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Background: Limited previous findings have detailed biomechanical advantages 1 
following implantation with mobile bearing (MB) prostheses after total knee 2 
replacement (TKR) surgery during walking. The aim of this study was to compare 3 
three dimensional spatiotemporal, kinematic, and kinetic parameters during 4 
walking to examine whether MBs offer functional advantages over fixed bearing 5 

(FB) designs. 6 

 7 
Methods: Sixteen patients undergoing primary unilateral TKR surgery were 8 
randomised to receive either a FB (n=8) or MB (n=8) total knee prosthesis. Eight 9 
age and gender matched controls underwent the same protocol on one occasion. A 10 

12 camera Vicon system integrated with four force plates was used. Patients were 11 
tested pre-surgery and nine months post-surgery. 12 

 13 
Results: No significant differences between FB and MB groups were found at any 14 
time point in the spatiotemporal parameters. The MB group was found to have a 15 
significantly reduced frontal plane knee range of motion (ROM) at pre-surgery 16 
than the FB group (FB=14.92±4.02°; MB=8.87±4.82°), with the difference not 17 

observed post-surgery. No further significant kinematic or kinetic differences 18 
were observed between FB and MB groups. Fixed bearing and MB groups both 19 

displayed spatiotemporal, kinematic, and kinetic differences when compared to 20 
controls. Fixed bearing and MB groups differed from controls in six and five 21 

parameters at nine months post-surgery, respectively. 22 
 23 

Conclusions: No functional advantages were found in knees implanted with MB 24 
prostheses during walking, with both groups indicative of similar differences 25 

when compared to normal knee biomechanics following prosthesis implantation. 26 
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Introduction 

In total knee replacement (TKR) surgery, mobile bearing (MB) prostheses 

facilitate planar rotation about the vertical axis of the tibia [1] and [2], with a view 

to reducing sub-surface stress through dual surface articulation at both the 

superior and inferior surfaces of a polyethylene insert [3] and [4]. Dual surface 

articulation promotes load sharing between the relative displacements of the tibial 

and femoral components, dissipating knee moments and shear forces to the 

surrounding soft tissues in a similar manner to the normal knee [5]. 

 

Many theoretical benefits of the MB design, including the improvement in 

kinematics [5], have yet to be substantiated, with numerous authors documenting 

no improvements in outcomes when compared to fixed bearing (FB) designs [6], 

[7], [8], [9] and [10]. The majority of studies comparing FB and MB prostheses 

have used questionnaire based outcome measures that have been shown to be less 

sensitive than gait analyses when detecting changes in gait [11]. Gait analysis has 

been previously used to measure functional outcome following TKR surgery [12], 

with current systems able to calculate the biomechanics about the knee to a high 

degree of accuracy, establishing gait analysis as an important tool in the clinical 

management of knee problems [13]. 

 

Previous findings have been inconclusive in the comparison of FB and MB 

prostheses by means of gait analysis, with four previous authors assessing walking 

[14], [15], [16] and [17]. The differences in study design, instrumentation, and 

methods between the studies make it difficult to extract meaningful conclusions. 

Mockel et al. [16] and Kramers-de Quervain et al. [17] presented results in favour 
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of MB prostheses [5] that warrant further investigation. Mockel et al. [16] found 

increased stance phase knee flexion in MB knees (14.1°) when compared to FB 

knees (10.8°), an indication of a more effective shock-absorbing mechanism 

during loading response [22]. 

 

Kramers-de Quervain et al. [17] detailed greater maximum knee flexion during 

the swing phase of gait in MB knees (52.4 ± 7.56°) when compared to FB knees 

(47.1 ± 4.74°) in bilaterally implanted TKR patients. A greater maximum knee 

flexion during swing demonstrates an improved ability for limb advancement and 

foot-clearance [18], in addition to increasing overall range of motion (ROM) 

which is an important determinant of functional activity following TKR surgery 

[19]. The aim of this study was to substantiate these previous limited findings of 

functional improvement in knees implanted with MB total knee prostheses during 

walking by means of three dimensional gait analysis. 

