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ABSTRACT 

A weak value of an observable is studied for a quantum system which is placed under the influence of an environment, 
where a quantum system irreversibly evolves from a pre-selected state to a post-selected state. A general expression for 
a weak value influenced by an environment is provided. For a Markovian environment, the weak value is calculated in 
terms of the predictive and retrodictive density matrices, or by means of the quantum regression theorem. For a non- 
Markovian environment, a weak value is examined by making use of exactly solvable models. It is found that although 
the anomalous property is significantly suppressed by a Markovian environment, it can survive a non-Markovian envi-
ronment. 
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1. Introduction 

One of the most characteristic features of quantum 
mechanics lies in a measurement process which provides 
some information about an observable of a quantum sys- 
tem to be measured [1]. When an appropriately prepared 
measuring device is strongly coupled to a system, we can 
obtain one of eigenvalues, say a, of a measured ob- 
servable Â  from the value exhibited by a pointer ob- 
servable of the measuring device. The result  is ob- 
tained with probability 

a
  2

iP a a  , where i  is 
an initial state of the measured system and a  is the 
corresponding eigenstate of Â . When we perform mea- 
surement on an ensemble of identically prepared systems,  

we derive the average value ˆ
iA A i   of the ob-  

servable from the measurement outcomes. It is obvious 
that the average value lies inside the spectral range of the 
observable Â . Hence what we can obtain by quantum 
measurement is the eigenvalue and average value of the 
observable. However this is not only the story. In a usual 
measurement process, the measured system is not re- 
ferred after the interaction with the measuring device, 
though it is prepared in an initial state before the 
interaction. Only the pre-selection of the system is per- 
formed. In 1988, Aharonov, Albert and Vaidman [2] 
have found that if an interaction between a system and a 
measuring device is sufficiently weak and the measured 
system is post-selected in a state f  after the inter-  

action with the measuring device, the weak value 
ˆ

w f i f iA A     of an observable Â  can be 
obtained from the measurement outcomes. It is surprising 
that the weak value may take a complex value or a value 
outside the range of the eigenvalues of an observable. 
After the discovery of the weak value of an observable, 
many works have been performed for understanding and 
generalizing weak values [3-14], and furthermore the 
weak value has been observed experimentally [15,16]. 

In the most of the previous works on weak values, 
dynamics or time evolution of a system to be measured 
has been neglected. Only the interaction Hamiltonian be- 
tween a system and a measuring device has been taken 
into account. However, since a measured system in a real 
world is unavoidably influenced by an environment, we 
have to consider the effect of the environment on the 
weak value as well as intrinsic dynamics of the system. 
Hence it is interesting to investigate the decoherence of 
weak values during the irreversible time evolution of a 
system from pre-selected state to a post-selected state. 
The irreversible time evolution of a system caused by an 
interaction with an environment is usually studied by 
means of the quantum master equation [17,18]. However, 
the post-selection of the system that is essential for weak 
values makes it very difficult to investigate the irrever- 
sible time evolution by the usual method when an 
environment is non-Markovian. Therefore, in this paper, 
we will consider the effect of the irreversible time evo-  
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lution of the system on the weak value of an observable. 
In Section 2, we provides a general expression of a weak 
value during the irreversible time evolution of a quantum 
system between pre- and post-selection. We will find that 
the weak value can be calculated by the quantum master 
equation or by the quantum regression theorem [18] 
when the environment is Markovian. To investigate the 
weak value in the case of a non-Markovian environment, 
we consider the stochastic dephasing in Section 3 and the 
single excitation multi-mode Jayes-Cummings model in 
Section 4, where we can obtain the exact expressions of 
the weak values in both cases. We provide a brief sum- 
mary in Section 5. 

2. Dynamics of Weak Values Influenced by 
Environment 

We suppose that a quantum system to be measured is 
placed under the influence of an environment and is 
initially prepared or pre-selected in a quantum state ˆ SE

i  
at time i . When there is no initial correlation be- 
tween them, the equality 

t t
ˆ ˆ ˆSE S E

i i     holds, where 
ˆ E  is an equilibrium state of the environment. To mea- 

sure a system observable ˆ SA , we prepare a measuring 
device in an appropriate quantum state ˆ D . The inter- 
action Hamiltonian between the system and the mea- 
suring device is assumed to be  

m    ˆ Sˆ SD ˆ DH t g  t t  A P
ˆ

, where mt  stands for 
the measurement time and DP  is a momentum operator 
of the measuring device, which is canonically conjugate 
to a position operator (a pointer observable) ˆ DQ

 t

. The 
system and environment evolve until the measurement is 
performed at time m  while the measurement device 
remains unchanged. We denote as m iU t

t t
ˆ SE   the 

unitary operator which describes such time evolution. 
Then the quantum state of the total system just before the 
measurement is given by the density operator 

