACFM signal is visually observed and any sudden drop 

in the ACFM signal (  ) is detected by human eye and taken as an indication of a defect; the 

corresponding position along the length of the rail is then recorded. Vehicle mounted 

deployment of the ACFM technology is still under development where automated defect 

detections would be required [67].  
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5.2. CTSM Algorithm 

The use of thresholding for automatic defect detection has been very common within the 

NDT industry [115-134]. The technique is directly applicable on data for which the 

background level remains fairly steady. In such cases, by setting an appropriate threshold 

value on the signal of interest, the abnormal event (fault) can be detected once the data 

exceeds or falls below (depending on the nature of the application) the threshold value. This 

approach may be used to detect RCF defects from ACFM signal where the lift-off variations 

are fairly small compared to the crack pocket length (e.g. see results of turning lathe test by 

Papaelias, et al. [54]). In contrast, in the case of field trials, significant change of background 

level due to lift-off change (> 2 mm) would render the threshold algorithm ineffective. This is 

demonstrated in Figure 5.1 where the results correspond to the robotic ACFM detection 

scans at Long Marston Railway line containing a number of artificial cracks. Different 

threshold lines indicate deviation from the average    signal at different ratios that are 

multiples of standard deviation (SD) of the    signal. As it can be observed from Figure 5.1, 

setting a low threshold (e.g. 3SD or 4SD on the graph) may result in some defect signals 

(corresponding to a small signal drop) being missed while a high threshold (e.g. 1SD or 2SD 

on the graph) generates a lot of false indications. Therefore it is difficult to choose just one 

threshold that works well. This problem is even more pronounced in the case of high speed 

ACFM measurements as shown in Figure 5.2.  
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Figure 5.1 Demonstration of thresholding method for low speed detection of defects using the 
developed robotic system at the Long Marston Railway line.  The dashed lines show the thresholds 
used for defect detection. See Table 5.1 for the detailed explanation of the defects.  
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Figure 5.2 Demonstration of thresholding method for detection of defects from high speed ACFM 
measurements on rotating rail rig at 48 km/h using a 50 kHz probe [54]. Labels: RG   Rail Gap, ID   
Isolated Defect, CD   Clustered Defect. The dashed lines show the thresholds used for defect 
detection.  
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In the CTSM method, the signal reduction with respect to its local background level is 

considered. To achieve this, the signal is first smoothed by using a first order low-pass filter 

(discussed in Chapter 4, section 4.3.1) with a normalised cut-off frequency    given by 

Equation (5.1). The filtered signal is then shifted backward in the time domain by a speed 

dependent latency parameter   (integer number) given by Equation (5.2) and subtracted 

from the original filtered signal. This approach has an advantage of increased sensitivity 

(i.e. SNR) to defect compared to use of numerical differentiation (based on successive 

samples) and has been previously employed by Bentoumi, et al. [38] for automatic detection 

of rail surface defects  from EC sensor. Besides, it produces a differential signal for which the 

background level remains fairly steady (approximately near zero). The differential signal 

(Equation (5.3)) contains information on the variation of the     signal due to the presence 

of defects or rail joints. It also has a stable background (approximately near zero). Therefore, 

based on the signal variation from Equation (5.3) the presence of cracks can be detected by 

setting an appropriate threshold value.   

 In this research, the novel CTSM method is proposed to improve on the uncertainty 

introduced in the threshold method. In the CTSM method, candidate crack signals are 

identified by thresholding the     signal. Consequently, the candidate signals are examined 

by a non-linear curve fitting algorithm which attempts to fit a crack signature to the 

candidate signal. The crack signature is approximated by an analytical function 

(Equation (5.4)), which is the negated derivative of the generalised normal distribution 

function (Figure 5.3 top). The advantage of this approach over a simple threshold method 

based on the ACFM output signal is discussed in detail when considering the high speed 

ACFM data in section 5.4.2. 
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The unknown parameters of the crack signature      (     )  are found by the least 

square method using the Levenberg-Marquardt optimisation algorithm on the basis of 

minimising the cost function   expressed in Equation (5.5). The acceptance of each candidate 

signal is judged based on the quality of the fit (QOF), which is determined from the 

normalised norm of residuals (Equation (5.6)).  

      
 ̅  

 
 (5.1) 

     
 

 ̅  
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    ( )    ( )    (   ) (5.3) 

  ( )     (    ) 
   (    )
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     [(   
 

∑    ( )
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where   and   are dimensionless correction factors introduced to improve on the 

uncertainties due to using an average speed  ̅ (m/s),   is the signal drop region (m),    is the 

sampling interval (s) and     is a dimensionless integer value between 0 and 100 

representing the quality of fit after optimisation. 

 

Figure 5.3 Representation of the analytical signature for a     signal due to a single RCF type defect 
(top) and its analytical derivative     (bottom).  
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5.2.1. Avoidance of Local Minima Traps 

Due to the non-linear nature of the cost function  , several local minima may exist. If the 

parameters    are not correctly initialised, the algorithm may become trapped in local 

minima, which would result in misclassification of the candidate signals. In order to avoid 

this occurrence, prior knowledge about the behaviour of the parameters    has been 

exploited. To this end, the parameter    (used for scaling) is initialised as the maximum 

value of the     signal. The parameter    (used for dilation) controls the location of both 

the maximum and minimum in the     signal and is initialised according to Equation (5.7). 

Finally, the parameter    (used for shifting in the time domain) is initialised based on 

Equation (5.8).  