 

Patients 

Ethical approval was granted by an NHS Regional Ethics Committee. Nineteen 

patients with late stage primary knee osteoarthritis (OA) were recruited after 

giving written informed consent for participation. Patients were randomised to 

receive a FB (Sigma® Fixed Bearing Knee System, DePuy International, Leeds, 

UK) or MB (Sigma® Rotating Platform Knee System, DePuy International, 

Leeds, UK) total knee prosthesis. In contrast to a rotating platform where the 

femoral–tibial bearing surfaces are in substantial conformity from 0 to 60° of 

flexion, the MB knees in this study use the same multiradius femoral component 

and hence the femoral–tibial bearing is not in conformity. 
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Eight patients, five males and three females, received a FB prosthesis and had a 

mean age of 59.3 ± 8.8 years, height of 1.66 ± 0.09 m, mass of 87.85 ± 16.06 kg, 

body mass index (BMI) of 31.93 ± 4.86 kg/m2, and pre-surgery Oxford Knee 

Score (OKS) of 39 ± 7.64. Eight patients, five males and three females, received a 

MB prosthesis and had a mean age of 59.6 ± 7.7 years, height of 1.7 ± 0.09 m, 

mass of 91.21 ± 12.43 kg, BMI of 31.92 ± 6.8 kg/m2, and pre-surgery OKS of 

37.42 ± 5.32. Inclusion criteria were patients between 45 and 80 years of age. 

Patients were excluded if they had previous hip or knee replacement surgery, 

gross ligament instability, valgus/varus displacement of ≥ 20°, significant 

infection of the knee joint post-surgery, or any other significant unrelated lower 

limb injury or chronic condition that was deemed to have the potential to affect 

ambulation. Both FB and MB prostheses were posterior cruciate ligament 

sacrificing, posterior stabilised, and had the patella resurfaced in all cases. One 

senior orthopaedic surgeon (DK) performed all of the procedures. 

 

Eight age and gender matched asymptomatic participants, five males and three 

females, who had a mean age of 60.5 ± 7 years, height of 1.67 ± 0.12 m, mass of 

72.58 ± 9.43 kg, and BMI of 26.06 ± 1.21 kg/m2 were recruited as a control 

group. Table 1 details the demographic and anthropometric parameters of the FB, 

MB and control groups. 

 

Method 

Gait analysis 
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A 12 camera (T20, Vicon, Oxford, UK) three dimensional motion analysis system 

(Vicon MX, Oxford, UK) was calibrated through a standard dynamic protocol, 

exhibiting an image error of < 0.2 mm. Participants had their height and mass 

taken, along with bilateral leg length, and knee and ankle widths in order to fit the 

participant's specific dimensions to the lower body ‘Plug in Gait’ model (Vicon, 

Oxford, UK). Fourteen retroreflective markers (Ø = 14 mm) were placed 

bilaterally over the anterior superior iliac spine, posterior superior iliac spine, 

lateral distal third of the thigh, lateral distal third of the shank, lateral malleolus, 

heel on the calcaneus, and the head of the second metatarsal. Kinematic data were 

subsequently captured at 200 Hz into Vicon Nexus (1.7.1, Vicon, Oxford, UK). 

 

Four force plates (OR6-7, AMTI, Watertown MA, USA) were embedded within a 

7 m walkway and amplified into Nexus at a gain of 1000 (MiniAmp MSA-6, 

AMTI, Watertown MA, USA), with kinetic data captured at 1000 Hz. Two knee 

alignment devices ((KADs) Vicon, Oxford, UK) were then placed bilaterally over 

the medial and lateral epicondyles to independently define the alignment of the 

knee flexion/extension axis during static capture. These were removed during 

dynamic trials and two retroreflective markers (Ø = 14 mm) were placed 

bilaterally over the lateral epicondyles of the knee. The participants undertook a 

number of barefoot walking trials until three were collected in which the 

ipsilateral foot contacted a force plate during both initial contact and toe off. 

Patients were tested pre-surgery and nine months post-surgery. 

 

Data analysis 
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Raw data were processed in Vicon Nexus by filling marker trajectory gaps using a 

Woltring quintic spline routine when the gaps were less than 10 frames [25]. 

Marker trajectories and kinetic data were filtered using a fourth order low pass 

Butterworth filter with zero lag. A cutoff frequency of 6 Hz and 300 Hz was used 

for marker trajectories and kinetic data, respectively. The processed data were 

imported into Polygon Authoring Tool (3.5.1, Vicon, Oxford, UK) to normalise 

the trials to gait cycle percentage. Moments were normalised to Newton metres 

per kilogramme of body mass. Discrete kinematic and kinetic variables of the 

affected knee were processed following data normalisation in Polygon Authoring 

Tool. Discrete parameters encompassing the maximum, minimum, and range were 

chosen over continuous waveforms as they have a greater potential to characterise 

knee gait patterns [20]. 