     †ˆ ˆ ˆˆ ˆ0SED SE SE SE D
m m i i m iW t U t t U t t       and  

it becomes 
   ˆ ˆˆ ˆˆ ˆ0 e 0 e

S D S DSED igA P SED igA P
m mW t W t      just after  

the interaction with the measuring device. After the 
interaction, the system and environment further evolves 
until the post-selection is performed on the system at 
time ft t . Hence we obtain the quantum state just 
before the post-selection, 

 
 
   

 

ˆ ˆ

†

ˆ ˆ †

ˆ

ˆ e

ˆ ˆˆ ˆ

ˆe .

S D

S D

SED
f

SE igA P
f m

SE SE SE D
m i i m i

igA P SE
f m

W t

U t t

U t t U t t

U t t

 

 



 

     

 

     (1.1) 

The post-selection performed on the system is, in 
general, described by means of probability operator- 

valued measure which is denoted as ˆ S
f . We obtain the 

joint probability that the post-selection is succeeded and 
the measuring device exhibits the value q of the pointer ob- 
servable ˆ DQ , 

   ˆˆ, Tr S SED
SE f f ,f q q W t q        (1.2) 

where q  is the eigenstate of the pointer observable 
such that ˆ DQ q q q  and  stands for the trace 
operator over the Hilbert spaces of the system and the 
environment. Using the Bayes theorem [19], the con- 
ditional probability that the measurement outcome is  
if the post-selection is succeeded becomes  

TrSE

q

   
 

,
,

f q
q f

f






            (1.3) 

with 

     ˆˆd , Tr S SED
SED f ff q f q W t




      .    (1.4) 

When the post-selection is succeeded, the average 
value fQ  of the pointer observable is given by 

 dfQ qq q f



   ,            (1.5) 

which will yield the weak value of the observable ˆ SA  
under the influence of the environment. 

In the weak measurement, the strength of the inter- 
action between the system and the measuring device is 
sufficiently small and only the terms up to the first order 
with respect to the coupling constant g  is taken into 
account. Then we obtain from Equation (1.1) 

     
    

   
    

   

†

†

†

†

ˆ ˆ ˆˆ ˆ

ˆˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ ˆ ,

SED SE SE SE D
f f i i f i

SE S D SE
f m m i

SE D SE
i f i

SE SE D SE
f i i m i

S D SE
f m

W t U t t U t t

igU t t A P U t t

U t t

igU t t U t t

A P U t t

 

 

 

   

   

  

   

  

 (1.6) 

which yields the joint probability of f  and q  from 
Equation (1.3), 

 
   

     

     

†

†

† †

,

ˆ ˆˆ ˆˆTr

Tr

ˆˆ ˆ ˆˆˆ

ˆ ˆ

Tr

ˆˆ ˆ ˆˆˆ

ˆˆ

S SE SE SE D
SE f f i i f i

SE

S SE S SE SE SE
f f m m i f i

D D

SE

S SE SE SE S SE
f f i i m i f m

D D

f q

U t t U t t q q

ig

U t t A U t t U t t

q P q

ig

U t t U t t A U t t

q P q

  

 



 



    


     





     





(1.7) 
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When we assume that the probability current density 
of the measurement device vanishes, the equality  

ˆ ˆˆ ˆ 0D D D DP q q P q q    holds [6]. Then we ob- 
tain after some calculation, 

 

       †

ˆˆ ˆˆ ˆˆ, Tr Re
D

S SE SE D
SE f f i i SE f i w m

q q
f q U t t U t t q q g A t

q


  

       ,     
        (1.8) 

where ˆ SA  in w mA t  is the weak value of the observable fluenced by the environment, 

 
     

   
†

†

ˆˆ ˆ ˆˆˆTr

ˆ ˆˆˆTr

S SE S SE SE
SE f f m m i i SE f i

w m S SE SE SE
SE f f i i f i

U t t A U t t U t t
A t

U t t U t t

 

 

   
   


                     (1.9) 