     
 

(         ) 
 (5.7) 

     
         

 
 (5.8) 

where      and      denote the location of the minimum and maximum in the     signal, 

respectively. Figure 5.4 shows the block diagram of the CTSM algorithm.  
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Figure 5.4 The process flow representation of the CTSM algorithm.  
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5.3. Experimental Setup 

For the purpose of this experiment, 30 m of rail track has been used for inspection by the 

robotic system (Figure 5.5). As there were no known RCF defects in the desired section of 

the track, several artificial defects of simple geometry were introduced at different positions 

along the rail track in order to mimic RCF cracks using a hacksaw blade (Figure 5.6).  The 

inspected section also contained two rail joints. The positions of these defects/joints were 

measured with respect to a fixed datum on the rail track; see Table 5.1. 

 

 

Figure 5.5 Photograph of the developed robotic system at Long Marston Railway.  
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Figure 5.6 The artificial defects of varying geometries on the rail track. The numbers represent the 
order in which the defects appear relative to the fixed datum. 

Table 5.1 Quantitative information on the artificial defects/rail joints. 

Fault type 
Position 

( ) 
Surface length 

(  ) 
Maximum 

depth (  ) 
Surface 

angle (  ) 
Approx. geometry  

(cross sectional view) 

Defect (Crack 1) 0.365 20 5 90  
Defect (Crack 2) 8.650 30 1.5 35  
Rail Joint 9.240 - - - - 

Defect (Crack 3) 18.000 20 2 27  

Rail Joint 20.230 - - - - 

Defect (Crack 4) 22.000 30 2 39  
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5.4. Results 

5.4.1. Low-speed Detection Scans using the Robotic Trolley 

The rail was inspected by the robotic system at a speed of 5 km/h while the ACFM probe was 

held at an initial lift-off of 3 mm and an angle of 52  with respect to the running direction. 

The results of two trials are shown in Figure 5.7 and Figure 5.8. As can be observed from 

Figure 5.7, in the first trial, the CTSM algorithm successfully detects three defects and both 

joints using a QOF > 60%, however, the second defect was missed. Non-fault signals that 

were above the threshold value (twice the standard deviation of the     signal) have been 

successfully ignored using a QOF ≤ 60%.  Similarly, in the second trial, run with identical set 

up parameters, (Figure 5.8), two defects and the two joints were detected; however the 

second and third defects were missed while some non-fault signals have passed the 

acceptance criteria. A more detailed plot of the candidate signals (CS) with QOF > 60% and 

≤ 60% is shown in Figure 5.9.  

The missed fault signals are due to the lateral movement of the ACFM probe (observed 

during the field trials) which results in a loss of sensitivity of the ACFM signal to a defect 

(either due to excessive lift-off taking place when the trolley hunts toward the gauge side or 

the fact that the ACFM probe didn’t pass over the defect – the    signal drop falls within the 

measurement accuracy when the distance from the centre of the probe to the crack end is 

less than approximately 2 mm). In addition, any sudden up-down movement of the probe 

either due to mechanical imbalance due to misalignment of the rail tracks at the rail joint or 

due to random oscillation of the probe during the motion (this was observed during the field 
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trials) has the potential to develop a crack-like signature as the ACFM signal is lift-off 

dependent. 

There is no fixed rule for choosing a threshold value for the QOF. In this research, an 

intermediate value of 60% has been chosen experimentally. Generally, using an intermediate 

threshold value as used here has an advantage that most of the real crack signals can be 

detected while the number of false indication is kept to a minimum.   

It should be noted that even in the case of a using a very low threshold for the QOFs, the 

CTSM algorithm offers better performance than the simple threshold method. In other 

words, despite lift-off change, number of misdetection can be reduced to zero provided the 

ACFM probe passes over defect at the required lift-off. Also, the number of false detections 

would be comparably smaller than the threshold method as they only contribute to the 

sudden up-down movement of probe rather than a gradual lift-off change. The performance 

of the CTSM algorithm is summarised in Table 5.2. 

The limitations due to ACFM probe lift-off and trolley hunting could be addressed using 

ACFM array sensors to cover wider area of the rail head. Further, the number of false 

detections due to sudden up-down movement of the probe may be largely improved by 

measuring the ACFM probe’s instantaneous lift-off using a low-cost distance laser sensor; 

the crack–like signatures associated with a sudden up-down movement of the probe would 

appear as short wavelength laser signals and could therefore be distinguished from the 

actual crack signals.  
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Table 5.2 Performance of the CTSM algorithm in automatic detection of faults (i.e. artificial defects 
and rail joints) based on the ACFM measurements taken at Long Marston Railway line using the 
robotic system. 

 Trial 1 Trial 2 

Number of correct detections 5 4 

Number of false detections 0 1 

Number of misdetections 1 2 

Total number of faults 6 6 
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Figure 5.7 The results of detection scan with the robotic system at 5 km/h with an initial ACFM probe 
lift-off of 3 mm and angle of 52  with respect to the running direction for the first trial. The top graph 
represents the    signal, the middle graph represents the relative change of    signal with respect to 
its local background (   ) and the bottom graph represents the instantaneous position of the trolley.  
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Figure 5.8 The results of the detection scan with the robotic system travelling at 5 km/h with an initial 
ACFM probe lift-off of 3 mm and angle of 52  with respect to the running direction for the second 
trial.   
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(a) 

 
(b) 

Figure 5.9 Plot of     data in the vicinity of each CS for the (a) first and (b) second trials. The 
accepted and rejected crack candidate signals are marked in green and brown, respectively.  
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5.4.2. High-speed Detection Scans using Rotary Rail Rig 

