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Abstract.—The use of erythrocyte size measurements
as a possible alternative to flow cytometry for identi-
fying triploid saugeyes (female walleye Stizostedion vit-
reum 3 male sauger S. canadense) was evaluated. Blood
smear preparations were made from 32 heat-shocked
saugeyes (1.0–42.7 g; 52–185 mm total length), which
consisted of 12 diploids and 20 triploids, as determined
by flow cytometry after blood cells were stained with
propidium iodide. The length, width, surface area, and
volume of the cell and nucleus of 100 erythrocytes were
determined for each fish. The cell and nuclear dimen-
sions were measured at 1,0003 magnification with a
calibrated ocular micrometer. Discriminant analysis was
used to distinguish diploids and triploids based on their
score profiles. Results showed that triploid saugeyes had
significantly larger erythrocyte cell and nucleus mea-
surements than their diploid counterparts (N 5 32; P ,
0.0001). Erythrocyte measurements correctly distin-
guished 93.8% of fish samples as diploids or triploids,
but measurements require about 1 h/fish. The potential
applications of this technique for fisheries management
and aquaculture are discussed.

The production of triploid saugeyes (female
walleye Stizostedion vitreum 3 male sauger S. can-
adense) offers possible benefits to stocking pro-
grams and to aquaculture. Triploidy induction will
prevent fertile diploid saugeyes from contaminat-
ing parental stocks and producing second gener-
ation hybrids. Extensive saugeye reproduction in
the Ohio river (White and Schell 1995), Normandy
Reservoir, Tennessee (Fiss et al. 1997), and in the
Peoria Pool of the Illinois River (Billington et al.
1997) has compromised the genetic integrity of
local and downstream parental stocks by produc-
ing second generation hybrids. Additionally, trip-
loid saugeyes may be a promising aquaculture
commodity for fish farmers in the midwestern
United States that have expressed increased inter-
est in raising saugeyes to marketable sizes.
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We currently lack a practical technique for fish
managers or culturists to use in assessing the suc-
cess of inducing triploidy in saugeye juveniles for
reservoir stocking or grow out. Various techniques
have been used to identify ploidy in fish (Table 1;
also see Harrell et al. 1998) but among these meth-
ods, the measurement of erythrocyte dimensions
is the least complicated and is probably applicable
to state and commercial hatchery operations. The
sizes of blood and other cells correlate with DNA
cellular content, and in fishes, variations in the
amount of nuclear DNA depend mainly on the
ploidy level (see review by Fange 1992). Exper-
imentally, cellular and nuclear dimensions of
erythrocytes have been shown to be proportional
to ploidy in teleost fishes (Sezaki et al. 1977; Wol-
ters et al. 1982; Beck and Biggers 1983). The ac-
curacy and reliability of this technique for iden-
tifying diploids and triploids varied between fish
species: 95–100% in landlocked Atlantic salmon
Salmo salar (Benfey et al. 1984), 80–94% in chan-
nel catfish Ictalurus punctatus (Wolters et al.
1982), and 70.8% in rainbow trout (Tambets et al.
1991). In our study, we evaluated the use of eryth-
rocyte size measurements by light microscopy as
a possible alternative to flow cytometry analysis
for identifying triploid saugeyes. Flow cytometry
is an optical technique that measures particle flu-
orescence after being stained with a DNA-specific
dye such as propidium iodide (Thorgaard et al.
1982; Harrell et al. 1998). This technique has been
routinely used to determine ploidy in other percids
such as yellow perch and walleye (Malison et al.
1993; Malison and Garcia-Abiado 1996).

Methods

Blood collection.—Blood samples were collect-
ed from 32 heat-shocked saugeyes (1.0–42.7 g;
52–185 mm total length), consisting of 12 diploids
and 20 triploids as identified by flow cytometry
(see below). Both groups were produced from a
large-scale triploidy induction experiment con-
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TABLE 1.—Techniques used to identify ploidy in fish.

Technique Species examined Reference

Chromosome counting Misgurnus anguillicaudatus
Rainbow trout Oncorhynchus mykiss

Arai et al. (1991)

Flajshans et al. (1992)

Flow cytometry Rainbow trout
Grass carp Ctenopharyngodon idella
Yellow perch Perca flavescens
Walleye Stizostedion vitreum

Thorgaard et al. (1982)
Burns et al. (1986)
Malison et al. (1993)
Malison and Garcia-Abiado (1996)

Erythrocyte measurements
Coulter counter analysis

Image analysis
Fluorescence microscopy
Light microscopy

Grass carp
Brown bullhead Ameiurus nebulosus
Wels Silurus glanis
Asian catfish Clarias macrocephalus
Brown trout Salmo trutta
Misgurnus anguillicaudatus
Red sea bream Pagrus major
Common carp Cyprinus carpio