 

Statistical analysis 

Normality of distribution was determined by calculating skewness and kurtosis in 

order to verify the assumptions of the ANOVA parametric tests in PASW 

Statistics (Version 18, Chicago, IL, USA). Skewness and kurtosis were converted 

to z-scores. The resultant z-score was indicative of a normal distribution if the 

magnitude was < 1.96 [21]. A one way repeated measures ANOVA was then 

undertaken to analyse differences between groups (FB, MB, control) at pre-

surgery and nine months post-surgery. Sphericity was assumed if Mauchly's test 

was not significant (p > 0.05). In data where sphericity was not assumed, the 

violations were adjusted for by using the Greenhouse–Geisser correction. If the 

ANOVA was significant (p < 0.05), post-hoc pairwise comparisons using the 

Bonferroni method for the adjustment of multiple comparisons were undertaken. 
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Results 

Axial plane kinematic and kinetic parameters were excluded from the results as no 

differences were found between all groups. 

 

Spatiotemporal  

At pre-surgery, reductions were found in the FB group when compared to controls 

in stride length (F1.46, 26.28 = 12.51; p < 0.05) and gait velocity (F1.33, 23.92 = 33.18; 

p < 0.05) (Table 2). Similar findings were apparent in the MB group with a 

reduction in gait velocity (F1.33, 23.92 = 33.18; p < 0.05) and cadence (F1.46, 

26.21 = 12.72; p < 0.05), and an increase in stride time (F1.27, 22.83 = 10.97; p < 0.05) 

when compared to controls. No significant differences were observed between FB 

and MB groups. 

 

The FB group walked with reduced stride length (F1.46, 26.28 = 12.51; p < 0.05), 

gait velocity (F1.33, 23.92 = 33.18; p < 0.05), and stride time (F1.27, 22.83 = 10.97; 

p < 0.05) when compared to controls at nine months post-surgery. The MB group 

derived reductions in cadence (F1.46, 26.21 = 12.72; p < 0.05) and gait velocity (F1.33, 

23.92 = 33.18;p < 0.05). No significant differences were observed between FB and 

MB groups. 

 

Knee kinematic 

Reductions were found across both FB (F2, 38 = 22.9; p < 0.05) and MB (F2, 

38 = 22.9; p < 0.05) groups in sagittal ROM when compared to controls at pre-

surgery (Table 3). The MB group was found to exhibit a reduced frontal knee 
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ROM compared to controls (F2, 38 = 9.04; p < 0.05). The MB group was also 

found to walk with a reduced frontal knee ROM (F2, 38 = 9.04; p < 0.05) than the 

FB group (FB = 14.92 ± 4.02°; MB = 8.87 ± 4.82°). 

 

The FB (F1.36, 25.82 = 17.51; p < 0.05) and MB (F1.36, 25.82 = 17.51; p < 0.05) groups 

walked with greater minimum knee flexion angles than controls at nine months 

post-surgery. The MB group also exhibited a significantly reduced sagittal knee 

ROM when compared to controls (F2, 38 = 22.9; p < 0.05). No significant 

differences were observed between FB and MB groups. 

 

Knee kinetic 

At pre-surgery, the MB group walked with a reduced maximum knee extension 

moment than controls (F1.31, 23.49 = 10.95; p < 0.05) (Table 4). This finding was 

replicated in the maximum knee flexion moment (F2, 36 = 8.26; p < 0.05), with a 

reduction observed when compared to controls. No significant differences were 

observed between FB and MB prostheses. 

 

At nine months post-surgery, the FB group walked with a greater knee flexion 

angle at the incidence of the maximum knee extension moment (F1.51, 27.24 = 7.8; 

p < 0.05), in addition to a reduced maximum knee adduction moment compared to 

controls (F1.3, 23.48 = 9.2; p < 0.05). Significance was also reached in the MB 

group, with the patients walking with a reduced maximum knee adduction 

moment than controls (F1.3, 23.48 = 9.2; p < 0.05). No significant differences were 

observed between FB and MB groups. 
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Discussion 

The aim of this study was to compare the three dimensional knee biomechanics of 

FB and MB total knee prostheses amid the limited previous findings of benefits of 

MB implanted knees during walking. Concurrent with the previous research [14], 

[15], [16] and [17], few biomechanical differences were found between FB and 

MB prostheses. The FB and MB groups could not be distinguished following an 

adequate period of rehabilitation at nine months post-surgery [12], [22] and [23], 

with no parameter reaching significance in the spatiotemporal, kinematic, and 

kinetic results. 

 

The most important finding of the study was that there was no difference in the 

sagittal plane knee kinematics of the MB group when compared to the FB group. 