 
The probability that the post-selection is succeeded is 

iven by 

  (1.10) 

This is independent of the measuring device, which is 
characteristic of the weak measurement. Thus we obtain 
the probability of the measurement outcome 

   
ˆ

ˆ Re ,
D

D
w m

q q
q f q q g A t

q





 


g

   d ,

TrSE

P f qP f q





 



  (1.11) 

which yields 

   †ˆ ˆˆˆ S SE SE SE
f f i i f iU t t U t t   

 Ref i wQ Q g A t 
D D

m  with  

ˆ ˆTri DQ Q     . 

 w mA t  We consider the property of the weak value 
given by Equation (1.9). Since the operator ˆ S

f  which 
on of the system is independent represents the post-selecti

of the environment, the weak value  w mA t  becomes q , 
 

 
     

  
 

 

†

†

ˆˆˆTr TrS SEU t t   ˆ ˆˆ
.

ˆˆTr Tr

S SE SE SE
S f E f m m i i f i

w m S SE
S f E f f i

A U t t U t t
A t

U t t



 

  
  

                

 
It is obvious that the denominator is the average of the 

operator 

(1.12) 
ˆˆ SE SE

i it U t 

ˆ S
f  by the reduced density operator  ˆ S t  of 

th

 1.13) 

where E

e system, 

     †ˆ ˆˆ ˆTrS SE SE SE
E i i it U t t U t t       (
 ˆ ˆ ,S S

i it t  

ˆ ˆTrS S
i E i   and  ˆ S t

stem [19]
ved by

 represents the quan- 
tum e sy . The reduced density 

rato n be deri  means of the quan- 
m

 channel for th
r  ˆ S

i t  caope
tu  master equation method [17,18]. When the weak 
measurement is performed just after the pre-selection or 
just before the post-selection, the weak value is sim- 
plified as 

 
 

 
ˆˆ ˆˆTr

,
ˆ ˆˆTr

S S S S
S f f i i

w f S S S
S f f i i

A t t
A t

t t



 

  
  






      (1.14) 

 
  
 

ˆ ˆ ˆˆTr
.

ˆ ˆˆTr

S S S S
S f f i i

w S S S
S f f i i

t t A
A

t t

 

 

  
  




     (1.15) 

Thus when 0m it t   or 0m ft t  , we can cal- 
culate the weak value by means of the quantum channel 

 ˆ S t  and 

it 

k value be- 
u

We assume that the environment is Markovian and the 

influence of the sy em on the environment is negligible. 
In tem has

pr

st
 this case, the reduced time evolution of the sys  

the semi-group property [18,20] and we can ap oximate 
as [21] 

  ˆ ˆˆ ˆSE S E SEU t t U  
 

†

ˆ
ˆ ˆe ,

S
i

i i i

t t S E
i

t t

 

  

 
      (1.16) 

where ˆ E  represents the equ
enviro ent and is time evolution generator of the 
system  ved by solving the quantum master 
equation in a Lindblad form [18,20]. Then we find the 
weak value from Equation (1.12), 

ilibrium state of the 
nm
, which

ˆS  
is deri

 
    

 

ˆ ˆ

ˆ

ˆ ˆˆTr e e
,

ˆˆTr e

S S
f m m i

S
f i

t t t tS S
S f S i

w m
t t S

S f i

A
A t

 

 

 



 
  

 
  

 


  (1.17) 

which is equivalent to that obtained by the quantum 
tra ]. U he conjugjectory method [5 sing t ate of the time 
evolution generator †ˆS  defined by  

   †ˆ ˆˆ ˆ ˆ ˆTrS S

otherwise calculating 
ch more difficult. 

the wea
comes m

TrS S
 X Y X Y       for any system ope-  

ra



tors X̂  and Ŷ , we can express the weak value as 

 
   
   

retr pred

retr pred

ˆˆ ˆTr
,

ˆ ˆTr

S S S
S f m i m

w m S S
S f m i m

t A t
A t

t t

 

 

 
 
  

   (1.18) 
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where  predˆ S
i t

retrodictive density 
 and  are the predictive and 

ma ces of the system [21], 

ˆ S

 retrˆ S
f t

tri

    ˆpredˆ e ,
S

it tS
i it                (1.19) 


 

 


†

†

ˆ

retr

ˆ

ˆe
ˆ ,

ˆTr e

S
f

S
f

t t S
fS

f
t t S

S f

t







 
  




