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ABSTRACT 

Fluid flow and heat transfer in cavities partially filled with disconnected blockages is 

important in the design of a wide range of industrial and engineering applications such 

as thermal management of indoor environments, cooling of electronic panels, drying 

of agricultural products, stacking of items in cold storage etc. The flows in such 

confined spaces develop as a result of temperature and concentration gradient which 

is further complicated by the interactive effects of turbulence and radiation. The aims 

of this research are to explore the detailed heat transfer and flow field inside cavities 

partially filled with solid blockages and, in particular, to address the uncertainties 

associated with turbulence models, to quantify the influence of double diffusion and 

to study the effect of surface properties. 

To achieve the above aims, a systematic numerical investigation has been carried out 

by validating the computational results against reliable experimental data available in 

open literature. A selection of turbulence and radiation models has been employed to 

scrutinise the effects of the above flow physics. An experimental set up capable of 

establishing low Rayleigh number buoyancy driven flow in a rectangular cavity 

containing cylindrical blockages was designed and fabricated to obtain temperature 

data. A series of experiments was conducted to obtain reliable temperature 

distribution at various positions in the flow domain and on the surfaces of the 

blockages. This set up also allowed us to study the proximity effect of blockages 

which has not been reported elsewhere. 

It has been found that the choice of turbulence model remains to be an important issue 

and should be given due consideration for natural convection flow with a high 

Rayleigh number. The results from the parametric study on the specification of 

passive thermal boundary conditions reveal that the experimental temperature profile 

is the most accurate boundary condition for passive walls in relation to the adiabatic 

and linear temperature profiles. Experimental benchmark temperature data evaluated 

at various positions in the cavity with and without blockages are presented and some 

of them are compared with CFD simulations. 

Finally, as an example of the application of the research methodology, a detailed 

numerical modelling was conducted on a Double-Skin-Façade which is known to 

reduce energy consumption in building and has become popular in recent years. The 
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current methodology has been applied to establish a number of parameters in 

connection with the design and performance of DSF which are believed to be useful 

to practitioners.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

III  
 

TABLE OF CONTENTS 

Abstract                ...........................................................................................................I 

Table of Contents ....................................................................................................... III  

List of Figures      ........................................................................................................ IX  

List of Table         ..................................................................................................... XIV 

Nomenclature       ..................................................................................................... XV  

Dedication            .................................................................................................. XVIII 

Acknowledgements ................................................................................................. XIX 

Declaration           ...................................................................................................... XX 

Chapter 1 - Introduction .................................................................................... 1 

1.1 Background ..................................................................................................... 1 

1.2 Research motivation and justification ............................................................. 5 

1.3 Research aims and objectives .......................................................................... 6 

1.4 Thesis organization ......................................................................................... 7 

1.5 Original contributions ..................................................................................... 8 

1.6 List of publications .......................................................................................... 9 

Chapter 2 - Literature Review ......................................................................... 12 

2.1 Introduction ................................................................................................... 12 

2.2 Experimental studies on natural convection flow in enclosures ................... 12 

2.3 Numerical studies on natural convection flow in cavity ............................... 18 

2.4 Simultaneous temperature and mass transfer induced buoyancy driven flow 
in enclosures ............................................................................................................. 20 

2.5 Natural convection in confined space partially filled by solid products ....... 21 

2.6 Summary of key literatures ........................................................................... 22 

2.7 Concluding remarks ...................................................................................... 27 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

IV  
 

Chapter 3 - Theoretical Background ............................................................... 29 

3.1 Introduction ................................................................................................... 29 

3.2 The nature of coupled fluid dynamics and heat transfer ............................... 30 

3.3 Natural convection correlation and dimensionless numbers ......................... 32 

3.4 Turbulent natural convection ........................................................................ 32 

3.4.1 Mean flow equations and their solution ................................................. 33 

3.4.2 Treatment of Reynolds Stresses ............................................................. 35 

3.4.3 Treatment of turbulent heat fluxes ......................................................... 37 

3.4.4 Low Reynolds number RANS models ................................................... 38 

3.4.5 Low-Reynolds-number k-İ models ........................................................ 39 

3.4.6 Low-Reynolds number k-İ εodels ωonstants ....................................... 40 

3.4.7 Low-Reynolds number k-İ model functions .......................................... 40 

3.5 Thermal radiation modeling .......................................................................... 43 

3.5.1 Surface emissivity thermal radiation heat transfer equation .................. 44 

3.6 Mass transfer modelling ................................................................................ 44 

3.7 Conclusion ..................................................................................................... 45 

Chapter 4 - Numerical Study of Turbulent Natural Convection in an 
Enclosure without Blockages .................................................................................... 46 

4.1 Introduction ................................................................................................... 46 

4.2 Problem description ....................................................................................... 47 

4.3 Grid independence study ............................................................................... 48 

4.4 Low Reynolds number comparative performances ....................................... 51 

4.5 Influence of boundary condition ................................................................... 61 

4.6 Influence of wall radiation property .............................................................. 70 

4.6.1 2D Vs 3D radiation modeling ................................................................ 71 

4.6.2 Influence of surface emissivity on turbulence quantities ....................... 72 

4.6.3 Influence of surface emissivity on wall heat transfer ............................ 74 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

V 
 

4.7 Influence of wall emissivity configuration on the flow and heat transfer                                     
..................................................................................................................................77 

4.8 Conclusions ................................................................................................... 80 

Chapter 5 - Test Rig and Temperature Measurement for Various 
Arrangement of Blockages ........................................................................................ 82 

5.1 Introduction ................................................................................................... 82 

5.2 Experimental facility and procedure ............................................................. 82 

5.2.1 Design of active walls (hot & cold) ....................................................... 85 

5.2.2 Heat loss measurement .......................................................................... 86 

5.3 Thermocouple calibration and measurement uncertainty ............................. 87 

5.4 Temperature data repeatability and two-dimensionality validation .............. 88 

5.5 Vertical walls temperature distributions ....................................................... 90 

5.6 Horizontal wall temperature profiles data ..................................................... 91 

5.7 Air temperature data for cavity without blockage ......................................... 91 

5.8 Cavity partially filled with blockages ........................................................... 94 

5.9 ψlockage proximity study for 10х5 arrangement .......................................... 96 

5.9.1 Temperature profile ............................................................................... 97 

5.10 Experimental data for 10х3 blockage arrangement ..................................... 103 

5.11 Experimental data for 5х5 arrangement ...................................................... 105 

5.12 Conclusion ................................................................................................... 106 

Chapter 6 - Numerical Investigation of Flow and Heat Transfer for 
Different Arrangement of Blockages ..................................................................... 108 

6.1 Introduction ................................................................................................. 108 

6.2 Numerical Method ....................................................................................... 109 

6.3 ψlockage proximity from vertical active walls for 10х5 arrangement ........ 111 

6.3.1 Flow fields (10х5 arrangement) ........................................................... 112 

6.3.2 Influence of blockage proximity on turbulence quantities .................. 118 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

VI  
 

6.3.3 Influence of blockage proximity on wall heat transfer ........................ 121 

6.3.4 Validation of experimental data ........................................................... 124 

6.4 ψlockage proximity from horizontal walls for 10х5 arrangement .............. 128 

6.5 Effect of blockage for 10х3 arrangement .................................................... 130 

6.5.1 Validation of experimental data ........................................................... 134 

6.6 Effect of blockage for 5х5 arrangement ...................................................... 137 

6.6.1 Validation with experimental data ....................................................... 140 

6.7 Conclusion ................................................................................................... 141 

Chapter 7 - Influence of Blockages on Heat and Mass Transfer in an 
Enclosed Rectangular Box ...................................................................................... 143 

7.1 Introduction ................................................................................................. 143 

7.2 Numerical model formulation ..................................................................... 143 

7.2.1 Flow problem ....................................................................................... 143 

7.2.2 Numerical procedure ............................................................................ 144 

7.3 Preliminary sensitivity studies .................................................................... 147 

7.3.1 Flow regime characteristic ................................................................... 147 

7.3.2 Choice of turbulence model and flow characterization .......................... 148 

7.3.3 2D simplification of 3D radiation heat transfer for an enclosure partially 
filled with blockages ........................................................................................... 152 

7.4 Influence of thermal radiation ..................................................................... 154 

7.4.1 Temperature fields ................................................................................ 155 

7.4.2 Wall heat transfer .................................................................................. 156 

7.4.3 Stream function ..................................................................................... 159 

7.4.4 Eddy viscosity ratio ............................................................................... 160 

7.4.5 Buoyancy effects .................................................................................. 161 

7.5 Influence of mass transfer ........................................................................... 162 

7.5.1 Heat transfer ......................................................................................... 162 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

VII 
 

7.5.2 Buoyancy flux ...................................................................................... 164 

7.5.3 Influence of surface radiation on mass transfer ................................... 165 

7.6 Two-dimensional Simulation of the Influence of Blockage-Active Walls on 
Mass Transfer ......................................................................................................... 167 

7.6.1 Wall heat transfer ................................................................................. 168 

7.6.2 Influence of proximity on mass transfer .............................................. 170 

7.7 Conclusions ................................................................................................. 172 

Chapter 8 - Practical Case Study: Flows and Heat Double Skin Facades 
with Venetian Blind ................................................................................................. 174 

8.1 Introduction ................................................................................................. 174 

8.2 The concept of DSF ..................................................................................... 175 

8.2.1 Useful classification of facade configurations ..................................... 176 

8.2.2 Design aspect of DSF ........................................................................... 178 

8.2.3 Literature review on DSF modeling approaches ................................. 178 

8.2.4 DSF with blind ..................................................................................... 180 

8.3 Limitations from the literatures ................................................................... 183 

8.4 Parametric study of DSF with venetian blinds ............................................ 183 

8.4.1 Case description ................................................................................... 184 

8.4.2 Modeling strategies .............................................................................. 188 

8.4.3 Solar irradiation and blockage influence ............................................. 189 

8.4.4 Outdoor temperature influence ............................................................ 189 

8.5 Solution method for coupled DFS Flow with solar irradiation ................... 190 

8.5.1 Airflow modeling ................................................................................. 190 

8.5.2 Delimitations ........................................................................................ 191 

8.5.3 Solar irradiation modeling ................................................................... 191 

8.5.4 Conduction model of the glass wall ..................................................... 192 

8.5.5 Thermal parameters ............................................................................. 193 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

VIII 
 

8.5.6 Numerical modeling parameters .......................................................... 194 

8.5.7 Boundary conditions ............................................................................ 195 

8.6 Results and discussions ............................................................................... 197 

8.6.1 Modeling strategies .............................................................................. 198 

8.6.2 Influence of solar irradiation ................................................................ 201 

8.6.3 Influence of solar blind positioning from the external facade ............. 205 

8.6.4 Influence of solar blind inclination angle ............................................ 209 

8.6.5 Influence of outdoor air temperature ................................................... 213 

8.7 Conclusion ................................................................................................... 214 

Chapter 9 - Conclusions and Future Work .................................................. 217 

9.1 Summary of the Research Work ................................................................. 217 

9.2 Summary of the research work findings ..................................................... 218 

9.3 Recommendations for future work .............................................................. 220 

9.4 References ................................................................................................... 221 

Appendix A:     UDF - thermal boundary conditions at passive walls ...................... 241 

Appendix B: Additional Validation Results .............................................................. 244 

Appendix c:     Additional Experimental Results ...................................................... 249 

Appendix d:     Mesh Sensitivity Study ..................................................................... 251 

Appendix E:     Total Uncertainty Calculation .......................................................... 253 

 
 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

IX  
 

LIST OF FIGURES 

Figure 1-1: Physical model and coordinate system ....................................................... 2 

Figure 1-2: Examples of natural convection systems: (a) Indoor environment [23], (b) 
Electronic devices [24], (c) refrigerator with food arrangement [25]. ........................... 4 

Figure 1-3 Project roadmap showing thesis contributions ........................................... 11 

Figure 3-1: Schematic of natural convection flow (a) rectangular enclosure (b) along a 
heated vertical surface .................................................................................................. 30 

Figure 4-1 Geometry and the coordinates .................................................................... 46 

Figure 4-2 Computational grid, wall clustering ........................................................... 48 

Figure 4-3: Non-dimensional normal distance (y-plus); (a) top wall (b) bottom wall 
(c) cold wall (d) hot wall .............................................................................................. 50 

Figure 4-4: Stream function contours .......................................................................... 52 

Figure 4-5: Non-dimensional horizontal velocity profile (a) at mid-height (b) near hot 
wall (c) near cold wall at mid-height of the cavity. ..................................................... 54 

Figure 4-6: Non-dimensional Vertical velocity profile at mid-width of the cavity ..... 54 

Figure 4-7: Non-dimensional mean temperature at mid-width of the cavity ............... 55 

Figure 4-8: Non-dimensional velocity profile (a) near hot wall (b) near cold wall ..... 55 

Figure 4-9: Turbulent kinetic energy profile; (a) at mid-height (b) near hot wall (c) 
near cold wall at mid-height ........................................................................................ 56 

Figure 4-10: Wall shear; (a) bottom wall (b) top wall (c) hot wall (d) cold wall ........ 58 

Figure 4-11: Wall local Nusselt number; (a) bottom wall (b) top wall (c) hot wall (d) 
cold wall ....................................................................................................................... 59 

Figure 4-12: Mean Temperature profiles; (a) top wall (b) bottom wall ...................... 63 

Figure 4-13: Flow contours comparison; (a) temperature (b) stream function ............ 64 

Figure 4-14: Mean horizontal component of velocity at x/L=0.5 ................................ 65 

Figure 4-15: Stream function at mid-height ................................................................. 65 

Figure 4-16: Non-dimensional mean vertical component of velocity at y/L=0.5........ 65 

Figure 4-17: Comparison of turbulence kinetic energy; (a) y/L=0.125 (b) y/L=0.25 (c) 
y/L= 0.5 ........................................................................................................................ 67 

Figure 4-18: Contours of turbulence intensity for three boundary conditions ............. 67 

Figure 4-19: Mean temperature at x/L=0.5 .................................................................. 68 

Figure 4-20: Local Nusselt number; (a) hot wall (b) bottom wall (c) top wall (d) cold 
wall  (Data –A [211]  , Data -B [217]) ......................................................................... 69 

Figure 4-21: Turbulent quantities profiles (a)      Reynolds stress near hot wall (b) 
kinetic energy near hot wall (c)viscosity ratio at mid-height ...................................... 73 

Figure 4-22: Local Nusselt number comparison; (a) hot wall (b) top wall (c) bottom 
wall ............................................................................................................................... 75 

Figure 4-23: Average heat transfer as function of emissivity (a) hot and cold walls 
total Nu (b) top and bottom walls total Nu (c) hot and cold walls radiative Nu (d) top 
and bottom walls radiative Nu (e) hot and cold walls convective Nu ......................... 77 

Figure 4-24: Stream function (kg/s) contours .............................................................. 78 

file:///K:/My%20Thesis%20after%20Viva/Final%20Thesis%20%20August%202013/10%20%2008%20%202013/12%2008%202013/THESIS_4.docx%23_Toc364105092


 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

X 
 

Figure 4-25: Local Nusselt number; (a) bottom wall (b) top wall (c) cold wall (d) hot 
wall ............................................................................................................................... 79 

Figure 5-1: Schematic diagram of the experimental facility and test cavity ............... 83 

Figure 5-2: Vertical section of test cavity arrangement ............................................... 84 

Figure 5-3: (a) radiator for active wall (b) hot water tank fitted with circulation pump 
(c) cold water chillers ................................................................................................... 85 

Figure 5-4: Temperature distribution repeatability, y=H/2 .......................................... 88 

Figure 5-5: Two-dimensionality comparison for the thermal field across different 
heights of the vertical cavity at different depths .......................................................... 90 

Figure 5-6: Active vertical wall temperature distributions (a) hot wall (b) cold wall . 90 

Figure 5-7: Temperature profile on horizontal walls ................................................... 91 

Figure 5-8: Schematic of cavity showing planes of temperature data for air .............. 92 

Figure 5-9: (a)  vertical temperature profile near cold wall at 340mm from hot wall (b) 
vertical temperature profile at mid-width (c) horizontal temperature profile near 
bottom wall at 0.86mm from bottom wall (d) horizontal temperature mid-height ...... 93 

Figure 5-10μ Schematic of the experimental facility for 5х10 blockage (a) 3D 
arrangement (b) test cavity showing details of construction (all dimensions are in mm)
 ...................................................................................................................................... 96 

Figure 5-11:  Thermocouple position on the cylinder walls at symmetry plane of the 
cavity ............................................................................................................................ 97 

Figure 5-12: Temperature profile at mid-width (a) į = 25mm (b) į = 58mm (c) į = 
108mm ....................................................................................................................... 100 

Figure 5-13μ ωylinders wall temperature profiles near hot wall (a) įh=25 mm (b) 
įh=58 mm (c) įh=108 mm from hot wall ................................................................... 101 

Figure 5-14μ ωylinders wall temperature profiles near cold wall (a) įh=25 mm (b) 
įh=58 mm (c) įh=108 mm from cold wall ................................................................. 102 

Figure 5-15: Temperature profile at (a) mid-height, without blockages (b) mid-height, 
į = 25mm (c) mid-height, į = 58mm (d) mid-height, į = 108mm ............................ 103 

Figure 5-16: Schematic of the flow domain arrangement for all three cases ............ 104 

Figure 5-17: Temperature profiles for all three cases at (a) mid-height (b) mid-width
 .................................................................................................................................... 105 

Figure 5-18: Schematic of the flow domain arrangement ......................................... 106 

Figure 5-19: Temperature profile comparison at mid-height of the cavity ............... 106 

Figure 6-1: Schematic of the flow domain and blockages arrangement .................... 109 

Figure 6-2: 2D schematic showing the arrangement of the blockages from the walls
 .................................................................................................................................... 112 

Figure 6-3:  (a) mean velocity filed (m/s), (b) velocity profile at mid-height, (c) same 
as (b), but on an exaggerated scale. ........................................................................... 113 

Figure 6-4: Temperature contours on the (a) symmetry plane of the enclosure (b) 
cylinders and symmetry plane of the enclosure ......................................................... 114 

Figure 6-5: Relative comparison of temperature profiles at (a) 0.025, 0.058 and 
0.108m from hot wall, (b) 0.025, 0.058 and 0.108m from cold wall ......................... 115 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XI  
 

Figure 6-6: Relative comparison of temperature profiles at  (a) mid-height (b) 
119.4mm from bottom wall (c) 85.65mm from bottom wall (d) 85.65mm from top 
wall ............................................................................................................................. 116 

Figure 6-7:  Air and cylinder temperature profiles at 0.4425m from bottom wall .... 117 

Figure 6-8:  Temperature profile of different heat transfer modes near the cold wall; 
(a) conduction in cylinder, convection between air/cylinder surfaces, radiation 
between cylinder/cold walls and between two cylinders. (b) Velocity profile near cold 
and cylinder walls. ..................................................................................................... 117 

Figure 6-9:  Turbulent intensity field on the (a) symmetry plane of the enclosure (b) 
cylinders and symmetry plane of the enclosure ......................................................... 119 

Figure 6-10: Turbulence quantities profiles at mid-height (a) ȝ* turbulent viscosity 
ratio (b) vv Reynolds stress (c) uv Reynolds stress (d) Turbulent kinetic energy ...... 120 

Figure 6-11 Wall shear stress near hot wall ............................................................... 121 

Figure 6-12:  Wall local Nusselt number (a) hot (b) cold (c) bottom (d) top ............ 122 

Figure 6-13μ  Variation of heat transfer with į for hot and cold walls (a) average ζu 
(b) radiative Nu .......................................................................................................... 123 

Figure 6-14: Comparison of temperature profile (a) near cold wall (60mm); (b) at 
mid-width for cavity without blockages .................................................................... 125 

Figure 6-15: Temperature profile comparison at mid-width (a) į = 25mm                   
(b) į = 58mm (c) į = 10.8cm from the vertical walls – blockages proximity ........... 126 

Figure 6-16: Temperature profile comparison at mid-height with and without 
blockage, with and without blockages – blockages proximity .................................. 127 

Figure 6-17:  Schematic of the geometrical configuration ........................................ 128 

Figure 6-18:  Walls local Nusselt number (a) bottom (b) top (c) hot ........................ 130 

Figure 6-1λμ  Schematic of 10х3 arrangement of blockages ..................................... 130 

Figure 6-20:  Relative comparison of the flow filed at mid-plane (a) temperature (b) 
turbulent intensity ...................................................................................................... 132 

Figure 6-21:  Temperature profile at (a) mid-height (b) mid-width .......................... 133 

Figure 6-22:  Turbulent viscosity ratio at mid-height ................................................ 133 

Figure 6-23:  Local Nusselt number (a) hot wall (b) cold wall ................................. 134 

Figure 6-24: Comparison of CFD and experimental temperature profile at mid-height 
for; (a) case 1 (b) case 2 (c) case 3 ............................................................................. 135 

Figure 6-25: Comparison of CFD and experimental temperature profile at mid-width 
for; (a) case 1 (b) case 2 (c) case 3 ............................................................................. 136 

Figure 6-26:  Schematic of group arrangement of blockages .................................... 137 

Figure 6-27:  Flow field comparisons; (a) velocity contours (b) turbulent intensity 
contours ...................................................................................................................... 138 

Figure 6-28: Comparison of temperature profile at mid-height ................................. 139 

Figure 6-29: Walls local Nusselt number (a) hot (b) cold (c) bottom ....................... 140 

Figure 6-30: CFD and experimental temperature profile at mid-height for all cases        
(a) NBW (b) NTW ..................................................................................................... 141 

Figure 7-1  Geometry and the coordinates (dimensions are in mm) .......................... 144 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XII 
 

Figure 7-2  Temperature profile near cold wall (x=0.066m) ..................................... 148 

Figure 7-3  Relative humidity profile at mid-width from bottom wall ...................... 148 

Figure 7-4:  Temperature profile near cold wall (x=0.066m) .................................... 149 

Figure 7-5:  Relative humidity profile at mid-width of the cavity ............................. 149 

Figure 7-6: Vertical velocity profile at (a) mid-height (b) near hot wall (c) near cold 
wall ............................................................................................................................. 151 

Figure 7-7  Temperature profile at mid-height of the cavity ..................................... 151 

Figure 7-8: (a) Velocity magnitude and (b) turbulent intensity contours [LS model]
 .................................................................................................................................... 152 

Figure 7-9:  (a) temperature profile at x = 66 mm, (b) temperature profile at mid-width 
of the cavity for İ=0, (c) temperature profile at mid-width of the cavity .................. 154 

Figure 7-10:  Temperature profile at (a) mid-width (b) near cold wall, x=66mm ..... 156 

Figure 7-11:  Local Nusselt number along the (a) hot wall (b) cold wall (c) top wall
 .................................................................................................................................... 157 

Figure 7-12:  Local radiation Nusselt number along the (a) hot wall (b) cold wall .. 158 

Figure 7-13:  Stream function profile at (a) mid-height (b) mid-width ..................... 160 

Figure 7-14:  Turbulent viscosity ratio at mid-height (Un-humidified cavity) .......... 161 

Figure 7-15:  Buoyancy flux near (a) bottom wall (b) hot wall ................................. 162 

Figure 7-16:  Local Nusselt number near (a) hot wall (b) top wall ........................... 163 

Figure 7-17:  Buoyancy flux near (a) bottom wall (b) hot wall ................................. 164 

Figure 7-18: Mass fraction of water vapour along (a) mid-width (b) mid-height ..... 166 

Figure 7-19: Effective diffusion coefficient of water vapour at mid-height .............. 166 

Figure 7-20:  Ratio of mass to temperature induced buoyancy (a) mid-height (b) near 
cold wall (x=66mm) ................................................................................................... 167 

Figure 7-21:  Geometry and the coordinates (dimensions are in cm) ........................ 168 

Figure 7-22:  Variation of local Nusselt number near (a) hot wall (b) top wall ........ 169 

Figure 7-23:  Turbulent viscosity ratio at mid-height and near (a) cold wall (b) hot 
wall ............................................................................................................................. 170 

Figure 7-24:  Mass fraction along the mid-height ..................................................... 171 

Figure 7-25:  Buoyancy number along the mid-height .............................................. 171 

Figure 7-26:  Effective diffusion coefficient of vapour at mid height and near (a) cold 
wall (b) hot wall ......................................................................................................... 172 

Figure 8-1: Schematic of DSF flow with solar blind ................................................. 175 

Figure 8-2: Examples of buildings with DSF system ................................................ 176 

Figure 8-3: Schematic of the BBRI facade classification - ventilation mode ............ 177 

Figure 8-4: Air ingress and egress to and from the DSF channel .............................. 178 

Figure 8-5: Test chamber showing solar generator and DSF , Mei et al. [288] ......... 185 

Figure 8-6μ Schematic description of the model (į=blind proximity from external 
glaze) .......................................................................................................................... 186 

Figure 8-7: Schematic diagram: (a) computational domain, (b) ventilation of the DSF 
geometry .................................................................................................................... 187 

Figure 8-8: Modelling geometrical cases (a) case 1 (b) case 2 (c) case 3 (d) case 4 . 188 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XIII 
 

Figure 8-9: Schematic representation of the heat transfer analysis. .......................... 193 

Figure 8-10: Schematic showing lines along the central plane were parameters are 
evaluated. ................................................................................................................... 197 

Figure 8-11: Temperature profile at (a) at mid-height of the outdoor environment (b) 
mid-height of the DSF channel (c) mid-height of the indoor environment (d) mid-
width of the DSF channel (=H/2)............................................................................... 199 

Figure 8-12: Horizontal velocity profile at mid-height of the internal wall .............. 201 

Figure 8-13: Horizontal temperature profile at mid-height of DSF channel ............. 201 

Figure 8-14: Internal environment temperature profile at (a) mid-width (b) mid-height 
(c) at mid-height - near internal glaze ........................................................................ 202 

Figure 8-15: Average values of (a) temperature - internal glaze-2 (b) transmitted 
visible solar flux - internal glaze-2   (c) solar heat flux at the indoor wall (d) surface 
heat flux at indoor wall .............................................................................................. 203 

Figure 8-16: Turbulence quantity profiles (a) Reynolds stress     at mid-height - x3 
(b) kinetic energy at mid-height – x3 (c) viscosity ratio at mid-height DSF – x2 ..... 204 
Figure 8-17: Temperature profile at (a) mid-height of DSF channel (b) mid-height of 
the indoor environment (c) mid-width of the indoor environment, L3. ..................... 207 

Figure 8-18: (a) Average surface heat flux at indoor wall (b) average temperature at 
the internal glaze-2 ..................................................................................................... 208 

Figure 8-19: Turbulent kinetic energy profile measured at mid-height of the indoor 
environment ............................................................................................................... 208 

Figure 8-20: Vertical velocity profile at mid-height of the indoor environment ....... 209 

Figure 8-21: (a) Contour of solar heat flux at the surface of the internal glaze-1 and 
the blinds  (b) contour of transmitted visible solar flux at the surface of the internal 
glaze-1 and the blind. ................................................................................................. 210 

Figure 8-22: Temperature profile at (a) mid-height of the indoor space (b) near the top 
wall (0.094 from top wall) of the indoor space .......................................................... 211 

Figure 8-23: Velocity profile near the top wall of the indoor space .......................... 211 

Figure 8-24: Turbulence intensity at mid-height of the indoor space ........................ 211 

Figure 8-25: indoor wall average surface heat flux as a function of blind angle ....... 212 

Figure 8-26:  Indoor temperature profile at (a) mid-height (b) mid-width ................ 214 

Figure 8-27:  Turbulent kinetic energy at mid-height of the internal environment ... 214 

Figure 0-1μ ωylinder temperature data comparison (a) į=25mm at x=25mm  (b) 
į=58mm at x=58mm (c) į=108mm at x=108mm (d) į=25mm at x=375mm (e) 
į=58mm at x=342mm (f) į=108mm at x=108mm from hot wall ............................. 248 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XIV 
 

LIST OF TABLE 

Table 3-1: Numerical values for the Low-Re k-İ number models constants ............... 40 
Table 3-2: Summary of the low-Re k-İ model functions ............................................. 41 

Table 3-3: Basis for choice and origin of the low-Re k-İ model functions ................. 42 

Table 3-4: Summary of D and E terms, and wall boundary conditions for   and   .... 43 
Table 4-1: Physical properties of air used in the simulations ...................................... 48 

Table 4-2:  Comparison of Walls average Nusselt numbers ........................................ 50 

Table 4-3: Comparison of average Nusselt numbers ................................................... 60 

Table 4-4: Comparison of percentage change in walls average Nusselt numbers (%) 60 

Table 4-5: Summary of the performance of the low-Re k-İ models for predicting low 
turbulent buoyancy driven air flow in enclosure without blockages ........................... 61 

Table 4-6: Number of iteration and CPU time normalized by those of standard k-İ 
model ............................................................................................................................ 61 

Table 4-7: The three thermal boundary conditions ...................................................... 62 

Table 4-8: Coefficients for the polynomial of Equation (4-1) ..................................... 62 

Table 4-9: Comparison of average Nusselt numbers ................................................... 70 

Table 4-10: Table 4-9:  Comparison of average Nusselt number percentage change . 70 

Table 4-11: Percentage error on wall surface heat transfer for a case without radiation
 ...................................................................................................................................... 71 

Table 4-12: Average Nusselt number for       ....................................................... 71 

Table 4-13: Average Nusselt number for       ....................................................... 72 

Table 4-14: Average Nusselt number .......................................................................... 74 

Table 4-15: Wall emissivity for all case ...................................................................... 78 

Table 4-16: Average Nusselt number comparison ....................................................... 80 

Table 5-1: Average core temperature for all cases (⁰ C) ........................................... 105 

Table 6-1: Thermo-physical properties of dry air used in the simulations ................ 110 

Table 6-2:  Solver parameters .................................................................................... 110 

Table 6-3: Physical properties of the materials involve in the simulations ............... 111 

Table 6-4:  Total Nusselt number for all walls .......................................................... 122 

Table 6-5:  Average wall radiative Nusselt number .................................................. 122 

Table 6-6: Average Nusselt number .......................................................................... 128 

Table 6-7: Average radiative Nusselt number ........................................................... 129 

Table 6-8: Average walls Nusselt number ................................................................. 133 

Table 6-9: Average walls radiative Nusselt number .................................................. 133 

Table 6-10: Average Nusselts number comparisons for different distance from the 
horizontal walls .......................................................................................................... 139 

Table 7-1: Summary of solver parameters ................................................................. 146 

Table 7-2: Boundary conditions used in the simulations ........................................... 146 

Table 7-3: Average hot wall Nusselt number ............................................................ 150 

Table 7-4:  Average surface Nusselt number ............................................................. 158 

Table 7-5: Percentage heat transfer increment (%) .................................................... 159 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XV 
 

Table 7-6:  Average Nusselt number ......................................................................... 163 

Table 7-7μ  Variation of Average ζusselt ζumber (Italicised data for į = 66mm are 
for coarse mesh of 64,600 cells) ................................................................................ 169 

Table 8-1: Under-Relaxation parameters used in the simulation ............................... 190 

Table 8-2: Thermo-physical properties of air at 20⁰C ............................................... 194 

Table 8-3: Thermo-physical properties of the material used in the simulations ........ 194 

Table 8-4:  Solar radiance properties of materials used ............................................. 196 

Table 8-5:  Computational efforts for all modelling strategies studied ..................... 198 

Table 8-6:  Average surface heat flux ........................................................................ 200 

Table 8-7: Average solar heat flux ............................................................................. 200 

Table 8-8: Average parameters evaluated at internal glaze–2 ................................... 212 

 

NOMENCLATURE 

 
A, Heat transfer area (m²) 

D, Depth of cavity (m) 

g, Gravitational acceleration (m/s²) 

H, Height of the cavity (m) 

L, Width of the cavity (m)    , Position vector     Direction vector  , Path length  , Refractive index   , Scattering coefficient  , Stefan-Boltzmann constant (5.672 x 10-8 W/m2-K4)   , Local temperature 

    Phase function 

  , Solid angle 

RH,   Relative humidity 

DSF, Double Skin Facade 

ATP, Adiabatic Temperature Profile 

LTP, Linear Temperature Profile  

ETP, Experimental Temperature Profile  , solar radiation,        



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XVI 
 

Vy, fluid velocity component in y-direction (m/s)        Displacement in     and   directions     Density              Dynamic viscosity ₂         

ΔT, temperature difference (= Th - Tc)      Specific Heat capacity (J/kg-K)    Conductivity (W/m-K)   , Prandtl number    Volumetric thermal expansion coefficient           Absorption coefficient, thermal diffusivity   ₂  ⁹               Turbulent kinetic energy             Turbulent dissipation rate              Average convective heat transfer coefficient,                         

P, Pressure (Pa)            Velocities in x, y and z direction       
T, Temperature       
Vo, buoyancy velocity            (m/s)   , Shear velocity           (        , Local wall shear stress, (       , General variable for fluid equations,   , Turbulent Prandt number        ⁺     The damping functions        , Conductive heat flux,                      , Convective heat flux            , Radiative heat flux              , Average convective heat flux             , Average radiative heat flux           , Time-average quantity      Biot number     The turbulent length scale is         )  , Emissivity 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XVII 
 

θ,  Inclination angle 

Ψ, Stream function (m²/s) 

į,  Wall proximity 

y+,  Non-dimensional wall distance 

m,  Mass fraction of vapour to dry air 

Sp, Stratification parameter 

M, molecular weight of vapour, (kg/kg-mol) 

EVR, Eddy Viscosity Models 

LRKE, Low Reynolds number k-İ models 

LES, Large Eddy Simulation 

B, Buoyancy flux, (m²/s³) 

N, buoyancy number 

S, Source term     , Effective diffusion coefficient, (m²/s)     The turbulent viscosity ratio is                                                   , 

 

Dimensionless groups             Dimensionless distance         

Pr           Prandtl number        

Gr          Granhof number                 

Ra          Rayleigh number                         Rayleigh number based on height,                          Convective Nusselt number              =                 Radiative Nusselt number                       Total Nusselt number                                 Average convective Nusselt number                                          Average radiative Nusselt number                           

 

 

 



A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 
with Blockages:  Draco Aluya Iyi 

 

 

XVIII 
 

 

 

DEDICATION 

To my beautiful wife, Mrs Jane Catherine Iyi and our children James and David, and 

to my lovely mother, Otiti Joy Iyi and my dear sister, Julie Iyi and to the memory of 

my father, Mr. Augustine Iyi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XIX 
 

 

 

ACKNOWLEDGEMENTS 

I wish to express my thanks to God for his providential care on me and my family 

during the course of this research. My special thanks go to my supervisors Dr Reaz 

Hasan and Dr Roger Penlington for their guidance and advice at every step and stage 

of this research and a big thank you to my mother-in-law, Mrs Elizabeth Harrison for 

proof reading this thesis.  

I would like to thank the laboratory technicians who have given me their valuable 

time and assistance for the experimental work. 

I especially thank my in-laws and family for their constant support, patience, 

understanding and encouragement throughout the duration of this work.  

Most importantly I would like to appreciate and thank Dr. Gillian Brooks and all my 

family in Nigeria; my mother, my father and my sisters. 

 

 

 

 

 

 

 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

XX 
 

 

DECLARATION 

I declare that the work contained in this thesis has not been submitted for any other 

award and that it is all my own work. I also confirm that this work fully acknowledges 

opinions, ideals and contributions from the work of others.  

 

 

Name: Draco Aluya Iyi 

 

 

 

Signature: D.IYI 

 

 

 

Date:    



A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 
with Blockages:  Draco Aluya Iyi 

 

 

Page 1 of 274 

 

Chapter 1 -  INTRODUCTION 

1.1 Background  

Heat transfer is energy in transit due to temperature difference. Conduction, 

convection and radiation are the three modes of heat transfer. Conduction heat transfer 

occurs by molecular excitation due to temperature gradient in a medium, usually 

solid. Convection heat transfer through gases and liquids from a solid boundary 

results from the fluid motion along the surface. Radiation heat transfer is concerned 

with the exchange of thermal energy between two or more bodies by electromagnetic 

waves and hence, does not need any medium. Convection heat transfer can be 

―forced‖ when movement of a fluid is by means of an external agent such as a fan or a 

pump. In many cases, natural buoyancy forces alone are responsible for fluid motion 

when the fluid is heated, and this process is called ―free or natural‖ convection. 