Differences have been previously reported between FB and MB prostheses in 

kinematic parameters during walking [16] and [17] that provide support for the 

hypothetical, but largely unsubstantiated, biomechanical advantages of the MB 

paradigm [5]. The normal knee permits axial rotation, with the lateral femoral 

condyle contacting anterior to the midline of the tibia in extension [24]. With 

progressive flexion, the lateral femoral condyle translates proportionally to a 

position that is posterior to the midline of the tibia. The proposed increase of 

sagittal knee ROM in MB knees is achieved through this femoral rollback during 

knee flexion and subsequent internal rotation of the tibia during knee extension 

[25], similar to the normal knee. 

 

Mockel et al. [16] found that these mechanical advantages elicited a greater mean 

stance phase knee flexion in MB prostheses when compared to FBs. Further, 
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Kramers de-Quervain et al. [17] detailed an increase in the maximum knee flexion 

of MB prostheses when compared to FBs. Unfortunately, no pre-operative data 

were presented for Kramers de-Quervain et al. [17], making it difficult to 

conclude that the post-surgery differences were representative of a true effect, as 

differences may have been apparent prior to implantation. 

 

Despite the advantageous findings for MB prostheses, Sosio et al. [15] found no 

differences in knee flexion at heel contact, maximum knee flexion in stance, 

maximum knee extension in stance, and maximum knee flexion in swing between 

FB and MB groups. Tibesku et al. [14] found little mean differences in maximum 

and ROM in stance and swing, not exceeding that of the 0.5 standard deviation 

between groups, although the authors did not statistically compare FB and MB 

groups, but rather analysed the progression from pre-surgery to post-surgery. 

 

A difference was observed at the pre-surgery time point in the current study, with 

the MB group found to walk with reduced frontal plane knee ROM compared to 

the FB group at pre-surgery, with both groups otherwise similar. Despite this 

finding, between-group similarity was compounded with the pre-surgery OKS, 

with no significant differences between groups (Table 1), and both groups 

indicative of ‘moderate to severe osteoarthritis’ (31–40) [26]. The difference in 

frontal plane ROM was not apparent following surgery, however, suggesting little 

meaningful difference following rehabilitation. 

 

Although no differences were found between FB and MB groups, refuting the 

observations of Mockel et al. [16] and Kramers-de Quervain et al. [17], important 
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differences were observed between the FB and MB groups when compared to the 

controls. Both FB and MB groups walked with a greater minimum knee flexion 

than controls following surgery, suggesting the presence of a flexion contracture 

[27]. An increase in knee flexion coupled with the reduction in gait velocity has 

been suggested to be an associate factor of a ‘stiff knee’ gait pattern [28]. 

 

Interestingly, the suggestion of a flexion contracture was not supported by the 

kinetic results, with no differences between FB and MB groups in the maximum 

knee flexion moment when compared to controls. Dorr et al. [29] suggested that 

reductions in the knee flexion moment are indicative of greater quadriceps and 

biceps femoris activity. It has been postulated that these mechanisms are adopted 

to reduce shear forces, or attributed to patterns developed prior to TKR surgery; 

however, this was not apparent in the current study. 

 

Reductions were found in both FB and MB groups in the maximum knee 

adduction moment when compared to controls following surgery. Mechanically, 

reduced knee adduction moments suggest reduced loading of the medial 

compartment of the knee [1] and [30]. Reductions in ipsilateral knee loading may 

invoke greater loading in the contralateral knee, with an unequal loading ratio 

being an important risk factor for OA progression [31]. 

 

Fixed bearing and MB groups also walked slower than controls at pre-surgery and 

post-surgery time points. The FB group walked with a reduced stride length and 

increased stride time at post-surgery compared to controls, which was not 

observed in the MB group. The pre-surgery results suggest that the FB group had 
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a reduced stride length prior to surgery, however, somewhat explaining the 

significant finding following surgery. 

 

This study has a number of strengths. The addition of pre-surgery testing is 

imperative in validating post-surgery findings. Although useful, it is difficult to 

make informed clinical decisions from retrospectively designed studies due to the 

omission of pre-surgery analyses [15] and [17]. We also used the same implant 

manufacturer with the same femoral components, in addition to both prostheses 

being posterior stabilised with the patella resurfaced, limiting potential 

confounding factors. The predominant limitation of the current study is that of a 

small sample size, although comparable to the previous literature [15] and [17]. A 

power calculation was undertaken at the investigation outset, which suggested a 

total sample size of 21, inclusive of the FB, MB, and control groups. We are 

therefore confident that the results are of sufficient statistical power to distinguish 

a ‘medium’ effect among groups [32]. A further limitation is that the study only 

assessed walking. It is possible that MBs may offer advantages in activities 

requiring greater knee flexion where a FB prosthesis has a limited ability to rotate. 