It was previously demonstrated that a simple threshold method would fail to correctly 

detect all defects in the case of severe lift-off change (Figure 5.2). To study the robustness of 

the CTSM algorithm on data obtained at higher inspection speeds, the results of high speed 

ACFM scans carried out previously by Papaelias, et al. [56] have been re-analysed using the 

new algorithm. A 1.8 m radius rotary rail rig (Figure 5.10) consisting of eight pieces of curved 

rail containing a series of artificially induced cracks (isolated slots, clusters of angled defects 

and semi-elliptical defects representative of RCF defects) machined into the rails’ surface 

(Figure 5.11). The rig is capable of spinning up to 80 km/h. A customised trolley (Figure 2.18) 

was built to enable a 50 kHz ACFM probe to be held in position and also reduce the lift-off 

effects when the probe travels from one piece of rail to the other. Despite using the holding 

mechanism, the lift-off variation was, however, found to vary from 1 to 6 mm where the 

greatest lift-off was observed in the middle of each rail segment. 

 

Figure 5.10 Illustration of the rotary rail rig at the University of Birmingham used for high speed 
ACFM measurements [56].  
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Figure 5.11 Plan view representation of artificially induced defects on rotary rail rig used for the high 
speed ACFM measurements [56]. 

Figure 5.12 to Figure 5.14 show the results of high speed ACFM measurements from the 

rotary rail rig at speeds of 16, 32 and 48 km/h, respectively. It can be observed from the 

graphs that the experimental data present large variations in the background signal, which is 

caused by vertical movement of the ACFM probe with respect to the rail during the 

inspection. This type of lift-off variation is also expected in high-speed survey trains owing to 

the response of the bogie to track irregularities [135]. This lift-off variation may be alleviated 



Chapter 5. Case Study: using the Robotic System for Automatic Detection and Characterisation of RCF Cracks 

126 

by mounting the ACFM probe at a location far from the suspension mechanism, where the 

oscillations are at their lowest.  

Figure 5.12 to Figure 5.14 also show the performance of the CTSM algorithm on the high 

speed ACFM measurements on the rotary rail rig for 16, 32 and 48 km/h, respectively.  The 

results suggest that most defects can be automatically detected with a high QOF (> 90%) 

using threshold values of 2  and 0.5  (a high value is used for high SNR) where the symbol   

denotes the SD of the low-pass filtered     signal.  It is also evident that signals due to rail 

gaps produce signatures similar to those of defects and therefore pass the acceptance 

criterion of the CTSM algorithm. The rail gap signals show a larger signal drop than a typical 

defect and can be reliably removed from the candidate signals based on their known 

positions. The value of the threshold relative to the     signal contributes a crucial part in 

the performance of the CTSM algorithm. For inspection data with low lift-off change (e.g. 

< 3 mm), most of the defect signals can be detected using a high (e.g.   ) threshold value 

(Figure 5.12).  

As the speed of inspection increases, so does the vertical movement of the ACFM probe 

relative to the rail surface that is also accompanied by a reduction in the signal drop over 

defects (Figure 5.13 and Figure 5.14). This would introduce the risk of missing signatures 

associated with small signal drops defects that are below the threshold value (i.e. 2 ). Thus, 

at higher inspection speeds a small threshold (e.g. 0.5 ) is recommended at the cost of 

picking up extra crack-like signals that may be present in the signal. Nonetheless, this 

shortcoming may be largely improved by using a low-cost laser sensor as discussed in the 

previous section.   
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Figure 5.12 Performance of the CTSM algorithm in the detection of artificial defects from high-speed 
ACFM scans at 16 km/h using a 50 kHz probe. Labels: RG   Rail Gap, ID   Isolated Defect.  
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Figure 5.13 Performance of the CTSM algorithm for the detection of artificial defects from high speed 
ACFM measurements on rotating rail rig at 32 km/h using a 50 kHz probe.  Labels: RG   Rail Gap, ID 
  Isolated Defect, CD   Clustered Defect. Some defects were missed due to excessive lift-off.  
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Figure 5.14 Performance of the CTSM algorithm in the detection of artificial defects from high speed 
ACFM measurements on rotating rail rig at 48 km/h using a 50 kHz probe. Labels: RG   Rail Gap, ID 
  Isolated Defect, CD   Clustered Defect.  
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5.4.3. Automatic Characterisation using the Robotic System 

The results presented in this section correspond to the field trials on real rail tracks at Long 

Marston Railway. To study the characterisation scan independently, the known position of 

the second defect (see Table 5.1) was given to the IUI software. The robotic system was then 

instructed to move forward at a constant speed and stop in close proximity (within 30 mm) 

of the second defect, which is located 8.65 m from the datum. The position control mode 

became active once the absolute position error fell below 1.5 m (this value was determined 

by try and error; however it has no significance on the accuracy of controller). Figure 5.15 

demonstrates the real-time position and speed of the robotic system as recorded by the 

software until convergence. As can be observed, the robotic system successfully stopped in 

the vicinity of the defect with a position error of 23 mm. Subsequently, the system was 

instructed to perform a characterisation scan over the defect. This consists of first a profile 

measurement, using the laser system, followed by a scan at constant ACFM probe lift-off of 

3 mm and orientation angle of 45  with respect to the running direction. 

