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SUMS OF CUBES IN POLYNOMIAL RINGS

L. N. VASERSTEIN

Abstract. For any associative ring A with 1 of prime characteristic ^0, 2,

3 , every element of A is the sum of three cubes in A .

For any ring A, let w}(A) denote the least integer s > 0 such that every

sum of cubes in A is a sum of s cubes in A . If no such 5 exists, w3(A) = oo

by definition.

For example, when A = Z, the integers, it is known [2] that 4 < w3(Z) < 5 .

In this paper, we study w}(A) for A = F[x], the polynomial ring in one

variable x with coefficients in a field £ . It is easy to see [4] that every polyno-

mial in £[x] is a sum of cubes, if and only if char(£) ^ 3 and card(£) 7¿ 2, 4.

If this is the case, w3(F[x]) coincides with the least s such that x is the sum

of s cubes in £[x]. Moreover, in this case, every element of any associa-

tive £-algebra A with 1 is the sum of w3(F[x]) cubes in A ; in particular,

w3(A)<w3(F[x]).

The formula

(x+ l)3-2x3 + (x- l)3 = 6x

shows that w3(A) < 4 for any associative ring A = 6A with 1. In particular,

w3(£[x]) < 4 for any field £ with char(£) ¿ 2, 3 . By [4], u>3(£[x]) < 4 also

in the case when char(£) = 2 and card(£) ^2,4. When card(£) = 2,4,

formulas on p. 63 of [3] show that w3(F[x]) < 5. These formulas together

with the formulas

(xy + s)3 + (xy + s + l)3 + (x + sy2)3 + (x + (I + s)y2)3 = x(y + y4),

.    (x y  +x(y + y ) + 1 +s + y+y  +y   )

+ (x2(l + y2) + x(y + y4) + s + y + y2 + y10)3

,22,, 4, 48 10x3
+ (x y  + x(y + y ) + s + y + y +y  +y   )

+ (x2(\ + y2) + x(y + y4) + s + y + y2 + y4 +yW)3

= x(y + y4) + y + y2,

where 2 = 0 and 5 +5+1=0, show that w3(F[x]) < 4 in the case when

card(£) = 4.
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350 L. N. VASERSTEIN

On the other hand, it is clear that u;3(£[x]) = 1 when char(£) = 3, and

that w3(F[x]) > 3 when char(£) ¿ 3.

Our first easy result (which was obtained by the author in July of 1987 and

was known to J.-P. Serre since April of 1982) is the following

Lemma 1. If char(£) ^ 3 and there are nonzero a, ß, y G F such that a3 +

ß3 + y3 = 0, then w3(F[x]) = 3.

Proof. The formula

(ax + ß2)3 + {ßx - a)3 + (yx)3 = ß6 - a   - 3aßy3x ,

where x can be replaced by an arbitrary polynomial in £[x], shows that

w3(F[x])<3.   D

Corollary 2. // char(£) # 0, 3 and card(£) ¿ 2, 4, 7, 13, 16, then w3(F[x])
= 3.

By more complicated computations, we will prove the following

Proposition 3. If char(£) / 3, then the condition of Lemma 1 is equivalent to

the following: x is the sum of cubes of three polynomials in F[x] of degree

<4.

J.-P. Serre knew this for polynomials of degree < 2 since April of 1982.

The case of degree < 3 was done by August 1987 independently by the author

and David Hayes. In his letter of August 11, 1987, to Serre, Hayes wrote that

the case of degree < 4 defeated him. The author obtained Proposition 3 with

2£ ^ £ in September of 1987. He thanks Serre for providing copies of relevant

letters and useful suggestions.

This result leads one to wonder whether the converse of Lemma 1 is true.

However J.-P. Serre wrote to the author on September 9, 1987, that he did not

dare to conjecture anything himself even for £ = Q, the rational numbers, or

£ = Z/7Z, Z/13Z.
Computations with polynomials of degree > 5 are very complicated, and

it is only after many hours of computations with computers, that the author

obtained the following result.

Theorem 4. // char(£) ^0,3 and card(£) ^2,4,16, then w3(F[x]) = 3.

So every element of every associative F-algebra A is the sum of three cubes in

A.