 

Our results suggest that MB prostheses do not offer any biomechanical 

advantages over FB designs during walking. Indeed, both groups showed findings 

indicative of a ‘stiff knee’ gait and decreased medial compartmental loading when 

compared to controls. Fixed bearing and MB prostheses both differed from 

controls in six and five parameters at post-surgery, respectively. This suggests that 

no prosthesis design exhibited conclusive superiority over another with regards to 

returning normal knee biomechanics. 



 
 

14 
 

 

Acknowledgements 

The authors wish to thank De Puy International for providing funding for this 

study. 

 

Conflict of interest statement 

A grant was received from De Puy International providing funding for the study. 

De Puy International approved the concept and design of the research at the 

investigation outset, although the company did not have input into the analysis 

and interpretation of the data, or the decision to submit the work for publication.  

 

References 

1. Catani F, Benedetti MG, De Felice R, Buzzi R, Giannini S, Aglietti P. Mobile 

and fixed bearing total knee prosthesis functional comparison during stair 

climbing. Clin Biomech. 2003; 18: 410-418. 

 

2. McEwen HMJ, Fisher J, Goldsmith AAJ, Auger DD, Hardaker C, Stone MH. 

Wear of fixed bearing and rotating platform mobile bearing knees subjected to 

high levels of internal and external tibial rotation. J Mater Sci – Mater M. 2001; 

12: 1049-1052. 

 

3. Hasegawa M, Sudo A, Uchida A. Staged bilateral mobile-bearing and fixed-

bearing total knee arthroplasty in the same patients: a prospective comparison of a 

posterior-stabilized prosthesis. Knee Surg Sports Tr A. 2009; 17: 237-243. 

 

4. Wolterbeek N, Garling EH, Mertens B, Valstar ER, Nelissen RG. Mobile 

bearing knee kinematics change over time. A fluoroscopic study in rheumatoid 

arthritis patients. Clin Biomech (Bristol, Avon). 2009; 24: 441-445. 

 

5. Callaghan JJ, Insall JN, Greenwald AS, Dennis DA, Komistek RD, Murray 

DW, et al. Mobile-bearing knee replacement: concepts and results. Instr Course 

Lect. 2001; 50: 431-449. 

 

6. Daniilidis K, Höll S, Gosheger G, Dieckmann R, Martinelli N, Ostermeier S, et 

al. Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the 

sagittal plane. Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1684-1689. 

 



 
 

15 
 

7. Jawed A, Kumar V, Malhotra R, Yadav CS, Bhan S. A comparative analysis 

between fixed bearing total knee arthroplasty (PFC Sigma) and rotating platform 

total knee arthroplasty (PFC-RP) with minimum 3-year follow-up. Arch Orthop 

Trauma Surg. 2012; 132: 875-881. 

 

8. Mahoney OM, Kinsey TL, D'Errico TJ, Shen J. The John Insall Award: no 

functional advantage of a mobile bearing posterior stabilized TKA. Clin Orthop 

Relat Res. 2012; 470: 33-44. 

 

9. Jacobs WC, Christen B, Wymenga AB, Schuster A, van der Schaaf DB, Ten 

Ham A, et al. Functional performance of mobile versus fixed bearing total knee 

prostheses: a randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. 

2011; 20: 1450-1455. 

 

10. Post ZD, Matar WY, van de Leur T, Grossman EL, Austin MS. Mobile-

bearing total knee arthroplasty: better than a fixed-bearing? J Arthroplasty. 2010; 

25: 998-1003. 

 

11. Ferrarin M, Lencioni T, Rabuffetti M, Moroni I, Pagliano L, Pareyson D. 

Changes of gait pattern in children with Charcot-Marie-Tooth disease type 1A: a 

18 months follow-up study. J Neuroeng Rehabil. 2013; 10: 1-11. 

 

12. McClelland JA, Webster KE, Feller JA. Gait analysis of patients following 

total knee replacement: A systematic review. Knee. 2007; 14: 253-263. 

 

13. Minns RJ. The role of gait analysis in the management of the knee. Knee. 

2005; 12: 157-162. 

 

14. Tibesku CO, Daniilidis K, Skwara A, Dierkes T, Rosenbaum D, Fuchs-

Winkelmann S. Gait analysis and electromyography in fixed- and mobile-bearing 

total knee replacement: a prospective, comparative study. Knee Surg Sports 

Traumatol Arthrosc. 2011. 

 

15. Sosio C, Gatti R, Corti M, Locatelli E, Fraschini G. Motion analysis after total 

knee arthroplasty. Sport Sci Health. 2008;4: 1-6. 