 

Figure 5.15 The real-time position and velocity plot of the robotic system travelling to the location of 
the second defect which is 8.65 m relative to the datum.  
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Figure 5.16a shows the result of a 3D ACFM grid scan over the railhead using the measured 

profile (Figure 5.16b). The sensor output has been normalised with respect to its background 

level [136]. The maximum signal reduction scan line has also been compared with COMSOL 

simulation data for a crack of 1.5 mm depth (details of the COMSOL modelling approach can 

be found in Nicholson, et al. [3] and is carried out assuming a flat surface rather than the 

curved rail surface) which shows close agreement (Figure 5.16c). This close agreement 

indicates that the signal can be used with the sizing information (based on the COMSOL 

modelling) to give accurate crack sizes. The initial ACFM orientation angle of 45° was chosen 

to give a 10° angle offset relative to the defect which, if not taken into account, will cause 

the crack pocket length to be underestimated. Figure 5.16c shows a minimum    signal of 

98.5% for an angle offset of 10° which suggests an average pocket length of 1.3 mm (i.e. 

13.3% error) based on the calibration curve discussed in Chapter 4. When the offset angle is 

compensated for, the minimum    signal is decreased to 97.7% which then suggests an 

improved average pocket length of 1.6 mm (i.e. 6.7% error). It should be noted that although 

the underestimation of crack pocket length due to the uncorrected angle offset used here 

was insignificant, the error would be much higher as the angle offset is further increased.   

Following the constant lift-off ACFM scan over the measured rail profile, the on-line crack 

surface angle detection algorithm reported a crack surface angle of 32.5° which, if taken into 

account, leads to a reduced angle offset of 2.5°. This demonstrates the capability of the 

developed robotic system to autonomously travel to a desired location and obtain high 

quality and reliable data on an unknown defect.   

 



Chapter 5. Case Study: using the Robotic System for Automatic Detection and Characterisation of RCF Cracks 

132 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.16 (a) The normalised contour plot of automated ACFM scans over the second defect (see 
Table 5.1) at a constant lift-off of 3 mm and orientation angle of 45  relative to the running direction. 
The white line shows the crack orientation (32.5 ) as calculated by the automatic crack surface angle 
detection algorithm. (b) The rail profile measured by the robot arm using the laser distance sensor in 
the vicinity of the second defect. (c) Comparison of the COMSOL simulation and experimental result of 
the ACFM scan over the second defect at 3 mm lift-off and relative angle offset of 10 .  
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5.5. Summary 

The proposed CTSM algorithm leads to more reliable detection of defects in that they are 

automatically detected using AI rather than skilled operators. Apart from saving human 

effort, the main advantage of the algorithm is the ability to detect defects from noisy data in 

the presence of severe lift-off change where the existing simple threshold method cannot 

reliably detect defects. This has been confirmed by assessing the performance of the CTSM 

algorithm on both low speed field trials on real rail tracks using the developed robotic 

system and also by re-analysing high speed ACFM measurement data (from tests carried out 

by Papaelias, et al. [56] at the University of Birmingham) using the CTSM algorithm. 

The results from the automatic characterisation test also suggest that the robotic system can 

take reliable and high quality ACFM measurements over an unknown RCF crack which can be 

used for accurate crack sizing.  

 

 



 

134 

Chapter 6. Case Study: Extension of the 
CTSM Algorithm for Automatic Detection of 
Multiple-RCF Cracks 

6.1. Introduction 

This chapter presents the last of three case studies that builds on Chapter 5. It has been 

demonstrated in the previous chapter that the CTSM algorithm is able to reliably detect 

isolated RCF cracks automatically. However, the ACFM response to clustered defects, that 

are more typical of RCF cracks in rails [113], is different to that of an isolated RCF crack 

(depending on the spacing between individual cracks), as discussed in Chapter 4. This means 

that the mathematical model developed for an isolated defect would not provide the best fit 

in the case of multiple-RCF cracks; they would be rejected by the CTSM algorithm due to 

likely poor QOF contribution, this is demonstrated in the next section.  

In this chapter, the CTSM algorithm is extended to overcome this shortcoming. The 

performance of the extended CTSM algorithm is then evaluated on both simulated and 

experimental ACFM measurements for several sets of clustered RCF cracks.  

6.2. ACFM Response to Multiple-RCF Cracks 

Figure 6.1 shows the simulation result of the ACFM response (using a 5 kHz probe at zero lift-

off) to four closely spaced RCF cracks (each of surface length 10 mm, pocket length 4 mm 

and width 0.5 mm) at different crack spacings [113]. It is evident that for a crack spacing of 

less than 5 mm the individual characteristic troughs are not distinguishable from the    
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signal owing to the inability of the induced eddy current to flow in between the individual 

cracks as most of the current density will be concentrated near the crack ends. This is in 

agreement with the findings from the experimental robotic ACFM measurements over the 

multiple artificial cracks on the calibration block that has been previously discussed in 

Chapter 4 (Figure 4.5). In this case, using the signature for an isolated defect with the CTSM 

algorithm will produce a high QOF and therefore the cracks can be reliably detected.  

 

In contrast, as the crack spacing is increased, the presence of the individual troughs is more 

pronounced in the    signal. Thus, using the signature for an isolated defect will result in a 

reduced QOF and thus, reduced reliability of crack detection. This is demonstrated in Figure 

6.2. 

 

 

Figure 6.1 COMSOL simulation results of ACFM response to multiple-RCF cracks at different crack 
spacing using 5 kHz probe at zero lift-off [113].  
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Figure 6.2 Result of CTSM algorithm on the ACFM measurements over multiple-RCF cracks at a range 
of crack spacings based on an isolated crack signature. In each graph, the blue curve represents the 
derivative of the normalised    signal while the green/brown curve represents the best fit after 
optimisation.  