Proof. By Corollary 2, we have only the cases char(£) = 7, 13 to deal with.

Modulo 13, we have

(-4x + 5x + 6x + x )  + (1 + 4x + x - 5x  - 3x + 5x )

+ (-l+5x-5x  + 5x  + 3x  - 5x )   =x.

Modulo 7, we have

, ,    3 5,3       ,     . 3,4 6,3   ,   ,. 3,4,      6,3 _.
(x-3x -x)  +(-l-x-x +3x  -x)  +(l-x-x  -3x +x )   =x.   D
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SUMS OF CUBES IN POLYNOMIAL RINGS 351

Remarks. The cases £ = Q and card(£) = 16 remain unresolved. The above

equalities were found using Mathematica on Macintosh IIx. We work in one

of the following cases: £ = Q, Z/7Z, or Z/13Z. In degree 5, we proceed as

follows. First, we set d = a  + b + c   with

2 3 4 5
a = a0 + axx + a2x  + a3x  + a4x + a5x ,

b = b0 + bxx + b2x + b3x +b4x + b5x ,

2 3 4 5
C = cQ + cxx + c2x  + c3x  + c4x  + c5x .

Note that d = d0+dxx-{-r-dX5x   , where c£ are polynomials in aj, b¡, c¡.

We want ¿/ = 0 for / > 2 and d =¡¿ 0. (For proving Theorem 4, we want

67, / 0.) We assume that char(£) / 2, 3. By Proposition 3, we can assume

that one of the leading coefficients a5, b5, c5 is not 0. Since the condition

of Lemma 1 does not hold, one of these coefficients must be 0. Say, a5 ^ 0

and c5 = 0. Then b5 = -a5, because dX5 = 0. The condition ¿7^0 forces

cA t¿ 0. By a linear invertible change of the variable x and multiplying both
■7 ■) -1

sides of d = a+b+c by a nonzero constant, we are reduced to the case

when a5= 1 = -b5, a4 = 0, c4 = 1 . Now dx5 = 0 ^ d.

The polynomial equations d{. = 0 (7 < /' < 15) allow us to exclude all un-

known coefficients but a3,cCj,cx,c2,c3. The conditions d6 = 0, d^ = 0, d4 =

0, d3 = 0, d2 = 0 give a system of five polynomial equations for five unknowns

a3,cQ,cx,c2,ci. Namely,

3 2 2 2
d6 = - 1 /108 + 5c73 + 3c23c0 + 3c, /4 - 18a3c2 - 3cQc, + 21 a3c\

- 8c2 - 12a3c,c3 + 15c,c2c3 + 63a3c3 + 3c0c3 - 159a3c2c3

+ 99c2c3 - 3c,c3/2 + \2a3c\ - 2\c2c\ - 37c3/4 = 0;

d5 = 9cz3c,/2 + 3c0c,/2 - 12a3cxc2 + 15c,c2/2 - c3/12

3 2 2
- 30c73c3 - 3a3c0c3 + 3c,c3/4 + 117a3c2c3 + 6c0c2c3

- 150a3c2c3 + 63c2c3 - 6a3c,c3 + 9c,c2c3/2

+ 57t73c3/2 + 15c0c3/2 - 5l673c2c3 + 33c2c3/2

- 15c,c3/2 + 57a3c35 - 165c2<:35/2 - 69c]/4 = 0;

d4 = a}/\8+ 15a3/4 + 3a32c0/2 + 3Co/4-c2/12

3 ~> 2   ~> 2
- 12a3c, + 3c,c2/4 + 2\a3c2/2 - 3c0c2/2

4 2 2
- 9c2/4 - 6673c,c3 + 3c0c,c3/2 + 9c,c,c3

- c3/3 + 42a3c3 - \59a3c2c3/2

+ 9c0c2c3/2 + 81c2c3/2 - 3c,c2c3

+ 6a2yc4 + 3c0c3/2 - 69c2c3/4 - 3c,c35/2 - 51c2c3/4 - 3c3/2 = 0;
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352 L. N. VASERSTEIN

