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Abstract

Obesity is a constantly increasing health burden affecting more than 30% of the

population of westernized countries. In addition to classical associated disorders,

obesity was also previously reported to increase the incidence of hepatocellular

carcinoma (HCC) development, in part through activation of obesity-associated

pro-inflammatory signaling and the release of inflammatory cytokines such as

TNFα and IL-6, both known as tumor-promoting cytokines. Nevertheless, how

these inflammatory cytokines trigger HCC development is currently not fully un-

derstood.

The current work reports that abrogation of IL-6Rα signaling in lean mice pro-

tects against DEN-induced HCC development. This HCC protection occurs via

destabilization of anti-apoptotic Bcl-2 family member Mcl-1, thus promoting hep-

atocyte apoptosis. In lean mice IL-6 regulates the stability of Mcl-1 via inhibi-

tion of PP-1α expression which promotes GSK-3β inactivation by serine 9 residue

phosphorylation. In addition, IL-6 suppresses expression of the Mcl-1 E3 ligase

Mule. Consequently, IL-6Rα deficiency activates PP1-α and Mule expression re-

sulting in increased Mcl-1 turnover and protection against HCC development. In

contrast, in obese mice inhibition of PP1-α and Mule expression leading to Mcl-1

stabilization occurs independent from IL-6 signaling.

Furthermore, the current work could demonstrate that IL-6Rα signaling in T

cells is essential for the development of HCC indicated by the protective effect of

IL-6Rα deficiency on T cells.

Collectively, this study provides evidence that IL-6 and obesity inhibit hepato-

cyte apoptosis through Mcl-1 stabilization thus promoting liver carcinogenesis.



Zusammenfassung

Adipositas ist ein konstant wachsendes Gesundheitsproblem, welches schon heute

mehr als 30% der westlichen Bevölkerung betrifft. Zusätzlich zu den klassisch-

assoziierten Krankheiten, erhöht Adipositas auch die Gefahr der hepatozellulärer

Karzinomentwicklung (HCC). Dies geschieht teilweise durch Aktivierung von

Adipositas-assoziierten Signalwegen, welche zur Freisetzung von tumorfördern-

den, inflammatorischen Zytokinen wie TNFα und IL-6 führen. Unbekannt ist

jedoch wie diese Zytokine die Entwicklung von HCC auslösen. Die vorliegende

Arbeit zeigt, dass die Inaktivierung des IL6Rα normalgewichtige Mäusen vor der

DEN induzierte HCC Entwicklung schützt. Durch die Destabilisierung von Mcl-

1, einem Mitglied der Anti-apoptotischen Bcl-2 Familie, wird die Apoptose in

Hepatozyten gefördert. Dies schützt die Leber vor der Entwicklung von HCC.

In normalgewichtigen Mäusen reguliert IL-6 die Stabilität von Mcl-1 durch Hem-

mung der PP-1α Expression, welches wiederum die Inaktivierung von GSK-3β

fördert. Zusätzlich unterdrückt IL-6 die Expression der Mcl-1 ubiquitin ligase E3

Mule. In IL-6Rα defizienten Mäusen wird die Expression von PP-1α und Mule

aktiviert, dies führt zu einem erhöhten Umsatz von Mcl-1 und zum Ausbleiben

von HCC. Im Gegensatz dazu führt bei Adipositas die Hemmung der PP-1α und

Mule Expression zu einer Stabilisierung von Mcl-1, unabhängig von der IL-6 Sig-

nalübertragung. Desweiteren kann mit der vorliegenden Arbeit gezeigt werden,

dass die IL-6Rα-signalübertragung in T Zellen essentiell für die Entwicklung von

HCC ist. Hinweise dafür liefert der schützende Effekt der IL-6Rα-defizienz auf

T Zellen. Insgesamt liefert diese Studie Beweise dafür, dass IL-6 und Adiposi-

tas die Apoptose in Hepatozyten durch Mcl-1 Stabilisierung hemmen und so die

Leberkarzinogenese fördern.



1 Introduction

1.1 Hepatocellular carcinoma

Cancer is a general term for a large group of diseases that can occur in almost

every part of the body. Cancer development is characterized by uncontrolled cell

growth that leads to tumor formation and invasion of these cells to neighboring

tissues [Croce, 2008]. Cancer is a disease which is more frequent in older ages.

Due to an increase in the old population, the World Health Organisation (WHO)

assumes an increase in the cancer-related mortality rate from 7.9 million (2007) to

11.5 million (2030) cases per year. In most industrialized countries, cancer is the

second most frequent cause of death after cardiovascular diseases [Alwan, 2011].

Hepatocellular carcinoma (HCC) is the third most common cancer worldwide

(Fig. 1.1A) and represents, with 85-90% of all primary liver cancers, the most

common one [El-Serag & Rudolph, 2007]. The average mortality is 95% within 5

years due to limited treatment strategies and the late exhibition of clinical symp-

toms [Sherman, 2005; Villanueva et al., 2010]. Therefore, HCC represents the third

largest cause of cancer deaths worldwide, especially for men in low- and middle-

income countries, such as Africa and Eastern Asia (Fig. 1.1B). Male individuals

have a 4-fold increase in HCC incidence compared to women. These results could

be confirmed by Maria et al. [2002] in mouse models. Accordingly, females have

a lower incidence for HCC due to an estrogen-dependent mechanism [Naugler

et al., 2007]. However, the increasing incidence of HCC in industrialized countries

cannot be neglected [El-Serag et al., 2003].
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Figure 1.1: Cancer distribution and HCC incidence rates worldwide in 2011
(A) Worldwide distribution of different cancer forms of both genders in per-
centage of total cancer numbers from 2011. (WHO globocan project) (B) Dis-
tribution of HCC incidence in 2011 (ASR per 100000). (WHO globocan project)

Cancer development and progression is influenced by genetic, epigenetic and

environmental factors. HCC is linked to a variety of genetic predispositions, such

as mutations in tumor suppressor genes, as well as to viral infections such as

hepatitis B (HBC) or C (HCV), alcoholic liver disease, hemochromatosis and non-

alcoholic steatohepatitis [Villanueva et al., 2007; Fattovich et al., 2004; Yoshioka

et al., 2004; Thorgeirsson & Grisham, 2002; Donato et al., 2002; Yu et al., 2001].