Natural convection flow is generated by density difference in different regions of the 

fluid. This density difference, along with the effect of the gravity, creates a buoyancy 

force which causes the heavier fluid to move downwards and the lighter fluid to move 

upwards, producing buoyancy driven flow. The density differences in natural 

convection flows may result from a temperature difference or from the differences in 

the concentration of chemical species, or from the presence of multiple phases in the 

fluid. One of the most common buoyant flows can be seen as air circulation around 

our rooms and offices, and other engineering applications [1-3]. 

In the case of a differentially heated rectangular cavity of height H and length L, 

shown in Fig.1-1, the natural convection heat transfer from hot to cold wall is 

characterised by the formation of a slow moving vortex. The fluid particles move up 

along the hot vertical wall (temperature     ) by absorbing heat from the ‗source‘, 
which then flows downward along the cold wall, gradually losing the heat to the cold 

surface (temperature      ) which may be termed as the ‗sink‘.  

The heat transfer inside enclosures depends strongly on the flow regimes. These flow 

regimes are usually characterised by the value of the Rayleigh number [4]. The 

Rayleigh number is defined as the product of the Grashof number, which describes 

the relationship between the ratio of buoyancy forces and viscous forces within a 

fluid, and the Prandtl number comprises some fluid properties, is defined as the ratio  



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 2 of 274 

 
 

 
Figure 1-1: Physical model and coordinate system 

 

of momentum diffusivity to thermal diffusivity. For a natural convection near a 

vertical wall, the strenght of the buoyancy-induced flow is measured by the Rayleigh 

number (Ra) which is defined mathematically as in Eq. (1-1)  

                                                                                                                    
  
Where, β is the thermal expansion coefficient:              

and   is the thermal diffusivity:                           is the acceleration due to gravity and μ represent the viscosity 

of the fluid. 

When the Rayleigh number is below the critical value for that fluid, the heat transfer 

is primarily in the form of conduction; when it exceeds the critical value, the heat 

transfer is primarily in the form of convection [5]. Rayleigh number plays a similar 

role in natural convection that the Reynolds number plays in forced fluid flow. The 

combined effects between free and forced convection must be considered when the 

ratio between Grashof and Reynolds numbers is of the same order, i.e.,               On the other hand, when             , the free convection 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 3 of 274 

 
 

effects may be neglected and conversely, when               the force 

convection effects may be neglected [6]. 

The convective heat transfer coefficient (which controls the rate at which heat is 

transported across enclosures) is the most important quantity that needs to be 

accurately predicted inside enclosures and is usually evaluated via the Nusselt 

number. The Nusselt number represents the enhancement of heat transfer by 

convection relative to conduction. That means the larger the Nusselt number the more 

effective is the convection heat transfer.  

During the last three decades, there has been intensive research on such flows [7-10], 

due to the growing demand for detailed quantitative knowledge of the transfer 

processes and also due to its relevance in many practical applications [11-13].  Most 

of these past studies were for pure natural convection, whilst in reality heat transfer 

inside enclosed spaces is often determined by the presence of various obstacles. 

Examples of such situations can be seen in; thermal management of indoor 

environments [14], cooling devices for electronic packages [15, 16], solar 

collectors[17], gas-filled cavities around a nuclear reactor [18, 19], refrigeration units 

[20-22] etc., some of which are shown in Fig.1-2a-c.  

In today‘s technological society most of our lifetime is spent in an indoor 

environment. The main objective of buildings has always been to provide shelter from 

sun, wind, cold and rain. In the past, designs were relatively simple and took into 

consideration the local environmental conditions. However, nowadays due to current 

energy saving procedures, indoor environment quality has tended to decrease. In fact, 

in the last two decades, the drive to produce more energy efficient buildings has led to 

the design of highly insulated buildings that are air tight. Therefore, the flows in most 

indoor environments use natural convection phenomenon for the improvement in the 

quality of life of the occupants, together with thermal comfort, air quality and energy 

conservation.  

Refrigeration unit (Fig.1-2c) is an example of a study with blockages. The various 

products stored in the freezer influences the heat transfer, humidity and flow inside 

the unit whose performances are affected by the storage pattern. Similarly, the cooling 
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of modular network solution (Fig.1-2b) is also significantly dependent on the 

configuration. 

 
Figure 1-2: Examples of natural convection systems: (a) Indoor environment [23], (b) 
Electronic devices [24], (c) refrigerator with food arrangement [25]. 

Indoor environment is also influenced by the concentration of moisture [26-28]. A 

humidity gradient will lead to the transfer of energy by desorption and adsorption 

which may be significant to the heat transfer by buoyancy. Therefore, the combined 

influence between temperature and concentration induced natural convection flow and 

heat transfer is important in understanding humidity control in domestic and industrial 

buildings, utilitarian buildings, drying of agriculture produce and cold storage. 

In addition, most objects change size with changing relative humidity. Laminated 

materials, such as oil paintings and veneered furniture will therefore distort and suffer 
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shearing stresses with changing relative humidity. Also, at low humidity, organic 

materials become stiff and therefore less tolerant to the shearing stresses between 

layers. High relative humidity accelerates degradation as well as corrosion of metals.  

1.2 Research motivation and justification 

As will be shown in chapter two, there has been a significant number of experimental 

and theoretical works carried out in the past decade in an attempt to understand flow 

in enclosures due to buoyancy effects. These involve the following: laminar natural 

convection flow and heat transfer containing dry air [29, 30], turbulent natural 

convection flow in enclosures without blockages [31-33] and  natural convection flow 

containing porous medium [34]. However, there appears to be limited studies on: 

combined influence of the interactions between turbulent natural convection and 

radiation heat transfers particularly in an indoor environment, influence of mass 

transfer on temperature induced buoyancy flow and natural convection in enclosures 

containing disconnected blockages or objects. 

Also from the literature, a number of challenges have been identified and 

summarised.  

 With a large number of turbulence models available in computational fluid 

dynamics, engineers, scientists and architects in the built environment are often 

puzzled with the choice of model for their predictions.  

 Specification of passive horizontal thermal boundary layer functions for the 

numerical modelling of this kind of flow is still a major challenge even for near-

ideal conditions of insulation. Since the upper and lower walls of the cavity are 

continually absorbing heat from the hot wall and supplying it to the fluid 

convectively and heat conduction within the adiabatic walls also alters the flow 

and temperature fields in the fluid and hence the net heat transfer rate. 

 Influence of surface emissivity on double diffusive natural convection flow and 

heat transfer in confined space.  

 Interaction influence between turbulent natural convection flow and blockages 

 Limited experimental data are available for the validation of CFD codes for this 

kind of flow. 
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The works carried out in this thesis have carefully resolved the above limitations, 

and has provided us with the knowledge base for the design of our experimental test 

rig. The main objective of the rig is to provide highly reliable temperature data that 

will be made available for the validation of CFD codes for this kind of flow. Also, 

the results of this study are expected to contribute to the literature in this field of 

study and contribute to the understanding of natural convection in a cavity filled 

with solid objects. 

1.3 Research aims and objectives  

 The aims of the research work are: 

1. Detailed numerical investigations of the interaction between turbulent natural 

convection and thermal radiation in an enclosure partially filled with obstacles. 

2. Detailed numerical investigations of the natural convection of heat and mass 

transfer in an enclosure partially filled with disconnected blockages. 

3. Experimental investigation to provide reliable temperature data within an enclosed 

space containing disconnected blockages, with particular emphasis placed on 

quantifying the proximity to the active walls. These data will be used for the 

validation of numerical models for such flows. 

4. Application of the research methodology to study the flow and heat transfer for 

Double Skin Facade (DSF). 

In order to achieve these set research aims, the works undertaken are highlighted 

below. 

 Performance evaluation of low-Re k-İ models for pure and double diffusive 

buoyancy driven turbulent flow in an enclosure with and without blockages, 

by validating computational results with existing experimental data. This will 

resolve the uncertainty in choosing turbulence models for this type of flow. 

 Parametric study on a realistic thermal wall boundary condition in contrast to 

adiabatic wall specification which is normally used in the numerical study of 

natural convection flow and heat transfer.  

 Evaluation of interaction of radiation with pure and double diffusive 

buoyancy driven turbulent flows in an enclosure, with and without blockages 

 Design, fabrication and calibration of a flexible experimental set up to 

provide reliable temperature data for an enclosed cavity with and without 
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blockages. This experimental set up would allow validation of blockage 

proximity from the vertical active walls and grouping of blockages into 

various configurations.  

 Conduct a detailed numerical study on the flow and heat transfer for a double-

skin facade (DSF) in order to highlight the usefulness of the research 

methodology in the context of a practical application.   

1.4 Thesis organization 

In this thesis, the results of numerical and experimental study of natural convection 

flows and heat transfer with and without blockages inside differentially heated 

rectangular enclosures are discussed in detail. The analysis was carried out over a 

range of scenarios, which are presented in various chapters as follows:  

Chapter 1 provides an introduction about natural convection flow and heat transfer 

and the importance of the study carried out in this thesis and it also includes the 

objectives and aims and roadmap showing the research contributions. 

Chapter 2 discusses the literature review of the numerical and experimental natural 

convection heat transfer with and without blockages in a confined space. It also 

discusses the literature review of the uses of turbulent and radiation models on the 

flow and heat transfer by natural convection processes. 

Chapter 3 explains the theoretical background of the natural convection flow and heat 

transfer process inside enclosures. It also discusses and explains the used numerical 

models, the governing equations and boundary conditions.  

Chapter 4 discusses the numerical studies and analysis of turbulent natural convection 

flow and heat transfer in a rectangular enclosure without blockages. Also presented 

are the comparisons of results with experimental data from literature.  

Chapter 5 presents a detailed experimental study of the flow and heat transfer in a 

rectangular enclosure without cylindrical blockages. Some details of the design 

procedure are presented and the analysis of the rig reliability is presented. 

Experimental studies were conducted to quantify the influence of blockage locations 

within the flow domain which are also reported in this chapter.   
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Chapter 6 reports the numerical analysis of the influence of blockage locations on 

turbulent natural convection flow and heat transfer. Different cases of these cylinder 

locations have been considered and analysed. It also reports the detailed validations of 

experimental data.  

Chapter 7 analyses the interaction influence between turbulent natural convection and 

radiation heat transfer in an enclosure partially filled with disconnected cylindrical 

blockages. In addition, influence of these blockages on the heat and mass transfer is 

analysed.  

Chapter 8 provides a detailed study on the application of the research methodologies 

on the influence of solar-blockages on turbulent natural convection flow and heat 

transfer in double-skin-facade, coupled with the indoor environment. 

Chapter 9 summarizes the important findings and final conclusions from this study 

and proposes direction for future work. 

1.5 Original contributions 

During the course of this research, the author has: 

1. Quantified the performance of low-Reynolds number k-İ models for natural 

convection and double diffusion flows in a cavity with and without disconnected 

blockages.  This is to resolve the uncertainties associated with common viscous 

models.  

2. Quantified the influence of surface emissivity on the heat and mass transfer within 

an enclosure partially filled with disconnected solid blockages. An understanding 

of these interactions is critical for the design of energy efficient electronic 

packages, ventilation inside buildings especially in a warm and humid 

environment or for humidity control in listed/utilitarian building applications. 

3. Quantified the influence of three major wall boundary conditions on the flow and 

heat transfer in turbulent natural convection process. This is done to provide a 

comparative performance and to avoid the uncertainty associated with insufficient 

insulation for specifying adiabatic conditions for these walls. 
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4. Designed and built an experimental test rig for natural convection heat transfer in 

a rectangular enclosure partially filled with disconnected blockages. Temperature 

data were collected for configurations with and without blockages. These data will 

be useful for the validation of numerical and/or analytical predictions. 

5. Conducted a detailed parametric study on Double-Skin-Facade, which is known to 

reduce energy consumption in building and has become popular in recent years.  

The findings from this research are based on fundamental transport processes 

compared with simplistic and trial and error method currently followed.  It is 

believed that the results will  be very valuable to the practitioner.  

Generally, the study will add to enrich the knowledge on the phenomena which take 

place in confined space containing numerous solid objects. These contributions are 

summarised in Fig.1-4 on the following page and have led to a few publications listed 

in section 1.6.      
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Numerical evaluation of the 
performance of Low 
Reynolds number k-İ models 

Adiabatic, linear 
and experimental 
temperature profile 
were considered 

Series of experiments conducted to 
obtain temperature distribution at 
various positions in the flow domain 
and on the surface of the blockages 

Results obtained 
for various 
emissivity values 

Blockage proximity 
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Chapter 2 -  LITERATURE REVIEW 

2.1 Introduction  

Buoyancy driven flow inside cavities has been the subject of extensive research for 

the last two decades due to the growing demand for detailed quantitative knowledge 

of the transfer processes and also because of its relevance in many practical 

applications [11, 13], such as heat transfer in buildings [35-40], electronic and other 

cooling processes [41-48] etc.  The basic set up for such flows, which has also 

attracted most attention from researchers, is a rectangular cavity whose vertical walls 

are heated differentially [31, 49, 50]. Due to the fact that such a rig is relatively easy 

to fabricate, detailed data on the flow, turbulence and heat transfer have been 

collected through experiments [51-53].  

Following on, numerical scientists have also been quick to respond to the 

experimental literature by conducting validation and exploratory studies on this very 

topic [52, 54-58]. The interest seems to be ongoing because more and more 

challenging situations are emerging with time [55, 59, 60]. Some of the important 

research conducted by various researchers in this field of study is briefly discussed in 

this chapter. The situation with and without blockages has also been considered 

including humidity. Also, the literature on the double-skin-facade will   be discussed 

in the relevant chapter (chapter-8).  

2.2 Experimental studies on natural convection flow in enclosures  

Many researchers have experimentally studied the flow profiles inside cavities. 

Kutalela et al., [61] studied the turbulent natural convection on a vertical flat plate. 

They observed that the lateral position of the peak mean velocity increases with 

height. They also showed that increasing the cavity width will increase the boundary 

layer thickness and significantly decrease the velocity value. Giel and Schmidt [62], 

and Han and Kueln [63] studied the turbulent natural convection in an enclosure 

filled with water. They observed the flow reversals just outside of the boundary 

layer for about 60% upstream of each wall. They noticed that the peak of the 

velocity values start to decrease and move away from the wall (increasing the 

boundary layer thickness) after the enclosure mid-height. King [64] studied the 

turbulent natural convection in an air cavity. He observed that the boundary layer 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 13 of 274 

 
 

thickness and the peak of the mean velocity were at its minimum near the bottom of 

the heated wall then starts to increase up to the mid-height, and then starts to 

decrease again.  

Kirkpatrick and Bohn [65],  investigated natural convection at a high Rayleigh 

number for a range of 0.1 × 1010 to 3×1010 in a cubical enclosure with various thermal 

boundary conditions. They have run experiments using four different configurations 

of differentially heated and cooled vertical and horizontal walls. In all the cases tested, 

the bottom wall was the heated wall. They made measurements of mean and 

fluctuating values of temperature and observed fluid flow patterns in the enclosure. It 

was concluded that heating from below would cause more mixing in the enclosure and 

consequently cause reduction of temperature stratification. As the Rayleigh number 

increased, the thermal stratification at the core of the cavity decreases. They observed 

that the thermal stratification changes suddenly at Ra = 0.65 × 1010. Also, the thermal 

stratification is not symmetric around the centreline. That is why increase of the 

bottom wall temperature leads to an increase of the temperature difference between 

the bottom wall and the core and produces thermal plumes which in turn cause mixing 

of the core. 

Cheesewrite and King [66], Cheesewright and Ziai [67], Bowles and Cheesewright 

(1989), [68] carried out investigations on two-dimensional buoyant cavity flows. They 

studied rectangular cavities to produce experimental data for validation of two-

dimensional computer codes. The working fluid was air and the Rayleigh number 

developed based on cavity height was 1010. They produced a large amount of 

measurements of mean and fluctuating values of velocity and temperature. LDA and 

thermocouples were employed to carry out the measurements of velocity and 

temperature respectively. They observed that the flows on the hot and cold walls are 

not symmetrical to each other. Also they reported re-laminarization on the floor wall 

and then transition to turbulence at 20% of the way up the hot wall. The 

measurements of velocity fluctuations showed reduction at the bottom of the cavity 

which reconfirms the re-laminarization phenomena mentioned earlier. 

Lankhorst et al. [69], conducted a study of buoyancy-induced flows in an enclosure at 

high Rayleigh numbers, using a differentially heated air filled square enclosure. The 

range of Rayleigh numbers covered in the experiment was from 1×109 to 4×109. 
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Laser-Doppler velocimetry was used to obtain velocity profiles. The traversing of a 

thermocouple probe was employed to measure the vertical temperature distribution in 

the core. The vertical temperature distribution was slightly asymmetric. They 

suggested that the probable cause of this phenomenon is the mean temperature 

difference between the enclosure and the room. They observed that near the top and 

bottom walls, there is not a stable thermal stratification because of the existence of 

horizontal flow. They observed flow reversal outside the boundary layer. The reason 

for this reverse flow is that the fluid moves up the hot wall and then gets to a region at 

which the temperature at the core is higher. Because the free stream temperature is 

less than the core temperature, a slight reversal of flow occurs. This phenomenon is 

called ―temperature defect‖. 

DafaAlla and Betts [53] studied turbulent natural convection in a tall air cavity. They 

analyzed turbulent natural convection in an air cavity with an aspect ratio of 28.6. The 

experiment resulted in data for the velocities and temperatures at a Rayleigh number 

based on cavity width of 0.83 × 106 (representative of facades in a built environment 

application). The experimental data is useful for validating computational and 

theoretical studies. Velocity measurements were carried out by a Laser Doppler 

Anemometer. Fine thermocouples were employed for temperature measurements. 

Heat transfer rates and heat losses from the cell are evaluated. Their experimental data 

in the central portion of the tall cavity were averaged and used to simulate anti-

symmetric fully developed flow in an infinitely tall air cavity. Causes of asymmetry 

of the data, including radiation absorption were assessed. 

Betts and Bokhari [70]     also studied turbulent natural convection in an enclosed tall 

cavity of 2.18m in height, 0.076m in width and 0.52m in depth. The temperature 

difference was imposed between vertical walls with isothermal temperature of 19.6ºC 

and 39.9ºC. This temperature difference created the Rayleigh number of 1.43 × 106 

based on the width of the cavity as length scale. In this situation, the flow in the core 

of the cavity was fully turbulent and variation of property with temperature was 

relatively negligible. They modified a previously used experimental rig by fitting 

partially conducting top and bottom walls and outer guard channels to provide better 

adiabatic boundary conditions. This was done to avoid the inadequately defined sharp 

changes in temperature gradient and other problems associated with insufficient 
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insulation on the passive walls. Mean and turbulent temperature and velocity 

variations inside the cavity were obtained. Also heat fluxes and turbulent shear 

stresses were measured at various locations. The temperature and velocity 

distributions were shown to be nearly two-dimensional, except close to the front and 

back walls, and anti-symmetric across the diagonal of the cavity. The partially 

conducting top and bottom walls created local unstable thermal stratification in the 

wall impinging jet flows, which increases the turbulence as the flow moves toward the 

isothermal vertical plates. 

Tian and Karayiannis [71] carried out an investigation on low turbulence natural 

convection in an air filled square cavity for a Rayleigh number of 1.58 × 109. The 

main focus in this work was analyzing turbulence quantities. The fluid flow resulting 

from natural convection was turbulent anisotropic wall shear flow. Turbulent 

frequencies of 0.1-0.2Hz were identified by analysing the power spectral density 

which is a function of frequency. Turbulence intensity was found to increase 

downstream of flow along hot and cold walls. The experimental results revealed that 

the temperature and velocity fluctuations were confined to the boundary layers along 

the solid walls and were not in Gaussian distribution. It was concluded that the 

temperature and velocity components were fluctuating independently of each other. 

The measurements were carried out in an unsteady state condition. Ampofo and 

Karayiannis, and Ampofo F., [51, 72] investigated turbulent natural convection in an 

air filled square cavity using similar conditions to that of Tian and Karayiannis  [71]. 

They observed that thickness of boundary layer along hot and cold wall is 7% of 

thickness of the outer boundary layer. They also reported that thickness of viscous 

sub-layer is 3mm and thickness of conduction region is 2mm and that the maximum 

Nusselt number occurs at the bottom of the hot wall and top of the cold wall.  

Chen and Liu [73] carried out an analysis of convection heat transfer in a passive solar 

heating room with greenhouse and heat storage. They investigated heat transfer and 

airflow in passive solar heating rooms with greenhouse and heat storage. They also 

studied the heat transfer and air flow on a rock bed. The rock bed was as a solar 

absorber and storage layer.  

Calcagni et al. [49] studied natural convection heat transfer in a square cavity 

characterized by a discrete heater positioned over the lower wall and cooling taking 
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place from vertical walls of the cavity. The effect of heat source lengths on heat 

transfer and temperature distribution inside the cavity was investigated. In order to 

gather experimental data, measurements of temperature distribution in air were carried 

out by real-time and double-exposure holo-graphic interferometer. The commercial 

finite volume code Fluent was also used for a numerical study. The range of Rayleigh 

numbers covered by this experiment was from 103 to 106. The local Nusselt number 

was obtained on the heat source positions and it showed a symmetrical form 

increasing near the heat source borders. Finally, they presented graphs of the local 

Nusselt number on the heat sources and the average Nusselt number at several 

Rayleigh numbers. Thermocouples and data acquisition unit were employed to 

accomplish the measurements. For the Rayleigh numbers lower than 104, the 

conduction heat transfer is the most important heat transfer mechanism.  

Xu and Li   [74] investigated temperature gradient induced natural convection in 

molten gallium. The velocity and temperature field measurements were recorded 

simultaneously. A standard hot-film anemometer working under constant temperature 

mode was employed to measure the velocity profiles, and the temperature profiles 

were measured using a standard T-type thermocouple. The experimental velocity and 

temperature distributions were compared with previous numerical simulations and 

reasonably good agreement was achieved. The measurements were performed at 

steady state condition. The two side walls were rigid with constant temperature. The 

bottom wall was rigid and adiabatic. The numerical investigation was performed by a 

finite element model. The temperature measurements along horizontal lines revealed a 

nonlinear temperature distribution which in turn shows the significance of convection 

in this case. The total velocity along the horizontal line at the top and bottom of the 

geometry has a convex shape with maximum value located near the centre. The 

velocity along the line at the middle of geometry has two peak points near two vertical 

walls and zero at the core. 

Laguerre et al., [75]  studied heat transfer by natural convection in a closed cavity as a 

case relevant to domestic refrigerators. The experiment was carried out using a 

refrigerator model. In this model, heat was transferred by natural convection between 

a cold vertical wall and the other walls were exposed to heat losses. The air 

temperature distribution in the boundary layers and in the central space of the empty 
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refrigerator model was measured. In order to study the effect of existence of foods on 

temperature distributions, they filled the refrigerator model with 4 blocks of hollow 

spheres. Then they compared the experimental measurements in the case where there 

were blocks inside the model with the measurements from the case without blocks. 

The measurements were accomplished three-dimensionally and at steady state 

condition. The range of Rayleigh numbers covered in the study was from 1.92 x 108 to 

3.02 x 108. The temperature measurements showed that in the case where there are 

blocks inside the refrigerator; the temperature is lower than for the case without 

blocks. They concluded that the heat transfer is augmented in the case with blocks. 

But those blocks cause increase of maximum temperature at the top of the 

refrigerator. This phenomenon can be explained by more stagnation because of the 

presence of blocks. The refrigerator model showed that there is a thermal stratification 

and is hotter at the top and colder at the bottom of it. From experimental data, they 

reported that the thickness of the boundary layer is 2cm and therefore they suggested 

that the food inside a refrigerator should be placed at a distance of more than 20mm 

from the walls. 

Ampofo, F. [72] carried out an experimental investigation of turbulent natural 

convection of air in a non partitioned and partitioned cavities with differentially 

heated vertical and conducting horizontal walls. The experiments resulted in two-

dimensional flow in the mid-plane of the cavity with dimensions of 0.75m high, 

0.75m wide and 1.5m deep. The thermal boundary conditions of the experiment were 

isothermal vertical walls at 50ºC and 10ºC. This temperature difference created a 

Rayleigh number of 1.58x109. He installed five partitions with higher thermal 

conductivity material than that of the cavity material on the hot wall. The partitions‘ 

dimensions were 150 mm long, 3 mm thick and the same depth as the depth of the 

cavity. The local velocity and temperature were measured simultaneously at various 

locations in the cavities. Based on the experimental measurements, it was concluded 

that the average and local Nusselt number decreases because of the existence of 

partitions over the hot wall. The existence of partitions substantially modifies the 

dynamic and thermal fields compared to those in the empty cavity with the same 

dimensions and boundary conditions. Also partitions on the hot wall affect the cold 

wall and make the boundary layer thicker and give higher peak values. 
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Shu et al. [76]  investigated natural convection in a cavity with imposed modulated 

thermal gradients or modulated gravity forces. The modulated thermal gradients mean 

that the imposed wall boundary condition changes periodically and consequently 

leads to a periodical change of buoyancy forces. A laser-based particle image 

velocimetry (PIV) system was employed to measure velocity fields. The comparison 

has been made between computed results and experimental measurements and they 

showed good agreement under various conditions. After validation of the numerical 

model, it was employed to investigate the effect of modulation frequency and Prandtl 

number on the fluid flow. The measurements were conducted at steady state 

condition. The numerical 2D computations were made to perform at steady state 

condition. They observed that the buoyancy driven flow follows the same pattern as 

oscillating driving temperature. The velocity induced as a result of natural convection 

has a phase difference with oscillating driving temperature. This conclusion is valid in 

both vertical cavity and tilted cavity. It was reported that the higher frequency of 

driving temperature creates weaker velocity field. 

2.3 Numerical studies on natural convection flow in cavity 

As mentioned before, the numerical prediction of natural or mixed convection can be 

an economical method to use for the design purposes in industrial applications. 

However, because of the complex nature of free convection flows, its numerical 

simulation is still a challenge for researchers. Some of the relevant issues are 

discussed in the following paragraphs.  

Ince and Launder [77] numerically studied buoyancy-driven flows in rectangular 

enclosures. In the numerical study, air was the working fluid. They investigated two 

different aspect ratios, 30:1 and 5:1, which showed different flow structure in the two 

cases. It was concluded that the version of Jones-Launder low-Reynolds-number k-İ 

model [78] performed satisfactorily in these cases. There was good agreement with 

reported experimental data. The generalized gradient diffusion hypothesis (GGDH) 

was employed to compute turbulent heat fluxes and eventually calculate buoyancy 

turbulence generation term. In the GGDH, cross flow gradients were taken into 

account which might be important in buoyancy driven flows. Henkes et al. [79] 

investigations natural convection flow in a cavity using low-Reynolds-number 

turbulence models. Their computations covered Rayleigh numbers, ranging up to 1015 
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for water. Three turbulence models of the standard k-İ model with logarithmic wall 

function, the low-Reynolds-number of Chein [80], and Jones and Launder were used. 

They found that the standard wall function gave too high predictions regarding the 

average Nusselt number over the hot vertical wall. The low-Reynolds-number models 

gave Nusselt number results in better agreement with the experimental data. 

The importance of surface radiation with natural convection in square and 

rectangular enclosures has also been studied and investigated by many 

researchers. Balaji and Venkateshan [81, 82], numerically investigated the 

interaction of surface radiation with laminar free convection in a square cavity. 

They elucidated the importance of surface radiation even at low emissivity and 

provided some reasons for the discrepancies noted between the experimental and 

theoretical correlations. They derived correlation equations to calculate 

convection and radiation Nusselt numbers in square enclosures.  

Sen and Sarkar [83], have considered the effects of variable properties on the 

interaction of laminar natural convection and surface radiation in a differentially 

heated square cavity. They discovered that, the presence of both radiation at low 

emissivity (İ=0.1) and variable properties, affect intensively, the thermal 

stratification of the core and the symmetry of the mid-plane vertical velocity as 

well as temperature profiles. Akiyama and Chong [84], analysed the interaction of 

laminar natural convection with surface thermal radiation in a square enclosure 

filled with air. They found that the presence of surface radiation significantly 

altered the temperature distribution and the flow patterns and affected the values 

of average convective and radiation Nusselt numbers. 

Velusamy et al., [85], studied the turbulent natural convection with the effect of 

surface radiation in square and rectangular enclosures. They pointed out that, the 

radiation heat transfer is significant even at low temperatures and low emissivity. 

Colomer et al., [86] looked at the three-dimensional numerical simulation of the 

interaction between the laminar natural convection and the radiation in a 

differentially heated cavity for both transparent and participating media. Their work 

reveals that in a transparent fluid, the radiation significantly increases the total heat 

flux across the enclosure.  
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Ridouane and Hasnaui [87] investigated the effect of surface radiation on multiple 

natural convection solutions in a square cavity partially heated from below. They 

found that, the surface radiation alters significantly the existence ranges of the 

resultant solutions. Sharma et al., [88] studied the turbulent natural convection with 

surface radiation in air filled rectangular enclosures heated from below and cooled 

from other walls. Their results emphasise the need for coupling radiation and 

convection to get an accurate prediction of heat transfer in enclosures.  

2.4 Simultaneous temperature and mass transfer induced buoyancy driven 

flow in enclosures 

The Simultaneous heat and mass transfer in enclosures containing solid objects is 

important for many practical flows such as indoor environments [89-95], 

drying/cooling of agricultural products [96] and other engineering applications [97-

105].  The basic set up for such flows, which has also attracted attention from both 

experimental and numerical scientists, is a rectangular cavity whose vertical walls are 

heated differentially [50, 106, 107].   

In the last decade or so the trend in buoyancy driven flow research has shifted to the 

examination of cavity flow coupled with heat and mass transfer. Most of the studies in 

this category are concentrated on steady state laminar flow of Rayleigh number 

ranging from 10΀ to 10΂. Moshkin et al., [108]  and McBrain [109] investigated 

temperature and mass concentration gradient induced laminar flow in an enclosure. 

They used a single phase modeling approach for the transport of fluid mixture.   

It is fairly recently that a number of works have appeared on buoyancy driven flows in 

enclosures filled with varying numbers of solid objects. Unlike porous medium, these 

objects are not in contact with each other, but are close enough to influence the 

transfer processes significantly [110, 111]. Most of these works are limited to steady 

state two dimensional laminar flow of Rayleigh number ranging from 10΁ to 109, 

although the higher values of Rayleigh number are likely to be turbulent.  The flow 

development is further complicated by the evidence that radiation also plays an 

important role [107, 112-121] in establishing the flow.  

An important aspect of the above type of flow which has not been investigated in 

detail is the effect on heat and mass transfer due to the wall proximity of blockages. 

This issue has many practical engineering applications such as natural drying of wood 
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stacks [122, 123], cold storage stacking [124-130] or location of venetian blinds in 

double facade [131, 132]. The objectives of this paper are hence, to look at typical 

features of the heat and mass transfer for variable proximity of the solid objects. The 

issue of emissivity for radiation simulation has also been explored. 

Catalin et al. [133] and Laguerre et al. [111] investigated temperature and mass 

concentration gradient induced laminar flow in an enclosure. They used the single 

phase modelling approach for the transport of fluid mixture. Saturation condition with 

fluid mixture in thermal equilibrium was assumed for the fluid domain and the ideal 

gas law was used for density. However, the numerical work carried out by Catalin et 

al. [133] and Close [134] assumed a two-phase laminar flow for the transport of fluid 

mixture. 

2.5 Natural convection in confined space partially filled by solid products 

Published works in this category are fairly recent where the focus of research is on 

buoyancy driven flows in an enclosure filled with varying numbers of solid obstacles. 

Unlike porous medium, these obstacles are not in contact with each other but are close 

enough to influence the transfer processes significantly. Typical examples in this 

category are the works by Das and Reddy [110], Desrayaud and Lauriat [135], 

Laaroussi and Lauriat [136] and Yoon et al. [56], all of which are limited to steady 

state two dimensional laminar natural convection flow of Rayleigh number ranging 

from 10΁ to 10́ .  

Das and Reddy [110] and Yoon et al., [56] have reported the fluid flow and heat 

transfer in a differentially heated rectangular cavity containing just one disconnected 

solid product, and Bragas and de Lemos [137] and Hooman and Merrikh [138] 

investigated the cavity filled with several. The findings from these research works 

show that when a limited number of solid products are involved, the fluid flow is 

predominantly confined between the vertical walls and the first column of the objects. 

Also, an increase in the number of solid products results in greater fluid flow in some 

areas especially close to the product surfaces.  

Another important characteristic of this kind of flow is the importance of radiation 

between surfaces. It is well known [131, 132, 139-148] that the effect of radiation is 

fairly significant and comparable with the convective heat transfer even for 

moderately low temperature difference in naturally ventilated spaces. In this context, 
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the surface emissivity plays a very important role in establishing the total heat 

transfer. Laguerre et al., [13]  have reported a study for a Rayleigh number of 1.45 x 

109. The numerical calculations were based on the assumption that the flow is laminar 

but in reality the above Ra is more towards the turbulent regime. Also, the effect of 

radiation has been analysed only for a specific emissivity. 

2.6 Summary of key literatures 

Authors Fluid and Ra Method/ Highlights 
Kutatelaze et 
at., 
[149]. 
 

 

Dry air 

Ra unspecified 

Experimental study of the hydrodynamics of a 
turbulent free convection boundary layer on a 
vertical plate. The lateral position of the peak mean 
velocity increases with height and increasing the 
cavity width leads to a corresponding increase of the 
boundary layer thickness but significantly decrease 
the velocity value. 

Fillis and 
Poulikakos, 
[150]. 

Water 

1010<Ra<5×1010 

The experimental study of natural convection in a 
parallelepipedal enclosure induced by a single 
vertical wall. The findings support the view that the 
use of more realistic temperature boundary 
conditions in enclosure natural convection needs 
careful examination. 

Han et al., 
[151]. 

Water 

Pr=8, Sc=2000 

105<Ra<106 

Experimental study of double diffusive natural 
convection flows in a 2D rectangular enclosure, were 
investigated using an electrochemical technique with 
the vertical electrodes maintained at different 
temperatures. They noticed that the peak of the 
velocity values starts to decrease and move away 
from the wall after the enclosure mid-height. 

King K. J., 
[152]. 

 

Dry air 
Pr = 0.7 
Ra = 4.5×1010 

The experimental study of natural convection in a 
rectangular cavity with the vertical walls maintained 
at different temperatures. The boundary layer 
thickness and the peak of the mean velocity were at 
its minimum near the bottom of the heated wall then 
starts to increase up to the mid-height, and then starts 
to decrease again. 

Kirkpatrick 
and Bohn, 
[153]. 

Dry air 

0.1 x1010  ≤ Ra 
≥ 3 x 1010 

The experimental study of natural convection using 
four different configurations of differently heated 
and cooled vertical and horizontal surfaces in a 
cubical enclosure at high Rayleigh numbers were 
conducted. For the boundary conditions of the 
experiment, the heat transfer from the horizontal 
surfaces was not strongly affected by the presence of 
a horizontal temperature gradient. 
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Cheesewright 
et al., 

 [154]. 

 

Dry air 

Ra = 1010 

Carried out experimental investigations on 2D 
buoyant cavity flows. They studied rectangular 
cavities to produce experimental data for validation 
of two-dimensional CFD codes. They also produced 
a large amount of measurements of mean and 
fluctuating values of velocity and temperature.  

Lankhorst et 
al., 

[69]. 