 

16. Mockel G, Perka C, Gabler J. Early postoperative functional differences 

between total knee arthroplasties supplied with mobile-bearing platform or fixed-

bearing system - An analysis of gait pattern. Z Orthop Ihre Grenzgeb. 2004;142: 

40-45. 

 

17. Kramers-de Quervain I, A.,, Stussi E, Muller R, Drobny T, Munzinger U, 

Gschwend N. Quantitative gait analysis after bilateral total knee arthroplasty with 

two different systems within each subject. J Arthroplasty. 1997;12: 168-79. 

 

18. Ayyappa E. Normal Human Locomotion, Part 2: Motion, Ground Reaction 

Force and Muscle Activity. JPO. 1997; 9: 42-57. 

 



 
 

16 
 

19. Miner AL, Lingard EA, Wright EA. Knee range of motion after total knee 

arthroplasty: how important is this as an outcome measure? J Arthroplasty. 2003; 

18: 286-294. 

 

20. Turcot K, Aissaoui R, Boivin K, Hagemeister N, Pelletier M, de Guise JA. 

Test-Retest Reliability and Minimal Clinical Change Determination for 3-

Dimensional Tibial and Femoral Accelerations During Treadmill Walking in 

Knee Osteoarthritis Patients. Arch Phys Med. 2008; 89: 732-737. 

 

21. Field A. Discovering statistics using SPSS. 3rd edn, London, England: Sage. 

2009. 

 

22. de Groot IB, Bussmann HJ, Stam HJ, Verhaar JA. Small Increase of Actual 

Physical Activity 6 Months After Total Hip or Knee Arthoplasty. Clin Orthop 

Relat Res. 2008; 466: 2201-2208.  

 

23. Kennedy DM, Startford PW, Hanna SE, Wessel J, Gollish JD. Modelling early 

recovery of physical function following hip and knee arthroplasty. BMC 

Musculoskelet Disord. 2006; 7: 100. 

 

24. Dennis DA, Komistek RD, Hoff WA, Gabriel SM. In vivo knee kinematics 

derived using an inverse perspective technique. Clin Orthop. 1996; 331: 107-117. 

 

25. Lampe F, Sufi-Siavach A, Bohlen KE, Hille E, Dries SP. One year after 

navigated total knee replacement, no clinically relevant difference found between 

fixed bearing and mobile bearing knee replacement in a double-blind randomized 

controlled trial. Open Orthop J. 2011; 5: 201-208. 

 

26. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions 

of patients about total knee replacement. J Bone Joint Surg Br. 1998; 80: 63-69. 

 

27. Bong MR, Di Cesare PE. Stiffness After Total Knee Arthroplasty. J Am Acad 

Orthop Surg, 2005; 12: 164-171. 

 

28. Yoshida Y, Mizner RL, Ramsey DK, Snyder-Mackler L. Examining outcomes 

from total knee arthroplasty and the relationship between quadriceps strength and 

knee function over time. Clin Biomech. 2008; 23: 320-328.  

 

29. Dorr LD, Ochsner JL, Gronley J, Perry J. Functional comparison of posterior 

cruciate versus cruciate-sacrificed total knee arthroplasty. Clin Orthop Relat Res. 

1988; 236: 36-43. 

 

30. Fantozzi S, Benedetti MG, Leardini A, Banks SA, Cappello A, Assirelli D. 

Fluoroscopic and gait analysis of the functional performance in stair ascent of two 

total knee replacement designs. Gait Posture. 2003; 17: 225-234. 

 

31. Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko 

YP.  Asymmetric leg loading during sit-to-stand, walking and quiet standing in 

patients after unilateral total hip replacement surgery. Clin Biomech. 2003; 23: 

424-433. 



 
 

17 
 

 

32. Cohen J. Statistical power for the behavioural sciences. 2nd edn. Hillsdale, 

New Jersey, USA: Erlbaum. 1988. 