6.3. Extended CTSM Algorithm 

In the extended CTSM algorithm, the signature   which corresponds to the derivative of 

multiple-RCF crack signal (   ) is modelled as the derivative of sum of a finite number of 

Gaussian functions (with positive unknown parameters) corresponding to the individual 

troughs in the     signal (Equation (6.1)). For every trough (local minimum) in the    signal 

there is a zero crossing in the     signal where the derivative of the    signal is zero (Figure 

6.3). Therefore, the number of troughs may be obtained from the zero crossings in the     

signal. It must be noted that only those zero crossings corresponding to minima should be 

considered; they can be distinguished from other zero crossings (corresponding to local 

maxima) using a second-derivative check on the    signal. At local minima the signal    is 
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using the Levenberg-Marquardt method in a least square sense on the basis of minimisation 

of the cost function   as defined by Equation (5.5).  

 

Figure 6.3 Demonstration of the first derivative of the    signal and the zero crossings.  
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Neglecting other terms, at a given zero crossing         , the first derivative may be 

approximated as: 

 
 

  
 ( )      

         

Therefore     ’s may be initialised to the second derivate of the    signal at its local minima. 

The parameters      were found to have a negligible effect on the convergence of the 

algorithm and therefore may be initialised as positive random numbers. The 

parameters     ’s are, however, initialised as the location of zero crossings in the     signal 

where the function is increasing. This is made possible by using a first-order (linear) 

approximation of the     signal near its zero crossing points. The true zero crossings may 

then be distinguished from others through the slope of the line (at local minima, the slope of 

the signal     is positive).  Subsequently, the recognition of multiple-RCF cracks is based on 

the QOF of the signature   after optimisation (Equation (5.6)).  

6.4. Results 

6.4.1. Automatic Detection from Simulated ACFM Response to Multiple-RCF Cracks  

Figure 6.4 shows the results of using the extended CTSM algorithm with the simulated ACFM 

signals (generated using the COMSOL model approach) for multiple-RCF cracks of varying 

spacing. It can be observed that the algorithm has been able to detect most of the RCF crack 

signals with high reliability (QOF > 90%). However, for the RCF cracks of less than 7 mm 

spacing, despite the high QOF, the algorithm was unable to recognise all four crack features. 

This drawback, however, is due to the inability of the ACFM sensor used in this work to 

detect individual cracks from very closely spaced RCF cracks.  
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Figure 6.4 Result of using the extended CTSM algorithm on simulated ACFM responses to multiple-
RCF cracks of varying spacing.  
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6.4.1.1.  Performance Evaluation on Noisy Measurements 

In order to assess the robustness of the extended CTSM algorithm, the ACFM measurements 

were superposed by additive white Gaussian noise at a range of SNRs.  The data was then 

low-pass filtered using a fixed normalised cut-off frequency (independent of the noise) of 

0.28 in each case to smooth the data. It should be emphasised that, in the case of 

experimental measurements, the use of low-pass filtering is essential for the CTSM 

algorithm in that it uses the derivative signal (   ) for the optimisation which is very 

sensitive to high frequency harmonics in the    signal.  

The results for SNRs of 10 and 5 dB are shown in Figure 6.5 and Figure 6.6, respectively. 

These values were found to be adequate enough (i.e. qualitatively) to model the noise 

observed during the field trials, however, the exact value of the SNR has not been 

considered here as this demands the knowledge about the source of the noise which is 

difficult to obtain. It can be seen from the graphs that the extended CTSM algorithm can 

detect the multiple-RCF crack signals with high QOF even in the case of noisy data. 
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Figure 6.5 Result of the extended CTSM algorithm for the simulated ACFM response to multiple-RCF 
cracks of varying spacing. The data were superposed by additive white Gaussian noise of SNR of 
10 dB.  
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Figure 6.6 Result of the extended CTSM algorithm for the simulated ACFM response to multiple-RCF 
cracks of varying spacing. The data were superposed by additive white Gaussian noise of SNR of 5 dB.  
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6.4.2. Automatic Detection from Experimental ACFM Response to Multiple-RCF Cracks  

To further examine the reliability of the extended CTSM algorithm, it has been applied to the 

experimental ACFM signals taken from real RCF cracks. Seven rail samples taken from in-

service rails containing a number of RCF cracks at a range of spacings and surface angles 

were used. Detailed explanations of the RCF cracks are given in Table 6.1. 

Using the robot arm and the laser sensor, the rail samples’ profiles were measured. The 

angles of the cracks in the clusters were manually recorded and the average value used as 

the initial ACFM probe angle. Subsequently, a number of ACFM grid scans at a constant lift-

off of 2 mm and matching probe angle following the rail profile were taken. In each case, the 

scan data corresponding to the maximum reduction in    signal were extracted from the 

grid scan lines and plotted against the distance along the rail length.  The trailing and leading 

portions of the    signal were ignored due to edge effects from the ends of the rails. The 

results are shown in Figure 6.7. It can be observed that the waveforms corresponding to the 

experimental data show a similar pattern as the simulation results (individual troughs 

corresponding to the defects).  