 

Dry air 

1×109 

≤Ra≥ 4×109 

Conducted experimental studies on buoyancy-
induced flows in a differentially heated air filled 
square enclosure. Core stratification was found to 
have a profound influence on the regimes and the 
characteristics of the flow. They also observed flow 
reversal outside the boundary layer. 

Dafa Alla and 
Betts, [155]. 

 

Dry air 

Ra = 0.83 × 106 

Carried out an experimental investigation on 
turbulent natural convection in an air cavity with an 
aspect ratio of 28.6. The experimental data in the 
central portion of the tall cavity have been averaged 
to simulate an antisymmetric, Boussinesq, fully 
developed flow in an infinitely tall air cavity. Causes 
of asymmetry of the data, including radiation 
absorption, were also assessed. 

Betts and 
Bokhari, 
[156]. 

 

Dry air 

0.86×106 and 
1.43×106 

Experiments were undertaken to investigate the 
natural convection of air in a tall differently heated 
rectangular cavity, by fitting partially conducting top 
and bottom walls and outer guard channels. It was 
observed that the partially conducting roof and floor 
provide locally unstable thermal stratification in the 
wall jet flows there, which enhances the turbulence 
as the flow moves towards the temperature 
controlled plates. 

Ampofo, F., 
[72]. 

Dry air 

Ra = 1.58 × 109 

Conducted an experimental study of low level 
turbulence natural convection in an air filled vertical 
partitioned square cavity. The main focus of this 
work was analysing turbulence quantities. The 
experimental results revealed that the temperature 
and velocity fluctuations were confined to the 
boundary layers along the solid walls. It was also 
concluded that the temperature and velocity 
components were fluctuating independently of each 
other. 

Ampofo and 
Karayiannis, 
[157]. 

Dry air 

Ra = 1.58 × 109 

Carried out an experimental study of low-level 
turbulence natural convection in an air filled vertical 
square cavity. The experiments were conducted with 
very high accuracy and as such the results can form 
experimental benchmark data and will be useful for 
validation of computational fluid dynamics codes. 

Tian and 
Karayiannis 

Dry air An experimental study of two-dimensional low level 
turbulence natural convection in an air filled vertical 
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[158] 

 

Ra = 1.58 × 109 square cavity was conducted. It was in the low 
turbulence region with a base frequency of about 
0.1–0.2 Hz. The temperature and velocity 
fluctuations were limited in the boundary layers 
along the solid walls and were not in Gaussian 
distribution. The results indicate that the temperature 
and the velocity components fluctuate separately. 

Calcagni and 
Paroncini, 
[49]. 

Dry air 

Ra = 103 to 106 

Experimental and numerical study was performed on 
free convective heat transfer in a square enclosure 
characterized by a discrete heater located on the 
lower wall and cooled from the lateral walls. The 
study analysed how the heat transfer develops inside 
the cavity at the increasing of the heat source length. 
It was observed that for low Rayleigh numbers (≤ 
104); the conduction heat transfer is the most 
important heat transfer mechanism.  

Xu and Li, 
[159]. 

Molten gallium 

Ra unspecified 

An experimental study on the temperature gradient 
induced natural convection in molten gallium was 
conducted. The temperature measurements along 
horizontal lines revealed a nonlinear temperature 
distribution which in turn shows the significance of 
convection in this case. The velocity along the line in 
the middle of geometry has two peak points near two 
vertical walls and zero at the core. 

Laguerre et 
al., 

 [13]. 

Dry air 

1.92 × 108 ≤ Ra 
≥  3.04 × 108 

An experiment was carried out using a refrigerator 
model in which heat is transferred by natural 
convection between a cold vertical wall and the other 
walls, which are exposed to heat losses. Their aim 
was to study the effect of obstacles on temperature 
profiles. The air temperatures were lower almost 
everywhere in the model containing blocks. The 
presence of the blocks seems to enhance heat transfer 
particularly near the cold wall. 

Shu et al., 
[160]. 

Dr air, and  

Molten metal 

Pr = 0.7 to 0.01 

An investigation of natural convection in a cavity 
with imposed modulated thermal gradients or 
modulated gravity force was carried out. It was also 
found that for a fluid with a small Prandtl number 
typical of molten metal and semiconductor melts, 
modulated gravity and thermal gradients produce 
almost the same flow field both in structure and in 
magnitude. 

Ince and 
Launder, 

 [77]. 

 

Dry air 

Ra unspecified 

Numerical computations were reported of turbulent 
natural convection of air in two tall rectangular 
enclosures with heated and cooled vertical walls. The 
very different aspect ratios considered, 30:1 and 5:1, 
lead to appreciable differences in flow structure in 
the two cases.  
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The standard form of the k-İ predicts length scales 
too large at locations near to separation points and 
consequently gives wrong prediction of wall heat 
transfer.  

Henkes and 
Hoogendoom,  
[161]. 

 

Dry air, 

Water 

Ra=1014 for air  

Ra=1015 for 
water 

Numerical investigation was performed for laminar 
and turbulent natural-convection flow in a two-
dimensional square cavity heated from the vertical 
side. Three different turbulence models are 
compared. Comparison of the averaged wall-heat 
transfer with experiments for the hot vertical plate 
and for tall vertical cavities shows that the standard 
k-ε model gives a too high prediction, whereas the 
low-Reynolds-number models were reasonably close 
to the experiment. 

Balaji and 
Venkateshan, 
[162]. 

Dry air 

Ra unspecified 

A numerical investigation of free convection in a 
rectangular enclosure has been carried. Their study 
has thrown light onto the importance of surface 
radiation even at low emissivity and temperature 
levels and provides an explanation of the 
discrepancies between the experimental and 
theoretical correlations. 

Swarnendu 
and Sarkar, 
[83]. 

Dry air 

5x103≤ Ra ≥106 

 

The interaction of variable property convection and 
surface radiation in a differentially heated square 
cavity was reported. It was observed that the effect 
of radiation is to suppress the formation of multi-
cells within the core, as well as the separation cells at 
the top and bottom plates. From the numerical 
viewpoint, the presence of radiation considerably 
delays the convergence. 

Akiyama and 
Chong,  

[84]. 

Dry air 

Ra unspecified 

The interaction of natural convection with thermal 
radiation of gray surfaces in a square enclosure filled 
with air was numerically investigated. The effect of 
radiation on the flow field, temperature distribution, 
and heat transfer are predicted. The result shows that 
surface radiation significantly altered the 
temperature distribution and the flow patterns, 
especially at higher Rayleigh numbers. 

Velusamy et 
al., [163]. 

Dry air 

109 ≤ Ra ≥  1012 

The interaction effects between surface radiations 
with turbulent natural convection of a transparent 
medium in rectangular enclosures were numerically 
analysed, for a wide range of Rayleigh number and 
aspect ratio from 1 to 200. The interaction with 
surface radiation results in larger velocity 
magnitudes and turbulence levels in the vertical as 
well as horizontal boundary layers, leading to an 
increase in the convective heat transfer.  
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Ridouane and 
Hasnaoui, 
[164]. 

Dry air 

103 ≤ Ra ≥ 
4×106 

A numerical study of natural convection with surface 
radiation in an air filled square enclosure with a 
centrally heated bottom wall and cooled upper wall 
is presented. The vertical walls and the rest of the 
bottom wall are assumed to be insulated. The 
problem was studied for surfaces emissivity İ, 
varying from 0 to 1. It was found that the surface 
radiation alters significantly the existing range of the 
solutions. 

Sharma et al., 
[165]. 

Dry air 

108 ≤ Ra ≥   
1012 

Conjugate turbulent natural convection and surface 
radiation in rectangular enclosures heated from 
below and cooled from other walls, typically 
encountered in Liquid Metal Fast Breeder Reactor 
subsystems, was investigated by a finite volume 
method for various aspect ratios. The influence of 
the wall emissivity and the external heat transfer 
coefficient on the heat transfer from the enclosure 
has also been investigated. 

McBain G.D., 
[109]. 

Sparrow et 
al., [166]. 

Multi-
component 
fluids  

10΀ ≤ Ra ≥   10΂ 
An investigation of temperature and mass 
concentration gradient induced laminar flow in an 
enclosure was reported. They used a single phase 
modelling approach for the transport of fluid 
mixture. The heat transfer formula agrees well with 
published data for the square cavity with zero 
humidity gradients. 

Laguerre et 
al., [167]. 

Moist air 

Ra = 109 

The work zone was arranged in such a way that 2D 
transfer and flow were established. At steady state, 
temperature, velocity and humidity fields on the 
symmetry plane were measured in un-humidified and 
humidified cavity. The influence of radiation near 
the cold and warm walls was found to be significant 

Catalin et al., 
[168]. 

Moist air 

Ra unspecified 

A numerical investigation was conducted to assess 
the thermal comfort taking into account the indoor 
air moisture and its transport by the airflow within an 
enclosure. Their results revealed a good potential to 
ameliorate the combined modelling of heat, moisture 
and air transport, and that the effect due to water 
vapour should not be neglected. 

Laaroussi and 
Lauriat, 
[136]. 

Moist air 

106 ≤ Ra ≥   107 

Heat transfer by natural convection and surface 
condensation in two-dimensional enclosures in 
contact with a cold external ambient through a wall 
of finite thickness was studied numerically. Special 
attention was given on the modelling of the flow of a 
binary mixture consisting of humid air. The decrease 
in the average density of the mixture leads to 
significant variable's reductions at steady-state 
which, in turn, causes lower overall heat transfer rate 
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than in dry air. 

Yoom et al., 
[169]. 

Dry air 

103 ≤ Ra ≥  106 

Numerical calculations were carried out for the 
three-dimensional natural convection induced by a 
temperature difference between a cold outer cubic 
enclosure and a hot inner sphere. The study 
investigated the effect of the inner sphere location on 
the heat transfer and fluid flow. For the highest 
Rayleigh number, the local peaks of the Nusselt 
number on the top wall of the enclosure shows 
sinusoidal distribution along the circumferential 
direction. 

Braga and 
Lemos, [137]. 

Dry air 

Ra = 104 

Their work compared heat transfer characteristics 
across a square cavity partially filled with a fixed 
amount of conducting solid material. Comparisons 
were obtained by numerically solving a conjugate 
heat transfer problem that considers both the solid 
and the fluid space. Their results show that the 
average Nusselt number of cylindrical rods is 
slightly lower than those for square rods. 

 

2.7 Concluding remarks 

From the literature reviewed presented in this chapter, it has been found that natural 

convection flows have been extensively studied during the past few decades both 

experimentally and numerically. Even a two-dimensional natural convection in 

rectangular cavity which seems simple, however, still poses a great numerical 

challenge, although great progress has been made. However, several issues are still 

unresolved and need further attention. For example, the treatments of the sub-layer 

near the wall, uncertainty of boundary conditions, influence of radiation properties 

etc.   

There seems to be very limited work reported for cavities partially filled with 

disconnected blockages, in particular, no work on the influences of blockage 

proximity and group location within the enclosed space can be found. Furthermore, 

there appears to be limited experimental data for the blockage interaction with flow 

and heat transfer. Therefore, this study is focused on resolving the various unresolved 

issues specified in the literature, which will further enhance the understanding of the 

subject. This will be achieved by providing reliable experimental benchmark data and 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 28 of 274 

 
 

performing a number of parametric studies on various issues associated with the 

resolved issues. 
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Chapter 3 -  THEORETICAL BACKGROUND 

3.1 Introduction  

A study of considerable importance in areas concerned with the physical processes 

involved in energy generation and utilization is that of heat transfer. Heat transfer is 

thermal energy in transit due to a spatial temperature difference. Whenever a 

temperature difference exists in a medium or between media, heat transfer must occur. 

Conduction, convection and radiation are the three modes of heat transfer; the former 

occurs if a temperature difference exists in a material due to the motion of the 

microscopic particles that comprise the material. When the conduction heat transfer 

processes are coupled with the motion of the fluid it is termed convection heat 

transfer. Thermal radiation heat transfer is caused by energy emission in the form of 

electromagnetic waves or stream of photons.  

In the diversity of studies related to heat transfer, considerable effort has been directed 

at the convective mode, in which the relative motion of the fluid provides an 

additional mechanism for the transfer of energy and of material, the latter being a 

more important consideration in cases where mass transfer, due to a concentration or 

composition difference, occurs. Besides the importance of natural convection in many 

areas of interest in technology and in nature, a study of natural convection processes is 

also important because of heat rejection and removal in many devices, processes and 

systems. Natural convection represents a limit on the heat transfer rates and this 

becomes a very important consideration for problems in which other modes of heat 

transfer are either not possible or not practical [170, 171].  

It is also relevant for safety considerations under conditions when the usual mode fails 

and the system has to depend on natural convection to get rid of the generated heat. 

This is particularly significant in many electronic devices and systems and in power, 

where such considerations in design are essential to avoid overheating. The growth of 

interest over the recent past has also been largely due to its relevance to thermal 

management of indoor environments. Theoretical background of natural convection 

flow and heat and mass transfer mechanisms is the subject of this chapter. 
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3.2 The nature of coupled fluid dynamics and heat transfer  

In natural convection process the flow results from an interaction of the density 

difference with the gravitational field and is dependent on the temperature and 

concentration fields. As such the motion that arises is not known at the onset and has 

to be determined from a consideration of the heat and mass transfer processes coupled 

with fluid flow mechanisms. The schematic and the boundary layer flow are shown in 

Fig. 3-1. 

 

 

Figure 3-1: Schematic of natural convection flow (a) rectangular enclosure (b) along a 
heated vertical surface 

Convection is also inevitably coupled with the conductive mechanisms, since, though 

the fluid motion modifies the transport process, the eventual transfer of energy from 
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one fluid element to another in its neighbourhood is through conduction. Also, at the 

solid surface, the process is predominantly conduction due to the no-slip condition at 

the boundary. A study of convective heat transfer, therefore, involves the mechanisms 

of conduction and, sometimes, of radiation coupled with fluid flow.  Hence the study 

of this mode of heat transfer is a very complex one [4, 172].  

Natural convection processes are a multi-dimensional problem involving conduction, 

convection and radiation heat transfer and can be solved using computational fluid 

dynamics (CFD). CFD is a branch of fluid mechanics that uses numerical methods 

and algorithms to solve and analyze problems involving fluid flow. Conduction-only 

problems can be simply dealt with by solving the heat conduction equation (diffusion 

equation). When fluid flow is involved the resulting convective heat transfer problem 

is solved by tackling the enthalpy equation, alongside the Navier-Stokes equation and 

the continuity equation. These equations can be found in most fluid dynamics text 

books [4, 173-176]. The boundary conditions for the enthalpy equation take the case 

of heat transfer into and out of the computational domain across its boundaries. The 

internal distribution of heat source and sink processes and the transport of heat by 

means of diffusion and convection determine the enthalpy distribution due to fluid 

flow. 

In naturally ventilated spaces in building and offices, temperatures are low so 

radiative heat fluxes are comparable in size with convective heat fluxes since 

buoyancy-driven flow velocities are often small [4, 173, 177]. Also, there is no direct 

coupling between radiation and the flow field, since radiation or radiation properties 

of fluids and boundaries do not depend directly on the fluid velocity. However, the 

fluid flow influences the spatial distribution of temperature and species concentration. 

These determine the intensity of radiation emitted by boundary surfaces and 

participating fluids as well as the radiation properties of a participating medium. This 

ensures that there is strong indirect coupling between the flow field and radiation 

environment. Therefore, radiation effects will cause changes in the boundary 

equations of the energy equation. 
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3.3 Natural convection correlation and dimensionless numbers 

In natural convection processes the flow is usually wall bounded and develops as a 

result of density difference due to temperature gradient in the presence of 

gravitational field. Therefore Reynolds number has no place in natural convection 

definition. The dimensionless numbers associated with natural convection flow are: 

 Grashof number (Gr) describes the relationship between natural convection 

buoyancy and viscosity within a fluid.             

Where, L=length, v=kinematic viscosity and  =volumetric thermal expansion 

coefficient. 

 Prandtl number describes the relationship between momentum diffusivity and 

thermal diffusivity.           

 Rayleigh number is the product of Grashof and Prandtl number.           

The Rayleigh number represent the ratio of buoyancy and viscosity forces times 

the ratio of momentum and thermal diffusivities. 

 Nusselt number is the ratio between total heat transfers by convection to that by 

conduction in the fluid.         
3.4 Turbulent natural convection  

Some of the numerical approaches for solving turbulent flows are highlighted here.  

The main focus is on the low-Reynolds number version of the k-İ model which is 

adopted in all simulations of this research. The modeling code that has been used is a 

state-of-the-art general purpose commercial package FLUENT 14 which is a part of 

the ANSYS software. The solvers are based on finite volume method where the flow 

domain is discretized onto a finite set of control volume or cells, and the general 

transport equations for mass, momentum, energy, species, etc., are solved on this set 

of control volumes shown in equation (3-1) for a general variable  .                                                                                         
Then, the partial differential equations are discretized into a system of algebraic 
equations. Finally, all the algebraic equations are then solved numerically to render 
the solution field. 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 33 of 274 

 
 

3.4.1 Mean flow equations and their solution 

There are three major numerical methods for predicting turbulent flows in: 

i. Direct Numerical Simulation (DNS): This is the most accurate approach for 

solving the Navier-Stokes equations. Also it can be mentioned that it is the 

simplest method regarding implementation concept [173]. The DNS result is 

valid like measurements from experimental data and is in principle, capable of 

resolving all motions in the flow. DNS produces very detailed data for the flow 

but it is computationally too expensive and hence is hardly used for practical 

flows. 

ii.  Large eddy simulation (LES): In this approach, the largest scale motions of the 

flow are solved but approximations are used to predict the small scale motions. 

LES is less accurate than DNS but is numerically more economic. However, for 

practical engineering flows of complex flow field, LES is still computationally 

too expensive [178-180]. 

iii.  Reynolds averaged Navier-Stokes (RANS): This method is based on time 

averaging the governing equations of motion. Typical examples of such models 

are the k-İ or the k-  models in their different forms.  These models simplify the 

problem to the solution of two additional transport equations and introduce an 

Eddy-Viscosity (turbulent viscosity) to compute the Reynolds Stresses. More 

complex RANS models are available which solve an individual equation for 

each of the six independent Reynolds Stresses directly (Reynolds Stress Models 

– RSε) plus a scale equation (İ-equation or  -equation). 

We have restricted ourselves to the eddy viscosity models (EVM) due to the fact that 

other advanced turbulence modelling such as DNS and LES are still very demanding 

from computation point of view and it is unlikely that it can be applied to practical flows 

[181, 182]. 

A set of differential equations result from averaging the equations of motion. The set 

of differential equations are called Reynolds averaged Navier-Stokes (RANS) 

equations. The ensemble-averaged governing equations for a conservation of the 
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mass, momentum and energy can be written as follows: (Eq. 3-2 to 3-5) [79, 183-

185].  

The continuity equation:                                                                                                                                     
Momentum equation:                                                                                                               
    is the buoyancy term and is equal to         . The fluid properties change with 

temperature, and in the case where the density change with temperature is not high, it 

is possible to assume the density in the unsteady and convection terms is constant and 

density only varies in the buoyancy term. This is called the Boussinesq approximation 

[173]. The buoyancy term is given in Eq. (3-4),                                                                                                                   
Where,    is the (constant) density of the flow,    is the operating temperature,  

  is the thermal expansion coefficient, and is represented as:             

The mean temperature T is obtained from the enthalpy transport equation presented in 

equation (3-5), 

                                                                                                               
The RANS turbulence models approach is adopted to solve the buoyancy flow in this 

research. These models are not closed set of equations due to the presence of              and              in equation 3-3 and 3.5 and in order to close the set of equations 

it is required to use turbulence models [186]. Different turbulence model means 

different treatment of the Reynolds stresses or turbulence heat fluxes. 
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3.4.2 Treatment of Reynolds Stresses 

3.4.2.1  Two-layer k-ε model 

The k-İ model is among the category of two-equation models in which the turbulence 

kinetic energy, k and dissipation, İ are solved. These two quantities allow evaluating 

turbulence data such as length scale, time scale, turbulence viscosity ratio etc. In the 

most commonly used two-equation turbulence models the Reynolds stresses in Eq. (3-

3) are modelled by the following Bousinesque assumption: 

                                                                                                                   
Where the turbulent eddy viscosity is given by 

                                                                                                                                  
The kinetic energy   and its dissipation rate   in Eq. (3-7) are computed by the 
following partial differential equations:                                                                                                
                                                                                       
In the two-layer model by Chen and Patel [187], the eddy viscosity and the rate of 

dissipation of turbulent kinetic energy in the near wall region are specified as follows 

employing the one-equation model: 

                                                                                                                
Where                                                                           
In this model the equation of turbulence kinetic energy, Eq. (3-8), is solved all the 

way to the wall while the equation of the turbulence kinetic energy dissipation rate, 

Eq. (3-9), is solved in the outer region. It is noted that the length scales in Eq. (3-10) 
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and constants in Eq. (3-11) is based on the forced convection turbulent boundary layer 

and it is questionable whether this model works well in the natural convection flows. 

The high-Reynolds-number k-İ model cannot be integrated right across the wall sub-

layer. Therefore, for the wall-bounded flows, the high Reynolds number version of the 

k-ε model cannot be applied in the immediate vicinity of the wall since it does not 

take into account the effects of viscosity. In order to avoid modelling these viscous 

effects, empirical wall functions are often employed to bridge the gap between the 

solid boundary and the turbulent zone. However, the universality of the high Reynolds 

number model breaks down for complex flows. Near-wall k-İ turbulence models or 

low Reynolds number k-İ models, which attempt to model the direct influence of 

viscosity, have been developed.  

3.4.2.2 Shear stress transport (SST) model 
In the SST model by Menter [188] the governing equations for the   and   are solved 
as follows:                                                                                
                                                                                                                                                                         
In this model the turbulence eddy viscosity in Eq. (3-6) is expressed by the following 
equations: 

                                                                                                                        
where                                                                                                    
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The coefficient of SST model are a linear combination of the corresponding 
coefficients such that                                                                                                                   
Where    is a blending function defined by Eq. (3-15), and the     ,    ,   , and    

are calculated by Eq. (3-19). This model is also based on the Bousinesque assumption, 

Eq. (3-6), in the expression of the Reynolds stresses. 

3.4.3 Treatment of turbulent heat fluxes 

3.4.3.1 Simple gradient diffusion hypothesis (SGDH) 

In the SGDH, the turbulent heat fluxes            in Eq. (3-5) are treated by the following 

equation: 

                                                                                                                                    
In this equation     is the turbulent Prandtl number. It is well known that this 

assumption is not adequate for natural convection flows although it is widely used in 

forced convection flows.  

3.4.3.2 Generalized gradient diffusion hypothesis (GGDH) 
In the GGDH by Ince and Launder [77], the turbulent heat fluxes            in Eq. (3-5) 

are approximated by the following equation.                                                                                                                                  
As shown in the above equation, the accuracy of this assumption depends on the 

accuracy of the computed Reynolds stresses. Ince and Launder  [77] and Choi and 

Kim [189] used the GGDH for natural convection in a rectangular cavity with 

success. However, it is known that this assumption is not adequate for a natural 

convection with a strong stratification. 
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3.4.3.3 Algebraic flux model (AFM) 
In the AFM by Kenjeres and Hanjalic [190] the turbulent heat fluxes are computed by 

the following algebraic equation: 

                                                                                                                  
When compared with the GGDH model, the last term with a temperature variance has 

a positive effect on the gravitational generation term    and it prevents    from being 

negative value. This effect stabilizes the overall solution procedures, especially for 

strong stratified flows                                                           

3.4.4 Low Reynolds number RANS models  

In natural convection heat transfer the flow near the boundary is very important for 

establishing the temperature field in the whole domain [191]. When the wall functions 

are not used, sufficient grid lines near solid boundaries are desirable so that the 

boundary layer can be adequately resolved. However, when the wall is approached the 

viscous effects become more important and for y+ < 5 the flow is viscous dominating, 

i.e. the viscous diffusion is much larger than the turbulent one. Thus, the high-Re k-İ 

turbulence model may not be very accurate.  

The low-Re k-İ models are the modifications of high-Re k-İ models so that they can 

be used all the way down the wall. These low Reynolds number models allow 

integration of the transport equations for the turbulent kinetic energy and its 

dissipation rate to the wall. The constants and coefficients in the high-Re k-İ model 

are adjusted so that it is capable of resolving flows near the wall. 

The selection of the low Reynolds number models used in this work was guided by 

the investigation carried out by  Martinuzzi and Pollard [192]. Their study compared 

the ability of the four turbulence models mentioned above (high-Re k-İ model, low-

Re k-İ model, algebraic stress model, and Reynolds stress model) to predict 

developing, turbulent pipe flow. Several versions of the low Reynolds number k-İ 

models were reviewed and evaluated by Patel, V.C., et al.[193].  Hrenya C. M., et al. 

[194] extended the numerical study of Patel, V.C., et al. [193] on Turbulence models 

for near-wall and low Reynolds number flows in pipes. Wang S. J., et al. [195] tested 
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the predictive capability of the low Reynolds number k-İ models for the case of 

impingement heat transfer. 

In general, analyses of turbulence modelling for low speed turbulent natural 

convection flow and heat transfer applications are notably lacking in literature. 

However, differences do exist between the flow in a pipe and natural convection heat 

transfer, therefore the purpose of the current investigation is to test the predictive 

capabilities of these models for the cases of natural convection flow and heat transfer. 

3.4.5 Low-Reynolds-number k-ε models 

In the low-Reynolds-number k-İ model, the transport equations can be integrated up 

to the wall. The constants and coefficients are adjusted in the k-İ model so that it is 

capable of resolving flows near the wall. Low local Reynolds number damping is 

applied in order to capture the effect of the wall. 

Based on the Bousinesq approximation, the Reynolds stress is related to the local 

velocity gradients by an eddy viscosity   . The turbulence scalar quantities      ⁺    
used to calculate    are determined from the transport equation of turbulent kinetic 

energy and its dissipation rate, presented in Eq. (3-23) and (3-24) respectively:                                                                                   
                                                                                                                                    
 

The eddy viscosity is:             

The constants          ⁺      in the high-Reynolds-number k-İ model are 

respectively multiplied by,               . These wall damping functions are in turn 

functions of turbulent Reynolds number    ,  
Where           ,                     and                                  

Where               and      are the same empirical turbulence model constants to 

those conventionally used in the high Reynolds number k-İ model. The damping 
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functions        and     and in some models the terms D and E are used to make the 

low Reynolds numbers valid in the near wall region.  

These leads to the formulation of low Reynolds number k-İ models. The six low 

Reynolds k-İ models available in FLUENT are those developed by Abid - AB [196];  

Lam and Bremhorst - LB [197];  Launder and Sharma - LS [198];  Yang-Shih -YS 

[199]; Abe, Kondoh and Nagano - AKN [200];  and Change, Hsieh and Chen - CHC 

[201], respectively. 

3.4.6 Low-Reynolds number k-ε Models Constants 

Table 3-1 summarizes the numerical values assigned to the constants of the six 

different low Reynolds number models. The value of     is fixed (0.09) by the 

requirement that for local equilibrium shear layers, the production of the k equals its 

dissipation. The value of    is estimated from a constraint relation resulting from 

consistency with the law of the wall region, where the molecular viscosity effects are 

negligible.  

The value for the model constant    , in all six models lies between 1.8 and 2.0. This 

range of values is based on experiments of decaying homogenous grid turbulence.  

This value is determined directly from measurements of the decay of   behind a grid 

at high-Re numbers. The constants     and    are obtained by computer optimization.  

Table 3-1: Numerical values for the Low-Re k-İ number models constants 

Model Researcher                
AB  Abid (1993) 0.09 1.45 1.83 1.0 1.4 
LB   Lam and Bremhorst (1981) 0.09 1.44 1.92 1.0 1.3 
LS  Launder - Sharma (1974) 0.09 1.44 1.92 1.0 1.3 
YS  Yang – Shih (1993) 0.09 1.44 1.92 1.0 1.3 
AKN  Abe-Kondoh-Nagano (1994) 0.09 1.50 1.90 1.4 1.4 
CHC  Chang-Hsieh-Chen (1995) 0.09 1.44 1.92 1.0 1.3 

 

3.4.7 Low-Reynolds number k-ε model functions  

Table 3-2 outlines the different functions   ,    and    for the six models. The main 

implication of these functions is to modify the models constants           to account 

for low Reynolds number effects.  The Table (3-2) presents a summary of the 
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motivation for the choices of the different model functions descriptions and, in some 

cases, includes comments on how these descriptions affect the production of  .  

The summary of the wall boundary conditions for   and   are shown in Table 3-3. 

Also shown in table 3-4 are the expressions for the terms D and E. D term is needed to 

balance the molecular diffusion of   in order to satify the   transport equation in the 

near wall region. In several of the models (LS and YS) the term has no physical 

justification. But, it was included to increase the predicted dissipation rate in order to 

obtain a realistic   profile in the near-wall region. 

Table 3-2: Summary of the low-Re k-İ model functions 

Model          
AB                            1.0                                    
LB                                                  

             
LS                       1.0                 
 
 
YS 

                                                            

           
           

 
AKN 

                                                   

 
1.0 

                                       
 
CHC 

                                      
1.0 
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Table 3-3: Basis for choice and origin of the low-Re k-İ model functions 

Model          

 
AB 

Obtained by fitting DNS data of 
Kim et al. [202] for the flow 
between flat plates 

Did not modify İ 
production since near-
wall effects result in a 
net destruction of İ 

Derived from evaluation of 
the terms in the exact İ 
equation using DNS data of 
Kim et al. [202] for flow 
between flat plates 

 
LB 

Derived by combining the eddy 
viscosity and dissipation rate 
equations of a one-equation 
model by Hassid and Poreh 
[203] 

Augmented to match 
experimental data as 
no   term was 
included in the model 
which solves the true 
dissipation rate 

Tends to zero as     tends 
to zero; does not correctly 
satisfy the asymptotic 
behaviour of the   equation 

 
LS 

From the predictions of constant 
stress Couette flow;    was 
obtained using a mixing length 
model and Van Driest‘s 
damping function and not the 
turbulent kinetic viscosity in the 
low Reynolds number 
turbulence models            

Found no advantage in 
making    a function 

of     

Determined from 
measurements of isotropic 
grid turbulence at high and 
low turbulence intensities 

 
YS 

Based on characteristic time 
scale which approaches the 
Kolmogorov time scale in the 
near-wall region 

Form obtained from 
the   equation which 
was developed based 
on characteristic time 
scale 

Form obtained from the   
equation which was 
developed based on 
characteristic time scale 

 
AKN 

Rigorous derivation; developed 
a characteristic length scale 
expression for  İ valid over the 
entire turbulent length Re range 

Followed LS Proportional to y² near the 
wall 

 
CHC 

Direct wall effect through yΆ Enhanced generation 
of İ near the wall 

Followed Hanjalic and 
Launder [204]; based on 
the lowest Re decay pattern 
data of Batchelor and 
Townsend (1948) [205, 
206] 
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Table 3-4: Summary of D and E terms, and wall boundary conditions for   and   

Model D E Wall boundary condition 
AB 0 0                  

LB 0 0                   

LS           
              

 
       

YS 0             
                   

 

AKN 0 0                  

CHC 0 0                   

 

3.5 Thermal radiation modeling  

FLUENT provides five radiation models which allow radiation to be included in heat 

transfer simulations, with or without a participating medium [207]. The models are: 

Rosseland radiation model, discrete ordinates (DO) radiation model, Surface-to-

Surface (S2S) radiation model, P-1 radiation model and discrete transfer radiation 

model (DTRM).  

Numerous studies have been conducted [208] earlier to evaluate the performances of 

these models in evaluating the surface radiation heat transfer during natural 

convection and the analysis shows that Surface-to-surface radiation model is suitable 

for modelling enclosure radiative transfer with non-participating media. These include 

Surface-to-surface radiant heating or cooling, coupled radiation, convection, and/or 

conduction heat transfer, radiation through windows in HVAC applications, cabin 

heat transfer analysis in automotive application etc. The discrete ordinate radiation 

model gives interesting results. The advantage of the DO model over the S2S model is 

its ability to model enclosure radiative transfer with non-participating and 

participating media including radiation properties of the participating fluid.     
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3.5.1 Surface emissivity thermal radiation heat transfer equation 

The emissive power of an ideal black surface is given by        , where    is the 

surface temperature. Surface emissivity, İ is the ratio of heat flux emitted by real 

surface to the heat flux emitted by a black surface. Real surface usually emits less 

radiative heat. Therefore, the emissive power of a real surface with emissivity   is 

given by:          

Radiation transfer equation for absorbing, emitting, and scattering medium at position    in the direction    is [186, 209]:                                                       
                               

Where         is the optical thickness of the medium.  

FLUENT also allows the modelling of non-gray radiation using a gray-band model. 

The radiation transfer equation for the spectral intensity           can be written as:                                                           
                           

  is the wavelength,    is the spectral absorption coefficient, and     is the black body 

intensity.  The non-gray DO model divides the radiation spectrum into N wavelength 

bands, which need not be contiguous or equal in extent. 

3.6 Mass transfer modelling 

Mass transfer is modelled using the species transport in FLUENT [207]. The model 

predicts the local mass fraction of each species, Yi, through the solution of a 

convection-diffusion equation for the i th species. This conservation equation takes the 

following general form:                                                                                                                                                       
Where    the net is rate of production of species    and    is the rate of creation by 

addition from the dispersed phase plus any user-defined sources.         is the diffusion 

flux of species  , which arises due to concentration gradients.  Mass diffusion in 

turbulent flows is                                                             
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where        , is the turbulent Schmidt number,    is the turbulent viscosity and    is the turbulent diffusivity. The convection-diffusion equation                             

                                                                                                                          
Where,       

             =  Convective term.                                                    

The convection-diffusion equation is added to airflow turbulent model to take into 

account the distribution of water vapour mass fraction within the square cavity.  

3.7 Conclusion 

This chapter has discussed some of the theoretical background associated with 

turbulent natural convection heat and mass transfer. It is understood that conduction 

as well as radiation may be coupled with convection during natural convection in an 

enclosed cavity.  

The low Reynolds number k-İ model has been proposed for this study because it 

allows integration through the viscous sublayer and up to the wall. To scrutinize the 

performances of the low Reynolds number k-İ models available in FLUENT, six 

version have been considered and a summary of their damping functions, constants 

and basic choice have been presented.  

One of the objectives of this thesis was to scrutinize and quantify the performance of 

the low Reynolds number k-İ model for natural convection heat and mass transfer in 

an enclosed cavity and a cavity partially filled with disconnected solid blockages 
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Chapter 4 -  NUMERICAL STUDY OF TURBULENT NATURAL CONVECTION 

IN AN ENCLOSURE WITHOUT BLOCKAGES 

4.1 Introduction 

This chapter is focused on establishing accuracy and resolving uncertainties in 

relation to numerical calculations. From a computational point of view, the accuracy 

is affected by the choice of grids, turbulence models and other numerical issues such 

as convection term discretization and convergence, and these have been the major 

concern for numerical scientists[193, 210]. One apparently obvious point which 

causes differences in results is due to the choice of thermal boundary conditions for 

the walls [211]. While the vertical surfaces have well defined boundaries namely, 

isothermal walls, the boundary conditions for the horizontal walls are highly variable. 

 

Figure 4-1 Geometry and the coordinates 

The most common one that the numerical codes employ is adiabatic condition. 

However, due to practical problems this is not usually achievable. In this study, we 

investigate the two dimensional natural convection for a square cavity with particular 

attention given on the choice of boundary condition for the horizontal walls. Another 

aspect which is focused on in this work is the importance of radiation for this simple 

geometry. By changing the value of surface emissivity we had been able to quantify 

the effects of radiation on the overall heat transfer. This issue may be particularly 

relevant for situations where high emissivity surface properties are encountered. A 

number of parametric studies have been reported in this chapter, which include the 

following:  
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 Performance of low Reynolds number k-epsilon (Low-Re k-İ) models for 

quantifying the flow and heat transfer in coupled turbulent natural convection flow 

and thermal radiation heat transfer in an enclosure.  