d3 = 2\a3cx/2 + 9a3c0c,/2 + c, - 33£Z3c,c2 - 3c0c,c2

2 3 4
+ 63a3c,c^/2 - 9c,c2 + a3c3/3 - 135a3c3/4

- 6a3c0c3 + 3c0c3/4 - 18<33c[c3 - c2c3/2

+ 129ö3c2c3 + 9<33c0c2c3 + 45c,c2c3/2

- 321a3c2c3/2 + 63c73c,c3 + 9c2c3/4

+ 219a3c,c32/2 + 9c0c,c3/2 - 549a3c,c2c2/2

+ 333c,c2c32/2 - 3c3/4 - 209a3c3/2

+ 3¿73c0c3/2 - 9c,c3/4 + 393a3c2c3

+ 9c0c2c3/2 - 933c73c2c3/2 + 171 c2c3

+ 12t73c,c3 - 63c|c2c3/2 + 42a3c3 - 87a3c2c3/2

- 81c2c3/4 - 27c,c5/2 + 6a3c¡ - 45c2c¡/2 - 9c3/4 = 0;

d2= - a3/9 + 9a3/2 + 9a3cQ + 9a3cJ2 + 21a3cx /4 + 3c0c,

+ c73c2/3 - 99a3c2/4 - 63a3c0c2/2 - 15c0c2/4- 18a3c,c2

- c2/4 + 54a3c2 + 36a3c0c2 +45c,c2/4- 117a3c2/2

- 27c0c2/2 + 63a3c2/2 - 27c2/4 - 135a3c,c3/2 - 27a3c0c,c3

2 2 3
+ 252<23c,c,c3 + 36c0c,c,c3 - 621i33c,c2c3/2 + 126c,c2c3

+ 5û3c3/6 + 549c73c3/4 + 108a3c0c3 + 9c0c3/2 + 9a3c,c3

2 3        ~> 2 2       2
- 5c2c3/4 - 639a3c2c3 - 270a3c0c2c3 - 63c,c2c3/4

+ 1101a23c22c23 + 333c0c2cJ/2 - 846a3c2 + 963c2c3/4

- 153a3c,c3/2 + 9c0C!C3/2 + 228a3c,c,c3 - 333c,c2c3/2

- c3 + 357a3c3/2 + 12a3c0c3 - 9c,c3 - 720a3c2c3

- 27c0c2c} + 951a3c^c3 - 1647c2c3/4+ 165a3c,c3/2

- 108c,c2c35 - 5\9a]c\/4 - 27c0c3/2 + 294a3c2c\ - 639c2c3/4

- 27cxc\/2 + 2\a3c\/2 - 9c2c\/4 + 9c3°/4 = 0.

Further exclusion of variables required too much computer memory. So a

complete search was used instead for £ = Z/7Z and £ = Z/13Z. The author

thanks A. Ocneanu for help with programming. The computer search showed

that there was no solution for this system of five polynomial equations in five

variables in the case £ = Z/7Z. Thus, the equation d = a + b + c has no

solutions in (Z/7Z)[x] such that 5 > deg(a) > deg(è) > deg(c), deg(a) ^ 0,

and deg(c0 = 0 or 1. In the case £ = Z/13Z, the computer took 57128 seconds

to try all 135 possible solutions and found all 12 solutions. The first of them is

(l+3x+10x2+x5)3-(12+12x + 6x2+x5)3 + (2+4x+8x2 + 9x3+x4)3 = 10+8x.
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It was written above in the proof of Theorem 4 after a linear change of variable.

Here are five more solutions (mod 13) :

(3 + x + 10x2 + x5)3-(10 + 4x + 6x2 + x5)3

+ (5 + 4x + 1 lx2 + 3x3 + x4)3 = 10 + 1 lx ;

(9 + 9x + 10x2 + x5)3 - (4 + lOx + 6x2 + x5)3

+ (6 + 4x + 7x2 + x3 + x4)3 = 10 + 7x ;

(5 + 7x + 7x2 + 7x3 + x5)3 + (7 + 3x + 7x2 + 3x3 + x4)3

-(12+ 10x + 3x2 + 7x3 + x5)3 = 1;

(2+ llx + 7x2 + 8x3 + x5)3-(10+ 12x + 3x2 + 8x3 + x5)3

+ (11 + 3x + 8x2+x3 + x4)3= 1;

(6 + 8x + 7x2 + 1 lx3 + x5)3 - (4 + 4x + 3x2 + 1 lx3 + x5)3

+ (8 + 3x + 1 lx2 + 9x3 + x4)3 = 1.