 

 



 
 

18 
 

Table 1 – Demographic and anthropometric parameters of the fixed bearing (FB), mobile bearing (MB), and control group 
 FB MB Control ANOVA FB - Control MB - Control FB - MB 

 Mean SD Mean SD Mean SD F p Sig Sig Sig 

n 
 

8 - 8 - 8 - - - - - - 

Male 

 

5 - 5 - 5 - - - - - - 

Female 

 

3 - 3 - 3 - - - - - - 

Age (yrs) 

 

59.3 8.8 59.6 7.7 60.5 7 0.046 p = 0.96 - - - 

Height (m) 

 

1.66 0.09 1.7 0.09 1.67 0.12 0.44 p = 0.65 - - - 

Mass (kg) 

 

87.85 16.06 91.21 12.43 72.58 9.43 4.73 * 0.069 * 0.86 

BMI (kg/m2) 

 

31.92 6.8 31.92 6.8 26.06 1.21 3.86 * 0.063 0.064 1 

OKS (pre-surgery) 

 

39 7.64 37.42 5.32 - - 
0.018 p = 0.89 

- - - 

OKS (three months post-surgery) 

 

25.88 12.18 24.5 9.62 - - 
0.018 p = 0.89 

- - - 

OKS (nine months post-surgery) 

 

19.57 5.65 21.14 9.53 - - 
0.018 p = 0.89 

- - - 

-‘OKS’ equates to ‘Oxford Knee Score’; ‘SD’ to ‘standard deviation’; ‘*’ to ‘significant at the 0.05 level’  
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Table 2 - Fixed bearing (FB), mobile bearing (MB), and control participant between group differences of spatiotemporal parameters at pre-surgery, three months post-

surgery, and nine months post-surgery 

 

  FB MB Control ANOVA FB - Control MB - Control FB - MB 

  Mean SD Mean SD Mean SD F p Mean 

dif 

SE p Mean 

dif 

SE p Mean 

dif 

SE p 

Pre-surgery Cadence (steps/min) 

 

100.55 22.40 89.60 9.64 120.38 14.07 12.72 * 19.83 8.51 0.1 30.78 8.88 * 10.95 9.14 0.74 

Foot off (gait cycle %) 

 

61.17 4.02 60.08 1.49 60.54 1.21 2.76 0.083 - - - - - - - - - 

Stride length (m) 

 

1.05 0.15 1.13 0.20 1.30 0.10 12.51 * 0.24 0.078 * 0.17 0.08 0.16 0.077 0.08 1 

Stride time (s) 

 

1.25 0.31 1.32 0.17 1.01 0.11 10.97 * 0.24 0.11 0.11 0.31 0.11 * 0.071 0.12 1 

Gait velocity (m/s) 

 

0.89 0.26 0.87 0.20 1.29 0.11 33.18 * 0.4 0.1 * 0.43 0.11 * 0.021 0.11 1 

Nine months 

post-surgery 

Cadence (steps/min) 

 

101.23 16.87 96.3 10.08 120.38 14.07 12.72 * 19.15 7.32 0.05 24.08 7.64 * 4.93 7.87 1 

Foot off (gait cycle %) 

 

63.08 1.79 61.57 0.80 60.54 1.21 2.76 0.083 - - - - - - - - - 

Stride length (m) 
 

1.11 0.13 1.23 0.09 1.30 0.10 12.51 * 0.18 0.056 * 0.071 0.06 0.71 0.11 0.06 0.23 

Stride time (s) 

 

1.25 0.25 1.23 0.12 1.01 0.11 10.97 * 0.24 0.089 * 0.22 0.09 0.08 0.017 0.1 1 

Gait velocity (m/s) 

 

1.01 0.21 1.00 0.12 1.29 0.11 33.18 * 0.28 0.08 * 0.29 0.08 * 0.01 0.09 1 

‘SD’ equates to ‘standard deviation’; ‘Mean dif’ to ‘mean difference’; ‘SE’ to ‘standard error’; ‘*’ to ‘significant at the 0.05 level’ 
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Table 3 - Fixed bearing (FB), mobile bearing (MB), and control participant between group differences of knee kinematic parameters at pre-surgery, three months post-

surgery, and nine months post-surgery 
  FB MB Control ANOVA FB - Control MB - Control FB - MB 

  Mean SD Mean SD Mean SD F p Mean 

dif 

SE p Mean 

dif 

SE p Mean 

dif 

SE p 

Pre-surgery Min knee flexion (°) 
 

12.90 10.24 13.18 10.50 6.18 3.16 17.51 * 6.72 4.38 0.42 7 4.38 0.38 0.27 4.52 1 

Max knee flexion (°) 
 

54.75 10.67 54.77 9.85 64.16 2.74 2.99 0.06 - - - - - - - - - 

Sagittal knee ROM (°) 
 

41.85 9.080 41.59 8.38 57.97 3.73 22.9 * 16.13 3.78 * 16.38 3.78 * 0.25 3.91 1 

Max knee abduction (°) 

 

-6.53 14.09 -3.53 10.34 -7.11 7.58 1.98 0.17 - - - - - - - - - 

Max knee adduction (°) 
 