The experimental data were then examined blindly using the extended CTSM algorithm with 

neither any prior knowledge about the number of cracks nor the spacing between them. The 

results are shown in Figure 6.8; the graphs confirm that the algorithm can automatically 

detect the multiple-RCF crack signatures from the experimental data with high QOF (> 90%) 

for most of the rail samples. However, for rail sample 2, the result shows a slightly lower, yet 

high enough, QOF (76%) owing to reduced    signal drop over the cluster of defects, 

compared to other rail samples (Figure 6.7). In other words, for smaller RCF crack size (based 

on surface length) the reduced signal drop (hence SNR) leads to a reduction of the QOF. It 
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should be noted that, as for some rail samples the spacing between the cracks in cluster 

varied, the number of real cracks may be more than the number of troughs observed in the 

   signal. For example, for rail sample 1, three defects were identified by the CTSM 

algorithm and this corresponds to visual observation of five cracks where two cracks were in 

a closely spaced cluster (spacing < 5 mm).  
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Table 6.1 The rail samples taken from in-service rails containing a number of real RCF cracks at a 
range of spacings and surface angles. The rail profiles were measured prior to ACFM grid scans.  

Name Condition  

Rail 1 
Contains  five light multiple-RCF cracks at an average 
crack surface angle of 35 and 5-15 mm spacing. It also 
contains five isolated RCF cracks. 

 

Rail 2 
Contains three light multiple-RCF cracks at 5-10 mm 
spacing at an average crack surface angle of 90 . 

 

Rail 3 
Contains five light-moderate multiple-RCF cracks at 3-
10 mm spacing at an average crack surface angle of 
31 . It also contains four isolated RCF cracks. 

 

Rail 4 
Contains three multiple-RCF cracks at 2-10mm spacing 
at an average crack surface angle of 36 . 

 

Rail 5 
Contains three moderate multiple-RCF cracks at 10-
15 mm spacing at an average crack surface angle of 
30 . It also contains one isolated RCF crack. 

 

Rail 6 
Contains two multiple-RCF cracks at 15-20 mm spacing 
at an average crack surface angle of 33 . It also 
contains four isolated RCF cracks. 

 

Rail 7 
Contains four heavy-severe multiple-RCF cracks at 2-
15 mm spacing at an average crack surface angle of 
17 . It also contains four isolated RCF cracks. 
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Figure 6.7 Results of the robotic ACFM measurements over rail samples 1-7 at constant lift-off of 
2 mm and matching probe angle. The data shown correspond to scan lines where the    signal 
reduction is a maximum. Only the portion of the scan lines containing multiple-RCF crack signatures 
have been used for the analysis.  
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Figure 6.8 Result of the extended CTSM algorithm on robotic ACFM measurements over rail samples 
1-7 at constant lift-off of 2 mm and matching probe angle. In each graph, the data shown correspond 
to the scan line where the    signal reduction is a maximum. 

0
1

0
2

0
3

0
4

0
5

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 1
, Q

O
F 

= 
9

1

0
1

0
2

0
3

0
4

0
5

0
6

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 2
, Q

O
F 

= 
7

6

0
1

5
3

0
4

5
6

0
7

5
9

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 3
, Q

O
F 

= 
9

1

0
1

0
2

0
3

0
4

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 4
, Q

O
F 

= 
9

5

0
1

0
2

0
3

0
4

0
5

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 5
, Q

O
F 

= 
9

6

 

 

0
1

0
2

0
3

0
4

0
5

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 6
, Q

O
F 

= 
9

2

0
1

0
2

0
3

0
4

0
5

0
6

0
-1

2-8-4048

1
2

D
is

ta
n

ce
 [

m
m

]

Bx

R
ai

l s
am

p
le

 7
, Q

O
F 

= 
9

4
Fi

lt
er

ed
 s

ig
n

al

Ze
ro

 c
ro

ss
in

g

Fi
n

al
 f

it

In
it

ia
l f

it



Chapter 6. Case Study: Extension of the CTSM Algorithm for Automatic Detection of Multiple-RCF Cracks 

148 

6.5. Summary 

In this chapter the robustness of the CTSM algorithm for detection of multiple-RCF cracks 

has been studied. It was shown that the signals associated with multiple-RCF cracks may be 

rejected by the CTSM algorithm due to poor QOF contribution.  

To circumvent this drawback, an extension of the CTSM algorithm has been proposed 

whereby the multiple-RCF crack signature is modelled as the sum of a finite number of 

isolated RCF crack signatures where the number of cracks in a cluster can be distinguished by 

the number of zero crossings associated with the derivative of the    signal. 

Consequently, the result of the extended CTSM algorithm on both experimental and 

simulation results of ACFM response to multiple-RCF cracks has been considered. It was 

shown that the extended algorithm can automatically detect the multiple-RCF crack 

signatures by high QOF (> 90% for most of defects) even in the presence of lift-off change 

and noise, however, the number of defects in a cluster could be misidentified when the 

defects are too close (spacing < 5 mm). This difficulty is owing to the inability of the ACFM 

technique rather than the algorithm and has been previously reported in the literature 

[113].  

Therefore, it can be concluded that the detection of both isolated and multiple-RCF cracks 

can be performed by the extended CTSM algorithm which subsequently suggests that the 

detection and characterisation of RCF cracks may be performed as one continuous process 

where the human interaction is largely minimised. 
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Chapter 7. Conclusions and Future Work 

7.1. Conclusions  

This thesis presents a methodology on how AI and robotic NDT are combined together to 

minimise the inefficiencies and enhance the speed, reliability and accuracy of manual 

inspection of RCF cracks in rails by the ACFM technique. Particularly, using AI based on a 

conventional RBES architecture along with robotics, an autonomous inspection trolley has 

been developed to accurately and reliably detect and size the RCF cracks. This work was in 

line with an industrial need identified by the rail industry and has been supported by the 

European FP7 INTERAIL project.  