The other six equalities can be obtained from the above six solutions by

switching a and b and replacing x by -x.

The degree-6 case was treated similarly. The following lemma was used to

restrict possible values for the coefficients of a, b, c.

Lemma 5. Let F be a field such that there is no a, ß, y in F with a +ß +y =

0 # aßy . Let x = a3 + b3 + c3 with a, b, c G F[x], N = deg(a) > deg(¿>) >

deg(c) > 1, a = Y^aix' > b = ¿2b¡x', c = £c(x', and a¡, bt, ct G F. Then
c0 = 0 and a0/aN is a cube in F . .   ,

Proof. By the condition, cN = 0, hence (-bN/aN) = 1 . Replacing b by

bbN/aN , we can assume that bN = -aN / 0.

Let us show that the assumption that cQ ̂  0 leads to a contradiction. Indeed,

in this case a0b0 = 0. Say, b0 = 0. Replacing c by ca0/c0 we can assume

that c0 = a0 .

Let otj be the zeros of b + c in a field extension of £ . Then a(at) = aj for

all i, hence a0/aN = (-l)N Y\a,■ = ((-lfn^K))3 is a cube in £. Applying
7 7 9 2

this argument to the zeros /?   of 67   - ab + b , we obtain that a0/(3aN) =

(Y[c(ßj))3 is also a cube in £ . So 9 is a cube (in fact, a 12th power) in £ . In

the case 2£ = £, this leads to a contradiction, because 9 = 8+1 is also the

sum of two cubes.

In the case 2£ = 0, assume first that £ contains an element e such that

e = e + 1. Using the zeros of a + eb, we conclude that aJ'(aN(\ + e)) is a

cube in £ . Using the zeros of 67 + ec, we conclude that a0( 1 + e)/aN is a cube

in £ . So (1 + e) = e is a cube in £ . This leads to a contradiction, because

e = 1 + 1/e is also the sum of two cubes.

Assume now that 2£ = 0 and £ does not contain any e as above. Then

we consider a field extension £[e] with e as above. Using the zeros of 67 + sb,
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we conclude that aQ/(aN(l + e)) is a cube in £[e]. Using the zeros of a + ec,

we conclude that aQ(\ + e)/aN is a cube in £[e]. So (1 + e) = e is a cube in

£[e]. We write e = (u + ve)   with u, v e £ . Then

3 2 3 3 2 2 2
0 = u  +uv  +v   =(u + v)  -uv   and    1 = u v + uv   =uv(u + v),

hence u v  = 1 . Combining this with

r\     it   ,    2 2\4      i   ,     8   4  ,     4   80 = (\ + uv + uv)  = 1 +u v  + u v ,

we obtain that \+u +u~   = 0, which contradicts the condition of the lemma.

Thus, c0 = 0 in all cases. Now we use the zeros yk of a + c to conclude

that aQ/aN = ((-l)N Y[b(yk))3 is a cube in £.   D

Proof of Proposition 3. It was shown above that the condition of Lemma 1

implies that x is the sum of cubes of three polynomials of degree 1.
"Î 1 1

Assume now that there is no a, ß, y in £ = 6£ such that a + ß + y =

0 t¿ aßy . We want to prove that dcg(d) / 1 for any

(6) d = a  + b  + c ,

where a, b, c G F[x], provided that a, b, c are all of degree < 4.

Let deg(a) > deg(b) > deg(c). Assume that deg(d) = 1. Then it is clear

that all three polynomials a, b, c cannot have the same degree. So deg(6?) =

deg(¿>) > deg(c). Dividing both sides of (6) by the cube of the leading coefficient

of 67, we can assume that 67 and -b are monic, i.e., their leading coefficients

are 1. Then the next two coefficients must also be equal. This leads immediately

to a contradiction when the degree of a is < 2.