8.39 13.53 5.34 11.70 7.41 5.83 4.85 * 0.97 5.51 1 2.07 5.51 1 3.05 5.70 1 

Frontal knee ROM (°) 
 

14.92 4.02 8.87 4.82 14.52 3.39 9.04 * 0.39 2.11 1 5.66 2.11 * 6.05 2.18 * 

Nine months post-

surgery 

 

Min knee flexion (°) 
 

14.53 5.26 16.99 4.45 6.18 3.16 17.51 * 8.35 2.24 * 10.81 2.24 * 2.46 2.31 0.9 

Max knee flexion (°) 
 

64.01 4.02 63.79 7.75 64.16 2.74 2.99 0.06 - - - - - - - - - 

Sagittal knee ROM (°) 
 

49.48 6.62 46.79 9.41 57.97 3.73 22.9 * 8.5 3.55 0.08 11.18 3.55 * 2.68 3.66 1 

Max knee abduction (°) 
 

-13.94 12.94 -11.08 6.57 -7.11 7.58 1.98 0.17 - - - - - - - - - 

Max knee adduction (°) 
 

1.82 11.93 -1.64 4.89 7.41 5.83 4.85 * 5.59 4.17 0.59 9.06 4.17 0.13 3.47 4.31 1 

Frontal knee ROM (°) 
 

15.77 7.03 9.43 2.22 14.52 3.39 9.04 * 1.25 2.40 1 5.09 2.40 0.14 6.34 2.47 0.06 

‘SD’ equates to ‘standard deviation’; ‘Mean dif’ to ‘mean difference’; ‘SE’ to ‘standard error’; ‘*’ to ‘significant at the 0.05 level’ 
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Table 4 - Fixed bearing (FB), mobile bearing (MB), and control participant between group differences of knee kinetic parameters at pre-surgery, three months post-surgery, 1 
and nine months post-surgery 2 
 FB MB Control ANOVA FB - Control MB - Control FB - MB 

  Mean SD Mean SD Mean SD F p Mean 

dif 

SE p Mean 

dif 

SE p Mean 

dif 

SE p 

Pre-

surgery 

Max knee ext. moment (Nm/kg) 

 

-0.28 0.15 -0.25 0.043 -0.39 0.047 10.95 * 0.11 0.047 0.08 0.14 0.05 * 0.026 0.051 1 

Max knee flx. moment (Nm/kg) 
 

0.54 0.35 0.49 0.29 0.96 0.30 8.26 * 0.42 0.16 0.05 0.47 0.17 * 0.048 0.17 1 

Knee flx at max ext. moment (°) 
 

13.96 10.28 14.80 10.92 11.00 3.89 7.8 * 2.97 4.46 1 3.8 4.65 1 0.83 4.79 1 

Knee flx at max flx. moment (°) 
 

26.73 11.59 24.38 8.79 25.52 5.57 0.4 0.61 - - - - - - - - - 

Max knee ab. moment (Nm/kg) 

  

-0.13 0.19 -0.06 0.05 -0.11 0.04 0.03 0.98 - - - - - - - - - 

Max knee add. moment (Nm/kg) 

 

0.44 0.13 0.40 0.17 0.46 0.13 9.2 * 0.019 0.073 1 0.058 0.076 1 0.039 0.078 1 

Nine 

months 

post-

surgery 
 

Max knee ext. moment (Nm/kg) 

 

-0.38 0.12 -0.34 0.097 -0.39 0.047 10.95 * 0.011 0.047 1 0.058 0.049 0.75 0.047 0.051 1 

Max knee flx. moment (Nm/kg) 

 

0.75 0.40 0.73 0.25 0.96 0.30 8.26 * 0.21 0.17 0.67 0.24 0.18 0.59 0.022 0.18 1 

Knee flx at max ext. moment (°) 

 

17.65 6.41 17.22 3.60 11.00 3.89 7.8 * 6.65 2.49 * 6.22 2.60 0.08 0.43 2.68 1 

Knee flx at max flx. moment (°) 
 

27.92 9.50 22.20 4.95 25.52 5.57 0.4 0.61 - - - - - - - - - 

Max knee ab. moment (Nm/kg)  

 

-0.10 0.04 -0.13 0.07 -0.11 0.04 0.03 0.98 - - - - - - - - - 

Max knee add. moment (Nm/kg) 

 

0.30 0.08 0.26 0.11 0.46 0.13 9.2 * 0.16 0.056 * 0.19 0.059 * 0.038 0.061 1 

‘SD’ equates to ‘standard deviation’; ‘Mean dif’ to ‘mean difference’; ‘SE’ to ‘standard error’; ‘*’ to ‘significant at the 0.05 level’ 
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