        (1.20) 

which are derived by solving the predictive and retro- 
dictive quantum master equa



tions. On the other hand, 
since we have 

     
   

   



   

  

†

† †

ˆˆ ˆ ˆˆˆTr

ˆ ˆ ˆˆTr

ˆ ˆ ˆ

SE f i f f i

S SE SE
m i m it t A U t t 


   



 

ˆ ˆˆTr

S SE S SE SE SE
SE f f m m i

SE S SE SE

S S
SE f f m SE

S S
m

U t t A U t t U t

U t t U t t U

t A t

t A t

 



 

   
  

 
 

(1.21) 
we obtain the weak value, 

ˆˆ ,f f

f it 


   


 
ˆˆ S S

f f

w

t A t
A



Then if the environment is M
quantum regression theorem [18], 
weak value. Hence we can investigate the weak value 

.
ˆ

m

m

f f

t
t

          (1.22) 

arkovian, using the 
we can calculate the 

influenced by the Markovian environment by Equations 
(1.17), (1.18) and (1.22). For the non-Markovian en- 
vironment, however, these results cannot be used and the 
calculation becomes much more difficult. 

3. Weak Values in Stochastic Dephasing 

In this section, using an exactly solvable model, we 
investigate the weak value of an observable influenced 
by a non-Markovian environment. For this purpose, we 
use the Kubo-Anderson model [22,23], where the quan- 
tum system to be measured is a two-level system or a 
qubit and the environment causes the stochastic dephas- 
ing of the system [24]. The time evolution of the system 
is governed by a stochastic Hamiltonian, 

   0
ˆˆ ,zH y t   S             (1.23) 

where ˆ
zS  is the z-component of a spin-1/2 and  t  

is a classical stochastic variable with zero mean. The 
unitary operator that describes the time evolution is given 
by 

 

   0

ˆ

ˆexp db

a

SE
b a

t

b a z zt

U t t

i t t S t t S 



ˆ      
      (1.24) 

In this case, since the trace operation over the environ- 
mental Hilbert space in Equation (1.12) is replaced with 
the stochastic average, we obtain the weak value of a sys- 
tem observable ˆ SA , 

 

 
       

   

† †

†

ˆˆ ˆ ˆ ˆˆˆTr
,

ˆ ˆˆˆTr
w m S S

S 

where 

SE S SE S SE S SE
S f m f f m m i i m i

E S SE
f f i i f i

U t t U t t A U t t U t t
A t

U t t U t t

 



     
  

     (1.25) 

  st ˆ Sands for the stochastic average and i  is the initial state of the qubit. Here we note that the approxi- 
mation given by Equation (1.16) is equivalent to  

       

       

† †

† †

ˆˆ ˆ ˆ ˆˆˆ

ˆˆ ˆ ˆ ˆˆˆ ,

SE S SE S SE S SE
f m f f m m i i m i

SE S SE S SE S SE
f m f f m m i i m i

U t t U t t A U t t U t t

U t t U t t A U t t U t t

 

 

   

    
             (1.26) 

 
which is valid only in the narrowing limit of the de- 
phasing. To calculate the weak value given by Equation 
(1.25), we expand the initial state ˆ S

i , the observable 
ˆ SA  and the measurement operator ˆ S

f  as 

,
ˆ S

i jkj k
j k   , 

,
ˆ S

jkj k
A a j k  and  

,
ˆ S

f jkj k
j k   , where j  is an eigenstate of ˆ

zS  

1ˆ 0 0
2zS   and 

1ˆ 1 1
2zS  

om Equation (1

such that . Then after  

some calculation, we obtain fr .25), 

 
 
 

, ,
,

,

f m i

w m

f i

N t t t
A t

D t t
             (1.27) 

with 

 

               
     

0 0

0

* *
10 00 11 10

11 11 11 10 01

e e

e

f m f i

m i

i t t i t t

f m f i

i t t
m i

N G t t a G t t a

a G t t a

 

        ,
0

0 0

*
00 00 00 01 10 01

10 01 11 00 01

, ,

e e

m i

f m f i

i t t
f m i m i

i t t i t t

f m f i

t t t a G t t e a

G t t a G t t a



 

   

  



   

   

   



  

 

 

  

  


(1.28) 
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and 

         0 0*
00 00 01 10 10 01 11 11, e ef i f ii t t i t t

f i f i f iD t t G t t G t t
 

,         
                  (1.29) 

where  is the characteristic function of the 
 

 b aG t t
stochastic variable  t , 

   exp .
a

b a t
t t i dt t           ( 0) 