Consider now the case when deg(o) = 3 or 4. If 2£ = £ , we set u = a + b

and v = a - b . The equation takes the form

u(u2 + 3v2)/4 + c3 =d.

When deg(a) = 3 , we see that deg(c) = 2, deg(w) = 0, and deg(ü) = 3 . We

rewrite the equation as v ¡4 + c /3u = d/3u - u ¡3 = d' with deg^') = 1 .

We write v/2 = x3 + v2x2 + vxx + v0 and c3/3u = -(x2 + c,x + c0)3. Our

equation takes the form

(x  +v2x +vxx + v0)~ - (x~ + c,x + c0)  = d'.

Then we replace x by x - u2/3 to make v2 = 0. Looking at terms of degree

5, we conclude that c, = 0. Looking at terms of degree 3, we conclude that

?70 = 0. Looking at terms of degree 1, we obtain a contradiction. (The "abc-
2 3

theorem" yields that V - C cannot be a nonzero constant for nonconstant

polynomials V and C, if char(£) = 0. It is not difficult to show that the

necessary and sufficient condition on a field £ for this conclusion to be true is

that 6£ = £ .)
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Let now deg(6i) = 4 (and still 2£ = £). Since deg(u) = 4, it is clear that

deg(w) = 1 and deg(c) = 3. Now we set y = \/u. After we divide both sides

of (6) by u9 , it takes the form

3/4(tj/w4)2 + (c/u3)3 = -y6/4 + x/u .

Note that c/u is a polynomial of degree 3 in y with a constant term e ^ 0.

After dividing the equation by e   , it takes the form

(\+vxy + v2y2 + v3y3 + v4y4)2 -(l+cxy + c2y2 + c + 3y3)3

*   ' 6 , .   '3        u   &        m   9 ...     i      il      in .     „ i   ii    , ,
= -y /4e   + e y +e y     with e , e , e   in £ and e e  ^0.

Now we see that, modulo y F[y],

( 1 + vxy + v2y2 + v3y3 + v4y4)2 = (\+cxy + c2y2 + c3y3)3,

hence

1 + vxy + v2y2 + v3y3 + v4y4 = (I + fxy + f2y2 + f3y3 + f4y4 + f5y5)3

and

1 + cxy + c2y2 + c3y3 = (\ + fxy + f2y2 + f3y3 + f4y4 + f5y5)2

for some f¡ in F. Set / = 1 + fxy + f2y2 + f3y3 + f4y4 + f5y5.

Then, modulo y F[y],

f2 = \+ 2fiy + (2f2 + f2)y2 + (2f3 + 2fxf2)y3

4 + 2/,/3 + fi)/ + (2f5 + 2fJ4 + 2f2f3)

and

f3 = 1 + 3fiy + (3/2 + 3/2)>'2 + (3/, + 6ff2 + f3)y3

+ (3f4 + 3f2f2 + 6fxf3 + 3f2)y4

+ (3/s + 6ff4 + 6f2f3 + 3f2f3 + 3ff2)y5

So

0 = c4 = 2/4 + 2/,/3 + /22,

0 = c5 = 2/5 + 2/,/4 + 2/2/3,

0 = ?;5 = 3/5 + 3fxf\ + 6fxf4 + 6f2f3 + 3f2f3,

hence

ft + flß + fif =0,     f5-f2f-f3f2^0,    f3f2 + f2fx/2 = 0.

We set C = 1 + 2fxy + (2f2 + f2)y2 + (2f3 + 2fxf2)y3,

V=\ + 3fxy + (3f + 3f2x)y2 + (3/3 + 6/,/2 + /,3)v3

+ (3/4 + 3/2/2 + 6/,/3 + 3y22)/,
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and S=V2-C3. Then (7) takes the form

S = V2 - C3 = S5y5 + S6y6 + S7y + s/ + S9y9
6 , .   /3 //   8 m   9

= -y ¡4e   +e y +e y ,

where the coefficients 5;  of S are polynomials in /..   Substituting f4 =

-fil1 - /33/1 and -fi = flf\ + fiff int0 si> we obtain:

Sg = -8/33 - 24^/, - 24 f3f2ff - Sf3f3 = e'",

S8 = -24/32/2 + 9/Í/4- 39 f3f\fx - 3f2f2

- 15/272 - 6f3f2f3 - 3f2f^ = e"¿0,

S, =-15 f3f2 - 6f2fx - 6f3fx - 18/3/2/2.- 9/22/3=0,

s6 = -3/32 + fi - l^f2A - 9fifi = -^e'3 é 0,

s5 = -6/3/2-3^=0.