In this chapter, the key findings of the developed robotic system based on three case studies 

presented in chapters 4, 5 and 6 are reviewed, giving details of its strength and limitations. 

Subsequently, the future path of this research and also recommendations for further work in 

terms of both software and hardware enhancements are outlined.  

7.2. Achievements and Key Findings  

7.2.1. Case Study 1 

In this case study the challenge introduced to the robotic system is of sizing an unknown RCF 

crack in a rail which may be subject to an unpredicted level of wear. Solutions have been 

proposed and applied to tackle these challenges. These are summarised as the following: 
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7.2.1.1. Uncertainties due to Rail Misalignment and Lift-off Change 

While the inspection trolley travels towards the location of an RCF crack for detailed 

characterisation, the robot arm may experience misalignment with respect to the rail either 

due to likely hunting of the trolley or due to the physical misalignment of the rails at the 

joints (assuming the defect is located near the joint). This could result in sizing inaccuracies, 

if not taken into account. Using a laser distance sensor and robot arm, a two-point based 

calibration method was proposed and implemented in the IUI that can automatically re-align 

the robot arm end-effecter (the ACFM probe) along the rail track (see section 3.4.1).     

Similarly, the ACFM probe lift-off change due to unpredicted wear of rail could significantly 

lessen the sizing accuracy depending on its severity. This shortcoming was addressed by a 

non-contact rail profile measurement (followed by calibration of alignment) prior to the 

characterisation process. The results were validated against the existing “MiniProf” systems 

(see section 3.4.2).  

7.2.1.2. Uncertainties due to Unknown RCF Crack  

Study of the ACFM response to RCF cracks at non-matching probe angles has revealed that 

for angle offsets beyond 10  the reduced    signal drop causes  significant sizing inaccuracy, 

if not taken into account [65]. This intensifies the need for measuring the RCF crack surface 

angle so that the sizing scan along the crack opening is performed at close to the optimum 

condition (i.e. the induced eddy current flows normal to the crack opening). Based on the 

results of both experiments using the robot arm and simulation of 2D ACFM grid scans over 

RCF cracks at a range of non-matching probe angles representing typical deviations of real 

RCF crack surface angles from its average value (see section 4.3.2), it was demonstrated that 



Chapter 7. Conclusions and Future Work 

151 

the crack surface angle may be closely approximated within 10  by finding the crack ends 

based on the location of peaks in the    scan lines. This was facilitated by a fast searching 

algorithm implemented in the IUI.  The effect of grid spacing and probe lift-off on accuracy of 

the searching algorithm was also quantified (see sections 4.3.3 and 4.3.4).  

The results of the searching algorithm exhibited a dependency between the minimum grid 

spacing and the crack surface length. Using 0.5 mm grid spacing, the characterisation scan 

over a single crack takes approximately 240 s. An initial guess for the crack surface length 

may help choose the optimum grid spacing which results in reduced characterisation time; 

this may be achieved by approximating the surface length based on the initial detection 

results obtained using the ACFM array sensors.         

7.2.2. Case Study 2 

In this case study, the performance of the robotic system for both detection and 

characterisation of RCF cracks based on a number of field trials carried out at Long Marston 

Railway line was investigated. These are summarised in the following sub-sections.  
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7.2.2.1. Automatic Detection 

For the detection test, the robotic system was configured to inspect the rails containing a 

series of artificial cracks, at walking speed. The data collected were initially post-processed 

offline using the simple threshold method to automatically find the defects. It was found 

that due to variable     background signal owing to ACFM probe lift-off change (> 2 mm) 

during the motion of the trolley, some defect signals went undetected. Besides, many false 

indications were generated. This type of lift-off variations was also observed in the case of 

high speed ACFM data [54, 56] and is also expected in the case of real rail inspection due to 

significant (up to 6 mm) vertical displacement caused by bogie dynamics [135].   

The CTSM algorithm has been proposed to alleviate this shortcoming by computing the 

differential of the    signal (   ) with respect to its local background resulting in a stable 

background for the     signal (approximately near zero) and hence, the defects can be 

detected by an appropriate threshold value. Further, the CS  are examined by a non-linear 

curve fitting algorithm finding the best match of an isolated RCF crack signature  to the CS by 

a non-linear optimisation method (see section 5.2).     

It was shown that this method was effective in both detecting the defects and also greatly 

reducing the number of false indications as they possessed poor QOF contributions. The 

algorithm also revealed high detectability (i.e. QOF > 90%) on high speed ACFM 

measurements carried out previously at the University of Birmingham [54, 56]. The effect of 

different threshold value for QOF in acceptance of the candidate signals has been also 

studied. 

During the field trials, a number of crack-like signals developed due to sudden up-down 

vertical movement of the probe and passed the acceptance criteria of the CTSM algorithm. 



Chapter 7. Conclusions and Future Work 

153 

This problem can be addressed by simultaneously recording the ACFM probe’s lift-off by a 

laser sensor; the crack-like signals are associated with short wavelength laser signals and can 

be therefore distinguished from the real crack signals. It was also evident that a number of 

real crack signals were missed due to hunting of the trolley; this can be avoided by using 

ACFM array sensors surveying wider area of the rail head which offer superior performance 

than the single probe sensor used in this research.  