Wattendorf (1986)
Cormier et al. (1993)
Flajshans (1997)
Thititananukij et al. (1996)
Crozier and Moffett (1989)
Arai et al. (1991)
Kitamura et al. (1991)
Cherfas et al. (1994)

Nucleolar organizer region Rainbow trout
Pacu Piaractus mesopotamicus

Flajshans et al. (1992)
Forest et al. (1994)

External morphology Grass carp Bonar et al. (1988)

Tissue measurements Ayu Plecoglossus altivelis Aliah et al. (1990)

ducted on April 2, 1998, using heat shock admin-
istered 5 min after fertilization for 15 min at 31
6 0.18C. These heat shock characteristics were
based upon high (.80%) triploid rates obtained
from our preliminary experiments during the 1997
spring spawning season and during the 1998 off-
season walleye spawning (data not shown). The
newly hatched larvae were raised in ponds at He-
bron State Fish Hatchery, Ohio, for 40 d before
blood sampling. Blood was collected from the cau-
dal vein of each fish by cutting the tail at the caudal
peduncle using a sharp scalpel. In larger fish (.10
g), blood was collected with a heparinized syringe
from the caudal vessel. A portion of the blood was
fixed in 5% dimethyl sulfoxide (DMSO; Sigma
Chemical Co., St. Louis, Missouri) in isotonic dil-
uent (ISOTON II; Coulter Corp., Miami, Florida)
and kept frozen at 2208C until flow cytometry
analysis, and the remaining unfixed blood was
used for smear preparations.

Flow cytometry analysis.—The blood of each
fish was analyzed for ploidy by flow cytometry
following techniques in Lin and Dabrowski (1996)
with some modifications. Briefly, a small volume
(;10–20 mL) of blood fixed in 5% DMSO was
transferred to 12-mm 3 75-mm sterile plastic
tubes with snap caps (Fisher Scientific, Pittsburgh,
Pennsylvania) containing 800 mL propidium io-
dide stain and 10 mL rainbow trout blood (internal
standard). The propidium iodide stain was pre-
pared by dissolving 50 mg propidium iodide
(P4170; Sigma) and 10 mg ribonuclease A (R-

4875; Sigma) in 1 L of ISOTON II. The solution
was incubated overnight at 48C, gently syringed
(21- and 26-gauge needles, Becton-Dickinson and
Co., Franklin Lakes, New Jersey) and filtered us-
ing 60 mm-Nitex netting (Argent Chemical Lab-
oratories, Redmond, Washington). Flow cytometry
analysis was performed on a Coulter EPICS Elite
flow cytometer (Coulter Corp., Miami, Florida)
equipped with a 488-nm, 15-mW air-cooled Argon
laser. A minimum of 10,000 gated cells were col-
lected at a rate of 500 events per second. Propi-
dium iodide signal was measured with a 610-nm
long-pass transmission filter and represented in
linear mode. Single parameter statistics on sample
and internal standard peak positions were gener-
ated using a Standard Elite Workstation Software.
The ratio of peak positions between diploid saug-
eyes and rainbow trout internal standard is about
0.3–0.4, and the ratio of peak positions between
triploid saugeyes and rainbow trout internal stan-
dard is about 0.5–0.6.

Blood smear preparations.—Blood smears were
prepared according to Humason (1979:219–244).
Air-dried smears were fixed for 1 min in methanol,
stained with Wright–Giemsa (Sigma) for 1 min,
and washed twice in distilled water for 1 min. The
length and width of the cell and nucleus of 100
randomly selected erythrocytes were measured un-
der 1,0003 magnification using an ocular microm-
eter fitted inside the eyepiece (103 magnification)
of an Olympus compound microscope (model
BH2-RFC, Olympus America, Inc., Melville, New
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TABLE 2.—Mean values of erythrocyte cell and nucleus measurements in diploid (N 5 12) and triploid (N 5 20)
saugeyes, diploid to triploid ratios, and corresponding F-values (P , 0.0001) for univariate analysis of variance. Diploid
and triploid saugeyes were identified by flow cytometry.

