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Stresses in Thin, Multi-Layer Pipes in Large Radial Vibrations 
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Abstract – Free, large radial oscillations of multi-layered, thin, long, pipes are investigated 
using the theory of finite elastic deformations. The material of each layer is assumed to be 
homogeneous, isotropic, hyperelastic and incompressible. Closed form solutions are obtained for 
the nonlinear, ordinary differential equation governing the motion of the inner surface of the 
cylinder pipe. The motions of the other material points can then be obtained using the 
incompressibility condition. It is shown that the radial stress is negligible throughout the thickness 
of the pipe. Tangential stress distributions at different times are given as a function of the radial 
distance for one, two and three layer pipes. Copyright © 2013 Praise Worthy Prize S.r.l. - All 
rights reserved. 
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I. Introduction 
Several authors studied the large amplitude 

oscillations of single layer tubes and hollow spherical 
shells (Knowles [1]), (Nowinski [2]), (Beniste [3]), 
(Roussos [4]), and (Mason [5]). In these papers, finite 
amplitude radial motions of long, single layered, thin or 
thick walled cylindrical pipes were investigated and the 
exact second order, non linear differential equation 
governing the forced oscillations due to a uniform inter 
internal pressure obeying the idea gas law were obtained. 

This equation, however, could be solved in closed 
form only partially to yield the frequency vs internal 
pressure relationship. 

A complete solution was supplied by an approximate 
solution technique (Knowles [1]). 

This paper was confined to the study of the variation 
of the frequency with initial internal pressure for single 
layer tubes. 

In most works, the problem studied in were extended 
to cover the radial stress distribution along the thickness 
of the tube for one, two or three layer tubes caused by a 
suddenly applied internal gas pressure obeying the ideal 
gas law. The differential equation governing the free, 
large amplitude radial oscillations of thin-walled, layered 
tubes and its solution were also given by (Shahinpoor 
[6]). However, this paper does not contain any study of 
stress field in thin, multi-layer tubes. 

In this study, free, large amplitude radial motions of 
thin-walled, long, perfectly bonded, multi-layer 
cylindrical pipes are investigated. The material of each 
layer is assumed to be homogeneous, isotropic, perfectly 
elastic and incompressible. The theory of finite elastic 
deformations (Green [7]) is governing the radial motions 
of the inner surface is solved in closed form to give the 
used in the formulation of the problem. The non linear, 
ordinary differential equation governing the radial 
motions of the inner surface is solved in closed form to 
give the used in the formulation of the problem to give 
the coordinate function of the inner surface as a function 
of time. 

The motions of the other material points are obtained 
by the use of the incompressibility condition.   

Calculations indicate that radial stress at any point is 
of negligible order at all times even for very large 
amplitudes. The distribution of the tangential stress as a 
function of the radial distance is given for one, two and 
three layer tubes for different times. 

As a special case, free, infinitesimal radial oscillation 
of thin-walled, multi layered pipes of neo Hookean 
materials are considered and an expression for the 
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frequency of oscillations is obtained. This expression 
reduces to that obtained by (Knowles [8]) for single layer 
tube made of a neo Hookean material. 

II. Formulation of the Problem 
Consider a long, circular cylindrical pipe of N 

perfectly bonded concentric layers of arbitrary thickness, 
each made of a neo-Hookean material. 

The exact, second order, ordinary, non linear 
differential equation governing the finite radial motions 
of such a tube due to a suddenly applied internal pressure 
obeying the idea gas law in given by: 
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If free, large amplitude radial vibrations of thin-

walled, layered tubes are considered, Eq. (1) reduces to: 
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where iV   the volume of the ith layer, and the following 
assumptions and approximations have been used: 
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 For single layer pipes, Eq. (3) reduces to the one 
obtained by Nowinski [8]. 

This implies that the law of mixtures holds for this 
non linear problem. For small, free, radial vibrations of 
thin, layered pipes 1   , 1  , and Eq. (3) 
becomes: 
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and the frequency of vibrations is given by: 
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which coincides with the equation obtained by (Knowles 
[1]) for single layer pipes made of a neo-Hookean 
material. 

In the case of the free, large amplitude radial 
oscillations with the initial conditions   00   and 

  00    the solution of Eq. (3) is: 
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III. Stress Field 
The non-zero stress components are obtained from the 

constitutive equation: 
 

ij ij ij ijG B pg      
 
as: 

 

11 2 22 331 p, r Q p, p
Q

            (9) 

 
where 0   for a neo-Hookean material and 1, 2, and 3 
denote, respectively, radial, tangential, and axial 
directions. The equation of equilibrium in the radial 
direction reduces to: 
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and I  is the first strain invariant. It is now assumed that 

0 0  . Also introducing: 
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The non- dimensionalized physical stress components 

11 22
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1 1
,     in the radial and the tangential 

directions respectively, are given by: 
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where the superscript i  denotes the layer and 
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It is noted that when a homogeneous thin pipe is 
considered, then 11 0   throughout the pipe. This result 
coincides with the result obtained by the use of the linear 
theory: 
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IV. Illustrative Examples 
Four examples are solved numerically to illustrate the 

distribution of tangential stress along the thickness of the 
pipe and expected results are obtained in all examples. 

In the first example, it is assumed that the pipe is 

made of a single layer with 2
0

1
2 1 006R, .R   . 

Fig. 1 shows the variation of 22 as a function of 

1
R

R at: 

i) 2 0 2 4kt , , ,...   

ii) 52
2 2

kt , ,...., 
  

iii) 2 3kt , ,...   
It is seen that that 22  is almost constant along the 

thickness of the pipe and that for 2 3kt , ,...   the 
tangential stress is compressive. 

 

 
 

Fig. 1. Single Layer, 2
0

1
2 1 006R, .R    

 
Although the examples given include pipes with at most 

three layers, the formulation allows the study of pipes with 
many layers. Fig. 2 shows 22  vs 

1
R

R for a two layer 

pipe with: 
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Fig. 2. Layer, 2
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A discontinuity of 22  is observed at the interface. In 

each layer, 22  is distributed almost uniformly. 

22  vs 
1

R
R curves are given for two-layer pipe with 

2
1

0 2.
   and all the other properties being the same as in 

the second example. 
A similar behavior is observed except that 22  is now 

lower in outer layer, (Fig. 3). 
 

 
 

Fig. 3. Layer, 2
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A sandwich pipe is studied in the last example. It is 

assumed that: 
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Fig. 4 indicates that the tangential stress is very small 

in the mid-layer. 

 
 

Fig. 4. Sandwich Pipe with 
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