7.2.2.2. Automatic Characterisation 

The process of automatic characterisation involves travelling of the trolley to a defect 

location and deploying the robot arm to collect high quality data over the defect for accurate 

sizing. To evaluate this functionality independently, the location of a specific crack having a 

surface angle of 35  with respect to the rail length were given to the robotic system while 

the initial ACFM probe angle was intentionally set at 45  to mimic the uncertainty due to 

unknown RCF crack. The position signal recorded in the IUI during the motion of the trolley 

showed that the robotic system successfully stopped in the vicinity of the defect with an 

error of 23 mm which was then compensated for by the robot arm.   

Following an automatic calibration of alignment and rail profile measurement, a series of 

constant lift-off 3D ACFM grid scans over the defective region were initiated. Subsequently, 

the searching algorithm reported an approximated crack surface angle of 32.5  which 

verifies the ability of the robotic system in correcting the ACFM probe’s initial angle for an 

unknown RCF crack.  

Moreover, the scan line corresponding to the maximum    signal reduction was compared 

with that of a COMSOL simulation of ACFM response to the crack used in the experiment. A 
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close agreement was found between both data demonstrating the capability of the robotic 

system in automatically collecting high quality data over an unknown RCF crack that can be 

later used to accurately size it. 

7.2.3. Case Study 3 

In this case study, an extension of the CTSM algorithm has been proposed to deal with 

clustered defects (that are more typical of real RCF cracks) which may generate a different 

ACFM response than that of an isolated RCF crack, depending on the crack spacings in the 

cluster. For crack spacing < 5 mm the signal resembles that of a wide isolated RCF crack 

which showed to pass the acceptance criteria of the initial CTSM algorithm. Conversely, for 

wider spacings, the ACFM response showed to be different as the signal contains multiple 

troughs that are associated with the cracks in the cluster. In this case, the crack signals failed 

the acceptance criteria due to poor QOF contributions as the crack spacing increased.  

To overcome this drawback, in the extended CTSM algorithm, the multiple-RCF crack 

signature has been modelled as sum of finite number of isolated RCF cracks where the 

number of cracks in the cluster equals to the number of zero crossings in the     signal 

(derivative signal). Similarly, the best match to the candidate signal is obtained using the 

non-linear optimisation method as discussed in section 5.2. The extended CTSM algorithm 

was then evaluated on several simulated and experimental ACFM response to multiple-RCF 

cracks.  

In the case of simulations, ACFM responses to four closely spaced semi-elliptical RCF cracks 

of varying spacing were used. The results showed a high QOF (> 80%) in the case of low SNR 
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(i.e. 5 dB) while a better QOF (> 89%) were achieved when a higher SNR (i.e. 10 dB) was 

used.  

 In the case of real experimental measurements, constant lift-off ACFM measurements over 

a number of samples taken from in-service rails containing a number of multiple-RCF cracks 

(including light, moderate and severe cracks) were considered. The results also showed a 

high QOF (> 90%) for most of the samples. However, one of the samples which contained 

smaller RCF cracks (less deep), a lower, yet high enough, QOF (76%) owing to reduced 

   signal drop over the cluster of defects, was obtained.  

These results recommend that the extended CTSM algorithm has potential to automate the 

detection of RCF cracks from the ACFM measurements; hence, in inspection of rails for RCF 

cracks, the detection and characterisation may be performed as one continuous process.      

7.3. Future Work and Recommendations 

The future path of this research may be continued in certain ways to improve on the 

limitations reported earlier. These are divided into hardware and software enhancements 

summarised as the following: 

7.3.1. Hardware Enhancements 

In this research some of the components used in the developed robotic system were to 

facilitate the experiments and not necessarily fit for purpose. For instance, the commercial 

trolley used is primarily designed for manual operation at walking speed and may not 

function correctly over curves or at crossings. Similarly, the robot arm used is a general 

purpose robot and can be replaced by a customised robot specifically designed for the rail 
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inspection which demands less work space and payload characteristics resulting in a more 

compact and light-weight unit.  This also makes it worthwhile to be used for real rail 

inspection.   

It is also suggested that a high speed ACFM array sensor be used for detection of defects 

(this could be fixed as in the walking stick ACFM systems) while a low-speed single probe 

sensor be integrated to the customised robotic unit for detailed characterisation. 

A secondary laser sensor for monitoring the ACFM probe’s lift-off during the detection 

process is highly recommended to reduce false crack-like signals as discussed previously. 

This would require less accuracy (e.g. 0.5 mm) than that of profile measurements and may 

be achieved by a cheaper laser sensor attached to field side of the ACFM array sensor. 

7.3.2. Software Enhancements 

The IUI may be reprogrammed (redesigned) to allow running on customised high-

performance hardware in the loop (HIL) platforms. This helps increase its overall efficiency 

and reduce the latency caused by running in non-real-time operating systems. 

Future research may also include sophisticated signal processing of multiple-RCF crack 

signals for accurate characterisation. Recent modelling work at the University of Birmingham 

showed that sizing of multiple-RCF cracks based on the signal of an isolated RCF crack results 

in overestimation of pocket length [113], depending on the crack spacing. This inaccuracy 

may be possibly enhanced by training an ANN so as to estimate the correction factor needed 

for the    signal drops corresponding to the individual cracks in the cluster enabling their 

accurate sizing based on the existing calibration curve used for sizing of isolated RCF cracks.
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Laser Sensor Interface 

 

  



Appendix. Screenshot of the IUI Software 

171 

ACFM Sensor Interface 
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Motion Controller Interface 
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Import Utilities 
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Export Utilities 
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Auxiliary Tools 
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