 Influence of the specification of thermal boundary condition for the passive walls 

(horizontal surfaces). 

 Effects of surface emissivity on the flow, turbulence and heat transfer during 

natural convection in an enclosed cavity. 

4.2 Problem description 

The problem under investigation is shown schematically in Fig. 4-1 above. This case 

study is similar to that modelled experimentally by Ampofo and Karayiannis [51], and 

the experimental benchmark data was produced and made available in open literature 

for a pure natural convection in a rectangular cavity, whose flow domain of height H 

and length L aspect ratio =1. Vertical walls of the enclosure are isothermal and are 

kept at 50.15⁰ C and 10.15⁰ C for the hot wall and cold wall respectively. This gives a 

vertical wall temperature difference of 40⁰ C. Temperature of the dry air is controlled 

at 30.15⁰ C which is equal to the average of the hot and cold wall temperature. This 

gives buoyancy driven flow of Rayleigh number 1.5 × 109 based on the vertical wall 

temperature difference. Therefore, this situation is characterised by low-level 

turbulence in the near-wall region and a stable thermal stratification in the core fluid 

region.  

All calculations reported herein have been performed with the general-purpose 

computational fluid dynamics (CFD) code, FLUENT, based on the finite volume 

method. Convection of mean-flow as well as turbulence quantities was approximated 

by second-order-upwind spatial discretization scheme, except for pressure where the 

PRESTO was used. The fluid is initially motionless and at a uniform temperature 

equal to the average of the vertical active walls temperatures. Thermo-physical 

properties of the dry-air are estimated at this mean temperature of the isothermal 

vertical walls.  

Table 4-1 summarizes the physical properties of the air used. Boussinesq approximation 

[212] was used to describe air density variation due to temperature. No slip condition 

applies for all cavity walls. 
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Table 4-1: Physical properties of air used in the simulations 
Air (at 30.15⁰ C) Value Unit 

Density (ρ) 1.16 kg/m3 

Dynamic viscosity (ȝ) 1.87x10-5 kg/m.s 

Kinematic viscosity (Ȟ) 1.61x10-5 m2/s 

Specific heat (Cp) 1.01x103 J/kg.K 

Conductivity (k) 0.0264 W/m.K 
Prandtl number (Pr) 0.714 - 

Thermal diffusivity (α) 2.25x10-5 m2/s 

Thermal expansion coefficient (β) 3.30x10-3 1/K 

 

4.3 Grid independence study 
It is important to consider the near-wall y+ distribution on each of the walls in the 

mesh. The y+ value is a non-dimensional distance (based on local cell fluid velocity) 

from the wall to the first mesh node. Accurate presentation of the flow in the near-

wall region determines successful prediction of wall-bounded turbulent flows. Values 

of y+ ≈ 1 are most desirable for near-wall modelling.  In the present study, non-

uniform grids with grid clustering near the walls, as shown in Fig. 4-2, were employed 

to better capture the sharp gradients near the wall. The clustering was accomplished 

by the use of a geometric progression in both the ‗x‘ and ‗y‘ coordinates. 

 

Figure 4-2 Computational grid, wall clustering 
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Systematic investigation was carried out using various grid densities 100X100, 

140X140, 180X180, 200X200 and 220X220 were analyzed for grid independence 

test. Flow solution at steady state conditions are compared using low-Re k-İ model of 

Yang-Shih [199]. Some details of the results on the walls y+ are shown in Fig. 4-3 (a-

d). They illustrate the mean flow and heat transfer result for the grid independence 

study. The process for computing a steady-state solution for the refined meshes has 

been difficult due to the oscillation of the flows when higher-order discretization 

schemes are used. The less refined meshes seem to reproduce the stationary flow 

behaviour in the core fluid region and the flows in the corners is well-behaved.  
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(4-3b) 
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(4-3c) 

 

(4-3d) 

Figure 4-3: Non-dimensional normal distance (y-plus); (a) top wall (b) bottom wall 
(c) cold wall (d) hot wall 

With increasing mesh resolution, there are locations where the values of y+ are higher. 

This suggests a rather different flow field is being predicted which supports increased 

scale capturing that is fundamental to the flow physics. A mesh density that displays a 

wall y+ of about 1 is acceptable for this kind of boundary layer flow [213]. Therefore, 

for y+≈1 adequate mesh density is specified to capture the physics occurring within 

the inner layer.  

Table 4-2:  Comparison of Walls average Nusselt numbers 

Mesh 100X100 140X140 180X180 200X200 220X220 Data [214] 

Bottom 15.03 14.67 14.40 14.32 13.95 14.40 

Cold 72.40 63.68 62.60 62.42 62.04 62.60 

Hot 72.67 63.90 62.83 62.65 62.53 62.90 
Top 14.53 14.20 13.92 13.84 13.39 13.90 
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Table 4-2 further highlight the influence of grid on the wall heat transfer for all 

meshes used and comparison with the experimental data of Ampofo and Karayiannis 

[214]. The extra fine meshes of 200X200 and 220X220 shows relatively small 

reduction in the wall heat transfer and y+ value less than 1. While the coarse meshes 

(100X100 and 140X140) show relatively higher heat transfer, the moderately fine 

mesh (180X180) gives the best comparison for the wall heat transfer. Therefore the 

180x180 mesh density is used for all calculations reported in this chapter. 

4.4 Low Reynolds number comparative performances 

It is well known that turbulence models play an important role in the predictions of 

fluid flows. A total of six eddy-viscosity (EVM) turbulence models have been tested 

to quantify the natural convection flow and heat transfer in an enclosed space. The 

reason that we restricted ourselves to the EVM is due to the fact that other advanced 

turbulence modeling such as LES is still very demanding.  

The Reynolds Stress Models (RSMs) are much more complex than eddy-viscosity 

models, but are physically most complete model (history, transport, and anisotropy of 

turbulent stresses are all accounted for) [186]. They are computationally more 

expensive and less stable. Hence it is much more important to scrutinize the models 

(Low-Re k-İ models) that are likely to be used from the viewpoint of practitioners.  

The relative performance of all six versions of the low-Re k-İ models this kind of 

flow and heat transfer characteristics have not been reported in literature. The results 

of the flow and heat transfer were analyzed by comparison with the available 

experimental data of Ampofo and Karayiannis [214]. The numerical modelling was 

performed using a commercial CFD code FLUENT 13.0 [215].  

The predictions obtained from the High-Reynolds number two-equation k-İ models 

(Launder and Spalding,[216] Shih et al, [217], and Yakhot and Orszag [218]) will not 

be shown since the Low-Re number two-equation k-İ models performed considerably 

better. The models result comparisons are shown in Fig.4-4 for stream function plots. 

To further highlight the influence of these models, Fig.4-5 to Fig.4-11d show the 

typical mean quantity profiles predicted by various turbulence models. A careful look 

at the plots reveal that while the core region had been predicted well by most of the 

models, the situation is very different for the near wall region. For both cases 
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(velocity and temperature), it is clear that the Yang-Shih model [199] return the best 

results. Hence this model has been used for the subsequent calculations reported in 

this work.  

 

Figure 4-4: Stream function contours 

This observation is in line with the mean horizontal velocity component Vx, prediction 

of which is shown in Fig.4-6.    is the reference velocity defined as             

and in our case is equal to 1 m/s.  

The total heat transfer across the glass wall is given by the Nusselt numbers. The total 
heat transfer involves the contribution of the convective and radiative Nusselt 
numbers which can be expressed as:                      

The convective and radiative average heat transfer data are compared in terms of an 
average Nusselt number computed at each wall. The average Nusselt numbers for the 
convective and radiation components are given below:  
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Where        and       are the integral average wall heat flux for the convective and 
radiative component respectively, these values are obtained from FLUENT post-
processing. L is the width of the cavity,    is the average fluid thermal conductivity, 
and    is the temperature difference,              . The local heat transfer Nusselt 
number is given below: 

                  

                

Where                  and                   are the local heat transfer 
rate by convective and radiative components respectively, between a surface of area A 
at a temperature of    and a fluid of temperature   .           represents the 
temperature of the hot and cold wall respectively and are evaluated at each node along 
a given wall.   is the average convective heat transfer coefficient,    and   represents 
the emissivity of the surface and the Stefan-Boltzmann constant                     respectively. 

The data from the experimental benchmark study of Ampofo and Karayiannis were 
used for the results comparison (DATA)  [51]. 
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(4-5b) 

 

(4-5c) 

Figure 4-5: Non-dimensional horizontal velocity profile (a) at mid-height (b) near hot 
wall (c) near cold wall at mid-height of the cavity.  

 

Figure 4-6: Non-dimensional Vertical velocity profile at mid-width of the cavity 
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Figure 4-7: Non-dimensional mean temperature at mid-width of the cavity 
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Figure 4-8: Non-dimensional velocity profile (a) near hot wall (b) near cold wall 
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(4-9a) 

 

(4-9b) 

 

(4-9c) 
Figure 4-9: Turbulent kinetic energy profile; (a) at mid-height (b) near hot wall (c) 
near cold wall at mid-height 
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(4-10d) 

Figure 4-10: Wall shear; (a) bottom wall (b) top wall (c) hot wall (d) cold wall 
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(4-11c) 

 

 

(4-11d) 

Figure 4-11: Wall local Nusselt number; (a) bottom wall (b) top wall (c) hot wall (d) 
cold wall 

Table 4-3, presents the average wall heat transfer comparison with Ampofo and 

Karayiannis experimental data [51], it is clear that the YS model [199] compared 

relatively well with the experimental data of Ampofo and Karayiannis [51]. Table 4-4 

further highlights the performance by presenting the percentage change in average 

wall Nusselt number for each model. Relatively the YS model has shown less 
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deviation from the experimental data, while the AKN [219] gives the most percentage 

deviation. 

Table 4-3: Comparison of average Nusselt numbers 

 

 

Table 4-4: Comparison of percentage change in walls average Nusselt numbers (%) 

Models Bottom Top Hot Cold 

AB 19.30 20.45 -8.24 -5.72 
LB 31.51 26.82 -2.93 -2.46 
LS -3.94 -4.86 5.18 5.55 
YS 1.053 0.072 0.05 0 
AKN 33.33 35.35 -6.73 -7.05 
CHC 7.30 -2.59 1.98 1.00 

 
Further evaluation on the performance of the six low-Re k-İ models in predicting low 

turbulent buoyancy driven air flow and heat transfer is summarised in Table 4-5, 

while the computation efforts is presented in Table 4-6. The results show that some 

models perform better in one case but more poorly in another. The YS model gives 

stable results and always agrees with the experimental data, but with relatively greater 

computation efforts to other models in this category. The AB and CHC models give 

relatively good results and similar computation efforts, although the predictions do 

not always agree with the experimental data. The LS model is the most stable of the 

six models and offers a relatively good performance for the heat transfer and the mean 

temperature profiles, but performs fairly poorly for the prediction of the boundaries 

heat transfer.  

Models Bottom Top Hot Cold 

AB 12.07 11.54 68.55 66.40 

LB 10.95 10.96 64.80 64.18 

LS 14.99 14.61 59.80 59.31 

YS 14.25 13.89 62.87 62.60 

AKN 10.80 10.27 67.44 67.35 

CHC 13.42 14.27 61.68 61.98 

Data [51] 14.40 13.9 62.9 62.6 
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Table 4-5: Summary of the performance of the low-Re k-İ models for predicting low 
turbulent buoyancy driven air flow in enclosure without blockages 

Low-Re k-İ   
models 

Mean  
temperature 

Mean  
velocity 

Heat  
transfer 

AB B B C 
LB A B D 
LS A D B 
YS A A A 
AKN B B D 
CHC B B C 

A=excellent, B=good, C=fair and D=poor 

Table 4-6: Number of iteration and CPU time normalized by those of standard k-İ 
model 

Models Number of  
iterations 

CPU  
time 

CPU  
time/iteration 

AB 1.15 1.21 1.052 
LB 1.11 1.17 1.054 
LS 1.04 1.1 1.058 
YS 1.01 1.07 1.059 
AKN 1.06 1.12 1.057 
CHC 1.15 1.21 1.052 

All turbulence models tested are insensitive in the core region. The validated results 

show that the Yang-Shih model is the most accurate in predicting the flow and 

especially the heat transfer close to the walls of the cavity. The performance of the YS 

model might be linked to the wall boundary condition specification that account for 

the effects of damped turbulence by approximation,               . 
4.5 Influence of boundary condition  

A comprehensive analysis of the effects of thermal boundary conditions on the flows 

and heat transfer applied at the horizontal walls for natural convection in an air filled 

rectangular cavity are investigated here. Constant thermal boundary conditions have 

been imposed on the active vertical walls (Hot wall = 50⁰C, cold wall = 10⁰C).  Three 

different thermal boundary conditions have been tested for the horizontal walls. These 

are abbreviated as ATP, LTP and ETP as explained below.  ATP represents Adiabatic 

Temperature Profile i.e., the walls are perfectly insulated; LTP is a Linear 

Temperature Profile and corresponds to a perfect conduction and ETP represents 
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Experimental Temperature Profile from the experimental paper [51]. The 

mathematical meanings are shown in Table 4-7. 

Table 4-7: The three thermal boundary conditions 

Boundary conditions  Temperature functions 
ATP          

LTP                  
ETP                 

 

Where     and    represent the linear and experimental function of temperature 

distributions along the horizontal walls, and     is the constant temperature specified 

at the cold wall. 

The experimental temperature profile (ETP) is a best-fit polynomial based on the 

experimental data of Ampofo and Karayiannis [51].       is defined by the polynomial presented in equation (4-1) and the coefficients are 

given in Table 4-8.                      ⁸      ⁹       ⁺                                                                                                
Table 4-8: Coefficients for the polynomial of Equation (4-1) 

Walls a b c d e 

Top -2.458 1.686 1.211 -1.440 1.00 
Bottom 2.458 -8.146 8.477 -3.789 1.00 

 

The above boundary conditions were implemented with a User-Define-Function 

(UDF) in FLUENT (see Appendix A for the UDF). The temperature profiles are 

shown in Fig.4-12. 
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(4-12a) 

 

(4-12b) 

Figure 4-12: Mean Temperature profiles; (a) top wall (b) bottom wall 

Figs. 4-12 (a-b) has shown the profiles of local temperature distribution at the centre-
line of the top and bottom walls respectively. 

Fig. 4-13 shows the stream function plots for the three different boundary conditions. 

The flow field is characterized by a stable stratified flow with a core region in the 

middle. However, the adiabatic temperature profile on the horizontal walls shows 

more uniform velocity as the core region is rather squeezed towards the centre plane. 

On the other hand, the linear temperature profile and the experimental temperature 

profile boundary conditions display very similar stream functions with the former 

showing higher velocity gradient near the vertical walls.  
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(4-13a) 

 
(4-13b) 

Figure 4-13: Flow contours comparison; (a) temperature (b) stream function 

The accuracy of the ETP boundary condition can be clearly seen from the plots 

presented in Fig.4-14 to 17. It can be argued that the ETP profiles display slightly 

higher discrepancies at a distance of one quarter from the vertical walls, however, it 

should be recognised that the magnitude of the velocity in this region is very small. 

As a matter of interest, the numerical result of Nicholas [220] , is also included in the 

figure which clearly demonstrates the improvement in our calculations. A similar set 

of results is presented in Fig.4-14 and 16, where we compare the horizontal and 

vertical component of the velocity    along the mid-height and mid-width of the 

square cavity respectively. 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 65 of 274 

 
 

 

Figure 4-14: Mean horizontal component of velocity at x/L=0.5 

 

Figure 4-15: Stream function at mid-height 

 

Figure 4-16: Non-dimensional mean vertical component of velocity at y/L=0.5 
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Figs. 4-17(a-c) shows the turbulence intensity comparison for the three cases for three 

locations y/L=0.125, 0.25 and 0.5. In these plots, k represents the turbulence intensity. 

It can be seen from y/L=0.5 location, that the ETP can predict the maximum 

turbulence near the walls more accurately than the other two boundary conditions. 

One limitation is that the asymmetry, as evidenced in the experimental data, in the 

maximum magnitude of turbulence intensity is not well predicted by any of the 

boundary conditions. However, the turbulence intensity asymmetry is better predicted 

at two other locations. 
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(4-17c) 
Figure 4-17: Comparison of turbulence kinetic energy; (a) y/L=0.125 (b) y/L=0.25 (c) 
y/L= 0.5 

The turbulence intensity contours shown in Fig. 4-18 demonstrates that the shear layer 

in the case of ATP is concentrated only in the two diagonally opposite corners 

whereas for the other two boundary conditions, very similar contours can be observed. 

In all cases, the flow field is seen to be dominated by turbulence only in the near wall 

regions and the core area is essentially a bulk mean flow with a rather stagnating 

condition. This observation further highlights the importance of using a low Reynolds 

number model. 

 
Figure 4-18: Contours of turbulence intensity for three boundary conditions 

The plots related to the mean temperature profile along the mid-width (x/L=0.5) of the 

cavity is shown in Fig.4-19, the ETP shows the best agreement while the ATP over- 

or under-predict the temperature at the passive horizontal walls. The importance of an 

appropriate boundary condition has been emphasized by these plots. In fact, the 

temperature distribution is the most critical mean quantity due to the fact that this may 

be interpreted as both ‗cause‘ and ‗effect‘ and vice versa. The flow develops due to 
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the buoyancy which is directly dependent on temperature and at the same time 

temperature is also affected by the flow field. 

 
Figure 4-19: Mean temperature at x/L=0.5 

Figs.4-20 presents the local Nusselt numbers comparisons with experimental and/or 

numerical results are also included wherever possible. Although there are 

discrepancies between the various predictions, overall, the ETP boundary conditions 

appear to be better. The ATP boundary condition fails to mimic the qualitative trends 

observed in experiments. 
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(4-20b) 

 

(4-20c) 

 

(4-20d) 
Figure 4-20: Local Nusselt number; (a) hot wall (b) bottom wall (c) top wall (d) cold 
wall  (Data –A [214]  , Data -B [220]) 
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Finally, the predicted values of the average Nusselt numbers and percentage deviation 

from experimental data are shown in Tables 4-9 and 4-10 respectively. Again, the 

values returned by the ETP are very close (less than 1% difference) to the 

experimental values for the active wall and the ATP is furthest. 

Table 4-9: Comparison of average Nusselt numbers 
 

 

 

 

Table 4-10: Table 4-9:  Comparison of average Nusselt number percentage change  

Case Bottom Cold Hot Top 

ETP -0.0012 0.00 0.00 -0.0014 
LTP 18.123 -1.586 -1.655 18.2029 
ATP -12.587 4.445 4.7303 -12.2037 

 

4.6  Influence of wall radiation property  

Further calculations were carried out for the above flow geometry to explore the 

influence of surface emissivity on the heat transfer. The wall boundary conditions for 

the vertical walls were isothermal and the horizontal walls were specified by the ETP 

boundary condition as described before. Numerical analysis of coupled thermal 

radiation and natural convection in an enclosed square cavity whose vertical surfaces 

are maintained at constant differential temperatures is reported in this section. The 

objective is to ascertain the effects of surface emissivity on the flow and heat transfer 

characteristics of the square cavity. This surface emissivity value of all surfaces was 

kept the same for this study. 

Three different parametric studies of the influence of surface emissivity have been 

reported here. These studies are;  

 2D and 3D numerical analysis of coupled thermal radiation and natural 

convection in an air filled enclosed square cavity were scrutinised.  

 Influence of constant wall emissivity on the heat transfer 

Case Bottom Cold  Hot Top 

ETP 14.40 62.60 62.90 13.90 
LTP 29.74 60.99 61.22 29.30 
ATP 0.00 66.86 67.42 0.00 
Data- B [214]   14.40 62.60 62.90 13.90 
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 Influence of varying wall emissivity on the heat transfer 

In all cases studied, turbulence is modelled using the low-Re k-epsilon RANS model 

of YS model. Simulations were performed by varying the emissivity values of the 

surfaces to investigate the effects of radiation boundary conditions. Analysis of the 

flow and heat transfer is carried out by plotting the turbulence quantities and the local 

average Nusselt numbers, and quantified the wall heat transfer in tables. To model 

radiation heat exchange between surfaces, the DO radiation model was adopted in 

FLUENT. The reason for the choice of the DO model was that it is found to give 

better results [221].  

4.6.1 2D Vs 3D radiation modeling  

The effect of 2D simplification of inherently 3D radiation modelling of the flow field is 

scrutinised for an air filled cavity without blockages in the flow domain. Table 4-11 to 4-

13  present the relative percentage difference between the wall heat transfer using the 

benchmark experimental study of Ampofo and Karayannis [51]. This issue of 2D 

simplification of 3D radiation is very prominent when there are obstacles due to multiple 

radiations. These aspects are dealt with more rigorously in section 7.3.3. 

Table 4-11: Percentage error on wall surface heat transfer for a case without radiation 

Surfaces           

Bottom 0.370 -0.54 

Top 0.86 -0.20 

Hot 2.19 1.63 

Cold 1.63 0.24 

 

Table 4-12: Average Nusselt number for       

Surfaces                     

Bottom 18.15 19.06 0.91 
Top 11.87 12.81 0.94 
Hot 173.5 174.81 1.31 
Cold 166.68 168.43 1.75 
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Table 4-13: Average Nusselt number for       

Surfaces                     

Bottom 16.00 16.77 0.77 

Top 12.5 13.37 0.87 

Hot 118. 35 118.82 0.47 

Cold 113.68 115.44 1.76 

Tables 4-12 and 4.13 show relative walls average Nusselt number for the two wall 

emissivity values (ε=0.9 and ε=0.5). It has been observed that an increase in wall 

emissivity value will lead to an increase of the average Nusselt number. However, for 

the 2D and 3D modelling approaches this will only have limited influence (< 2%) on the 

wall heat transfer across the cavity. Therefore, modelling the flow domain with radiation 

as a two-dimensional configuration will have a negligible influence on the heat transfer. 

This has a particular advantage in the numerical modelling approach of such geometry, 

which will limit the cost of computation considerately by 95%. 

4.6.2 Influence of surface emissivity on turbulence quantities 

Three different cases of constant wall emissivity values (ε=0, ε=0.2, ε=0.5 and ε=0.7) 

were tested and the results of their influence on the turbulence quantities are presented 

in Figs.4-21a-c. The turbulence Reynolds stress (Fig.4.21a) shows a relative increase 

in the turbulence level in the flow domain for correspond increase value of emissivity. 

This behavior is further supported by the results of the turbulent kinetic energy 

presented in Fig.4-21b, where the kinetic energy per unit mass associated with the 

eddies increases slightly with increase in the emissivity value of the wall. Fig. 4-21c 

shows the eddy viscosity ratios at mid-height of the cavity. In the plot, three values of 

wall emissivity were shown.  

Turbulent viscosity ratio is described as the ratio between the turbulent viscosity and 

the molecular dynamic viscosity.  Although all curves indicate similar maximum 

value of ȝ*, the presence of a radiation and surface emissivity significantly reduces its 

value at the core.  
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(4-21a) 

 
(4-21b) 

 

 

(4-21c) 

Figure 4-21: Turbulent quantities profiles (a)          Reynolds stress near hot wall (b) 

kinetic energy near hot wall (c)viscosity ratio at mid-height 
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4.6.3 Influence of surface emissivity on wall heat transfer 

Further calculations were carried out for the above flow geometry to explore the 

influence of surface emissivity on the heat transfer. Figs. 4-22(a-c) show the local 

Nusselt number for a range of wall emissivity, with average values shown in Table 4-

14. The plots of wall local heat transfer as a function of wall emissivity are shown in 

Figs.4-23a-d for the active vertical and passive horizontal walls respectively. It is 

observed that, the local heat transfer increases linearly with corresponding increase of 

the wall emissivity values for both the vertical and top wall. However, the bottom 

wall average heat transfer decreases with increasing values of the wall emissivity. 

Similar behaviour can be observed in Figs.4-23c-d for the local wall radiative heat 

transfer. Fig.4-23e shows the profile of the average convective component along the 

vertical walls. It can be seen that the values decrease with increasing values of wall 

emissivity. Therefore it can be concluded that radiation suppresses the convective heat 

transfer along the walls. Hence, changes in the surface emissivity value can influence 

the heat transfer process. The bottom wall shows an increase in the value of the wall 

heat transfer with increasing value of the wall emissivity. 

Table 4-14: Average Nusselt number 

Surfaces                   

Bottom 10.31 10.57 20.75 37.01 
Cold 56.16 65.55 56.16 56.16 
Hot 56.16 80.75 94.33 113.6 
Top 10.31 10.80 16.92 20.35 
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(4-22b) 

  
(4-22c) 

Figure 4-22: Local Nusselt number comparison; (a) hot wall (b) top wall (c) bottom 
wall 
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(4-23b) 

 
(4-23c) 

 
(4-23d) 
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(4-23e) 
Figure 4-23: Average heat transfer as function of emissivity (a) hot and cold walls 

total Nu (b) top and bottom walls total Nu (c) hot and cold walls radiative Nu (d) top 

and bottom walls radiative Nu (e) hot and cold walls convective Nu 

 

4.7 Influence of wall emissivity configuration on the flow and heat transfer 

Further exploratory investigation was carried out by changing the emissivity values in 

pairs for four different cases as shown in Table 4-15. Fig. 4-24 shows the stream 

function for all cases. The variations of local Nusselt number are plotted in Figs. 4-

31(a-d), while the average wall heat transfer is displayed in Table 4-16. It can be seen 

that the local and average Nusselt numbers are influenced by the configuration of 

surface emissivity. Selection of high values of emissivity for the passive walls also 

shows significant influence on the heat transfer within the cavity.  

Air mixing rate varied significantly with varying surface emissivity as represented by 

the air stream function in Fig.4-30. It can be observed that case-1 displays a more 

even mixing within the cavity, while case 4 shows less mixing and a prominent wall 

bounded convection currents close to the top and bottom zones of the cavity. This 

phenomena influence the local and average heat transfer across the boundaries of the 

cavity. Case-2 gives the highest heat transfer across the boundaries of the active 

vertical walls compared to Case-4 which gives the lowest heat transfer for all the 

cases studied.  
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Figure 4-24: Stream function (kg/s) contours 

Table 4-15: Wall emissivity for all case 

Cases Top wall Bottom wall Cold wall Hot wall 
1 0.2 0.7 0.7 0.2 
2 0.2 0.2 0.7 0.7 
3 0.7 0.7 0.2 0.2 
4 0.7 0.7 0.2 0.7 
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(4-31b) 

 

(4-31c) 

 

(4-31c) 

Figure 4-25: Local Nusselt number; (a) bottom wall (b) top wall (c) cold wall (d) hot 
wall 
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Table 4-16: Average Nusselt number comparison 

 

 
 

4.8  Conclusions 

The work presented in this chapter highlights the fact that turbulent natural 

convection flow is very sensitive to the appropriate choice of boundary specification. 

At the same time since the flow is dominated by turbulence mainly near the walls, it 

is also important to resolve the flow variables in this region very carefully. A detailed 

understanding of the performance of EVM is essential. The numerical results for the 

surface emissivity used in this study indicate that the effect of radiation is very 

significant and influences the weak natural convection flows.  

A very good agreement is obtained between this study and the experimental data from 

literature [51] as shown in the validated results. It is noted from the qualitative result 

that the highest velocities are located close to the hot wall near the higher corner and 

the lowest velocities are close to the cold wall near the lower corner. The flow close to 

the active walls is similar to the turbulent flow over a vertical flat plate, where there is 

formation of thermal and hydrodynamic turbulent boundary layers.  

The numerical results of the three boundary conditions are characterized by stable 

thermal stratification in the core fluid region and low-level turbulence in the near-wall 

region. The effects of the temperature conduction along the horizontal walls on heat 

transfer in the enclosure on pure natural convection are brought out and the numerical 

results showed good agreement between calculated and measured values at mid-

height of the cavity. Detailed analysis of the flow and heat transfer were carried out 

by plotting the local and average Nusselt numbers, and percentage heat transfer 

contributions for the three boundary conditions used was evaluated. Excellent 

agreement with benchmark experimental data and ETP boundary condition was 

observed. 

 Total Nu Radiative Nu 

 Cold Hot Cold Hot 

Case 1 125.07 104.25 66.57 46.18 

Case 2 166.64 170.9 109.03 112.81 

Case 3 88.71 92.54 30.55 34.26 

Case 4 101.65 133.06 43.74 74.30 
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Performance of the six low Reynolds number k-İ models was quantified. A 

comparative study using the models was conducted to investigate their relative 

performance on the flow and heat transfer during natural convection processes. The 

results show that, some of these models over predict or under predict the flow physics 

and heat transfer near the walls and that the Yang-Shih model [199] gives a more 

approximate prediction of the mean velocity measured at the mid-width, the mean 

temperature measure at the mid-width and the walls average and local Nusselt 

numbers.  

The presence of radiation influences the enclosure wall temperature and the wall 

temperature in turn influences the weak natural convection flows. Detailed 

investigations show that the top surface is cooled down as net radiative flux is 

positive. The bottom wall is heated up as net radiative flux is negative. It was also 

observed that surface radiation has limited influence on the vertical flows along the 

active walls but reinforces horizontal flow along the horizontal walls. Thus, the 

interaction of natural convection and surface radiation is of practical interest. The next 

chapter will detail the design procedure for producing a novel experimental study of 

turbulent natural convection heat transfer in a rectangular enclosure with and without 

blockages. 
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Chapter 5 -  TEST RIG AND TEMPERATURE MEASUREMENT FOR 

VARIOUS ARRANGEMENT OF BLOCKAGES  

5.1 Introduction 

This chapter presents the design and fabrication processes of the test rig for the 

experimental study of turbulent natural convection in a rectangular enclosure with and 

without blockages. One objective of the test rig is to provide high quality temperature 

data for the validation of numerical method. To achieve this, rigorous attempts were 

made to scrutinize the two-dimensionality of the flow domain, detailed energy 

balance to calculate the heat loss, uniformity of temperature on the thermally active 

vertical walls, and air temperature profiles at different locations in the fluid domain 

and on the surface of the cavity walls and on the surface of the cylinders. 

After satisfactory temperature data were obtained for steady state situation, blockages 

were systematically positioned within the enclosure and temperature readings were 

gathered. The experimental findings presented in this chapter are complementary to 

the numerical investigation by allowing necessary validation to be carried out later in 

the thesis. 

5.2 Experimental facility and procedure 

The schematic of the thermal rig fabricated for this study is depicted in Fig.5-1.  The 

major components of the rig are the enclosure, hot and cold wall temperature control 

systems and the facilities for measuring temperature. A detailed description of the 

experimental test rig and the results are divided into two sections. The first section 

deals with the cavity design which includes the description of the hot and cold walls 

and their temperature controls. The second section describes the temperature results 

which were collected using thermocouples at various positions in the fluid domain 

and at the solid wall surfaces. These wall temperature data were used in the 

calculations of the heat transfer from the hot to the cold walls and the heat losses 

through the walls for different temperature gradients.  
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Figure 5-1: Schematic diagram of the experimental facility and test cavity 

The enclosure consisted of six sides: a hot wall, a cold wall and four side walls. The 

cavity air domain has two configurations. The first configuration is an empty 

enclosure, while the second configuration is that partially filled with cylindrical 

blockages. Fig.5-2 shows the schematic diagram of the vertical section of the test 

cavity. The enclosure is designed using xtratherm boards of thickness 85mm. These 

boards were cut to different sizes to form the cavity shapes, guided using plywood 

(6.35mm) and supported on a steel frame. The two side walls and the top and bottom 

walls are adjustable and are connected to a fixed steel base.  

The passive horizontal (top and bottom) and active vertical walls are fitted with 

polished aluminium plate to get a low emissivity on the inside surfaces of the 

enclosure. To fix tightly and remove the gaps between them the four side walls were 

clamped from a fixed steel frame. This was done to ensure that the losses through the 

gaps are kept to a minimum. 
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The enclosure size is fixed to H=0.97m, L=0.4m, depth is the z-direction of D=1m. 

The geometrical aspect ratios are ARₓ=H/δ (2.425) and ARy=D/L (2.5). The Rayleigh 

number,                  based on the temperature differential (ΔT=42.2⁰C) 

between the active vertical walls is equal to 4.04 x 10΅. Therefore, a weak turbulent 

air flow in the cavity is established within the cavity and the intensity of the flow is 

largely dependent on ΔT. 

 

Figure 5-2: Vertical section of test cavity arrangement 

The vertical walls are near isothermal with one wall hot and the other wall cold.  Hot 

water from a constant hot water bath and cold water from a chiller were pumped 

through the two vertical walls respectively. The desired temperatures at these walls 

were achieved by regulating them externally and kept constant throughout the period 

of the experiment which was typically over a 20hrs period.  

A lab-calibrated, 75ȝm ωhromel-Alumel, K-type thermocouples were used to 

measured all temperature data. The sampling rate was 20Hz, and at each location data 

were collected for a minimum time of one minute (the majority of data were collected 

for 5 minutes). The K-type thermocouples with data logger are connected to a PC with 

PICOLOG software. PICO USB TC-8 data acquisition software was used to measure 

and save the collected data at each sampling rate. The thermocouples were fitted in 

position accurately using a precision height gauge to an accuracy of about 1mm.  

Fig.5-3 shows the pictures of the experimental test rig components and facilities. 

During all measurements, the experimental conditions were kept steady and 
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experimental repeatability was also verified. The maximum deviation between 

readings obtained during experiments performed at different times was 0.8⁰C. 

 

Figure 5-3: (a) radiator for active wall (b) hot water tank fitted with circulation pump 
(c) cold water chillers 

Air temperature distributions within the cavity working zone are measured on the 

symmetry planes. The temperature of the hot and cold walls, top and bottom walls are 

also measured at a chosen location. A total number of 54 thermocouples were 

employed for the measurement of the air temperature, and 60 thermocouples were 

used for wall surfaces. The initial tests carried out on the rig before conducting the 

experiments have showed that the temperatures of the cold and hot water sources are 

kept constant to within 0.1⁰ C and deviations from temperature uniformity are also of 

a similar magnitude. This implies that the rig is capable of giving steady and 

isothermal boundary conditions. 

5.2.1 Design of active walls (hot & cold) 

The hot and cold sides of the cavity are a radiator embedded in plaster (20mm thick). 

The side facing the fluid domain is fitted with aluminum plate, while the other face is 

insulated with 89mm thick polystyrene (xtratherm) boards. The xtratherm boards are 

gas tight foil facers, this makes the insulator air tight, vapour resistant and the foil low 

emissivity gives its high thermal performance. All arrangements are guarded with 

wooden plates of thickness 6.35mm. One of the two radiators is shown in Fig.5.3a; 

these had been designed and fabricated locally using 13mm internal diameter copper 

tubes and fittings. A total length of 0.8m was needed for each radiator. 

A hot water heating system was connected to the radiator for the hot wall side and a 

cold water system was connected to the cold wall. The heat input device was a 2KW 
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immersion heater. Hence, the hot water tank has the capacity to supply the required 

energy for this wall. To keep the temperature steady (±0.1⁰C), a PID temperature 

controller was fitted to the heater, this maintained the temperature of the hot water at 

the set value, with the heat being taken from the tank and dissipated to the fluid from 

the hot radiator (wall). The PID controller provided proportional, integral and 

derivative control and has been adjusted to automatically compensate for the 

temperature changes in the system.  

The cold wall system is similar to that of the hot wall in terms of design. The inlet and 

outlet of the radiator was connected to a recirculation chiller (KT 1 chiller). The 

plumbing connections are located on the rear of the unit and labelled as SUPPLY and 

RETURN. The KT 1 chiller is designed to provide a continuous supply of cooling 

water at a constant temperature and flow rate. The cooling capacity of the unit is 1KW 

at 20⁰C set point, with a temperature range of +4⁰C to +35⁰C. The water temperature 

of the inlet and the outlet of the radiator were measured using three k-type 

thermocouples each for the inlet and outlet copper tubes. The six thermocouples were 

connected to a PC through a USB based data acquisition system to monitor and record 

the temperatures at the selected sampling rate, which was set at every five seconds. A 

similar technique was used for the hot water system. 