We can see that the approximation given by Eq

btG   1.3

uation 
(1.26) is valid if and only if the equality  

 holds or 
by  

which is derived in the narrowing 
 [17]. Assuming that the stochastic 

    c b b a c aG t t G t t G t t     
equivalently the characteristic f

  c b at t t 
unction is given 

   e b at t
b aG t t     

mit of the dephasingli
dephasing is characterized by the stationary Gauss- 
Markov process, we obtain the characteristic function 
[17,24], 

   
2  

exp 1 e tG t t 


    
 

1.31) 

while we obtain for the stationary two-s
jump process (or equivalently the random tel
[24,25], 

, 
 

     (
 

tate Markov 
egraph noise) 

 
1

t t t  
2e cosh sinh ,

2 2
G t a

a a

             
    (1.32) 

with  2
1 1a    . In these equation,   repre-  

sents the strength of the dephasing and   is an inverse 
of the correlation time of the stochastic variable  t . 
Note that ian sto ss does not 
imply that the process of t  is Marko- 

the Markov chastic p e
dephasing he system

Let us now consider the case that the system ob- 
servable is the 

roc

vian. 

x -component 
weak value 

zŜ  of the spin. Then the 
 ,x w mS t  given by uation (1.27) becomes 

 
 Eq

 
             

      
0 00 0

0 0

00 10 11 01 01 00 10 11

,

00 00 01 10 10 01 11 11

e e e e1

2 e e

f m f mm i m i

f i f i

i t t i t ti t t i t t
m i f m

x w m i t t i t t

f i

G t t G t t
S t

G t t

  

 

      

       

    

  

    
   
     


   (1.33) 

In particular, when the system pre-selected in  0 1 2i    at the time  is post-selected in a state  it
 0 1 2i  , the weak value is simplified as  f

 
       

   
0

,

0cos sin
,

m i m i f m f m

x w m

f

G t t t t G t t t t
S t

     


 
                (1.34) 

which is plotted as function of time in Figure 1. 
It is found from the figure that the weak

the spectral range of the spin-1/2 operator, 

0sini f it t t  2 1 G t 
 

 value lies in 

 ,

1 1
w x mS t   , in the narrowing limit or equivalently 

2 2
 

ronment signific

ider the weak value influenced by a quantum 
mechanical environment. Here we suppose that a qubit 
interacts with an environment consisting 
oscillators [18]. The Hamiltonian of the qubit and 
nvironment is given by 

the Markovian limit. This means that the Markovian 
envi antly suppresses the anomalous pro- 
perty of the weak value. 

4. Weak Value in Bosonic Environment 

We cons

of harmonic 

e

 

 

†

† *

1ˆ ˆ ˆ0 0 1 1
2

ˆ ˆ1 0 0 1 ,

k k k
k

k k k
k

H a

k

a

g a g a

   

  





 


 


   (1.35) 

w ion 

 of the th oscillator of the environment. It is 
assumed that the environment is initially in the vacuum 
state 

here ˆka  and †ˆka  are bosonic annihilation and creat

operators k

0kk
0  with ˆ 0 0k ka   and 

Lorentzian spectral density, 
it has the 

 
 

2

2
J

 
2 2

.
  

       1.36) 
    

  (

If the inequality 2   is fulfilled, the environment 
is non-Markovian and otherwise it is Markovian . 
We can obtain an exact time evolution of the qubit and 
the environment. Indeed, when we set the initial state  

 [18]

 i i  0  with t 0 1i i i

the state  
    , we find  

 ˆ
e iiH t t

it     0  at time t  [18,26], 

 
     

   

t

2 2

2

e 0 e 1

e 1 ,

i i

i

i i
t t t t

i i i

i
t t

i t

g t t

t t

 



    

 

 
     
 

  

0

1

  (1.37) 

where     2 221 i ig tt      and the time-de- 
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Figure 1. The weak value of ˆ
xS  in the stochastic dephasin

process and (b) the stationary two-state-jump Markov proces

between the pre-selection at it  and the post-selection at ft , th

g w aracterized by (a) the stati s

s, where the weak measurement is performed at the middle 

at is,

hich is ch onary Gau s-Markov 

  m f it t t 2  . We set and scale time by 

e narrowing limit, whe

 f it t t  

the phase relaxation time T2  in th re T 2
2   for the Gauss-Markov p d rocess an T 2  for  2 4

the two-state-jump Mark s. In (a), the solid line (black) stands for ov proces 0.1  , th ed line (blue) for e long dash