Discriminating variable Diploids Triploids Ratio F

Cell
Length (mm)
Width (mm)
Surface area (mm 2)
Volume (mm3)

10.4 6 0.9
7.4 6 0.5

59.6 6 6.6
296.3 6 46.4

11.8 6 0.3
8.4 6 0.6

77.2 6 5.7
436.3 6 60.7

1:1.1
1:1.1
1:1.3
1:1.5

43.7
26.2
63.8
47.1

Nucleus
Length (mm)
Width (mm)
Surface area (mm 2)
Volume (mm3)

4.6 6 0.7
3.0 6 0.2

11.0 6 2.1
23.0 6 5.7

5.8 6 0.3
3.5 6 0.2

16.1 6 1.8
38.9 6 7.4

1:1.3
1:1.2
1:1.5
1:1.7

52.7
34.2
51.3
40.8

York). Cell length, cell width, nucleus length, and
nucleus width were recorded. Surface area (S) and
volume (V) of both the cell and its nucleus were
computed following the formula for ellipsoids or
oblate spheroids (Benfey and Sutterlin 1984; Aliah
et al. 1990):

S 5 p (a/2) 3 (b/2);
2V 5 4/3 3 p (a/2) 3 (b/2) ;

a 5 length or major axis of a cell or nucleus, and
b 5 width or minor axis of a cell or nucleus.

Statistical analysis.—Discriminant analysis was
used to construct a linear combination of variables
that maximally differentiate between predefined
groups (Bennett and Bowers 1976; Armitage and
Berry 1994). Two groups of saugeyes were defined
depending upon the ploidy of each fish: diploids
or triploids. A linear combination of the variables
was calculated using Fisher’s linear discriminant
function coefficients of cell length, cell width, cell
surface area, cell volume, nucleus width, nucleus
surface area, and nucleus volume. Classification
functions were determined for each of group of
saugeyes. Each fish was then classified on the basis
of these functions as belonging either to the diploid
group or the triploid group. Cross-validation was
supplied using jackknife procedures (Wilkinson
1996). Discriminant analysis was performed using
the software Statistical Package for the Social Sci-
ences (SPSS 7.5 for Windows, SPSS, Inc., Chi-
cago, Illinois).

Results

Similar to red blood cells of other fish, saugeye
erythrocytes are oval and elliptical disk-shaped
with a compact nucleus. Mean values of length
and width, surface area, and volume of triploid
saugeye erythrocyte cells and nuclei were signif-
icantly larger (1.1–1.7 times; P , 0.0001) than the

values for the corresponding diploid saugeye mea-
surements (Table 2). The ranges of values for each
variable, however, were large enough that overlap
occurred between ploidy groups (Figure 1).

Differences in Group Centroids

Wilk’s lambda determines whether the discrim-
inant function separates two or more groups sig-
nificantly on the basis of differences in discrimi-
nating variables (Kachigan 1986). Wilk’s lambda
(0.27) indicated that the diploid and triploid groups
had significantly different (P , 0.0001) group cen-
troids (i.e., weighted mean values of the discrim-
inating variables) which were calculated from a
linear combination of cell length, cell width, cell
surface area, cell volume, nucleus length, nucleus
width, nucleus surface area, and nucleus volume
(Table 3). The centroid for diploids was 22.034,
and the centroid for triploids was 1.221. The scat-
ter plot of the linear combination scores of each
fish from the diploid and triploid groups clearly
shows that the variables separate the two types of
fish (Figure 2).

Classification Results

Two fish were misclassified from the diploid
group. A classification matrix showed that the two
fish shown in Figure 2 as the two darkened points
closest to zero on the left y-axis were not classified
correctly. The linear combination of the variables
tested (Table 4) correctly classified 93.8% of the
fish samples as diploids or triploids.

Discussion

Our results with triploid saugeyes are consistent
with the findings that the incorporation of a triploid
genome in fish causes a significant increase in
erythrocyte cell and nucleus measurements (Ben-
fey and Sutterlin 1984; Benfey et al. 1984; Fange
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FIGURE 1.—Frequency distribution of length, width, surface area and volume of erythrocyte cells and nuclei (N
5 100) from 12 diploid and 20 triploid saugeyes.
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TABLE 3.—Unstandardized canonical function coeffi-
cients when all variables were entered simultaneously in a
single discriminant function analysis. The discriminant
score centroid was 22.034 for diploids and 1.221 for trip-
loids. A positive coefficient means that its associated vari-
able is descriptive of the group with the higher mean score
on the discriminant function while a negative coefficient
means that its associated variable is descriptive of the
group with the lower mean score on the discriminant func-
tion.

Discriminating
variables

Unstandardized canonical
function coefficient

Cell length
Cell surface area
Cell volume
Nucleus length
Nucleus surface area
Nucleus volume
Constant

20.166
0.282

20.020
22.004

1.793
20.338

213.974

FIGURE 2.—Scatter plot of canonical discriminant
scores for individual diploid and triploid saugeye sam-
ples. Two of 12 diploids (indicated as two dark points
closest to zero on the left y-axis) were misclassified
while all 20 triploids were correctly classified. In all,
93.8% of original grouped cases (N 5 32) were correctly
classified.

TABLE 4.—Fisher’s linear discriminant function coeffi-
cients when all variables were entered simultaneously in a
single discriminant function analysis. A sample of un-
known ploidy may be classified to the group that gives a
higher discriminant score.