5.2.2 Heat loss measurement 
Tests were carried out to measure and compare the total heat transfer from the hot side 

to that from the cold wall side inside the enclosure. The total heat transfer from the 

hot wall side of the cavity (radiator) was calculated using equation (5-1);                                                                                                                   
Where           is the total heat transfer rate from the hot side of the enclosure;     is the specific heat of the hot water side;       is the water inlet hot wall 

temperature and        represents the water outlet wall temperature;     is the hot 

water mass flow rate which is calculated using equation (5-2);                                                                                                                                     
Where    , is the volumetric flow rate of the hot water and    is the density of the hot 

water. Water flow rate was measured manually using the bucket method. This method 

requires a stopwatch and a large bucket. The measurement was done at the flow outlet 
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of both radiators through the use of a bypass. With a stopwatch we recorded the time 

taken to completely fill a bucket with water. The stopwatch was started 

simultaneously with the start of the bucket being filled and then stopped when the 

bucket is completely filled. The process was repeated for 5 consecutive times and the 

average time was calculated. The flow rate    is the volume of the bucket divided by 

the average time it took to completely fill the bucket. 

Six different hot wall temperatures ranging from 45⁰C to 85⁰C were imposed on the 

hot wall. For each hot wall temperature, the heat losses were calculated using the 

relationship presented in equation (5-3);                                                                                                                          
Which is the heat transferred through the walls or the gaps in the walls to the 

surroundings and equal to the difference between the heat transferred to the medium 

from the hot side to the heat removed by the cold side. In comparison with the total 

amount of heat transferred from hot wall to cold wall, the amount of heat loss 

represented less than 3.2%. 

For each temperature the error of the heat losses were calculated from equation (5-4)                                                                                                                  
The heat losses are the heat transfer to the enclosure structure and then through the 

cavity walls or gaps to the surrounding air. The heat loss through the hot wall is less 

than 3.5%. Therefore, this rig was able to give reliable temperature data. 

5.3 Thermocouple calibration and measurement uncertainty 
Thermocouples used for all measurements were calibrated using digital reference 

thermometer (model: CIS-640P, accuracy: ±0.1⁰ C, resolution: 0.01⁰ C, range -50 + 

200⁰ C and stability 0.01⁰ C) [222] which has a resolution of 0.01⁰ C with an 

uncertainty of      ⁰ C. The calibrations of these thermocouples were done using the 

hot water tank with stirring devices to keep the temperature of the water uniform. 

Three reference temperatures of 18⁰ C, 45⁰ C and 70⁰ C were used for calibration. 

Any temperature difference was constant for all three reference temperatures used and 

the initial offset was equalised through the conversion equation based on type K 

thermocouple within the data logging software. 
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The uncertainties in the determination of the temperature data of the air within the 

cavity have been estimated. As mentioned above, a hand-held digital reference 

thermometer has been used as a reference temperature for the thermocouple 

calibrations. The uncertainty in this reference thermometer reading is ±0.1⁰ C. 

Throughout the calibration, the temperature of the thermocouple and that of the 

reference thermometer are assumed to be the same. However, there was always going 

to be some difference; no matter how well controlled the calibration medium. In our 

calibration experiments, the thermocouple and the thermometer are immersed in a 

stirred water bath close to each other. The water is also manually stirred to ensure a 

constant temperature of the bath. Therefore, the uncertainty coming from this source 

should be about 0.5⁰ C. Following Chunovkina and Chursin [223], the uncertainty in 

the measured experimental temperature data is 0.51⁰ C. (See Appendix E for more 

details) 

5.4 Temperature data repeatability and two-dimensionality validation 

In this set-up, temperature data repeatability and two-dimensionality of the flow was 

thoroughly examined and verified. The number of samples chosen was considered to 

be sufficient to give statistically significant results at all points measured. The mean 

temperature profile was measured across different sections of the cavity along the 

central plane between the active walls. The number and location of these sections 

depends on the case being studied. Furthermore, one of the temperature measurements 

has typically been repeated to ascertain steady state conditions and repeatable data. 

Figure 4.1 illustrates an example of one of the repeated measurements and it clearly 

shows that the experimental results are repeatable. 

 

Figure 5-4: Temperature distribution repeatability, y=H/2 
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The two dimensionality of the flow was verified by comparing the temperature 

distributions at three different sections of cavity depth, z/D = 0.15, 0.5 and 0.85 and 

for three different horizontal planes, namely y/H = 0.05, y/H = 0.5, and y/H = 0.95. 

The similarity of the profiles at these three sections, as shown in Figure 4.10, 

suggested that the temperature field is almost two dimensional across the cavity, since 

there is no obvious dissimilarities in the temperature profiles at the different sections. 

Therefore, the three profiles differed only by 2.5%, which indicates that the cavity 

depth can provide a 2D field.  This condition was pointed out earlier by Penot and 

ζ‘Dame [224], that the 2D approximation of experimental natural convection in 

cavities should be valid if the horizontal aspect ratio (D/L) of the cavity is greater than 

1.8.  In our study, this aspect ratio is 2.5. 
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Figure 5-5: Two-dimensionality comparison for the thermal field across different 
heights of the vertical cavity at different depths 

5.5 Vertical walls temperature distributions 

Surface temperatures of the hot and cold walls at steady state are shown in Fig.5-6 (a-

b) respectively. The average temperature of the hot wall is 65.5⁰C, and that of the cold 

wall is 23.3⁰C. The surface emissivity value was measured using a thermal imaging 

camera (E60bx model) and was found to be 0.07, and the thermal conductivity of the 

material is 202.4W/m-K.  

 

    (5-6a)      (5-6b) 
Figure 5-6: Active vertical wall temperature distributions (a) hot wall (b) cold wall  
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5.6 Horizontal wall temperature profiles data 

The temperature profiles for the highly conductive top and bottom wall of the 

rectangular enclosure was initially examined. The normalized temperature profiles 

measured along the horizontal centre-line starting from the heated vertical wall of the 

enclosure are shown in Fig.5-7. It was expected that these walls would conduct heat 

from the hot wall to the cold wall and dissipate or absorb some of the heat from the 

fluid near the surface due to conduction, convection and radiation. 

 

Figure 5-7: Temperature profile on horizontal walls 

The horizontal wall temperature variation can be represented by a best-fit linear 

expression as shown below:  

Ttop-wal = 296.45 - 42.2(1.03 – x/L)                                                                 

Tbottom-wall =296.45 - 42.2(1.02 – x/L)                                                  

These temperature expressions will be used as the thermal boundary condition for the 

inactive walls in our numerical calculations to be presented in later chapter. 

5.7 Air temperature data for cavity without blockage 

The key parameter measured in the experiments is limited to mean temperature only. 

This is because the temperature distribution is the most critical quantity due to the fact 

that this may be interpreted as both the ‗cause‘ and ‗effect‘ and vice versa. The flow 

development due to buoyancy is directly dependent on temperature and at the same 

time temperature is also affected by the flow field.  
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Figure 5-8: Schematic of cavity showing planes of temperature data for air  

The centre-lines for which air temperature data was measured are shown in Fig.5-8. 

Temperature profiles near the cold wall and at the mid-width of the cavity are 

displayed in Figs.5-9a and 5-9b respectively. The horizontal temperature profiles near 

the bottom wall and at the mid-height of the cavity are also shown in Figs. 5-9c and 5-

9d respectively. 
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(5-9b) 

 
(5-9c) 

 
(5-9d) 

Figure 5-9: (a)  vertical temperature profile near cold wall at 340mm from hot wall (b) 
vertical temperature profile at mid-width (c) horizontal temperature profile near 
bottom wall at 0.86mm from bottom wall (d) horizontal temperature mid-height 
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It may be observed that the temperature profiles outside of the boundary layer are 

approximately uniform indicating that there is no significant natural convection in the 

core region. Therefore, conduction and radiation are likely to dominate which is 

indicated by the linear variation as can be seen in Figs.5-9a and 5-9b. In other words, 

most of the air in the cavity is stably stratified reducing the local buoyancy force 

acting on the flow in the boundary layer as it travelled upward along the heated 

vertical wall. This observation is true for all cases reported in published literature 

[225, 226].  

Temperature profile measured at the mid-width near the cold wall as shown in Fig.5-

9a,  had undershoot at the walls, where the local temperature fell below the local 

temperature in the core region of the rectangular cavity. Also, temperature profile 

measured along a vertical line near hot wall and from bottom wall is similar but 

showed an overshoot at the walls. A similar undershoot was also observed by Tian 

and Karayiannis and others   [51, 227, 228] in their temperature profiles measured for 

the natural convection in a square cavity. There is an overshoot near the edge of the 

boundary layer as the fluid travels up the heated vertical wall. 

5.8 Cavity partially filled with blockages 

In this section, experimental study of turbulent natural convection in a confined space 

containing arrays of disconnected cylinders is conducted. The test rig used in the 

experimental investigation without blockages is modified to contain arrays of 

disconnected cylindrical objects. The working zone is partially filled with cylindrical 

blockages and occupied about 34.3% of the total cavity volume. The vertical walls of 

the cavity were isothermal with a temperature differential of 42.2⁰C, giving a 

Rayleigh number of 2.5 x 10΅. In this study, particular emphasis was played on 

quantifying the temperature distribution at various positions within the flow domain 

due to the proximity of these blockages to the thermally active vertical walls. 

This work aims to provide high quality temperature data that can be used for the 

validation of computational fluid dynamics CFD codes. It is believed that a CFD 

code, which can predict the fluid flow and heat transfer in such a ―congested‖ cavity, 

can be used with confidence in indoor environment and electronic equipment cooling 
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studies and design optimisation. Also, the collected data will enrich the knowledge on 

the flow on the phenomena that take place in a confined space containing numerous 

solid objects. The schematic of the thermal rig used in this study is shown in Fig.5-

10a- b. 

The rig is loaded with disconnected ABS pipes of diameter 33.7mm and 1m long. 

Three different blockages densities were studied. They are: 10(rows) х 5(column) 

representing 34.3% blockageν 10х3 representing 20.6% blockage and 5х5 

representing 17.2% blockage. This material was chosen because of its light weight, 

cost effectiveness, rigidity, and its suitability for use over a wide temperature range 

from -40⁰C to +80⁰C and up to 15 bar pressure. The thermal coefficient of linear 

expansion is 10.1 x 10-5 (/⁰C) and its thermal conductivity is 0.33 (W/m-k). The 

emissivity of the surface is 0.9. 

 
(a) 
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(b) 

Figure 5-10: Schematic of the experimental facility for 5х10 blockage (a) 3D 
arrangement (b) test cavity showing details of construction (all dimensions are in mm) 

 
ABS pipes have low thermal conductance which help to maintain more uniform 

temperature when interacting with fluids. In addition, low thermal conductivity of the 

pipe walls help to eliminate or reduce greatly the need for pipe insulation to control 

sweating. The pipes were positioned linearly near the side walls using specially 

designed guide rails fitted to these walls. These guide rails were accurately fitted to 

these walls using a precision height gauge. 

Air temperature distributions within the cavity working zone were measured on the 

symmetry planes. Also measured were the temperatures of the hot and cold walls and 

top and bottom walls along the symmetry planes A total of 166 thermocouples were 

fitted inside the cavity of which 52 were on pipe surfaces, 60 on walls and 54 for 

measuring air temperature.  

5.9 Blockage proximity study for 10х5 arrangement 

In this set of experiments, temperature data at various positions in the fluid zone for 

the case of cavity with cylindrical blockages are presented. Measured data along the 
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vertical planes of the enclosure are presented first, followed by data close to the cold 

wall and finally along the horizontal planes are presented. As before, measurements 

were done at steady state condition. Fig.5-11 shows the locations of temperature data 

along vertical planes. The vertical temperature lines are shown by L1 (Near hot wall), 

L2 (location at mid-width) and L3 (Near cold wall) respectively. The proximity of the 

first row of cylinders is given by į, which is variable, and is equal to L1. Also shown 

in Fig.5-11 are thermocouple positions P-1 and P-2 which correspond to the top and 

bottom surface position of the pipes respectively. 

 

Figure 5-11:  Thermocouple position on the cylinder walls at symmetry plane of the 
cavity 

5.9.1 Temperature profile 

Air temperature data measured at the mid-height of the cavity for all cases is shown in 

Figs.5-12a-c. Figs.5-13 and 5-14 showing cylinder wall temperature data measured at 

positions near the hot wall and near the cold wall respectively. Plots of temperature 

profiles along mid-height of the cavity (485mm from bottom wall) are shown in 

Figs.5-15a-d.  
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The temperature distribution along the vertical mid-plane centreline, x/L =0.5(L2) in 

the y-direction is shown in Fig.5-12a-c. The temperature profiles are nearly 

asymmetric about the centreline region, unlike the temperature profile plot without 

blockages shown earlier in Fig.5-9b, which is almost symmetrical measured along 

similar centreline. The variations may be due to the multiple radiations from the 

surface of blockages. Also, there seems to be a slight variation of temperature profile 

for the three cases of blockages arrangements as shown in Fig.5-9b.  The trend in 

temperatures variation between the air and region near the walls and cylinders may be 

linked to the blockage proximity which damped the horizontal convection flow and 

turbulence, hence causing the temperature to vary.  

Figs.5-15a-d show the temperature profiles measured at mid-height of the cavity. The 

mean temperature variation shows a sharp linear change in the regions near the two 

active walls. The profiles have almost a linear variation near the centre region of the 

cavity. The slight deviations are due to multiple radiations from the cylinders, and as 

the blockages are closer to the centre of the cavity, the deviation increase. The core 

region flows due to blockages proximity effects which also contribute to the overall 

flow in the cavity, and is a further indication that the fluid motion is a low turbulent 

natural convection flow. Near the wall regions, the temperature also varies almost 

linearly with the horizontal distance, but with a much larger slope. This indicates that 

only a small portion of heat is transferred by molecular conduction across the core of 

the cavity. It is also observed that temperature profiles overshoot near the edge of the 

boundary layer as the fluid travels up the heated vertical wall, and it can be seen from 

works done by various researchers [51, 111, 229]. Temperature data at the surface of 

the cylinders measured at different horizontal planes of the enclosure are shown in 

Appendix D. 

Furthermore, experimental temperature data at the surface of the cylinders near the 

hot and cold walls are depicted in Figs.5-13 and 5-14 respectively.  The positions for 

the temperature profiles of the cylinder surface measurements are near the hot wall 

(L1) and cold wall (L3) as shown in Fig.5-11, P-1 represents cylinder walls facing 

upward and P-2 is that facing downward. All plots show steady temperature 

stratification along the vertical axes of the cavity 
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The experimental results also show that the cylinder temperatures increase with 

height. It is believed that the heat exchange by radiation between the cold wall and 

cylinder surface contribute to cool down the cylinder. In the same manner, heat 

exchange by radiation between the hot wall and cylinder surface leads to increase the 

cylinders temperature. In our studies, radiation is not negligible compared to 

convection so that a cylinder located near the wall is at an intermediated temperature 

between the surrounding air, with which it exchanges heat by convection, and wall, 

with which it exchanges heat by radiation.  
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(5-12c) 

Figure 5-12: Temperature profile at mid-width (a) į = 25mm (b) į = 58mm (c) į = 
108mm  
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(5-13c) 

Figure 5-13: Cylinders wall temperature profiles near hot wall (a) įh=25 mm (b) 
įh=58 mm (c) įh=108 mm from hot wall 
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 (5-14c) 

Figure 5-14μ ωylinders wall temperature profiles near cold wall (a) įh=25 mm (b) 
įh=58 mm (c) įh=108 mm from cold wall 
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(5-15b) 

 
(5-15c) 

 

 
(5-15d) 

Figure 5-15: Temperature profile at (a) mid-height, without blockages (b) mid-height, 
į = 25mm (c) mid-height, į = 58mm (d) mid-height, į = 108mm 
 

5.10 Experimental data for 10х3 blockage arrangement 

The configuration for the fluid zone arrangement is shown in Fig.5-16; the blockages 

are in arrays of 10 rows and 3 columns representing a blockage of 20.6% of the 

cavity. The cases considered are: case 1 (near hot wall), case 2 (near cold wall) and 

case 3 (at the middle). 
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Figure 5-16: Schematic of the flow domain arrangement for all three cases 

At steady state, temperature profiles along the mid-height and mid-width were 

collected and the compared results are presented in Figs.5-17a-b. Temperature data 

for the mid-height and mid-width displays a stable core region; the average core 

temperature for Case-1, 2 and 3 are shown in Fig.5-17a and Table 5-1. It is observed 

that the temperature profile at the core region measured along the mid-height of the 

cavity is strongly influenced by the blockages arrangement along the horizontal 

direction from hot wall to cold wall. Using 44.5⁰ C as a reference temperature 

evaluated at the mid-height of the cavity without blockages, the percentage change in 

average temperature measured along the same height for the three cases of 

arrangement gives an increment in temperature of 5.1% for Case-2 arrangement, 0.2% 

for Case-3, and Case-1 shows a average value of -5.7% in the average temperature. 

Similar variations are observed in the temperature profile measured along the mid-

width of the cavity as shown in Fig.5-17b, the mean values at the core region are 

shown in Table 5-1. Percentage change in temperature along the mid-height of the 

cavity using 44.4% as the reference temperature for cavity without blockage show 

that, Case-2 shows 3.2% of temperature increment, Case-3 shows -0.2% and Case-1 is 

-2.4%. Therefore, products arrangement near the hot wall significantly reduced the 

temperature and hence the heat transfer. 
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Table 5-1: Average core temperature for all cases (⁰ C) 

Cases Mid-height profile Mid-width profile 

Case 1 42.1 43.39 
Case 2 46.9 45.89 
Case 3 44.6 44.33 

 

 
(5-17a) 

 
(5-17b) 

Figure 5-17: Temperature profiles for all three cases at (a) mid-height (b) mid-width 

5.11 Experimental data for 5х5 arrangement  

The blockages arrangement is shown in Fig.5-18. Two different configurations were 

studied. These cases involve the arrays of (5 rows and 5 column) blockages group 
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Wall) of the rectangular enclosure. Fig.5-19 shows the temperature distribution 

comparison at the mid-height of the enclosure for the two cases considered. The two 

blockages configuration gives an average of 2.1⁰ C temperature difference. Using the 

average temperature (44.4⁰ C) measured along mid-height and at the core region for a 

cavity without blockage to evaluate the percentage temperature change, shows an 

increment of 4.1% for NTW and -0.5% for NBW. Therefore, products arrangement 

near the   top wall influences the heat transfer positively. 

 
Figure 5-18: Schematic of the flow domain arrangement 

 
Figure 5-19: Temperature profile comparison at mid-height of the cavity  

5.12 Conclusion 

This study was carried out in order to obtain experimental temperature data which 

allows the understanding of two-dimensional heat flow in an enclosure partially 
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loaded with disconnected cylindrical objects. Additional experimental results are 

given in Appendix C. Some general conclusions from the different parametric cases 

studied are highlighted below;  

 Temperature stratification was observed in all cases 

 High temperature at the top and low temperature at the bottom region of the 

enclosure.  

 The thickness of thermal boundary layer is greatly suppressed as the gap between 

the walls and the solid objects become smaller.  

 The fact that the variation of the proximity of solid objects from the vertical walls 

influences the scenario drastically is a vindication that proximity of objects near 

vertical walls does plays a significant role in apparently low temperature 

applications. This may have an important implication in thermal management in 

built environment, cooling of electronic panel and other engineering applications. 

 

 

 

 

 

 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 108 of 274 

 
 

Chapter 6 -  NUMERICAL INVESTIGATION OF FLOW AND HEAT 

TRANSFER FOR DIFFERENT ARRANGEMENT OF BLOCKAGES 

6.1 Introduction 

Three-dimensional numerical study of low turbulence natural convection flow in a 

confined space containing solid objects is conducted. Since our experimental data 

presented in the previous chapter were limited to temperature only, particular 

emphasis was placed on quantifying the airflow, turbulence quantities and heat 

transfer due to various arrangements of blockages. The experimental data were 

validated by computational results to provide confidence in exploring the flow fields. 

The test zone is similar to the one used in our experimental rig with blockages. 

Cylindrical objects were arranged in 10 rows and 5 columns in such a way that 2D 

flow was established. The vertical walls of the cavity were isothermal with a 

temperature differential of 42.2⁰C, giving Rayleigh number of         . Therefore, 

airflow in the cavity involved low turbulence and is a function of the temperature 

gradient between the vertical walls.   

The parametric studies reported are the analysis of the influence of blockage 

proximity and arrangement from the vertical and horizontal walls. The schematic of 

the fluid domain and blockage arrangements is depicted in Fig.6-1. The enclosure is a 

rectangular box with internal dimension of 0.97m x 0.4m and depth of 1m. L1 and h1 

represent the proximity from active vertical walls and passive horizontal wall 

respectively. 

This investigation aims to provide accurate and detailed numerical results for the 

airflow, turbulence quantities and heat transfer due to the influence of these 

blockages. Also, the results will be used to compare with experimental temperature 

data for validation. It is found that the results will provide insight into the flow and 

thermal fields in an enclosure partially filled with disconnected cylinders.  
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Figure 6-1: Schematic of the flow domain and blockages arrangement 

6.2 Numerical Method 

Three-dimensional CFD simulation was performed for all test cases used in the 

experiment using the commercial CFD package of ANSYS FLUENT 14. Turbulent 

fluxes of momentum, heat and mass were modelled by low Reynolds number k-İ 

eddy viscosity model of Launder-Sharma with the inclusion of the buoyancy terms in 

the energy equation. The L-S model was incorporated through the User Define 

Interface (UDI). This model has been used for greater stability and superior results for 

blockage flow as will be shown in chapter 7. 

Systematic grid dependency test were carried out for all three cases and the final 

results were obtained with about 4.5million cells with y+ ≈ 5. It is worthwhile to note 

that the process of computing a steady-state solution using very fine mesh has been 

quite challenging because of the oscillations associated with higher-order 

discretization schemes. As a result, a number of steps were taken to achieve a steady-

state solution.  Initially, low value of Rayleigh number (106) was adopted to state the 

solution using an incompressible unsteady solver with a time step of 0.002s, with the 
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first-order scheme and the solution was allowed to run to convergence which was 

typically three orders of magnitude lower than the residual at the start.  

The resulting data files for the three cases were then used as an initial guess for the 

higher Rayleigh number simulation using the higher-order discretization schemes. 

This method helped to create a more realistic initial field for the LRKE runs. All 

simulations were performed using a single Intel core 2Duo E6600 2.4 GHZ processor 

and a typical run took about 4 days of computing time. Thermal properties of the 

working air were estimated at the mean temperature of the isothermal walls (44.4⁰C) 

of the cavity as presented in Table 6-1. 

Table 6-1: Thermo-physical properties of dry air used in the simulations 
Thermal properties Air  (at 44.4⁰C) 

Density (kg/m³) 1.110 
Dynamic viscosity (kg/m-s) 1.94 x 10-5 

Specific heat (J/kg-K) 1.01 x 103 

Thermal conductivity (W/m-K) 0.0274 
Prandtl number 0.711 
Thermal diffusivity (m2/s) 2.45 x 10-5 

Thermal expansion coefficient (1/K) 3.15 x 10-3 

The Under-Relaxation parameters and the discretization scheme used in the 

simulations are presented in Table 6-2.  

Table 6-2:  Solver parameters 
Spatial discretization Under-relaxation  

coefficient 
Type of discretization 

Gradient - Least square cell based 
Pressure 0.3 PRESTO! 
Momentum 0.2 Second order upwind 
Turbulent kinetic energy 0.5 Second order upwind 
Turbulent dissipation rate 0.5 Second order upwind 
Turbulent viscosity 0.7 Second order upwind 
Energy 0.9 Second order upwind 
Discrete ordinates 0.9 Second order upwind 

Wall thermal conditions used in the calculation are the same as those in the 

experimental study of this work, and are summarised in Table 6-3. No slip shear 

condition has been applied to all surfaces. The horizontal wall temperature profiles are 

a best-fit based on the experimental result of our earlier study given in section 5.6. 

This experimental thermal boundary condition has been used for the top and the 
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bottom walls and was incorporated into FLUENT through the User-Defined-Function 

(see Appendix A for the UDF). The rational for using experimental boundary 

condition has been strongly established in chapter 4. 

Table 6-3: Physical properties of the materials involve in the simulations 

Surfaces Material Temperature (⁰C) Emissivity Conductivity  
(W/m-K) 

Hot wall Aluminium 65.5 0.07 202.4 
Cold wall Aluminium 23.3 0.07 202.4 
Top wall Aluminium ETP (Top wall) 0.07 202.4 
Bottom wall Aluminium ETP (Bottom wall) 0.07 202.4 
Blockages ABS pipe  - 0.9 0.33 
Side walls Plywood - 0.83 0.13 

Finally, to simulate the heat transfer due to radiation, the Discrete Ordinate (DO) 

method has been chosen due to its proven superiority in predicting radiative heat 

transfer involving a participating medium. The angular discretization parameters used 

in the simulation are: Theta and Phi divisions are specified as 2 and 6 each for Theta 

and Phi pixels. 

6.3 Blockage proximity from vertical active walls for 10х5 arrangement 

In this study, we present the detailed results from numerical calculation on the 10х5 

arrangement of cylinders as shown in Fig.6-2. The proximity of the nearest column of 

cylinders, į (=δ1), is varied for three values of 25, 58 and 108mm. The following four 

sections will show the results for flow field, turbulence quantities, heat transfer and 

finally validation with experimental data. 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 112 of 274 

 
 

 

Figure 6-2: 2D schematic showing the arrangement of the blockages from the walls 

 
6.3.1 Flow fields (10х5 arrangement) 

Fig.6-3a-c show the mean velocity results for different blockage proximity values. 

The contour (Fig.6-3a) highlight the expected wall – confined boundary layer flows 

and the typical primary vortex can be observed. A closer look reveals that for 

į=25mm, the blockages are inside the boundary layer and hence the flows are highly 

perturbed. The maximum velocity is at the boundary layer and reaches a value of 

0.25m/s and is found to decrease as the value of į decrease. The thickness of the 

boundary layer is about 100mm. Fig.6-3c shows the peak of the velocity profile near 

the hot wall, the main circular air flow near the cavity walls occurs in a boundary 

layer whose thickness Ȝ (=0.004λ2m to 0.00324m) is small compared to cavity 

dimension (typically Ȝ/δ=0.0123 to 0.0081) and even compared to the cylinder 

(Ȝ/d≈0.1562 to 0.0λ7) so that the cylinder interacts slightly with this boundary layer. 
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(6-3a) 

 
(6-3b) 

 

(6-3c) 

Figure 6-3:  (a) mean velocity filed (m/s), (b) velocity profile at mid-height, (c) same 
as (b), but on an exaggerated scale. 

Figs.6-4a-b show the contours of the temperature field. Stratifications can be clearly 

seen, with high temperature at the top and low temperature near the bottom of the 
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cavity. Fig.6-4b shows that the cylinder located nearer the wall is at intermediate 

temperature between the surrounding air, with which it exchanges heat by convection 

and the wall with which it exchanges heat by radiation.  In addition to the primary 

natural convection flow near the walls due to temperature difference between the 

vertical walls and the adjacent air, secondary natural convection flows around the 

surface of the cylinders is due to the temperature difference between the surface of the 

cylinders and the surrounding air. This is in agreement with our experimental results 

presented in section 5.9.1. 

 
(6-4a) 

 
(6-4b) 

Figure 6-4: Temperature contours on the (a) symmetry plane of the enclosure (b) 
cylinders and symmetry plane of the enclosure 
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(6-5a) 

 
(6-5b) 

Figure 6-5: Relative comparison of temperature profiles at (a) 0.025, 0.058 and 
0.108m from hot wall, (b) 0.025, 0.058 and 0.108m from cold wall  
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(6-6b) 

 
(6-6c) 

 
(6-6d) 

Figure 6-6: Relative comparison of temperature profiles at  (a) mid-height (b) 
119.4mm from bottom wall (c) 85.65mm from bottom wall (d) 85.65mm from top 
wall 
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Figure 6-7:  Air and cylinder temperature profiles at 0.4425m from bottom wall                                                        

 
Figure 6-8:  Temperature profile of different heat transfer modes near the cold wall; 
(a) conduction in cylinder, convection between air/cylinder surfaces, radiation 
between cylinder/cold walls and between two cylinders. (b) Velocity profile near cold 
and cylinder walls. 

As shown in Fig. 6-4b, at the same height, the cylinder temperatures also increase 

slightly from the cold wall to the hot wall. It can be observed from the numerical 

results in Fig.6-7, that near the cold wall, the average cylinder temperature is slightly 

lower than the surrounding air temperature.  This difference is due to radiation 

between cold wall and cylinder surface. The mechanism for this transfer is shown in 

Figs.6-8a-b. At steady state and without radiation, it is expected that the cylinder 

temperature should be the same as the surrounding air. There is also a conductive heat 

flux inside the cylinder (from the hot wall to the cold wall position) and radiative flux 
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between the cylinders. This explains the small temperature difference between the 

second column of cylinder and the surrounding air. In addition to the primary natural 

convection flow near the wall, a secondary natural convection flow around the 

cylinder exists due to the temperature difference between the cylinder and the 

surrounding air. 

6.3.2 Influence of blockage proximity on turbulence quantities 

The results presented in this section shows that, Reynolds stresses are generally 

limited downstream of the boundary layers on the hot and cold walls indicating the 

development of turbulence in the flow. Turbulence is more intense near the active 

walls than anywhere else as shown in Fig.6-9. The distribution of the turbulence 

changes significantly with cylinder proximity, į, from the active walls. At mid-height 

of the enclosure, the turbulent viscosity ratio (ratio of turbulent eddy viscosity to the 

molecular viscosity), the turbulent stresses and kinetic energy are plotted in Fig.6-10a-

d. The plots highlight that turbulence is greatly suppressed when the cylinders are 

closer to the vertical walls and the fact that the core region is an essentially stagnation 

flow.  

It is also observed that the Reynolds stress, turbulent kinetic energy and the turbulent 

viscosity ratio profiles at mid-height are all symmetric. At 120mm from the active 

walls the turbulence quantities values are near zero. Their peaks are all located outside 

the velocity peak (Fig.6-3c) which is about 8mm.  It also follows that vertical velocity 

peak values increase monotonically with increasing cylinders distance from the active 

walls as shown. In addition to this, Fig.6-11 shows the shear stress along the hot wall 

as the spiky values are in line with į=25mm proximity. 
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(6-9a) 

 
(6-9b) 

Figure 6-9:  Turbulent intensity field on the (a) symmetry plane of the enclosure (b) 
cylinders and symmetry plane of the enclosure 
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(6-10b) 

  

(6-10c) 

 
(6-10d) 

Figure 6-10: Turbulence quantities profiles at mid-height (a) ȝ* turbulent viscosity 
ratio (b) vv Reynolds stress (c) uv Reynolds stress (d) Turbulent kinetic energy  
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Figure 6-11 Wall shear stress near hot wall 

6.3.3 Influence of blockage proximity on wall heat transfer 

Further exploratory numerical investigation was carried out to quantify the local and 

average heat transfer on the cavity walls. The average and local heat transfer data 

were compared in terms of an average Nusselt number and local Nusselt number 

computed at each wall. The total Nusselt number which is a combination of the heat 

transfer due to convection and radiation were separately calculated by taking integral 

average of the fluxes using FLUENT post-processing tools. Similarly the local 

Nusselt numbers were obtained using the local heat transfer flux at each node. Table 

6-4, shows the average Nusselt number for various cylinder proximity and Figs.6-12a-

b show the local variations. 
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 (6-12b)  

Figure 6-12:  Wall local Nusselt number (a) hot (b) cold (c) bottom (d) top 

Table 6-5 shows that the total heat transfer is significantly low for the į=25mm value. 

For other values, the average Nusselt number demonstrates a small but monotonic 

increase of the heat transfer. The local variations of the Nusselt number along the hot 

wall display the proximity effect very clearly. It also shows that with the cylinder 

moved further away from the vertical walls, the Nusselt numbers tend to smooth out. 

The fact that į=25mm shows markedly small value of heat transfer may be partly 

related to the fact that turbulence is suppressed due to blockages of the upward and 

downward flow of the fluids along the hot and cold walls respectively.  

Table 6-4:  Total Nusselt number for all walls 

Surface į=25mm į=5.8cm į=10.8cm No blockages 

Hot wall 76.01 111.23 119.05 107.28 

Cold wall 79.15 114.31 122.10 109.38 

Top wall 61.74 43.53 42.14 37.88 

Bottom wall 69.94 51.21 49.95 44.31 
 

Table 6-5:  Average wall radiative Nusselt number 

Surface į=2.5cm į=5.8cm į=10.8cm No blockages 

Hot wall 7.67 9.30 9.33 9.55 

Cold wall 6.66 8.17 8.17 8.99 

Top wall 1.89 2.01 1.52 -0.13 

Bottom wall 2.48 2.68 2.22 0.05 
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(6-13a) 

 

(6-13b) 

Figure 6-13:  Variation of heat transfer with į for hot and cold walls (a) average Nu 
(b) radiative Nu 

For the cavity without blockages there seems to be limited flow in the core of a 

rectangular cavity during natural convection processes but heat conduction takes place 

within this region, therefore, it does not contribute to the steady state wall-to-wall 

convection heat transfer. But with the inclusion of the cylindrical objects, it can be 

observed that secondary flows take place at this region and these flows  increase as 

the cylinders become closer to one another (proximity from the vertical walls 

increases) leading to a further heat transfer across the confined space.  
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As the cylinders are closer to each other, the flow in the stagnant fluid core is 

influenced.  The intensity of the flow at the core increases and this behaviour 

enhanced a larger contribution of lateral conduction from the bottom to the top wall 

and promoting the fluid motion, thereby, resulting in the gain of a wall-to-wall 

convection heat gain.  The net effect is thus increases in the wall heat transfer as the 

gaps between the cylinders are smaller. The variation of average heat transfer (Nu) as 

a function of the cylinder proximity is summarized in Table 6-4 and 6-5 and plotted in 

Figs.6-13a-b. The curve in Fig.6-13a shows a clear maximum value at a certain į. In 

this study, this value corresponds to įoptimum (= 415mm).  

6.3.4 Validation of experimental data 

The experimental data for the 10х5 blockage arrangement were validated against the 

numerical results generated in this section. Typical comparisons for various cases 

studied are shown in Figs.6-14 to 6-16. Agreement with the experiment is generally 

very good including variation between the top and bottom surface of cylinder. A 

symmetrical result is possible when the dimensionless temperature is 0.5 at the centre 

of the cavity. However, our experiments gave a slightly approximate value of 0.51.  

Figs.6-14 to 6-15 show the core area, the fluid is stratified along the mid-width region 

and for the most part, the temperature is almost in linear distribution. Following Ziai 

[71], the stratification parameter mean value is 0.528. Henkes and Hoogendoorn [230] 

summarised contribution works to the Eurotherm Seminar - 22 to evaluate the range 

of stratification parameter. The stratification parameter obtained was 0.511–0.572 and 

the average value was 0.539. Our results lie between these ranges. The temperature 

distribution along the mid-width is compared in Figs.6-16a-d. Our numerical results 

are in agreement with the experimental data. The improvement in the accuracy of our 

numerical results when compared with experimental data is due to the near ideal 

boundary condition (experimental) that was used in the numerical modelling. 
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(6-14a) 

 
(6-14b) 

Figure 6-14: Comparison of temperature profile (a) near cold wall (60mm); (b) at 
mid-width for cavity without blockages 
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(6-15b) 

 
(6-15c) 

Figure 6-15: Temperature profile comparison at mid-width (a) į = 25mm                   
(b) į = 58mm (c) į = 10.8cm from the vertical walls – blockages proximity 
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(6-17b) 

 

 

(6-17c) 

 

(6-17d) 
Figure 6-16: Temperature profile comparison at mid-height with and without 
blockage, with and without blockages – blockages proximity 
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6.4 Blockage proximity from horizontal walls for 10х5 arrangement 

In this section, numerical simulation was conducted to quantify the influence of the 

blockage proximity from the horizontal walls, įv in Fig.6-17, on the wall heat transfer. 