0.8  , the short dashed line (brown) for 1.2   and the dotted line (red) for 1.5  . In (b), the solid line (black) 

stands for 0.5  , the e (blue long dashed lin ) for , the short dashed line (brown)1.  for 3.0   5  and the dotted 

line (red) for 5.0  . Furthermore we set T0 2 5.0  in the figure. 

 
pendent parameter  g t  is given by  

 
1

2
1

e cosh sinh
2 2

t a a
,g t t

a

                
t    (1.38) 

with  1 2a    . In Equation (1.37), we set  

    
1 22

ˆt k k kk k
c t c t a



  1 0 , where the coeffi-  

cient is given by 

i

 kc t  

     
0
d e .k
t i s

k kc t ig s g s           (1.39) 

Then the exact time evolution of the qubit and the 
environment is provided by Equations (1.37)-(1.39). 

To find how the weak value is influenced by the 
bosonic environment, we suppose that the observable is 
the z-component of the spin-1/2 operator and the qubit is 
post-selected in the excited state 0  at time ft . Then 
if 0i  , we can derive the ak value from Equations 
(1.12) and (1.37), please see Equation (1.40) below. 

It is interesting to note th t the weak value does no
depend on i

we

a t 
  and i . In  words, the weak value  other

is independent of the pre-selection of the system. If the 
bosonic environment is Markovian  2 1   , we see 
that  , 1 2z w mS t   since the equality  
     a b a bg t g t g t t 

2
 is satisfied. If the equality 

   holds, we obtain 

 

   

 ,

1 1
2 2 1

,
2

1
2

f m m i

z w m

f i

t t t t

S t
t t

 



   
       




 (1.41) 

which yields the inequality  , 1 2z w mS t 
 greater than th

or ˆ

. In this case, 
the weak value is always e maximum 
eigenvalue of the spin-1/2 operat zS . Furthermore, if 
the inequality 2   is fulfilled, the weak value 

 ,z w mS t  
range of t

can take de e spectral 
he sp rator since

values insi
in-1/2 ope

and outside th
  g t  becomes  an

oscillatory function, 

 
1 1

.
2 2

t a a
2e cos sing t

a
t t

       
    

    
   (1.42) 

 

 
       

   
   

   

ˆ ˆˆ

, ˆ ˆ

1 ˆTr 0 e 0 0 1 e 0
12

.
2

f m f i

f i f i

iH t t iH t tiH t t
E i i

f m m i

z w m iH t t iH t t

t g t t
S t

g t

 

 

   

  

       
0 0

  (1.40)
e

Tr 0 e e 0

m i

f iE i i

g t

t
 

 0 0
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When  f ig t t  sufficiently small, th lue   

s large, though the 
is e weak va

ecome success probability of the post 
all. The time dependence of the weak 

value is plotted in Figure 2. 

5. Summary 

s paper, we hav  an 

b
selection is very sm

In thi e considered the weak value of
 

 
 

 

Figure 2. The weak value of ˆ
zS  

ows
of 

influenced by the bosonic 

environment, where (a) sh  the dependence on the 
post-selection time in the case it 0  and m ft t 2  , 

and (b) is the dependence on ent time when the measurem

it 0  and ft 16 . In bo e solid line (black) 

 for 

th figures, th

stands 30.0  , th  dashed line (blue) for e long

2.5  , the short dashed line (green) for 2.0  , the 

dotted line (red) for 1.0   the double dot-dashed line 

(purple) for 0.2  and the  d line (brown) for  dot-dashe

0.05  .

 
 The hor  in (a) represents izontal gray line

z w mS t,  1 2  for 

able of a system interacting with an environment 
and we have provided the general expression of the weak 

ult to calculat hen the environ- 
ment is Markovian, we
terms o d retrodictive density matrices 
of the system, which are derived by solving the quantum 
master equations, or by means of the quantum regression 
theorem. On the other hand, for the non-Markovian en- 
vironment, we don’t know the systematic met
calculating weak values. Hence to investigate the weak 
value in the case of the non-Markovian environment, we 

solvable mod

arkovia
es 

nviro
 hav

or this purpose, however, it is nec-
essary to develop a method for calculating weak val
under the influence of the environment. 
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