Discriminating
variable

Weighting coefficients for:

Diploid Triploid

Cell length
Cell surface area
Cell volume
Nucleus length
Nucleus surface area
Nucleus volume
Constant

246.939
20.978

21.733
209.217

2123.789
22.737

2180.486

247.478
21.715

21.797
202.693

2117.954
21.637

2224.648

1992; Kim et al. 1993; Boron 1994; Forest et al.
1994; Flajshans 1997). Measurements of cell and
nucleus lengths and widths, and computations of
their respective surface area and volume were able
to correctly classify 93.8% of the fish samples as
diploid or triploid in this study.

The erythrocyte cell and nucleus lengths and
widths in diploid saugeyes is larger than in diploid
ayu (Aliah et al. 1991), similar to those in diploid
channel catfish (Wolters et al. 1982), but smaller
than those in diploid landlocked Atlantic salmon
(Benfey et al. 1984). The erythrocyte length (10.4
6 0.9 mm) in diploid saugeyes is within the range
for most teleosts, which is between 8 and 15 mm
(Fange 1992). In general, erythrocytes are slightly
smaller in active species than in nonactive ones,
probably because small dimensions facilitate phys-
iological exchanges by a favorable surface to vol-
ume ratio (Fange 1992). The considerably low
Wilk’s lambda (0.27) and the highly significant x2

values associated with it, suggests that the dis-
criminant score centroids for diploids and triploids
differ significantly on the discriminant function,
suggesting that the discriminating variables can
effectively distinguish between groups (Christen-
sen and Yoesting 1977).

When all eight discriminating variables were
used to discriminate between ploidy groups, the
cell and nucleus widths were excluded because of
very minimal contribution to the discriminant
function. Benfey et al. (1984) also observed that
cell and nucleus widths were the poorest predictors
of ploidy among the six erythrocyte dimensions
they measured. Various workers have suggested
that triploid fish can be identified based solely on

the length of either cell or nucleus (Wolters et al.
1982; Beck and Biggers 1983; Benfey and Sut-
terlin 1984). We have not found this to be the case
for saugeyes.

Compared with microscopic measurements, cell
and nuclear volumes and surface area distributions
of blood cells may be analyzed with greater ac-
curacy and speed (more than 200,000 cells in 5
min) by use of either a Coulter Multisizer IIe or
Coulter Z2. The former equipment can measure
particle sizes of 1–120 mm, and the latter can mea-
sure particle sizes of 0.4–1,200 mm. Coulter coun-
ter analysis is used widely in the aquaculture in-
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dustry for grass carp (Wattendorf 1986). Because
the current market price of this equipment ranges
from US$20,000 to $33,000, we envision that only
state agencies or aquaculture facilities that engage
in large-scale stocking of triploid saugeyes (e.g.,
Ohio Division of Wildlife) would consider pur-
chasing such equipment. The use of the Coulter
counter is still cost-effective compared with flow
cytometry services, which are only available in
medical schools of large universities. For example,
the Comprehensive Cancer Center Analytical Cy-
tometry Laboratory at The Ohio State University
(OSU) charges US$120/h (25–30 samples) for
nonuniversity entities (A. Oberyszyn, OSU, per-
sonal communication). Small-scale aquaculture
farmers may adopt the technique of manual mea-
surements of erythrocytes using a calibrated ocular
micrometer fitted to one eyepiece of a compound
light microscope. Measurements of lengths and
widths of the cell and nucleus of 100 erythrocytes
from one fish require about 1 h of microscopy
work. Data entry and analysis of all samples re-
quire about 3 h of computer time. This workload
can be reduced by 50% because discriminant anal-
ysis of cell and nuclear measurements of 50 eryth-
rocytes also showed 93.8% correct classification.
However, only 90.6% correct classification was
obtained when 25 erythrocytes were measured.

Although erythrocyte measurements were not
100% effective in distinguishing triploid from dip-
loid saugeyes, this technique may still be used by
state agencies to identify triploid fish for stocking
into lakes and reservoirs where diploid saugeye
populations have been stocked previously. The use
of this method to identify triploid saugeyes des-
tined for introduction into natural waters where
saugeyes are nonendemic or for fish farming pur-
poses should be treated with caution because of
possible reproduction from misclassified diploids.
The classification success rate of 93.8% indicates
the potential for misclassification. The accuracy of
this technique may be improved if other hemato-
logical characteristics, such as mean erythrocyte
volume, erythrocyte counts, corpuscular hemoglo-
bin, and cytoplasmic hemoglobin concentration,
are determined (Benfey and Sutterlin 1984; Benfey
et al. 1984; Aliah et al. 1991). These character-
istics, including erythrocyte cell and nuclear vol-
umes, could be measured with a standard Coulter
counter.
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