The average wall Nusselt numbers and wall radiative Nusselt numbers are presented 

in Table 6-6 and 6-7. Their local counterparts are presented in Figs.6-18a-c. It is 

observed that very close to the top and bottom walls the heat transfer profile shows a 

wavy pattern which is due to the blockages of the near wall flow. At įv=25mm the 

thermal boundary layer is compressed thereby blocking most of the flow and hence 

the heat transfer along the horizontal walls are also reduced.  

 
Figure 6-17:  Schematic of the geometrical configuration 

Table 6-6: Average Nusselt number        Bottom  Cold Hot  Top  

25 32.79 75.48 73.60 29.04 
50 34.52 76.76 76.62 41.90 

103 34.85 77.40 76.75 30.88 
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Table 6-7: Average radiative Nusselt number        Bottom  Cold Hot  Top  

0.025 1.81 6.67 7.81 1.53 

0.050 1.91 6.11 8.04 12.47 

0.103 1.36 6.67 7.87 0.96 

 

 
(6-19a) 

 
(6-19b) 

-10 

10 

30 

50 

70 

0 0.2 0.4 0.6 0.8 1 

N
u 

- 
B

ot
to

m
 w

al
l 

x/L 

įᵥ=25 mm 

įᵥ=50 mm 

įᵥ=103 mm 

-30 

-10 

10 

30 

50 

70 

90 

0 0.2 0.4 0.6 0.8 1 

N
u 

- 
To

p 
w

al
l 

x/L 

įᵥ=25 mm 
įᵥ=50 mm 
įᵥ=103 mm 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 130 of 274 

 
 

 
(6-19c) 

Figure 6-18:  Walls local Nusselt number (a) bottom (b) top (c) hot  
6.5 Effect of blockage for 10х3 arrangement 

The schematic of the arrangements of blockages within the enclosure is shown in 

Fig.6-19. The blockages are in 10 rows and 3 columns. The first configuration is the 

arrangement of these blockages near the hot wall: is named as Case-1. The 

arrangement of the blockages near the cold wall is represented as Case-2, while the 

arrangement of the blockages at the middle of the enclosure is Case-3.   

 
Figure 6-19:  Schematic of 10х3 arrangement of blockages 

Figs.6-20a-b shows the temperature and turbulent intensity of the flow field.  

Secondary natural convection flow can be observed at regions near the blockages. As 

discussed earlier in section 5-10, this effect is due to the multiple radiations at the 

blockages surface.   
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It was observed from our experiment study on 10x3 arrangements of blockages that 

the average temperature was found to be maximum in Case-3 arrangement and a 

minimum in Case-1, this behaviour was also observed in temperature profiles at the 

mid-height and mid-width shown in Figs.6-21a-b. There is a relative influence on 

walls heat transfer within the cavity as shown in Figs.6-23. The average values are 

shown in Table 6-8 and 6-9 for the total and radiative components respectively. In 

Fig.6-21a, there is a much temperature variation in the region near the cylinders 

surface. Blockages arrangement near the hot wall (Case-1) significantly damped 

turbulence as well as the horizontal convection which caused the temperature to vary. 

This influence on turbulence is shown in Figs.6-20b and 6-22.  

 
 

(6-21a) 
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(6-21b) 

Figure 6-20:  Relative comparison of the flow filed at mid-plane (a) temperature (b) 

turbulent intensity 
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(6-21b) 

Figure 6-21:  Temperature profile at (a) mid-height (b) mid-width 

 

Figure 6-22:  Turbulent viscosity ratio at mid-height 
Table 6-8: Average walls Nusselt number 

Surfaces Bottom  Cold Hot  Top  

Case-1 32.89 88.14 82.19 29.52 

Case-2 33.59 84.36 86.96 28.95 

Case-3 30.21 100.24 98.72 26.09 

 
Table 6-9: Average walls radiative Nusselt number 

Surfaces Bottom  Cold Hot  Top  

Case-1 1.17 7.71 8.51 0.38 

Case-2 0.79 7.32 8.98 0.74 
Case-3 1.12 8.01 9.26 0.70 
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(6-23a) 

 
(6-23b) 

Figure 6-23:  Local Nusselt number (a) hot wall (b) cold wall 

6.5.1 Validation of experimental data 

Numerical and experimental temperature data measured at mid-height and mid-width 

is compared in the plots shown in Figs. 6-24 and 6-25 respectively. There are general 

agreements between the results. 
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(6-24a) 

 

(6-24b) 

 
(6-24c) 

Figure 6-24: Comparison of CFD and experimental temperature profile at mid-height 
for; (a) case 1 (b) case 2 (c) case 3 
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(2-27a) 

 

(2-27b) 

 
(2-27c) 

Figure 6-25: Comparison of CFD and experimental temperature profile at mid-width 
for; (a) case 1 (b) case 2 (c) case 3 
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6.6 Effect of blockage for 5х5 arrangement 

In this section, the influences of 5х5 arrangement of blockages near the top and 

bottom walls on the flow and heat transfer are investigated. The configuration for the 

fluid domain arrangement is shown in Fig.6-22. The two cases considered are NTW:  

(Near Top Wall) and NBW: (Near Bottom).  

 
Figure 6-26:  Schematic of group arrangement of blockages 

The velocity and turbulent field are shown in Figs.6-27a-b respectively. Fig.6-28 

shows the temperature profile at the mid-height of the cavity. It can be observed that 

NTW case shows a slightly higher temperature in relation to that of NBW, with an 

average of 2.43⁰ C temperature difference between the two cases evaluated at the core 

of the cavity. This behaviour has also been reported in our experimental study. 

Influences of the 5x5 blockages arrangements on the walls average heat transfer are 

quantified in Table 6-10 and the local values are plotted in Figs.6-29a-c. 
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(6-27a) 

 

(6-27b) 

Figure 6-27:  Flow field comparisons; (a) velocity contours (b) turbulent intensity 
contours 
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Figure 6-28: Comparison of temperature profile at mid-height 

Table 6-10: Average Nusselts number comparisons for different distance from the 
horizontal walls 

 Surfaces Bottom  Cold  Hot  Top  

ζψW (įv=30mm) 110.14 110.57 29.98 24.68 

ζTW (įv=30mm) 25.02 82.78 89.60 22.45 
ζψW (įv=50mm) 26.56 91.94 82.41 22.28 
ζTW (įv=50mm) 25.35 83.82 90.40 23.60 
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(6-32b) 

 
(6-32c) 

Figure 6-29: Walls local Nusselt number (a) hot (b) cold (c) bottom 

6.6.1 Validation with experimental data 
The experimental temperature data is compared with numerical computation in Fig.6-

30. Excellent agreement can be seen for both situations including the accurate 

prediction of the thermal boundary layer. These comparisons provide confidence in 

the predicted flow variables presented in previous section. 
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(6-33a) 

 

(6-33b) 

Figure 6-30: CFD and experimental temperature profile at mid-height for all cases        
(a) NBW (b) NTW  
 
6.7 Conclusion 

This study was carried out in order to obtain detailed and accurate numerical results 

on this topic and allow a better understanding of the interactions between blockages 

and low turbulent natural convection flow. Some general conclusions are presented 

below:  

a) Temperature stratification was observed in all cases, high temperature at the top 

and low temperature at the bottom region of the enclosure.  

b) Wall proximity can be seen to affect the overall heat transfer via flow field. The 

effects of turbulence are greatly suppressed as the gap between the walls and the 

solid objects become smaller. 
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c) The fact that the variation of the solid object proximity from the vertical walls 

influences the scenario drastically is vindication that proximity of objects near 

vertical walls does plays a significant role in apparently low temperature 

applications. We believe that this may have an important implication in thermal 

management in built environment applications, cooling of electronic panel and 

other engineering applications. 

d) The influence on fluid flow, heat transfer and turbulence are due to the interaction 

with the cylindrical objects which was identified and detailed profiles which have 

been obtained for critical locations and for each į, there exist optimum average 

heat transfers at the wall.  

e) The experimental data was validated at representative location and there is good 

agreement between the numerical results and experiments. Additional 

comparisons are provided in Appendix B, which may be useful for code 

validation. 

 

 

 

 

 

 

 

 

 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 143 of 274 

 
 

Chapter 7 -      INFLUENCE OF BLOCKAGES ON HEAT AND MASS 

TRANSFER IN AN ENCLOSED RECTANGULAR BOX 

7.1 Introduction 

Previous chapters have dealt with numerical and experimental study of natural 

convection flow and heat transfer in rectangular enclosures with and without 

blockage, but without the effect of moisture. This chapter aims to verify and quantify 

the influence of blockages on the flow, heat and mass transfer for a differentially 

heated rectangular enclosure partially filled with a disconnected array of blockage. 

The fluid zone is a mixture of air and water vapour. Different cases of blockage 

proximity from the active vertical walls were analysed. Different flow and heat 

transfer quantities were evaluated and the influence on mass transfer due to these 

blockages have been quantified and analysed.  

7.2 Numerical model formulation 

Different cases of parametric studies have been reported in this chapter, the enclosure 

is partially filled with arrays of disconnected cylindrical objects in rows and columns. 

The basic geometrical configuration considered is that of Laguerre et al., [111] shown 

in Fig.7-1, where the disconnected cylindrical objects are arranged in 8 rows and 5 

columns, the aspect ratio of the rectangular enclosure is 2:1 (H/L). The justification 

for using this test rig is because it provides humidity data which was used for 

validation purposes in our study.  

7.2.1 Flow problem  

As shown in Fig.6-1, the flow problem is a two-dimensional rectangular cavity with 

aspect ratio of 2:1 (H/L) and contains obstacles which occupy about 15% of the total 

cavity volume. Laguerre et al., [111] have provided data for temperature profiles 

along the mid-height (y/H=0.5) and x=66 mm near the cold wall of the cavity. 

Vertical velocity (  ) and relative humidity profiles measured at the mid-height and 

mid-width (x/L=0.5) of the cavity were also reported. 
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Figure 7-1  Geometry and the coordinates (dimensions are in mm) 

Based on the vertical wall temperature difference of 19.8⁰ C, the flow Rayleigh 

number was found to be 1.45 х 109. Numerical experiments were conducted for both 

humidified and un-humidified cases - the former situation was created during 

experiment done by Laguerre by placing a shallow pan of water (13.7⁰C) at the 

bottom surface which acted as the source of water vapour mass flux. Literature 

suggests that the above Ra implies that the flow is more likely towards the turbulent 

regime than laminar and hence the flow field in this work is predicted by using 

Launder-Sharma low-Re k-ɛ model. 

7.2.2 Numerical procedure  

Calculations were carried out using the FLUENT 13.0. The methodology involves the 

iterative solution of the Navier-Stokes equations as have been reported in chapter 3. 

Moisture has been considered as a separate phase and hence another scalar transport 

equation for species transport has been incorporated. Similarly, we have considered 

the flow to be turbulent and hence suitable two-equation eddy-viscosity turbulence 

models have been chosen. More details on turbulence models will be given in the next 

section. As mentioned before, the accuracy of computations is affected by the choice 
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of grids, the turbulence models, discretisation schemes and convergence and had been 

the major concern for numerical scientists [195, 231-234]. 

 These uncertainties that may influence the flow physics were carefully taken into 

account in the numerical modelling for greater accuracy. For discretisation of the 

convection terms, second order convection schemes have been followed. Utmost care 

has been taken to address the issue of grid density and grid quality. The mesh was 

made up of structured quad mesh near the walls and unstructured near the core region 

where the flow velocity is very low. In order to capture the sharp gradients the mesh 

was clustered near the walls where a minimum mesh orthogonal quality is about 1 

(value close to zero indicates low quality mesh and value close to one indicates high 

quality mesh).  

Particular attention was given to resolve the boundary layer very close to the walls 

because the low-Re turbulence models have been used for the simulations. The 

number of cells in the first layer of each cylindrical obstacle was initially 40 which 

was then raised to 68 corresponding to an overall mesh density of 90, 500. The results 

were fairly insensitive to the changes of grid density around obstacles, and hence all 

the calculations reported in this paper were obtained with this mesh. The value of the 

non-dimensional distance y+ for the final mesh was found to be just below 1 for all 

surfaces (cavity and solid obstacles) justifying our use of the low-Re k-İ model (See 

Appendix D). 

It is worthwhile to note that the process of computing a steady-state solution using 

very fine mesh has been quite challenging because of the oscillations associated with 

higher-order discretization schemes. As a result, a number of steps were taken to 

achieve a steady-state solution. Initially, a lower value of Rayleigh number (107) was 

adopted to start the solution with the first-order scheme and the solution was allowed 

to run to convergence which was typically three orders of magnitude lower than the 

residual at the start. The resulting data file was then used as an initial guess for the 

higher Rayleigh number (greater than 109) simulation using the higher-order 

discretization scheme. This method helped to create a more realistic initial field for 

the low-Re k-İ run.  ωalculations were performed using a single Intel core 2Duo 

E6600 2.4 GHz processor and a typical run took about 8 hours of computing time. 
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The under-relaxation parameters and the discretization scheme used in the simulations 

are presented in Table 6-1: 

Table 7-1: Summary of solver parameters 

Parameter  Under-Relaxation 
 Factors 

Discretization 

Pressure 0.3 PRESTO! 
Density 1 - 
Body force 1 - 
Momentum 0.2 Second Order Upwind 
Turbulence kinetic energy 0.3 Second Order Upwind 
Turbulence dissipation rate 0.3 Second Order Upwind 
Turbulent viscosity 0.5 Second Order Upwind 
Water vapour 1 Second Order Upwind 
Energy 0.9 Second Order Upwind 
Discrete ordinates 0.5 Second Order Upwind 

 

The boundary conditions considered for the simulations are similar to those given in 
the experimental paper of Laguerre et al., [111] and are summarized in Table 7-2. The 
constant vapour mass fraction is maintained at the bottom horizontal wall and 
impermeable conditions assumed for the top and hot vertical walls and for the 
surfaces of cylindrical obstacles. To conserve the species transport equation, a 
constant mass fraction equal to the saturation value at the cold wall was specified. The 
condition of constant mass fraction right on the cold wall is justified because the 
temperature is constant on that surface. From Eq. 3-27 in section 3.6,    is the rate of 
creation by addition from user-defined source which is solved for N-1 species, where 
N is the total number of fluid phase species present in the system. In this study the 
working fluid is a mixture of dry air and water vapour and was treated as a single 
phase fluid with two component i.e, N=2 (dry air and water vapour). No slip boundary 
conditions have been imposed for all the solid surfaces.  

Table 7-2: Boundary conditions used in the simulations 

Wall Thermal 
conditions (oC) 

Mass fraction 
(kg water/kg air) 

Material, thermal 
conductivity (W/m-K) 

Top 14.4 Zero diffusive flux Plaster, 0.35 
Bottom 13.7 0.00968 Plaster, 0.35 
Cold 1.2 0.00407 Aluminium, 202.4 
Hot 21 Zero diffusive flux Glass, 0.75 

Obstacles Zero heat flux Zero diffusive flux Plaster, 0.35 

 

In order to calculate the heat transfer due to radiation, the discrete ordinate method 

[235-238] has been chosen due to its proven superiority in predicting radiative heat 
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transfer involving a participating medium. Humid air is treated as absorbing-emitting 

and non-scattering gray medium. The general equation of heat transfer by radiation (in 

a given    direction) for both un-humidified and humidified cavity has been presented 

in section 3.5.1 of chapter 3: 

At the surface of the solid obstacles, thermal boundary condition is presented in 

equation (7-1):                                                                                                                              
Where         =                            ⁺              and   

                       . 

The walls are all assumed as gray diffuse and 4 angle discretization 2, 4, 16 and 24 

were used. 

7.3 Preliminary sensitivity studies 

Preliminary studies were conducted to ascertain the effect of flow regime 

characteristic (laminar vs turbulent flow regime), low-Re model sensitivity study and 

2D simplification of 3D radiation heat transfer modelling for cavity containing 

obstacles participating in radiation heat transfer.  

7.3.1 Flow regime characteristic 

Double-diffusive phenomenon is governed by the total density stratification consisting 

of thermal and concentration contributions. Temperature stratification often promotes 

turbulence, while the stable concentration gradient tends to damped turbulent 

fluctuations. Specification of the flow regime for such transitional Rayleigh number 

of 1.45 x 109 associated with heat and mass transfer appears to be very confusing. 

 To resolve this uncertainty surrounding the flow regime characterisation, preliminary 

numerical investigation was conducted with LRKE model of Launder-Sharma to 

show if the domain is predominantly laminar or turbulent. The temperature profile 

near the cold wall (x=66mm) is presented in Fig.7-2, and the relative humidity 

distribution along the mid-width (x = 0.5L) is represented in Fig.7-3. Both results, 

laminar and turbulent are plotted against the experimental data which clearly justify 

our assumption of incorporating a turbulence model in the calculations.  
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Figure 7-2  Temperature profile near cold wall (x=0.066m) 

 

Figure 7-3  Relative humidity profile at mid-width from bottom wall 

7.3.2 Choice of turbulence model and flow characterization  

At the very outset of this research, we were faced with the appropriate 

characterisation of the flow i.e., whether the flow is to be treated as laminar or 

turbulent. Bejan [4] and Jaluria [171] have shown that Rayleigh number less than 108 

indicate a buoyancy-induced laminar flow, with transition to turbulence occurring 

over the range of 108 < Ra < 1010. Given that the Rayleigh number is 1.45 × 109, 

which is clearly in the transition zone, and hence we needed to address this issue. 

While treating the flow to be laminar is rather unambiguous, at least from the 

viewpoint of viscous models, this is not so for turbulent flows.  

It is well known [239-242] that turbulence models play an important role in the 

predictions of fluid flows. Hence we first checked the turbulence model sensitivity 

0 

0.2 

0.4 

0.6 

0.8 

1 

5.5 8 10.5 13 15.5 

y/
H

 

T⁰C 

Turbulent case 
Laguerre 2009 
Laminar case 

0 

0.2 

0.4 

0.6 

0.8 

1 

0.6 0.7 0.8 0.9 1 

y/
H

 

RH  

Turbulent case 
Laguerre 2009 
Laminar case 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 149 of 274 

 
 

and later made further comparison to validate our justification for the approach. A 

total of six eddy-viscosity (EVM) turbulence models (same as that in chapter 4) have 

been tried. The reason that we restricted ourselves to the EVM is due to the fact that 

other advanced turbulence modelling such as LES is still very demanding from 

computation point of view and it is unlikely that it can be applied to practical flows.  

 

Figure 7-4:  Temperature profile near cold wall (x=0.066m) 

 
Figure 7-5:  Relative humidity profile at mid-width of the cavity 

Hence it is much more important to scrutinise the models that are likely to be used 

from the viewpoint of practitioners. Figs.7-4 and 7-5 show the typical mean quantity 

profiles predicted by various turbulence models. Table 7-3 presents the average hot 

wall Nusselt number. A careful look at the plots reveal that while the core region had 

been predicted well by most of the models, the situation is very different for the near 
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wall region. For both cases (velocity and temperature), it is clear that the Launder-

Sharma model returned the best results. Hence this model has been used for all the 

calculations reported in this work. It should be noted here that for similar flow without 

blockage in chapter 4, Y-S model was found to give the best performance unlike L-S 

for similar flow with blockages. It is clear the uncertainty with the choice of 

turbulence model varies from one situation to another. From a computational point of 

view, L-S showed a much more stable solution and hence we restricted ourselves to 

this model only. 

Table 7-3: Average hot wall Nusselt number 

LRKE  Nuaverage  

Abid (AB)  33.52  

Lam & Bremhost (LB)  37.34  

Launder & sharma (LS)  41.07  

Yang & Shih (YS)  32.60  

Abe et al., (AKN)  35.38  

Chang et al., (CHC)  34.25  
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(7-6b) 

 

 
(7-6c) 

Figure 7-6: Vertical velocity profile at (a) mid-height (b) near hot wall (c) near cold 
wall 

 
Figure 7-7  Temperature profile at mid-height of the cavity 
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(a) (b)  

Figure 7-8: (a) Velocity magnitude and (b) turbulent intensity contours [LS model] 

The velocity and turbulent intensity contours shown in Figs.7-8a-b respectively, 

demonstrate clearly that the main air flow is within the boundary layer so that the 

obstacles close to the walls interact with the hydrodynamic viscous layer. This 

observation further highlights the importance of using a low-Re k-İ model. It can also 

be seen that there are other streams of flow of varying (smaller) magnitude. Such a 

flow pattern was also verified and reported in the experimental work of Laguerre et 

al., [111] and can be seen in Fig.7-6. 

7.3.3 2D simplification of 3D radiation heat transfer for an enclosure partially 

filled with blockages 

The choice of emissivity is very critical when modelling radiation heat transfer and, 

even for this type of moderate temperature difference, the effect of radiation has been 

found to be fairly significant [58, 111]. The 2D simplification of an inherently 3D 

radiation heat transfer also raises issues with the accuracy of the data produced by 2D 

simplification of domain.  According to Laguerre et al. [111], an equivalent emissivity 

of    =0.58 can be shown to mimic the radiation heat transfer between three surfaces 

having emissivity of 0.9 (somewhat similar to the treatment of radiation shield). The 

radiation flux between two surfaces of emissivity    and    when a thin shield of 

emissivity    is placed between them is shown in equation (7-2): 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 153 of 274 

 
 

                                                                                                             
If İΌ=İ΍=İΎ=0.9. The equivalent radiation flux is presented in equation (7-3): 

                                                                                                               
Where,      is the radiative heat flux,  

ı = 5.6703 x 10-8 (W/m2k4) – Stefan-Boltzmann constant,  

A = area of emitting surface (m2) 

However, no numerical evidence is provided in support of the above. We have 

scrutinized this assumption and a comparison of temperature for 2D vs. 3D domain is 

presented in Figs.7-9a-c. It can be seen that the predicted temperatures for  = 0.9 (3D) 

and   = 0.58 (2D) are in fairly close agreement justifying the 2D treatment.  

The   = 0.9 (2D) is shown for comparison which also highlights the significant 

influence of radiation for this flow.  
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(7-9b) 

 
(7-9c) 

Figure 7-9:  (a) temperature profile at x = 66 mm, (b) temperature profile at mid-width 
of the cavity for İ=0, (c) temperature profile at mid-width of the cavity 

The choice of emissivity is very critical when modelling radiation heat transfer and, 

even for this type of moderate temperature difference, the effect of radiation has been 

found to be fairly significant [243]. Therefore, this allows taking approximately into 

account the 3D radiation effects in 2D simulations. 

7.4 Influence of thermal radiation  

In this section, we present the results for the un-humidified case. Since one of the 

objectives of this work was to quantify the radiation characteristics for such flows, we 

varied the surface emissivity for all the surfaces. To model radiation, Discrete 

Ordinate Model [237, 238] has been selected due to the fact that it allows interaction 

with participating media such as water vapour [244] as will be presented in a later 
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section. Four surface emissivity values were specified i.e., ɛ=0, ɛ=0.3, ɛ=0.58, and 

ɛ=0.7. The mid-value of ɛ=0.58 was chosen by reference to Laguerre et al., [111] that 

it represented the equivalent emissivity value for a two-dimensional treatment of 

radiation within the cavity. In a nutshell, the effect of treating radiation in 2D fashion 

means using lower emissivity value than that in the actual 3D geometry. Therefore, to 

save cost of computations, 2D numerical simulations were conducted and the results 

shown in the following sections. 

7.4.1 Temperature fields 

The temperature distribution is one of the most critical mean quantities, because the 

flow develops as a result of buoyancy which is directly dependent on temperature 

gradient. Figs.7-10a-b, show the plots along the mid-width (x = 0.5L) and near the 

cold wall (x = 66mm) respectively. From these plots, temperature stratification is low 

at the bottom wall and high at the top wall for all values of emissivity. Since radiation 

between all surfaces is taken into account in the simulations, oscillations of the 

temperature profiles can be very clearly seen in these plots. This is because the fluid 

temperature further away from the cylinder surface is higher than that very close to its 

surface - a phenomenon highly influenced by the surface emissivity value.  

The temperature profile of the flow domain shows a decrease in temperature 

distribution with the increase in emissivity of the walls and the obstacles. The 

temperature field is also highly influenced by the presence of obstacles. In addition to 

the overall thermal stratification in the cavity, stratification is also observed in each 

gap between the obstacles. One very important point to note is the fact that the 

predicted temperature for İ=0 (i.e., without radiation) is very inaccurate, the largest 

discrepancy being displayed near the top wall. This has also been numerically verified 

by Laguerre et al., [111]. The fact that the inclusion of radiation improves the scenario 

drastically is a further vindication that radiation does play a significant role in 

apparently low temperature applications. We believe that this may have an important 

implication for built environment applications. 
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(7-10a) 

 

(7-10b) 

Figure 7-10:  Temperature profile at (a) mid-width (b) near cold wall, x=66mm 

7.4.2 Wall heat transfer 

Average and local heat transfer data are compared in terms of an average Nusselt 

number and local Nusselt number computed at each wall.  The local Nusselt number 

is given in Figs.7-11a-d and the radiation Nusselt component is shown in Fig.7-12a-b.  
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(7-11a) 

 
(7-11b) 

 
(7-11c) 

Figure 7-11:  Local Nusselt number along the (a) hot wall (b) cold wall (c) top wall 
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(7-12a) 

 

(7-12b) 

Figure 7-12:  Local radiation Nusselt number along the (a) hot wall (b) cold wall 

Table 7-4:  Average surface Nusselt number   
 
 

 

 

 

Figs.7-11a-c show the local Nusselt number for the hot, cold and the top walls 

respectively, and the radiative Nusselt number is shown in Fig. 7-12a-b. The average 
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enhance heat transfer which is relatively more prominent for the radiative Nusselt 

numbers as can be seen in Figs.7-12a-b, these plots also demonstrate fluctuations 

which are due to the proximity of obstacles.   

It can be seen that the average Nusselt number changes with the changes in surface 

emissivity and their values have significant effect on the heat transfer. Without 

radiation there is a balance between the conductive and convective heat fluxes at the 

interfaces of the walls. Radiation causes an additional heat flux towards the interface 

due to incident radiation and an extra outgoing heat flux associated with emission of 

radiation. The percentage increment in heat transfer corresponding to these emissivity 

values are presented in Table 7-5. Since buoyancy-driven flow velocities are small 

and temperatures are low, the radiative heat fluxes are modest but comparable in size 

with convective heat fluxes. Therefore, surface emissivity has significant effect on the 

heat transfer within the cavity. 

Table 7-5: Percentage heat transfer increment (%) 

 

 

 

 

7.4.3   Stream function 

The measure of circulation rate of the buoyancy driven fluid mixture inside the cavity 

is represented in Figs.7-13a-b. This is formulated using the stream function Ψ 

obtained from velocity components u and v. The relationship between stream 

function, Ψ and velocity components for two dimensional flows as shown in equation 

(7-8):          and                                                                (7-8) 

As the emissivity value increases, there is a corresponding increment in the value of 

stream function. Fig.7-13a also displays a stable (rather stagnant) zone in the core 

areas but shows a 50% increase in circulation rate at the mid-point measured at the 

mid-height of the cavity. Slightly enhanced perturbations for higher İ values are direct 
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results of radiation. The stream function profile evaluated at the mid-width of the 

cavity, Fig.7-13b shows a rather monotonic nature with peaked values near the bottom 

wall of the cavity. The maximum rise is 35.8% for maximum values of the circulation 

rate. 

 
(7-13a) 

 
(7-14b) 

Figure 7-13:  Stream function profile at (a) mid-height (b) mid-width 
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the viscous effects are dominated by convection. At higher emissivity, heat transfer is 

affected more by radiation than by convection. The results also highlight that such 

flows may be treated as a multi-zone configuration as suggested by Griffiths and Chen 

[245]. 

 

Figure 7-14:  Turbulent viscosity ratio at mid-height (Un-humidified cavity) 

7.4.5 Buoyancy effects 

Buoyancy flux, B characterises the buoyancy driven flow and is expressed in equation 

(7-8). In the above equation, βmix represents the combined volumetric expansion 

coefficient of the air-water vapour mixture. Fig.6-22 shows the buoyancy flux plots at 

the bottom wall. As the emissivity increase B also increases with minimum value very 

close to the hot wall and maximum value near the cold. At the bottom edge region of 

the hot vertical wall, heating rate is gradually decreased due to heat loss to the bottom 

wall and hence resulting in lesser buoyancy effect.                                                                                                                                                                        
On the other hand, heat loss from the bottom wall is gradually transported to the cold 

wall, thereby, increasing buoyancy in this area of the cavity. Fig.6-23 shows the 

buoyancy flux along the hot wall of the cavity where the buoyancy effects due to 

temperature are maximum and surface emissivity plays an important role especially in 

temperature induced buoyancy; these effects are found to increase with increasing 

value of emissivity. 
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(7-15a) 

 

(7-15b) 

Figure 7-15:  Buoyancy flux near (a) bottom wall (b) hot wall 

7.5 Influence of mass transfer 

In this section we present the results obtained for the situation when the bottom wall 

acts as a source of mass influx mimicking evaporation in the experimental study 

where a vat containing water was placed at the bottom wall. In our presentation, we 

put emphasis on identifying the parameters that were influenced by humidity.  

7.5.1 Heat transfer 

A comparison of the average heat transfer between the temperature induced buoyancy 

and that due to the combined influence of mass and temperature (doubled-diffusion 

convection) is shown in Table 7-6. Generally, the data shows heat transfer 
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enhancement with the addition of water vapour. A modest rise of 5.4% and 5.7% in 

the heat transfer is observed for the hot and bottom walls respectively.  

Figs. 7-16a-b also show some increase in the heat transfer rate due to the combined 

effects of mass and temperature gradient. Although the effect on the hot wall is only 

marginal, the effect of humidity can be observed much more prominently for the top 

wall of the cavity. 

Table 7-6:  Average Nusselt number 

 

 

 

 
(7-16a) 

 
(7-16b) 

Figure 7-16:  Local Nusselt number near (a) hot wall (b) top wall 
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7.5.2 Buoyancy flux 

The buoyancy effects are the results of combined temperature and concentration 

gradients. The concentration gradient is due to difference in the relative molecular 

mass between the dry air and water vapour. Figs.7-17a-b, present the buoyancy flux 

profiles along the bottom and hot walls respectively. The additional contribution due 

to vapour can be seen clearly in both graphs, although the net values are rather modest 

which is about 5%. This may prove to be significant in a particularly long exposure 

situation typical of human comfort studies. 

 

(7-17a) 

 
(7-17b) 

Figure 7-17:  Buoyancy flux near (a) bottom wall (b) hot wall 
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7.5.3 Influence of surface radiation on mass transfer 

The earlier section of this thesis, thermal radiation affects the flow and heat transfer in 

temperature induced natural convection with the influence of obstacles was analysed. 

However, the results presented here are focused on the influence of thermal radiation 

on mass transfer. The mass transfer is represented as humidity ―m‖ defined as the ratio 

of mass of vapour to the total mixture mass. 

Figs.7-18a-b show that the mass fraction decreases with increasing surface emissivity 

which is due to the fact that at low emissivity the vapour mass transfer increases. And 

as the emissivity increases, the fluid temperature increases leading to a corresponding 

increase in air flow in the cavity. These phenomena also account for the increment in 

the profiles of effective diffusion coefficient, Deff, of vapour at lower values of surface 

emissivity as shown in Figs.7-19. Further quantitative information is provided in 

Fig.7-20, where we have plotted the Buoyancy number, ―N‖ which is a ratio of mass 

to temperature induced buoyancy. This ratio N measures the significance of the 

contribution to buoyancy of the variation in vapour concentration in the cavity 

The effective diffusion coefficient of vapour is also observed to be maximum close to 

the vertical walls and almost constant at the core of the cavity. The variations and 

nature of these curves are very similar to the viscosity ratio curves presented in Figure 

18, highlighting the fundamental similarity in the diffusive transport mechanism of 

momentum and concentration. 
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(7-18b) 
Figure 7-18: Mass fraction of water vapour along (a) mid-width (b) mid-height 

 

Figure 7-19: Effective diffusion coefficient of water vapour at mid-height 
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(7-20b) 

Figure 7-20:  Ratio of mass to temperature induced buoyancy (a) mid-height (b) near 
cold wall (x=66mm) 

 

7.6 Two-dimensional Simulation of the Influence of Blockage-Active Walls on 

Mass Transfer 

In this section, further numerical study was conducted to ascertain and quantify the 

effect of blockage proximity on the flow, heat and mass transfer. Detailed analysis 

was performed on the flow and heat transfer and on the turbulence quantities within 

the cavity. Profiles of turbulent kinetic energy and turbulent viscosity are studied in 

detail to observe the net effect on the intensity of turbulence caused by the 

interactions of these blockages-active walls proximity with double-diffusive natural 

convection heat and mass transfer. Particular emphasis was placed on quantifying the 
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Fig.7-1, and similar numerical procedure and conditions presented in section 7.2.1, 

were in the simulations. Based on the temperature differentials of the vertical walls 

the Rayleigh number was kept the same as 1.45 х 109. For this work, the distance of 

the first column of objects from both the hot and cold walls was varied (į= 33mm, 

50mm, 66mm, 80mm and 120mm). The distance between the other columns, ‗c‘, 

varies negligibly and hence the effect due to internal re-distribution is ignored. 

0.055 

0.06 

0.065 

0.07 

0.075 

0 0.2 0.4 0.6 0.8 1 

N
 

y/H 

İ=0 
İ=0.3 
İ=0.58 
İ=0.7 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 168 of 274 

 
 

 

Figure 7-21:  Geometry and the coordinates (dimensions are in cm) 

7.6.1 Wall heat transfer 

Average and local heat transfer data are compared in terms of an average Nusselt 

number and local Nusselt number computed at each wall. The total Nusselt number 

which is a combination of heat transfer due to convection and radiation were 

separately calculated by taking integral averages of heat fluxes using FLUENT post-

processing tools. Similarly the local Nusselt numbers were obtained using the local 

heat flux at each node. Table 7-7 shows the average Nusselt number for various walls 

for various values of į and Figs.7-22a-b shows the local variations. 
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(7-22b) 

Figure 7-22:  Variation of local Nusselt number near (a) hot wall (b) top wall 

Table 7-7:  Variation of Average Nusselt Number (Italicised data for į = 66mm are 
for coarse mesh of 64,600 cells) 

į (mm) Bottom wall Hot wall Top wall Cold wall 

33 33.8 82 10.4 105.5 

50 34.1 105.3 7.3 132.1 

66 30.5(30.4) 111.6 (111.3) 3.9(3.8) 138.2(137.8) 

80 30.4 113.9 2.7 141.5 

120 29.1 118.5 1.7 146 

The table shows that the total heat transfer is significantly low for the smallest į 

value. For other values the average Nu demonstrates a small but monotonic increase 

of the heat transfer. The local variations of Nu along the hot wall display the 

proximity effect very clearly. It also shows that with larger į values, the Nu numbers 

tend to smooth out. The fact that į=33mm shows a markedly small value of heat 

transfer  may be partly related to the fact that turbulence is greatly suppressed due to 

blockage of the upward and downward flow of fluids along the hot and cold walls 

respectively. The turbulent viscosity ratio, ȝ* (ratio of turbulent eddy viscosity 

divided by the molecular viscosity) presented in Figs.7-23a-b, shows that turbulence 

is greatly reduced as the objects come closer to the walls and supports the multi-zone 

configuration of flow as suggested by among others, Griffiths and Chen [245] . 
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(7-23a) 

 

(7-23b) 
Figure 7-23:  Turbulent viscosity ratio at mid-height and near (a) cold wall (b) hot 
wall  
 

7.6.2 Influence of proximity on mass transfer 

Detailed analyses were carried out on the vapour mass flow distributions at various 

locations of the flow domain. Typical plots of mass fraction, ―m‖ (g/kg) and buoyancy 

number, ―ζ‖ defined as the ratio of mass to temperature induced buoyancy is plotted 

in Fig.7-24 and Fig.7-25.  It can be seen that the mass fraction of vapour increases for 

the smaller į values. This is due to the smaller gap available for the flow and is 

essentially a redistribution of the moisture content throughout the flow domain. The 

buoyancy number ―ζ‖ measures the contribution to buoyancy of the variation in 
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vapour concentration. The concentration gradient is due to the difference in the 

relative molecular mass between the dry air and water vapour. At 20⁰C, the relative 

molecular mass of dry air is 28.97 kg/kg-mol, whilst for saturated air it is 28.71 

kg/kg-mol. As expected the effect due to mass induced buoyancy is small and 

corresponds to the trend in Figs.7-23a-b. 