Since S5 = 0, we see that either f2 = 0, or 2/3 + /, /2 = 0.

In the first case,

(S9, Ss, S7, S6) = (-8/3 , -3/3/, , -6/3/,, -3/3 ),
7 7    7

and S7 = -6/3 /, = 0 implies that Sg = -3/3 /, = 0, so this case is impossible.

Assume now that f2 ^ 0 = 2/3 + fxf2. Then

^9 = -/2V,3,        S, = 9fi/4 - 3/23/2/2 - 3/22./> !"

S7 = 3/23/, /2 - 3/22/3/2,        S6 = /23 - 3fif2/4.

From S7 = 3f2fx/2-3f2fx/2 = 0, we obtain that either /, = 0, or f2 = f2.
The latter case is impossible because then the coefficient S7 vanishes. So let

/,=0.
Then the coefficients (S9, S^,S7,S6) become (0, 9^/4, 0, /23). So -e'3/4

= f2 , hence 2 is a cube in £. Since 2 is also the sum of two cubes, we are

done.

The case 2£ = 0, deg(a) = 3 or 4 was done using the computer.   When
3 2

deg(67) = 3, we consider (6) with 67 = x + 672x + axx + a0, b = a + f,

c = c2x + cxx + c0, d = £d¡x' ^ 0, dt■ = 0 for i >2 .

It is clear that deg(/) = 0. Replacing x by x + c2, we make c2 = 0.

From d6 = f + c2 = 0, we get f = c2. Substituting this into d, we get that

ds = Cxc2 = 0. If Cj = 0, then c/j = c2 = 0. Thus, c2 = 0, hence d2 = cQcx

and 6/, = CqCx. So d2 = 0 implies that dx = 0.

The reader is spared from longer computations which were done in the case

when 2£ = 0 and deg(a) = 4.   D

Remark. The identity     o <

x = ((x3 - 1/27)3 + (x2 + x/3)3 + (-X3 + x/3 + l/27)3)/(x2 + x/3 + 1/9)3
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shows that w3(F(x)) < 3 and iu3(£) < 3 for any field £ with char(£) ^ 3;

if char(£) = 3 , then w3(F(x)) = w3(F) = 1.

Remarks. All the solutions of (6) with deg(6z) = deg(6) = 3, deg(c) = 2, deg(d)

= 0 can be obtained from

(1 + 6x3)3 + (1 - 6x3)3 + (-6x2)3 = 2

by a linear change of variable and scaling. There are no such solutions when

2£ = 0.
All the solutions of (6) with deg(iï) = deg(¿7) = 4, deg(c) = 3, deg(d) = 0

can be obtained from

(9x4)3 + (3x - 9x4)3 + (1 - 9x3)3 = 1

by a linear change of variable, switching a and b , and scaling. P. Erdös pointed

out to the author that the last two formulas can be found in [1].

All solutions of (6) with deg(67) = deg(¿7) = 5,deg(c) = 4,deg(d) = 0

or 1 were described above when char(£) = 13. They do not exist when

card(£) = 5,7. When char(£) = 11 , all such solutions can be obtained from

the equalities

(2 + 2x2 + 3x3 + x5)3 - (2 + 5x + 6x2 + 3x3 + x5)3

+ (x+ 10x2 + 5x3 + x4)3 = 6x,

( 1 + 4x + x2 + 5x3 + x5)3 - (9 + 6x + 5x2 + 5x3 + x5)3

+ (8 + x + 2x3 + x4)3 = 4,

(4 + 4x + 3x2 + 8x3 + x5)3 - (8 + 6x + 7x2 + 8x3 + x5)3

+ (5 + 4x + 9x2 + 2x3 + x4)3 = 7

by a linear change of variable, switching 67 and b, and scaling.
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