 
Figure 7-24:  Mass fraction along the mid-height 

 

Figure 7-25:  Buoyancy number along the mid-height 

The effective diffusion coefficient, Deff of vapour shown in Figs.7-26a-b at the mid-

height. The variations and nature of these curves are very similar to the viscosity ratio 

curves presented in Figs.7-23a-b highlighting the fundamental similarity in the 

diffusive transport mechanisms of momentum and concentration. 
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(7-26b) 

Figure 7-26:  Effective diffusion coefficient of vapour at mid height and near (a) cold 
wall (b) hot wall  

7.7 Conclusions 

Simultaneous heat and mass transfer due to low turbulent buoyancy driven flows have 

been numerically scrutinised. From our calculations, the following conclusions can be 

reached:  

0 

0.2 

0.4 

0.6 

0.6 0.7 0.8 0.9 1 

D
ef

f 
 x

 1
0

0 
 (

m
²/

s)
 

x/L 

į=0.03 
į=0.05 
į=0.07 
į=0.08 
į=0.12 

0 

0.1 

0.2 

0.3 

0.4 

0 0.05 0.1 0.15 0.2 

D
ef

f x
 1

00
 (

m
²/

s)
 

x/L 
 

(7-26A) 

į=0.03 
į=0.05 
į=0.07 
į=0.08 
į=0.12 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 173 of 274 

 
 

 Flow field is characterised by low turbulence near the walls while the core area is 

essentially a stagnant region; given that an appropriate equivalent emissivity is 

obtained. 

 2D simplification of a 3D domain is possible to save computational effort. 

  Wall proximity can be seen to affect the overall heat transfer via flow field. The 

effect of turbulence is greatly reduced as the gap between the walls and the solid 

objects become smaller;  

 The flow is sensitive to the appropriate choice of eddy viscosity models and hence a 

detailed understanding of the performance of EVM is required. For the EVMs tested 

in this work, the Launder-Sharma low-Re k-İ model gave the best performance. 

 The flow field is dominated by low turbulence near the walls while the core area is 

essentially a stagnant region highlighting the fact that a multi-zone approach may be 

applicable. 

  Radiation has been found to influence the flow and the rate of heat and mass transfer 

within the cavity especially for higher emissivity values (the implication is that by a 

careful selection of material, heat transfer may be passively influenced);  

 The influence on fluid flow, heat and mass transfer due to the interaction with the 

obstacles was identified and detailed profiles have been obtained for critical 

locations.  
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Chapter 8 -  PRACTICAL CASE STUDY: FLOWS AND HEAT DOUBLE SKIN 

FACADES WITH VENETIAN BLIND 

8.1 Introduction 

The potential to reduce building cooling load and annual energy consumption is 

widely recognized in the use of devices to control solar energy gain. Double-skin 

facades (DSF) are getting more and more attention and are widely used in commercial 

buildings. In hot summer and cold winter regions, a naturally ventilated external DSF 

with venetian blinds is the most common type, due to the simple control strategy and 

good energy performance, compared with mechanically ventilated DSF. In order to 

save air-conditioning energy and to guarantee indoor thermal comfort, the 

performance of shading, ventilation and heat transfer in naturally ventilated DSF 

buildings should be analyzed and optimized.  

Although the concept is not new, its complexity and adaptability to different climatic 

conditions increase the need for further careful analysis. The fact that DSF are often 

influenced by aesthetics, their design is highly variable; hence the classification and 

the design parameters are very important. The accuracy of numerical modelling of the 

flow and heat transfer predictions in the facade will lead to less uncertainty in the 

design and construction by better adapting to the performance requirements of the 

designer. 

Our research findings as presented in previous chapters provide a detailed knowledge 

base and numerical skills to fully describe the complex interaction between 

glaze/blockages with airflow and heat transfer system in the context of building 

energy simulation to accurately quantify this potential. This chapter focuses on the 

application of the research findings in the numerical analysis of heat and airflow in a 

double skin facade with integrated solar blockage system called venetian blinds.  

The work is structured into various sections. Firstly, a detailed literature review which 

aims to highlight major factors that influence the flow and heat transfer in DSF 

systems in line with our previous investigation is presented. Secondly, a 

comprehensive numerical analysis of various aspects of facades and some parametric 

evaluation are presented. Finally, a discussion and conclusions section highlights 

some of the limitations found in the literature and recommendation for further 
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research and development needed in order to enhance the flow and heat transfer in 

Double Skin Facades. 

8.2   The concept of DSF 

In recent years, new building envelope systems have been developed in order to 

improve thermal insulation, shade solar radiation and provide suitable thermal and 

visual comfort conditions. One of these special types of envelopes is the double skin 

facade. The DSF is an arrangement with a pair of glass skins separated by an air 

corridor in front of the actual building facade [246-249]. Solar control devices are 

placed in the cavity between these two skins, which protect them from the influences 

of the weather and air pollution- a factor of particular importance in high rise 

buildings or ones situated in the vicinity of busy roads [250, 251]. A typical example 

is shown in Fig.8-1 below. 

 

Figure 8-1: Schematic of DSF flow with solar blind 

The concept of facades consists of an external screen, a ventilated cavity and an 

internal screen. Solar shading is positioned in the ventilated cavity gap, which 

influences the heat transfer and airflow due to strong buoyancy effect [252, 253]. The 

external and internal screens can be single glass or double glazed units and the depth 

of the cavity and the type of ventilation depend on environmental conditions, the 
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desired envelope performance and the overall design aesthetics of the buildings [14, 

254-256].  

The principal distinction between a DSF and a multiple glazing unit, integrating or not 

a solar protection in the cavity, lies in the possibility of controlled ventilation of the 

DSF [257]. In a traditional building the effective control of the solar gain via the usual 

outdoor blinds is in general difficult because of the interaction between the weather 

and the equipment. The additional external glazing, protecting these blinds from bad 

weather, thus creating a double-skin facade, makes it possible to solve this difficulty. 

This double layer envelope also allows the opening of the internal window and to 

carry out natural ventilation of the space. Fig.8-2 shows pictures of buildings with 

DSF system. 

 

Figure 8-2: Examples of buildings with DSF system 

8.2.1 Useful classification of facade configurations 

The Belgian Building Research Institute Study (BBRI, 2002) [258] has developed a 
classification system to describe different double-skin facade configurations.  This 
will be useful for facade selection in this study. BBRI classified facades according to: 
(a) ventilation type (b) partitioning of air cavity and (c) ventilation mode. 

a) Ventilation type: this relates to the ventilation in the air cavity situated between 
the two glazed facades which can consist of; natural ventilation and  mechanical 
ventilation 

b) Partitioning of the air cavity: this refers to the physical division of the air cavity 
where distinction is made to separate windows from facades; air-flow windows 
and  double-Skin Facades (DSF) 
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The Double Skin Facades are sub-classified into: 

 One storey height façade modules – the air cavity is divided horizontally and 
vertically at the level of each facade module. Naturally ventilated double skin 
facades with one storey-height façade modules are also known as a ‗ψox window‘. 

 Corridor façades – are characterized by a wide air cavity partitioned at the level of 
each storey. 

 Multiple storey façade – are not partitioned vertically or horizontally. The air 
cavity extends to a large height with metallic maintenance grids at the level of 
each storey allowing circulation.  

 Shaft-box façade – are very similar in nature to the one-storey height module. 
However, the modules are linked with building high vertical shaft by means of a 
bypass opening. The stack effect draws the air from the box windows into the 
vertical shafts and from there up to the top, where it is emitted. 

c) Ventilation mode: this classification relates to the origin and the destination of 
the air circulating in the cavity. Sub-classification of the ventilation mode are 
shown in Fig.8-3: 

 Exhaust air 
 Supply air 
 Static air buffer 

 External air curtain 
 Internal air curtain 

Choosing what appropriate facade classification to model is important by taking into 

account what needs to be accounted for in different configurations. Blind 

representation (positional sense) is a feature that is important in all common double-

skin facades.  

 

Figure 8-3: Schematic of the BBRI facade classification - ventilation mode 
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8.2.2 Design aspect of DSF 

The geometry and type of double skin facades are crucial for the fluid dynamics and 

heat transfer characteristics of the air inside the cavity, hence such classification is a 

guide for initial design parameters. Fig.10-4 shows the path of air ingress and egress. 

The function of the facade and the HVAC strategy is closely dependent on the 

temperature and air flow of the air between the glass layers [259-262]. The main 

characteristics that influence the properties of the air in the cavity are the cavity depth, 

pane type, type and position of shading devices, size and position of the inlet and 

outlet openings of the cavity and the ventilation strategy.  

 

Figure 8-4: Air ingress and egress to and from the DSF channel   

 

8.2.3 Literature review on DSF modeling approaches  

Although DSF are already extensively used, their thermal performance is not well 

understood [256, 259-266]. The modelling and simulation of the Double Skin Facade 

Cavity is a complicated task, since different elements interact with each other 

influencing the function of the cavity. Efforts to model the cavity are focused mostly 

on air flow simulations, calculation of the temperature at different heights and 

daylight simulations. Airflow simulations are necessary in order to predict more 

accurately the temperature at different heights in the cavity. The temperature is also 

critical when deciding the design, types and ways of ventilation and materials. 
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Different modelling approaches have been adopted by different researchers in 

modelling the airflow and heat transfer within the cavity [132, 267-273]. 

Three methods are normally used for investigating the performances of DSFs. 

Research using field experiments has shown that the use of a DSF may lead to a 

reduction in energy usage in summer of up to 15% by using natural ventilation and up 

to 30% in winter by using passive solar heating [274]. Zollner et al. [263] conducted 

parametric studies of DSFs by varying the cavity depth in a full scale experiment. The 

work indicated that the buoyant air flow inside the façade cavity induced by solar 

radiation strongly depends on the ratio of the façade height to depth and the sizes of 

the ventilation opening into and out of the façade. Smaller scale DSF experiments by 

Ding et al. [275] also demonstrated the energy saving potential of using DSFs. Other 

researchers have used mathematical analysis to study the performance of DSFs, for 

example, the thermal network model used by Paassen et al. [276, 277] and the 

component-based nodal model developed by Hanby et al.  [270] were used to simulate 

heat transfer mechanisms through DSFs.  

Traditional experimental studies often lack flexibility to conduct parametric studies 

and the level of detail from the simple network models is limited. CFD modelling can 

potentially overcome these shortcomings, although the resources needed for detailed 

3D simulations can be significant. Most of the CFD simulations work conducted to 

investigate façades with venetian blinds has been 2D (e.g. Shahid & Naylor [278] and  

Naylor & Collins [279]).  3D CFD simulation was conducted by Safer et al. [266] in 

which the venetian blinds were treated as porous media and the glazing elements as 

semi-transparent surfaces in order to reduce the mesh size. Marjanovic et al. [280] 

made other simplifications, such as reducing the façade width and height and 

increasing the thickness of the blind slats, in order to perform 3D simulations. 

The approaches for numerical modelling of the air flow and heat transfer as classified 

by Djunaedy et al. [281] are: 

 Building energy balance (BEB) models that basically rely on airflow estimation. 

 Zonal airflow network (AFN) models that are based on (macroscopic) zone mass 

balance and inter-zone flow-pressure relationships; typically for a whole building. 
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 CFD that is based on energy, mass and momentum conservation in all (minuscule) 

cells that make up the flow domain; typically a single building zone. 

Although airflow is an important aspect of thermal performance of building, its 

treatment in facade systems has been limited [282] due to inherent computational 

difficulties and lack of sufficient data. Recently, researchers [266, 283-285] are 

increasing the use of CFD approaches in modelling the air flow and heat transfer, 

since the conservation of momentum, mass and energy are solved for all nodes of the 

grid in the facade.  

Ventilated facades are already a common feature of architectural competitions in 

Europe; but there are still relatively few buildings in which they have actually been 

realized, and there is still too little experience of their behaviour in operation as 

reported by Gratia et al. [131, 286-288], Zollner et al. [263] and Pasquay T., [289]. 

For this reason the CFD analysis could be one of the most important tools to predict 

the behaviour of DSF and help architects and engineers make decisions during the 

design process.  

8.2.4  DSF with blind 

The recent trend in the research community for the numerical modelling of flow and 

heat transfer in double skin facades is focused on facades with interaction of obstacles 

with the flow and heat transfer within the cavity. These obstacles are in the form of 

venetian blinds for solar shielding and building construction elements.  

Mei et al. [290] , Safer et al. [266] and Ye et al. [291] conducted 2D numerical 

simulation to investigate coupled convective and radiative heat transfer through the 

DSF with venetian blinds inside the facade cavity. They investigated the influence of 

the blind angle in the range of 0 - 80° on the air flow and heat transfer within the 

cavity and their modelling results were validated with the measurement from a section 

of facade tested within a solar simulator, and with predictions from a component 

based nodal model. Agreement between experiment and numerical results was 

generally good and any discrepancies were caused by the implication of the CFD 

model resulting in less turbulence mixing within the facade cavity. Their results have 

shown that the presence of the venetian blinds has led to 35 percent enhancement in 
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natural ventilation flow and 75 percent reduction in heat loads for the internal 

environment and also the changes of the convective heat transfer coefficient on the 

glazing surfaces was caused by the venetian blinds with different angles.  

Wilmer Pasut and Michele De Carli [292] of the University of California at Berkeley 

investigated the performance of the two most commonly used turbulence models (k-İ 

and k-Ȧ) for simulating the naturally ventilated DSF and results validated against 

experimental data from literature. Nassim et al. [293] conducted a comprehensive 

numerical modelling of radiative and convective heat transfer of a compact double-

skin facade equipped with venetian blind and concluded that the convective heat 

transfer coefficients found were weak and only little influenced by slat tilt angles, but 

its effects on radiative heat transfer was very important, since it regulated the solar 

radiation transmitted to the inside.     

Neveen et al. [294] compared the performance of three different double skin facades 

configurations in prevailing summer conditions in a temperate climate. Their interest 

was on a possibility of air flowing from one level to the other and increasing the 

contaminant level on subsequent floors. They performed CFD simulation and 

compared cavity air velocity and temperature profiles to examine the potential for 

natural ventilation. Their results indicated that with almost similar air volumes inside 

the double skin cavity, the air velocities inside the cavity and into the rooms are 

unaffected by the changes in the outer skin configuration, and also, staggering the 

inlets and outlets of the internal skin lead to a negligible amount of return air entering 

into subsequent floors. 

Fuliotto et al. [295] used a decoupling method to evaluate thermal performances and 

analysed fluid phenomena in a DSF. Solar radiation effects were evaluated with an 

analytical model, while complex flow and thermal effect were simulated using CFD. 

The numerical results agreed well with experimental data collected on a full scale test 

room with a ventilated DSF. Mei et al. [290] investigated the effects of external 

conditions, solar irradiation and exterior air temperature on double skin facade with 

differing internal characteristics. The effect of blind blade angle on cavity 

temperatures and air flow were reported. 
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Zhu et al. [296], developed a simplified mathematical model of heat transfer process 

in double skin facade to analyze the effect of outside environmental parameters and 

dimension of facade on the temperature of the interior and facade. Their results show 

that the main factor affecting facade temperature is solar irradiance and that the 

temperature of the interior and exterior facade would be lowered by using glazing 

with low absorption coefficient to decrease the effect of solar irradiance on indoor 

environment. Also, the temperature of the interior and exterior facade could be 

lowered by increasing the depth of facade gap, but the effect of lowering temperature 

by increasing the gap by a large amount was not obvious. 

Behzad et al. [297], evaluated the effect of DSF‘s air-gap size on the amount of solar 

heat transferred through the façade envelope. They used a CFD tool to simulate six 

different strategies. Analysis of their results shows that the DSF air-gap size is an 

important factor in order to reduce solar heat gains and temperature reduction of up to 

3⁰C by well designed gap size.  

Teshome et al. [298], investigated the airflow and heat transfer for a DSF system 

equipped with a venetian blind using the RNG turbulence model for a three-level 

combination of slat tilt angle and blind position. The prediction was validated using 

experimental data collected for a mechanically ventilated DSF equipped with venetian 

blinds. The predicted trends in glass and blind surface temperatures of the CFD model 

are compared well with the experimental measurements. Their results show that the 

presence of venetian blinds influences the surface heat transfer coefficients and the 

temperature and the air distribution in the DSF system. Also, the changes in the 

position of the blinds (outer, middle, and inner) have more effect on the distribution of 

temperature, velocity, and heat transfer compared to the changes in the slat angles (0◦, 

45◦, λ0◦). 

Wong et al. [299] investigated the effects of double glazed facade with ventilation 

system on the energy consumption, thermal comfort and condensation and compared 

results with a single glazed system. Their simulated results showed that double glazed 

facades with natural ventilation are able to minimize energy consumption as well as to 

enhance the thermal comfort, and that turning the mechanical fans on could also solve 

the condensation problem due to high humidity. Mona et al. [300], investigates the 
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energy performance of a high-rise office building equipped with convectional 

insulated glazing using Energy Plus and CFD software Fluent to evaluate various 

thermal comfort parameters for the new configurations and their results show that the 

new configuration had a major impact on enhancing natural ventilation and hence a 

reduction in energy consumption. 

8.3   Limitations from the literatures 

The brief literature presented above highlight some of the research done on the flow 

and heat transfer in double Skin Facade.  These studies have shown that the 

classifications are commonly based on geometrical parameters and channel ventilation 

strategies. Some of the limitations identified from the literature are highlighted below:    

 Accurate and detailed CFD modelling of a full scale DSF for the turbulent air 

flow along with solar radiation heat transfer and the interaction of construction 

materials with the flow and heat transfer has not been reported. A thorough 

analysis will lead to less uncertainty in the design and construction by better 

adaptation to the performance requirements of the designers. 

 The effects of blinds (position sense) on the flow dynamics and heat transfer to 

the indoor space have not been quantified.  

 There is discrepancy on the choice of geometrical configuration for numerical 

modelling. Parametric studies on different coupling approaches will be a useful 

tool for saving computational cost and effort. 

 The influence of outdoor air temperature and solar irradiation on various 

parameters of the indoor space has not been quantified in detail. 

8.4  Parametric study of DSF with venetian blinds  

The facade systems of commercial buildings are the main component of the building 

envelope that receives external heat gains such as solar irradiance transmitted directly 

through the facade or indirectly as secondary heat flux from absorbed irradiance. The 

temperature increase through absorption on shading devices inside such a double 

facade depends on air volume flow rates and the optical characteristics. The effects of 

external conditions, such as solar-irradiation and outdoor air temperature were 
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investigated with differing internal characteristics which are presented and analysed. 

In particular, the effect of the solar-blockage angles and its positioning within the 

DSF channel on the airflow and thermal performances of the cavity and the indoor 

space is reported. The quantified values will serve as an outline and guidance to assist 

designers of such facades.  

 The objective of this study is to perform a detailed numerical model for the airflow 

and heat transfer phenomena in the DSF system to study the influence of the location 

of the blinds and the slat angle on the temperature and air distribution in the air cavity 

and on the glass surfaces. Also investigated is the influence of external environment 

temperature and solar irradiation. The result of the research is an improved 

understanding of the thermal and air flow behaviour of such ventilated double skin 

facades. 

8.4.1   Case description 

In this study we are interested in a compact one floor DSF geometry similar to the test 

case used in the experimental study of Mei et al. [290]. Apart from aesthetic 

considerations, the main reason for using the configuration is summarised as follow: 

 High level of natural lighting and sound insulation contribution. 

 Increase of natural ventilation contribution. 

 The internal environment is protected from wind and pollutants. 

 Cooling load reductions if a solar blockage system is installed. 

 Low risk of condensation on transparent surfaces because of the continuous air 

movement. 

The test facility (Fig.8-5) is located in an environmental chamber and consists of a 

solar generator, a DSF and controlled internal environment located behind the inner 

glazing. The DSF consists of a single outer glazing element; venetian blinds were 

situated at one-third of the facade.  Solar heat flux is generated from a full-scale solar 

generator which is located at the front of the facade. Only direct solar radiation is 

considered in the CFD model as the diffuse effects were expected to be negligible. 

The Rayleigh numbers based on the channel height for all the cases investigated are in 

the order of 109 to 1010 which is within the range of flows addressed in this thesis. The 
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primary input data are the outdoor/indoor air temperature, solar irradiation from the 

solar generator and heat transfer coefficient of the facade walls. 

The main dimensions of a double skin were taken from the experimental work of Mei 

et al. [290], as shown in fig.8-6. The external environment dimensions are 3.8m high 

by 0.6m wide and 1.28m depth. The outer skin of the facade is a single 12mm thick 

clear glass pane. The external glass area is 1.28m and 1.91m high. Both the air intake 

and exhaust of the DSF are designed as a commercial grille arrangement to permit air 

flow through the cavity. The grilles are 0.24m high and 1.45m wide. Each grille 

(inclined at 30⁰ to the horizontal line) has three 0.045m high spaces for air ingress and 

egress. The inner glass area is 1.28m by 2.44m high.  

The sun-shading blind is a Venetian type blind (solar-blockages). The blind is made 

of aluminium and is 2.1m high and 1.45m wide. The blind blades are 80mm wide and 

the blind is located at one third of the cavity width as measured from the outer skin of 

the external glaze. The cavity formed by the outer and inner layer is ventilated and 

frequently contained a blind. This blind, together with the cavity ventilation, provides 

a means to control the heat transfer across the facade, in terms of solar gain 

transmission and recovery of heat lost from the interior.  

 

Figure 8-5: Test chamber showing solar generator and DSF , Mei et al. [290] 
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Figure 8-6: Schematic description of the model (į=blind proximity from external 
glaze) 

The current study addresses the limitations from the literature findings as reported 

earlier. Numerical parametric studies are done for the heat transfer problem in order to 

fully describe the gain to the indoor space. The convective and long-wave radiation 

fluxes were modelled in addition to the transmitted solar flux. A parametric study was 

conducted to quantify the influence of several factors of the air flow and heat transfer 

by the DSF. The factors investigated are;  

1. Modelling strategies 

2. Solar irradiation 

3. Solar blockages 

I. Solar blockages proximity from the external glazing 

II.  Solar blockages inclination angle from the vertical centre-line 

4. Environmental air temperature influence. 

Fig. 8-7(a-b) gives the schematic of the facade with the external and the internal 

environment and the DSF ventilation pots (air ingress and egress) 
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(8-7a) 

 
(8-7b) 

Figure 8-7: Schematic diagram: (a) computational domain, (b) ventilation of the DSF 
geometry 
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8.4.2 Modeling strategies 

Several solution techniques exist for the numerical modelling of DSF system in the 

open literature. There seem to be no studies to evaluate the influence of the different 

modelling strategies based on coupling and/or decoupling of the external and/or 

internal environmental conditions with the DSF channel flow and heat transfer. This 

current study aims to resolve this uncertainty by quantifying the influence of different 

modelling approaches for the airflow and heat transfer. Four different cases of 

modelling strategies were considered as shown in Fig.8-8a-d. These are (a) DSF 

channel + outdoor fluid + indoor fluid, Case 1., (b) DSF channel + outdoor fluid, Case 

2., (c) decoupling the DSF flow with the internal and external environments, Case 3., 

and (d) DSF channel + indoor  fluid, Case 4. For simplicity, the outdoor environment 

wind speed is not considered. For the investigation into the influence of solar 

blockages inclination and proximity, the configuration used is that of the DSF cavity 

coupled with the internal environment (heat output) only. This arrangement was used 

for the studies (solar irradiation, solar blind and outdoor temperature influence) 

because of our interest in evaluating some key parameter in the indoor environmental. 

 

Figure 8-8: Modelling geometrical cases (a) case 1 (b) case 2 (c) case 3 (d) case 4 
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8.4.3 Solar irradiation and blockage influence 

The solar blockages angle and solar irradiation are very important, since they regulate 

the amount of radiation transmitted to the indoor environment. Heat exchange 

between the glazing elements and the surrounding occurs by conduction, convection 

and radiation. The solar irradiance values used in this investigation range from 

120W/m² to 715W/m² BBRI, 2002 [258]. Parametric study on the influence of the 

solar blockages on the airflow and heat transfer to the indoor space, in particular the 

effects of different blockages location/inclination within the DSF channel on energy 

transfer are studied.  

It is important to quantify the airflow and thermal behaviour of the indoor 

environment due to the blockages inclination angle since it regulates the amount of 

solar heat and visible solar flux transmitted to the indoor space. This parametric study 

is aimed at finding the optimal location of the solar blockages devices in order to 

achieve a high air flow within the DSF channel. If this can be guaranteed, the risk of 

an undesirable facade overheating can be avoided. It is assumed that the angles of 

inclination (  in Fig.8-6) which the solar-blockages make with the vertical axes can 

be adjusted to achieve a series of blockage inclination angles from the vertical centre-

line (15⁰, 30⁰, 45⁰, 60⁰ and 75⁰). Also the proximity of blinds, į also shown in Fig.8-
6, the external glazing can be varied for values of 0.104m, 0.195m, 0.287m, 0.379m 

and 0.470m. The outdoor and indoor air temperature is fixed at 20⁰C for all solar 

irradiance values used in the simulation. 

8.4.4 Outdoor temperature influence 

 The air flow and heat transfer of the facade are evaluated by carrying out a detailed 

numerical study on the external environmental temperature variation ranging from 

10⁰C to 40⁰C at an inlet velocity set at 0.15m/s. The tests for the influence of solar 

blockage, modelling strategies and environmental influences were carried out at fixed 

conditions of 715W/m² irradiance and 20⁰C temperature for both indoor and outdoor 

environments.  
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8.5 Solution method for coupled DFS Flow with solar irradiation  

In this section the issues of airflow and irradiation modeling are discussed in some 
detail in order to highlight the specific matters in the context of DSF. The 
fundamental methodology and the governing equations are mostly the same as given 
in Chapter 3.  

8.5.1 Airflow modeling 

A comprehensive numerical modelling of solar radiation and convection heat transfer 

of a compact DSF equipped with solar blockages is carried out. Calculations were 

performed using the commercial CFD package FLUENT 14.0. Turbulence was 

modelled using the Launder-Sharma low Reynolds number of the k-İ model. In the 

3D full scale coupled DSF model a non-uniform structured and unstructured mesh 

density of about 6million was used.   for the final mesh was found to be 1 for all 

surfaces.  

As mentioned before, the process of computing a steady-state solution using a very 

fine mesh has been quite challenging as a result, a number of steps were taken to 

achieve the solution as described in section 4.3. Briefly, the energy and the radiation 

equation were decoupled from the momentum equation and were solved first. When 

the temperature on the components developed sufficiently, the flow equations were 

then solved together with the radiation equation and iterated to convergence. The 

large difference in the thermal conductivity between the air and the aluminium blinds 

may result in numerical round-off error, which caused global imbalances of energy as 

oscillation. Therefore, the simulation was run in double-precision to overcome this 

problem. All simulation cases used the second-order upwind scheme for all the 

variables except for pressure. The pressure discretization used the Body Force 

Weighted scheme. Table 8-1 shows the values of the Under-Relaxation factors. 

Table 8-1: Under-Relaxation parameters used in the simulation 
Pressure  0.3 
Density 0.8 
Body Force 0.8 
Momentum 0.3 
Turbulence kinetic energy 0.5 
Turbulence dissipation rate 0.5 
Turbulence viscosity 0.8 
Energy 0.9 
Discrete Ordinate  0.8 
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The calculations were started with reduced under relaxation factor for energy and 

discrete ordinate and gradually increased to the final values as shown in Table 8-1 to 

keep the residuals stable. All calculations are done with a steady state formulation of 

the numeric solver, as additional transient investigations did not achieve higher 

accuracy. The angular discretization used in the DO modelling for the localized heat 

source is 6x6 divisions. A sensitivity study of the angular discretization was 

performed by starting with 2x2, then 4x4, and so forth until there is no considerable 

change in maximum temperature at 6x6 divisions.  

8.5.2 Delimitations 
Some delimitation had to be made in order to focus the work on the essentials and to 

be able to make appropriate simplifications, the delimitations are: (a) Only one double 

skin facade geometry is considered. (b) The only heat source is from the beam from 

the solar generator. (c) Boundary condition will represent one specific point in time. 

(d) The external and internal glazing is modelled as a semi-transparent material. (e) 

The solar blockages are modelled as opaque walls, and the scattering in the glazing 

surface are assumed to be neglected. (f) The thermal conductivity of the glazing 

material is assumed to be constant and independent of its temperature. (g) air inside 

the double-skin and the air of the double glazing are modelled as a transparent 

material. (h) Only the inside face of the interior glazing communicates convectively 

with the indoor space, as opposed to both glazing and solar-blockage surfaces. 

8.5.3   Solar irradiation modeling  

Solar ray tracing options of the solar load model [301] (FLUENT 14.0) were 

employed to calculate radiation effects that enter the computational domain. The ray 

tracing approach is highly efficient and a practical means of applying solar loads as 

heat sources in the energy equations and it provides a practical tool for determining 

the solar heating effect inside a building. The solar load model of the ray tracing 

algorithm is used to predict the direct illumination energy source that results from 

incident solar radiation.  It takes a beam that is modelled using the incident solar 

radiation position vector and illumination parameters and applies it to any or all wall 

or inlet/outlet boundary zones, performs a face-by-face shading analysis to determine 
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well-defined shadows on all boundary faces and interior walls, and computes the heat 

flux on the boundary faces that results from the incident radiation. 

Solar Ray Tracing is not a participating radiation model. It does not deal with 

emission from the surfaces. The reflecting component of the primary incident load is 

distributed uniformly across all surfaces rather than being local to the surfaces 

reflected to. Surface emission is an important factor in our study; therefore we 

implement a radiation model (Discrete Ordinates method) in conjunction with the 

Solar Ray Tracing. The discrete radiation model is coupled with the solar ray tracing 

model to deal with emission from surfaces, and the reflecting component of the 

primary incident load through the computational domain.  

Direct solar irradiation from a solar generator is transmitted by radiation and some by 

natural convection through the glazing elements of the DSF to the temperature 

controlled internal environment located behind the inner glazing.  Some of the 

radiation emitted by the solar simulator is transmitted through the glazing elements, 

while some is reflected and some is absorbed. The flow iterations per radiation 

iteration were specified as 5(since radiation is the dominant mode of heat transfer in 

the computational domain). For the angular discretization parameters, the value 3 was 

used for Theta Divisions and Phi Divisions and 6 for Theta Pixels and Phi Pixels. 

8.5.4   Conduction model of the glass wall 

In order to obtain the temperature profile at the glass wall, FLUENT uses a 

differential energy balance equation to determine the conductive heat flux. The heat 

transfer equation for the differential element of the glass wall in two dimensions is 

given by;                                                                                                       
Where   is the attenuation energy function by absorption and scattering, which 

depends on the extinction coefficient      as shown in equation (10-2) [302].                                                                                                                  
Where I is the solar radiation,    is the thickness of the glass. 

The boundary condition for the glass walls is expressed in equation (10-3) [x=W+Lg]: 
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Where      is the outdoor ambient are temperature 

 

Figure 8-9: Schematic representation of the heat transfer analysis. 

The velocity boundary conditions on the walls are zero and temperature boundary 
conditions are set as: Bottom adiabatic wall (wall 1):                   

Isothermal vertical wall (wall 2):             

Top adiabatic wall (wall 3):                 

Glass vertical wall (wall 4):                          

Where         ,          and         are the conduction heat fluxes for wall 1, 3 and 
4 respectively. 

8.5.5   Thermal parameters 

The total heat transfer across the glass wall is given by the Nusselt numbers. The total 
heat transfer involves the contribution of the convective and radiative Nusselt 
numbers which can be expressed as:                                                                                                                   
Where: 
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8.5.6   Numerical modeling parameters 

The materials used for the simulations are transparent media (air), semi-transparent 

solids (glazing) and opaque solids (venetian blinds). The key parameters of these 

materials for air flow and heat transfer are shown in Tables 10-2 and 10-3. The air 

density is set as a function of temperature using the Boussinesq approximation 

method.  This method treats density as a constant value in all solved equations, except 

for the buoyancy term in the momentum equation (equation (3-3).  

Table 8-2: Thermo-physical properties of air at 20⁰C 

Property Dry-air at 20⁰ C 
Density (kg/m3) 1.2047 
Specific heat (J/kg-K) 1006.1 
Thermal conductivity (w/m-) 0.0256 
Absorption coefficient (1/m) 0.01 
Refractive index 1 
Dynamic Viscosity (kg/m-s) 1.821 x 10-5 
Thermal diffusivity (m2/s) 2.112 x 10-5 
Thermal expansion coefficient (1/K) 3.411 x 10-3 

Prandtl number 0.7156 
 
Table 8-3: Thermo-physical properties of the material used in the simulations 

Property Single 
glazing 

Double 
glazing 

Venetian 
blinds 

Passive 
walls 

Density (kg/m3) 2500 2500 2719 10 
Specific heat (J/kg-k) 840 840 871 830 
Thermal conductivity (w/m-k) 1.7 1.7 202.4 0.1 
Absorption coefficient (1/m) 30*  

3000* 
30*   
1285.7** 

- - 

Refractive index 1.5 1.5 1.44 1 
Emissivity  0.84 0.84 0.7 0.58 

** For wavelength 0–2.7 micrometers and * for wavelength 2.7–1000 
micrometers  
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The external glazing element whose outer surface is exposed to ambient air is 

modelled as an internal wall with cells on both sides, so that there is also a shadow 

zone corresponding to it. The shadow is facing the fluid zone. The inner and the outer 

surface of the glazing elements are set to semi-transparent conditions. This allows 

radiation to be transmitted through the wall between the adjacent participating cell 

zones. It also calculates the effect of reflection and refraction at the interface. These 

effects occur because of the change in refractive index (set through the material 

properties) and are a function of the incident angle of the radiation and the surface 

finish. In our case, the glazing element is assumed to have a very smooth surface so 

the diffuse fraction is set to 0.  

The DFS cooling mechanism on the outer surface of the glaze is by natural convection 

and radiation. The convective heat transfer is taken as 25 W/m²k  following BBRI, 

2002 [258]. It is worthwhile to mention that the effect of environmental condition and 

wind speed can be partially modelled via the heat transfer coefficient. 

8.5.7 Boundary conditions 

In the computational domain, glazing elements are modelled as semi-transparent 

solids and venetian blinds as opaque solids. The semi-transparent glazing elements are 

spectrum selective of radiation transfer, i.e., short wave radiation (solar) has a very 

high transmittance while long wave (thermal) radiation has a very low transmittance. 

These have been modelled using a ‗two-band‘ spectrum model (AζSYS FUEζT-14). 

The solar band corresponds to wavelengths smaller than 2.7 micrometers, and the 

thermal band to wavelength larger than 2.7 micrometers. All glazing materials are 

considered as participating in radiation, which enables transmission and absorption of 

radiation inside the DSF. 

The surface of the external glazing element is mainly cooled by natural convection to 

the surrounding. As these walls are transparent it must also lose radiation to the 

surroundings, while the surroundings will supply a small source of background 

radiation associated with the temperature. Therefore a mixed thermal condition was 

applied to provide the source of background radiation as well as to calculate the 

convective cooling on the external glazing. The source of the background radiation is 

added directly to the discrete ordinate (DO) radiation equation. The background 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 196 of 274 

 
 

radiation was supplied from the thermal conditions. An external emissivity of 1 is 

used, in keeping with the assumption of a small object in a large enclosure [303]. For 

a semi-transparent wall the internal emissivity has no effect as there is no absorption 

or emission of the surface.  

It is assumed that the glazing elements are clean and there are no particles in the air to 

scatter the radiation in different directions, the scattering coefficient is set to zero 

(assuming zero humidity). Conduction in the solar blockage thickness (0.001m) is 

modelled as a thin wall by using the shell conduction thermal condition and with the 

help of text user interface to achieve robustness; the command ignores the secondary 

gradient for highly skewed shell conduction cells. This allows the solver to grow 

layers of prism to model conduction in the planar direction according to the specified 

thickness. The absorptivity and transmissivity of all glazing and opaque material is 

given the Table 8-4. This applies to the long wave (infrared) and short wave (visible) 

bands.  These radiant properties are obtained from ASHRAE fundamentals handbook 

2010 [304]. 

The spectral transmission and absorption behaviour of glass was considered in the 

definition of material properties and especially in the implementation of the radiation 

model. Glass has a high transparency for visible light, but it is nearly impermeable for 

infrared radiation with a wavelength beyond 2.5 micrometers. 

Table 8-4:  Solar radiance properties of materials used 

Surface Material Radiant properties 
External glass Single glazed clear glass                                                    
Internal glass Double glazed coated 

glass 
                                                   

Venetian blind Aluminium                  

Were,  represents absorptivity   represents transmissivity. The transcripts v, IR and D 
represents visible, infrared and diffuse hemispherical components respectively. 

The external wall is exchanging heat with a convection coefficient ―h‖ chosen 

according to the European standards for building design [305]: the convective heat 

transfer coefficient of the external glazing is 25.0 W/m²-k, and that of the internal 

glazing is 7.7 W/m²-k. The external and internal temperatures were both fixed at 
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20ºC. The upper and lateral walls are considered adiabatic and they do not participate 

in the solar ray tracing. Surfaces outside the double skin and the air ingress and egress 

are modelled as a pressure inlet and pressure outlet with the same gauge total pressure 

of 0. The boundary of the air ingress and egress are modelled as a pressure inlet and 

pressure outlet with the same gauge total pressure of 0, and in order to improve the 

result quality an angle the same as the ingress grille angle (30ᴼ) was used for the air 

direction in the ingress boundary condition. For the modelling strategies study, the 

boundary conditions used for the external and internal boundaries are represented in 

Fig. 8-7a-b. 

8.6 Results and discussions 

Fig.8-10 shows the schematic where all parameters were evaluated.  

 

Figure 8-10: Schematic showing lines along the central plane were parameters are 
evaluated. 

Convective and solar heat transfer were evaluated at the internal glazed (1 & 2) and 

indoor wall surfaces. The domain widths are the outdoor (x1), DSF channel (x2) and 

indoor domain (x3 and x4). The horizontal temperature profile near the top wall of the 
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indoor space was also compared for different parametric study. ―Y‖ represents 

vertical line at mid-width of the indoor fluid domain. The solar flux field has also 

been presented for the investigation of the influence of a solar blind on heat transfer. 

Numerical results for the geometrical modelling strategies have been presented first 

followed by the results on solar irradiation. Solar blind positioning and inclination 

angle within the DSF channel are then presented, along with variation of outdoor air 

temperature.  

8.6.1 Modeling strategies 
  
As stated earlier, the modelling approach cases used in this study are: Case 1 (DSF 

channel + outdoor + indoor fluid zone), Case 2 (DSF channel + outdoor fluid zone), 

Case 3 (DSF channel only) and Case 4 (DSF channel + Indoor fluid zone) as shown in 

Fig.8-8. The mesh density and computational effect are presented in Table 8-5. 

Table 8-5:  Computational efforts for all modelling strategies studied 

Cases Number of cells 
(Million) 

Time (hours) to reach 
converged solution 

Case 1(DSF) 4 96 

Case 2 (DSF + indoor) 5 120 
Case 3 (outdoor + DSF) 5 120 
Case 4 (outdoor + DSF + Indoor) 6 I44 

 
The predicted temperatures are plotted in Figs.8-11a-d along chosen lines x1, x2, x3, 
x4 and Y as shown in Fig.8-10. 
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(8-11b) 

 
(8-11c) 

 
(8-11d) 

Figure 8-11: Temperature profile at (a) at mid-height of the outdoor environment (b) 
mid-height of the DSF channel (c) mid-height of the indoor environment (d) mid-
width of the DSF channel (=H/2) 
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Table 8-6:  Average surface heat flux 

 Surface Average Wall Heat Flux (W/m²) 

Case 1 Case 2 Case 3 Case 4 

Internal glaze 1 40.7 40.59 40.88 41.01 

Internal glaze 2 35.61 35.97 35.69 35.74 
 

Table 8-7: Average solar heat flux 

 Surface Average Solar Heat Flux (W/m²) 

 Case 1 Case 2 Case 3 Case 4 

Internal glaze 1 61.03 60.9 60.88 60.57 

Internal glaze 2 32.85 32.66 33.14 32.91 

Fig.8-11a shows the temperature profiles at the mid-height of the DSF cavity for all 

cases tested; it can be observed that the maximum average temperature difference 

between all cases is about 0.4⁰C. Also, the temperature profile of the indoor 

environment (case 2 and 4) at the mid-height is presented in Fig.8-11b and again there 

is no significant temperature difference between the two cases. Finally, Fig.8-11d 

shows the temperature profile at the mid-width of the DSF channel for all cases and 

Tables 8-6 and 8-7 show the average wall and solar heat fluxes at the double-glazing 

and internal glazed-1 is facing the DSF channel zone and internal glazed-2 facing the 

indoor zone respectively. It is observed that the relative difference in the results is not 

very significant compared to the average temperature and heat fluxes (wall and solar). 

Therefore, for all four modelling strategies employed in the study, there appears to be 

no significant difference in the key parameters responsible for the heat transfer which 

eventually determine the performance of the DSF, provided all indoor and outdoor 

boundary conditions are determined accurately. However, inclusion of external and 

internal environments can be useful if there is a need to investigate the behaviour of 

these environments. But, it will be less cost effective and also save computational 

effort by not including these domains in computations if the primary need is to 

numerically model the DSF channel only as is evident from Table 8-5. It is also clear 

that case-4 allows freedom in simulating complex environment scenarios.  
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8.6.2 Influence of solar irradiation 

Solar irradiation measures the total amount of solar radiation which is transmitted to 

the surface of the external glass and then transmitted through the DSF to the indoor 

environment. The values of irradiation employed for the analysis ranged from 120 to 

715W/m². For all results presented in this section the internal facade is closed with no 

free window ventilation, and the computational domain involves coupling the DSF 

domain with the indoor domain (case-2). Angle of inclination of the solar blockage 

and the indoor wall temperature are fixed at 45⁰ and 20⁰C respectively. Therefore, the 

heat transfer to or from the indoor space are due to the combined effects of radiation, 

conduction and natural convection on the internal glazing surface.  

 
Figure 8-12: Horizontal velocity profile at mid-height of the internal wall 

 
Figure 8-13: Horizontal temperature profile at mid-height of DSF channel 
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(8-14a) 

 

(8-14b) 

 

(8-14c) 

Figure 8-14: Internal environment temperature profile at (a) mid-width (b) mid-height 
(c) at mid-height - near internal glaze  
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(8-15a) 

 

(8-15b) 

 

(8-15c) 

 

(8-15d) 

Figure 8-15: Average values of (a) temperature - internal glaze-2 (b) transmitted 
visible solar flux - internal glaze-2   (c) solar heat flux at the indoor wall (d) surface 
heat flux at indoor wall 
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(8-16a) 

 
(8-16b) 

 
(8-16c) 

Figure 8-16: Turbulence quantity profiles (a) Reynolds stress         at mid-height - x3 
(b) kinetic energy at mid-height – x3 (c) viscosity ratio at mid-height DSF – x2 
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In order to quantify the effects of varying irradiation, air velocity, temperature and 

average heat fluxes are plotted in Figs.8-12 - 16. It appears that the increase of the air 

velocity, local temperature and average wall and transmitted heat fluxes are more or 

less directly proportional to the irradiance.  

Fig.8-12 shows the velocity profile at the mid-height of the indoor space, the 

maximum airflow for all cases is close to the surface of the internal glazing and their 

peaks are at 0.03m from the glazing element. The highest velocity is 0.12m/s 

corresponding to the 715W/m² and the lowest peak of 0.06m/s corresponds to 

120W/m². This pattern is typical of buoyancy driven convection which is influenced 

by the rate of heat transfer.  

The temperature profiles at the mid-height of the DSF channel are presented in Fig.8-

13, and as expected, the air temperature at the surface of the solar blockages gives a 

slightly different gradient which is due to the large difference in the thermal 

conductivity between the solid surface of the solar blockage and the air (about 

4688:1). The highest temperature corresponds to 715W/m² irradiance, while the 

lowest corresponds to the lowest solar irradiance (120W/m²). A maximum 

temperature difference of about 10⁰ C at the surface of the solar blockage is observed. 

The temperature profiles at the mid-height and mid-width of the indoor space follow 

similar trends as shown in Fig.8-15a- c. 

Figs.8-15a-d show the average surface temperature, transmitted visible solar heat flux, 

average solar heat flux and average surface heat flux profiles for the internal glazing 

element for all values of solar irradiance. The heat fluxes display a linear relation with 

irradiation. Furthermore, the turbulent quantities at the mid-height of the indoor space 

were quantified by plotting the turbulence quantities of Reynolds stress, kinetic 

energy, and viscosity ratio as a function of the solar irradiance, shown in Figs.8-17a-c 

respectively. All plots show that the turbulent quantities increase with increases in the 

solar irradiance.  

8.6.3 Influence of solar blind positioning from the external facade 

As already mentioned, one of the main advantages of the DSF is that it allows the 

possibility of installing an integrated solar blockage system which is protected from 
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wind and weather. Its heating behaviour due to the incident solar irradiation 

contributes significantly to the development of a free convection air flow. This is 

important to quantify the optimal location of the solar blockages to achieve a high 

airflow rate within the DSF channel. Hence, the risk of an undesirable facade 

overheating can be avoided. Different blockage locations have been modelled and 

results presented in Figs.8-17- 19. The distance between the solar blockage and the 

external glazing element (į in Fig.8-6) was varied from 0.104m to 0.379m.  

It can be observed that the total solar transmission is relatively unaffected by the 

changes in the blind position within the DSF channel. However, the scattering effect 

of the solar blockages relative to its location in the glazing/shading array can become 

important. The results presented in Figs.8-17- 18 shown that at certain distance from 

the external glazing in the DSF channel, the temperature and heat transfer to the 

internal environment can be maximized. Therefore, optimised DSF channel 

ventilation can be achieved if the solar blind is located at about 0.195m from the 

external facade.  

With this configuration, slightly higher air flow rates in the facade channel can be 

obtained as can be seen in Fig.8-20. Also, high air temperatures appear between the 

solar blockage and external facade. The heating of the solar blockages element is the 

driving mechanism for the DSF channel ventilation, air flow rate through the channel 

will rise with increasing irradiation. Thus, it is possible to transfer heat of up to 19% 

of the incident solar irradiation. This effect is shown in the plots of the local 

temperature and heat transfer as a function of į values (Figs.8-18a- b). The final effect 

is evident through the temperature difference between the DSF channel and the 

internal environment as shown in Figs.8-16- 17. 

Turbulent kinetic energy profiles are shown in Fig.8-19, demonstrating that 

turbulence is generally suppressed due to the blockage proximity which was also 

observed in chapter 6 (section 6.3.2). For the case where the solar-blockages are much 

closer to the glazing layers the heat transfer is enhanced. This is believed to be due to 

the location of the blockages closer to the glazing surface which means that the 

turbulent boundary layer caused by the blockages is sufficiently thin so that it 

overlaps with the thermal boundary layer of the glazing surfaces. 
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(8-17a) 

 
(8-17b) 

 
(8-17c) 

Figure 8-17: Temperature profile at (a) mid-height of DSF channel (b) mid-height of 
the indoor environment (c) mid-width of the indoor environment, L3. 
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(8-18a) 

 
(8-18b) 

Figure 8-18: (a) Average surface heat flux at indoor wall (b) average temperature at 
the internal glaze-2  

 

Figure 8-19: Turbulent kinetic energy profile measured at mid-height of the indoor 
environment 
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Figure 8-20: Vertical velocity profile at mid-height of the indoor environment 

8.6.4   Influence of solar blind inclination angle 

The ability to quantify both solar and thermal aspects of energy transfer in 

glazing/blockage systems allows us to investigate the effects of solar blockage angle 

on the different components.  Calculations were carried out for a fixed solar irradiance 

of 715W/m² and the thermal condition of indoor and outdoor environment were both 

fixed at 20⁰C. The solar blockages as shown in Fig.8-6 were set at 30⁰, 45⁰, 60⁰ and 

75⁰, where 30⁰ and 75⁰ relate to almost fully closed and almost fully opened 

respectively.  The thermal behaviour of the indoor environment as a result of varying 

the solar blockage angle is presented in Figs.8-21- 25 and the average values of heat 

flux and temperature are shown in Table 8-8.  
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(8-21b) 
Figure 8-21: (a) Contour of solar heat flux at the surface of the internal glaze-1 and 
the blinds  (b) contour of transmitted visible solar flux at the surface of the internal 
glaze-1 and the blind. 
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(8-22b) 

Figure 8-22: Temperature profile at (a) mid-height of the indoor space (b) near the top 
wall (0.094 from top wall) of the indoor space 

  
Figure 8-23: Velocity profile near the top wall of the indoor space 

 
Figure 8-24: Turbulence intensity at mid-height of the indoor space 
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Table 8-8: Average parameters evaluated at internal glaze–2 

Blind angles 
 (⁰) Temperature  

(⁰C) 
Heat flux 
(W/m²) 

solar heat flux 
(w/m²) 

Transmitted visible  
solar heat flux (w/m²)  

30 25.25 14.35 18.79 6.99 

45 28.28 16.95 23.22 29.80 

60 30.15 21.86 28.58 57.67 

75 33.51 26.67 34.80 89.80 

No blind  39.33 37.77 45.80 124.20 

 
 

 

Figure 8-25: indoor wall average surface heat flux as a function of blind angle 
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Figs.8-21a –b show contours of solar heat flux and transmitted visible solar flux for 

the surface of internal glazing-1and the blinds. The results demonstrate that there is a 

direct relationship between the blind inclination angles and the transmitted solar heat 

flux and the visible solar heat flux. The solar heat and visible solar fluxes transmitted 

are higher with increased solar blind angle, as a result, the radiative and convective 

gains to the indoor space are noticeably higher (Fig.8-25).  Similar behaviour is also 

10 

45 

80 

115 

150 

30 45 60 75 

A
ve

ra
ge

 F
lu

x 
(W

/m
²)

 

Blind angles  (⁰) 

Radiative heat flux 
Absorbed visible solar flux  



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 213 of 274 

 
 

observed with the average temperature distribution at the internal glaze-2 and the 

average heat flux of the internal glaze-2, average solar heat flux of the internal glaze 

surface and the transmitted visible solar heat flux (Table 8-8). The blind angle also 

affects the turbulence level of the indoor air as shown in Fig.8-24. 

8.6.5 Influence of outdoor air temperature  

In order to quantify the influence of the outdoor air temperature on the thermal 

behaviour of the indoor space, different outdoor temperatures were tested (10⁰C, 

20⁰C, 30⁰C and 40⁰C) and their influence on the indoor space were evaluated. All 

tests were done at a fixed solar irradiance of 715W/m². The effects of outdoor 

temperature on the indoor temperature and air flow are shown in Figs.8-26 and 27 

respectively. There seems to be a direct relationship between outdoor temperature and 

the indoor flow and temperature plots as a function of outdoor temperature.  

Fig.8-27 shows the comparison of the air velocity at mid-height of the indoor space 

(L3) and Fig.8-26a- b are the temperature profiles evaluated at mid-height (x3) and 

mid-width (Y) of the indoor space respectively.  It is observed that, the outdoor air 

temperature influences the indoor air temperature and flow. The maximum increase of 

indoor air temperature corresponds with the optimal outdoor air temperature (40⁰C) 

used in this investigation. Similarly, the turbulent kinetic energy profile (Fig.8-27) 

displays similar variation to the change in the outdoor temperature. 
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(8-26b) 

Figure 8-26:  Indoor temperature profile at (a) mid-height (b) mid-width 

 

Figure 8-27:  Turbulent kinetic energy at mid-height of the internal environment 

8.7 Conclusion 

The need to fully describe the solar and thermal characteristics of complex 

glazing/blockages systems is critical for providing the necessary inputs into building 

energy simulations to assess the potential in energy saving. The correct behaviour of a 

DSF is the key to increasing energy savings and hence requires the structure to be 

carefully designed. In this study, detailed CFD results of a DSF system are presented. 

The current study complements previous study of Mei et al. [306] by addressing the 

detailed heat transfer due to the influence of solar radiation intensity, influence of 

solar blockages and influence of external environment thermal condition and provides 
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a comparative analysis of the net heat gain to the indoor environment and the relative 

magnitude of its components.  

Sensitivity analysis for different numerical modelling strategies has been conducted 

for four different cases which include: channel, outdoor-channel, channel-indoor and 

then outdoor-channel-indoor fluid domains. It was observed that there is no 

significant difference in the quantification of the thermal behaviour for tested 

configuration. Therefore, it is recommended to model the DSF channel in isolation if 

the outdoor or indoor spaces are not key factors for the airflow and heat transfer. 

However, the outdoor and the indoor thermal boundary conditions must be well 

defined.  

Solar irradiance and outdoor air temperature were shown to affect the airflow and heat 

transfer in the indoor environment. It is evident from the results that the airflow, 

temperature and heat transfer to the indoor space increase with increasing values of 

the irradiance. The effects of the solar blockage inclination angles located in the DSF 

channel were analysed. Heat gain into the indoor space and its components are 

moderated by the solar blockages device.  

The solar blockages device within the cavity can be considered to separate the cavity 

into two vertical chambers, in front of and behind the blockages. It is concluded that 

the blockages have a significant influence on the thermal and airflow performance of 

the facade. If the solar blockage device is almost fully closed (30⁰ inclination), the 

‗front chamber‘ of the cavity and the blockage element itself will have higher 

temperatures than if it was opened. In contrast, the temperature behind the solar-

blockage device will be higher if the solar-blockage device is almost fully opened 

(75⁰ inclination). The net heat gain to the indoor space is dominated by transmitted 

solar radiation, with a small contribution from the radiative and convective fluxes.  

This is the expected result with a non-shaded glazing which does little to block the 

solar radiation. With closing the solar blockages (30⁰), heat transfer to the building 

can be minimized to about 85% of the incoming solar energy. 

In general, the net heat gain to the indoor environment can be reduced considerably 

with solar blockage devices (venetian blinds) in place. The energy efficiency of the 

DSFs can be enhanced by controlling the slat angle of the solar-blockage device. The 
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optimum solar blockages position in terms of energy saving is 0.195m where the heat 

transfer to the indoor space is minimum.  

The influence of outdoor air temperature on the indoor temperature should be 

carefully taken into consideration for an optimum thermal performance of the DSF 

system. The overheating effect that could arise in summer conditions inside the DSF 

with closed configurations can be avoided by the communication between the gap and 

the external environment air. Solar gains in buildings are desirable in winter-time, but 

problematic in summer, as they may cause overheating and discomfort; for this reason 

the external layer should remain open in the hot season, this will give the air the 

possibility to escape from the channel. 
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Chapter 9 -  CONCLUSIONS AND FUTURE WORK 

9.1 Summary of the Research Work 

Over the last three decades, researches on natural convection flows and heat transfer 

in an enclosed environment has experienced rapid growth due to the growing demand 

for detailed quantitative knowledge of the transfer processes and also due to its 

relevance in many practical applications. The basic set up for such flows, which has 

attracted most attention from researchers, is an air-filled rectangular cavity whose 

vertical walls are heated differentially. In recent years the trend in buoyancy driven 

flow research has shifted to the examination of cavity flow with blockages which are 

disconnected. Most of the studies in this category are concentrated on steady state 

laminar flow with a very limited number of works on higher range. An important 

aspect of this type of flow which has not been investigated in detail is the effect of 

wall proximity of blockages on the flow and heat/mass transfer. This issue has many 

practical applications such as natural drying of wood stacks, cold storage 

(refrigerators), and location of solar blinds in double skin facade (DSF) and in the 

location of electronics panel for effective thermal management.  

The goal of the work presented in this thesis has been to assess and quantify the 

challenges associated with the numerical modelling of low turbulence natural 

convection flow and heat transfer in confined spaces with or without blockages. The 

challenges include the following: (a) selection of eddy viscosity models to give the 

best numerical prediction (b) specification of passive thermal boundary conditions (c) 

influence of emissivity on double diffusion buoyancy driven turbulent flow in an 

enclosure partially filled with solid objects (d) limited experimental data for the 

validation of CFD codes (e) interaction between turbulence buoyancy flows with 

blockages. The motivation behind this research is to overcome the above highlighted 

challenges. 

A comprehensive study has been conducted to investigate and analyse the relative 

performance of low Reynolds number k-epsilon models in quantifying the flow and 

heat transfer within an enclosure with and without blockages. The search for a 

realistic boundary condition specification at the passive walls was considered by 

performing numerical analysis and quantifying the influence of three possible used 
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boundary conditions. Different parametric studies were conducted to investigate the 

influence of emissivities of the solid surface on the flow and heat transfer for enclosed 

space with and without blockages. Choice of equivalent emissivity was investigated 

by performing a numerical study to justify 2D simplification of an inherently 3D 

radiation heat transfer in a rectangular enclosure partially filled with blockages.  

To be able to obtain reliable temperature data, an experimental set up capable of 

establishing low Rayleigh number buoyancy driven flow in a rectangular enclosure 

with and without blockages was designed and fabricated. The skills and concepts that 

enabled us to design the thermal test rig were acquired from literature and 

complemented by preliminary CFD simulation studies. Temperature data of air and 

for all walls (including the blockage surfaces) were recorded at steady state using k-

type thermocouples. This data has also been validated using the results from the 

numerical simulations. It has been shown that these results compare very well with 

the numerical results. 

The interactive influence between turbulent buoyancy flows and heat transfer with 

disconnected blockages was investigated by conducting numerical calculations on 

blockage proximity from the active vertical walls and passive horizontal walls. A 

further numerical study was done for group blockages located within the rectangular 

enclosed space. As an application of the research methodology, a comprehensive 

investigation was conducted on a double skin facade (DSF) partially filled with 

disconnected solar blinds (solar blockages), whose detailed flow and heat transfer 

mechanism is yet to be established. The current methodology has been applied to 

establish a number of parameters in connection with the design and performance of 

DSF which are believed to be useful to the practitioners. 

9.2 Summary of the research work findings 

The research findings from the study are highlighted below: 

 For the Rayleigh numbers considered in this study, the flow field for an empty 

cavity is characterised by low turbulence near the walls while the core area is 

essentially a stagnant region. The presence of blockages initiates secondary flows 

at the core of the cavity and especially close to the surface of solid blockages.  
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 Our parametric study has shown that the experimental temperature profile (ETP) 

is a more realistic thermal boundary condition in contrast to the adiabatic wall 

condition normally used in numerical studies by most researchers on natural 

convection flow and heat transfer in an enclosed space. However, in the absence 

of ETP, the LTP should be use as the passive wall thermal boundary condition. 

 The flow is sensitive to the appropriate choice of eddy viscosity models and hence a 

detailed understanding of the performance of eddy viscosity models (EVMs) is 

required. For the EVMs tested in this work, the Launder-Sharma low-Re k-ε model 

gave the best performance for double diffusive natural convection and the heat 

transfer in an enclosure partially filled with blockages. Whereas, for a cavity 

without blockages, the validated results show that the Yang-Shih model is the most 

accurate in predicting the flow and especially the heat transfer closed to the walls of 

the cavity. Hence the need for turbulence model sensitivity studies remaining to be a 

priority for practitioners.  

 Radiation has been found to influence the flow, heat and mass transfer within the 

cavity. The implication of this influence is that by a careful selection of material, heat 

transfer and humidity distribution may be passively influenced. Given that an 

appropriate equivalent emissivity is obtained, a 2D simplification of a radiative 

surface in a 3D domain is possible to save computational effort.  

 The influence on fluid flow, heat and mass transfer due to the interaction with the 

obstacles was identified and detailed profiles have been obtained for critical 

locations. Blockages proximity can be seen to affect the overall heat transfer via 

flow field. Turbulence is greatly suppressed as the gap between the walls and the 

solid objects become smaller. At a certain blockage location from the vertical 

walls the wall heat transfer is found to be the optimum. This finding may be 

valuable for practitioners in built environment design. 

 Ranges of experimental temperature data have been generated and some of them 

were validated. Data generated for various blockage arrangements and wall 

proximity may act as a benchmark data for future CFD code validation. 

 Detailed analysis of double skin facade highlights the relative merits of commonly 

adopted numerical modelling approaches and shows that significant computational 

saving is possible considering a simple domain. The positioning of Venetian 
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blinds and, in particular, their proximity from the glazing is a very critical 

parameter that needs to be given serious consideration. The proposed 

methodology establishes an accurate and fundamental approach on how solar 

irradiation can be modelled within a CFD package. 

9.3 Recommendations for future work 

Although the objectives listed in chapter one of this thesis have been mostly achieved, 

the work was never envisaged to be fully comprehensive to cover all indoor natural 

convection systems. Since the amount of work and time required to do so is beyond 

the scope of this thesis, the author recommends further works, which can be carried 

out to extend the work reported here. 

 Double diffusion buoyancy driven flow with multi-component fluid (more than 

two phase) with larger relative molecular mass should be investigated to evaluate 

the level of their interactions. Also, it will be interesting to investigate the 

interaction with the flow and heat transfer using different geometric shapes 

relevant to electronic components and agricultural produces cooling.  

 Further research on the blockages should consider the blockages on a number of 

factors, such as different predetermined temperature to investigate the influence of 

blockages heat transfer on the flow and total heat transfer in the enclosed space, 

and effects of blockages surface roughness. 

 More detailed experimental studies on the air flow velocity and turbulence are 

needed for CFD code validation for such a complex natural convection flow 

domain with blockages. The developed experimental rig may be modified to allow 

optical access for non-invasive measurement of the flow variables. It will be 

interesting to investigate the influence of inclination angles on the flow and heat 

transfer and produce correlations for the various cases of arrangement of 

blockages within the enclosed space. 

 The analysis of flow and heat transfer for DSF may be extended to accommodate 

daily and seasonal variations of solar radiation. 
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APPENDIX A:     UDF - THERMAL BOUNDARY CONDITIONS AT PASSIVE WALLS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/*********************************************************************** 
   UDF HORIZONTAL-WALLS for specifying steady-state LINEAR temperature 

profile boundary  
   condition 
   Draco Aluya Iyi 

************************************************************************
/ 
 

#include "udf.h" 
 
DEFINE_PROFILE(Top_temperature_profile, t, i) 

{ 
  real x[ND_ND];                /* this will hold the position vector */ 
  real y; 

  face_t f; 
 
  begin_f_loop(f, t) 

    { 
      F_CENTROID(x,f,t); 
      y = x[0]; 

      F_PROFILE(f, t, i) = 283.15 + 40*(1-y/0.75); 
    } 
  end_f_loop(f, t) 

} 
DEFINE_PROFILE(Bottom_temperature_profile, t, i) 
{ 

  real x[ND_ND];                /* this will hold the position vector */ 
  real y; 
  face_t f; 

 
  begin_f_loop(f, t) 
    { 

      F_CENTROID(x,f,t); 

      y = x[0]; 
      F_PROFILE(f, t, i) = 283.15 + 40*(1-y/0.75); 

    } 
  end_f_loop(f, t) 
} 
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/**********************************************************************
* 
   UDF HORIZONTAL-WALL for specifying steady-state EXPERIMENTAL 

temperature profile boundary  
   condition  
   Draco Aluya Iyi 

***********************************************************************
*/ 
 

#include "udf.h" 

 
DEFINE_PROFILE(Top_temperature_profile, t, i) 

{ 
  real x[ND_ND];                /* this will hold the position vector 
*/ 

  real y; 
  face_t f; 
 

  begin_f_loop(f, t) 
    { 
      F_CENTROID(x,f,t); 

      y = x[0]; 
      F_PROFILE(f, t, i) = 283.15 + 40*(-
2.458*(y*y*y*y/(0.75*0.75*0.75*0.75))+1.686*(y*y*y/(0.75*0.75*0.75))+1.

211*(y*y/(0.75*0.75))-1.44*(y/0.75)+1); 
    } 
  end_f_loop(f, t) 

} 
DEFINE_PROFILE(Bottom_temperature_profile, t, i) 
{ 

  real x[ND_ND];                /* this will hold the position vector 
*/ 
  real y; 

  face_t f; 
 

  begin_f_loop(f, t) 

    { 
      F_CENTROID(x,f,t); 
      y = x[0]; 

      F_PROFILE(f, t, i) = 283.15 + 
40*(2.458*(y*y*y*y/(0.75*0.75*0.75*0.75))-
8.146*(y*y*y/(0.75*0.75*0.75))+8.477*(y*y/(0.75*0.75))-

3.789*(y/0.75)+1); 
    } 
  end_f_loop(f, t) 

} 
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/*********************************************************************** 

   UDF HORIZONTAL-WALLS for specifying steady-state LINEAR temperature profile boundary  

   condition 

   Draco Aluya Iyi 

   Northumbria University 

************************************************************************/ 

 

#include "udf.h" 

 

DEFINE_PROFILE(Top_temperature_profile, t, i) 

{ 

  real x[ND_ND];                /* this will hold the position vector */ 

  real y; 

  face_t f; 

 

  begin_f_loop(f, t) 

    { 

      F_CENTROID(x,f,t); 

      y = x[0]; 

      F_PROFILE(f, t, i) = 296.45 + 42.2*(1.0253-y/0.4); 

    } 

  end_f_loop(f, t) 

} 

DEFINE_PROFILE(Bottom_temperature_profile, t, i) 

{ 

  real x[ND_ND];                /* this will hold the position vector */ 

real y; 

  face_t f; 

 

  begin_f_loop(f, t) 

    { 

      F_CENTROID(x,f,t); 

      y = x[0]; 

      F_PROFILE(f, t, i) = 296.45 + 42.2*(1.0203-(1.001*(y/0.4))); 

    } 

  end_f_loop(f, t) 

} 
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APPENDIX B: ADDITIONAL VALIDATION RESULTS 

Experimental temperature results comparison at mid-width of the cavity (10x5 
arrangements of blockages) 

 

Proximity effects on temperature profile at mid-width 

 

Proximity effects on temperature profile at mid-width (Near bottom wall) 

 

Proximity effects on temperature profile at mid-width (Near top wall) 
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Temperature data comparison at y=8.6 mm from bottom wall (near top wall) 

 

Temperature profile near bottom wall comparison with CFD data (No blockages) 

 

Temperature profile near bottom wall comparison with ωFD dataν į=2.5cm 

 

Temperature profile near bottom wall comparison with ωFD dataν į=5.8cm 

20 

30 

40 

50 

60 

70 

0 0.2 0.4 0.6 0.8 1 

Te
m

pe
ra

tu
re

 (⁰C) 

Distance from hot wall, X=x/L 

Expt (without blockages) 
Simulation 

22 

33 

44 

55 

66 

0 0.2 0.4 0.6 0.8 1 

Te
m

pe
ra

tu
re

 (⁰C) 

Distance from hot wall, X=x/L 

Expt į=2.5cm 
Simulation 

22 

36 

50 

64 

0 0.2 0.4 0.6 0.8 1 

Te
m

pe
ra

tu
re

 (⁰C) 

Distance from hot wall, X=x/L 

Expt į=5.8cm 
Simulation 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 246 of 274 

 
 

 

Temperature profile near bottom wall comparison with ωFD dataν į=10.8cm 

 

Temperature data comparison at y=884.35mm from bottom wall (near top wall) 

 

Temperature profile near top wall comparison with ωFD data (į=2.5cm)ν 88.435cm 
from bottom wall 

   

 

Temperature profile near top wall comparison with ωFD data (į=5.8cm)ν 88.435cm 
from bottom wall 
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Temperature profile near top wall comparison with ωFD data (į=10.8cm)ν 88.435cm 
from bottom wall 

 
 

Blockages proximity influence (10x5 configuration 
 

 

(6-16a) 

 
(6-16b) 
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(6-16c) 

 
(6-16d) 

 

 
(6-16e) 

 
(6-16f) 

Figure 0-1: Cylinder temperature data comparison (a) į=25mm at x=25mm  (b) 
į=58mm at x=58mm (c) į=108mm at x=108mm (d) į=25mm at x=375mm (e) 
į=58mm at x=342mm (f) į=108mm at x=108mm from hot wall 
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APPENDIX C:     ADDITIONAL EXPERIMENTAL RESULTS  

Horizontal temperature data at the cylinder surface near bottom wall and top wall of 
the cavity 

The cylinder surface temperature data measured at the horizontal plane and 85.65mm 

from the bottom and top walls respectively are shown in Figs.8-16 to 8-21. 

 

Temperature profile of cylinders near bottom wall (y=85.65mm) for į=25mm 

 

Temperature profile near bottom wall (y=85.65mm) for į=58mm 

 

Temperature profile near bottom wall (y=85.65mm) for į=108mm 

22 

33 

44 

55 

66 

0 0.2 0.4 0.6 0.8 1 

T
  (
⁰C) 

Distance from hot wall, X=x/L 

22 

36 

50 

64 

0 0.2 0.4 0.6 0.8 1 

T
  (
⁰C) 

Distance from hot wall, X=x/L 

22 

36 

50 

64 

0 0.2 0.4 0.6 0.8 1 

T
  (
⁰C) 

Distance from hot wall, X=x/L 



 
A Study on Buoyancy Driven Turbulent Flow Associated with Radiation in Cavities Partially Filled 

with Blockages:  Draco Aluya Iyi 

 

 

Page 250 of 274 

 
 

 

Temperature profile near top wall for į=25mm (884.35mm from bottom wall) 

 

Temperature profile near top wall for į=58mm (884.35mm from bottom wall) 

 

Temperature profile near top wall for į=108mm (884.35mm from bottom wall) 
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APPENDIX D:     MESH SENSITIVITY STUDY  

The slant YΆ≈1 and minimum mesh orthogonal quality is 1  

 

Figure B-1: Schematic of the flow domain 

 

 

Figure B-2:  Non-dimensional normal distance (yΆ), cold wall 
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Figure B-3: Non-dimensional normal distance (yΆ), hot wall 

 

Figure B-4: Non-dimensional normal distance (yΆ), bottom wall 

  

Figure B-5: Non-dimensional normal distance (yΆ), top wall 
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APPENDIX E:     TOTAL UNCERTAINTY CALCULATION  

The total uncertainty in temperature measurement is the positive square root of the 

combined variance, which is given by 

                    
        

Where    and are     the uncertainties of R and,    respectively [223], R is a 

measurand determined from a set of independent quantities, X1, X2, X3,.. ....Xn 

measured in an experimental study, therefore, R=R(X1, X2, X3,....Xn) 

Therefore, the uncertainty in the measured experimental temperature data is 0.51⁰ C.                     ⁰  . 
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