All of which cause liver damage and chronic inflammation and therefore pro-

mote HCC, which is characterized as a classic case of inflammation-linked can-

cer [Sanz-Cameno et al., 2010; Mantovani et al., 2008; Karin et al., 2006; Karin &

Greten, 2005; Balkwill & Mantovani, 2001].
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1.1.1 Linking inflammation to HCC

Human studies could demonstrate that chronic inflammation in alcoholic hep-

atitis, HBV and HCV infections and steatohepatitis may lead to development of

HCC [Abiru et al., 2006; Sherman, 2005]. Even in mouse studies a strong correla-

tion could be exhibit between the amount of liver damage during acute toxicity

and inflammation and the extent of HCC development [Naugler et al., 2007; Saku-

rai et al., 2006; Maeda et al., 2005]. Furthermore, Maeda and others could demon-

strate that chemically or genetically induced HCC depends on inflammatory sig-

naling [Sakurai et al., 2006; Maeda et al., 2005; Pikarsky et al., 2004]. Liver injury

and chronic inflammation that results in compensatory proliferation of differen-

tiated hepatocytes, which are otherwise quiescent, is one of the major pathogenic

mechanisms underlying HCC development [Sakurai et al., 2006; Fausto, 1999;

Maeda et al., 2005]. The relevance of compensatory proliferation as a tumori-

genic mechanism is supported by mouse genetic studies, using either the hepatic

pro-carcinogen Diethylnitrosamine (DEN) as an inducer of HCC [Hui et al., 2008;

Sakurai et al., 2006; Maeda et al., 2005] or the conditional or complete inactiva-

tion of nuclear factor ’kappa light chain enhancer’ of activated B cells (NF-κB)

signaling, needed for maintenance of hepatocyte survival [Luedde et al., 2007].

The resulting necrosis of hepatocytes in these studies enhances mutagenesis in

host cells, accumulation of double strand breaks and results in HCC [Karin, 2008;

Sakurai et al., 2006; Maeda et al., 2005]. Furthermore, during chronic inflammation

the infiltrating immune cells create a tumor microenvironment releasing elevated

levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα)

and Interleukin 6 (IL-6) [Newell et al., 2008; Xu et al., 2003]. Liver injury and com-

pensatory proliferation are strongly depending on IL-6 and the absence of this

cytokine results in almost complete inhibition of DEN-induced HCC [Naugler

et al., 2007]. Furthermore, IL-6 deficient mice demonstrate reduced liver injury,

apoptosis, necrosis and proliferation in hepatocytes after DEN-injection, charac-

terizing inflammation as the major contributing factor in HCC development.
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1.2 Linking obesity to HCC

Previous epidemiological studies identified obesity as a major risk factor for sev-

eral cancer entities and demonstrated a 1.52 - 1.62-fold increase in relative risk

of cancer related death [Calle et al., 2003; Calle & Kaaks, 2004; Bianchini et al.,

2002]. The amount of increase in risk depends on the type of cancer, whereas

HCC exhibited the strongest obesity-associated increase in tumor incidence with

a 4.52-fold increase, particularly in men with a body mass index over 35 (Fig. 1.2)

[Calle et al., 2003]. Thus, the obesity-associated increase in HCC development

gains substantial clinical relevance in the light of the current epidemical increase

in obesity in westernized societies [Ford & Mokdad, 2008].

Figure 1.2: Mortality from Cancer According to Body-Mass Index for U.S. Men in the
Cancer Prevention Study
For each relative risk, comparison between men in highest BMI category (in-
dicated in parentheses) and men in reference category (BMI, 18.5 to 24.9). As-
terisks indicate relative risks for men who never smoked. Results were signif-
icant (p ≤ 0.05) for all cancer sites. [Calle et al., 2003]

Obesity is a constantly increasing health burden affecting more than 30% of

the population of westernized countries. Obesity is defined as a condition of ab-

normal or excessive body fat accumulation that is a consequence of a sustained

positive energy balance. That means consuming more calories than spending,
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resulting in excessive storage of lipids in the adipose tissue. A more sedentary

lifestyle in western societies with reduced physical work and the increased avail-

ability of food due to the industrialization contributes further to a positive energy

balance.

In 2008, approximately 1.5 billion adults were overweight, of which over 200

million men and approximately 300 million women were obese. Following record-

ings of each country in the WHO European Region from 2008, over 50% of both

men and women have a body mass index (BMI = weight in kilograms / size in

meters2) higher than 25 and thus considered to be overweight. Nearly 23% of

these were obese indicated by a BMI above 30 (Fig. 1.3 [Berghofer, 2008].

A B

2001 2010

Figure 1.3: Prevalence of obesity in adults from 2001 and 2010
The worldwide prevalence of obese adults (BMI >30) compared from 2001 and
2010. Datas were obtained from the WHO.

The association between fat accumulation and HCC was known for a long time

[El-Serag & Rudolph, 2007; Caldwell et al., 2004]. Fatty liver disease (FLD) turned

out to be one of the major risk factors for HCC which rapidly increased over the

last years in western countries. Obesity and FLD lead to steatosis and cirrhosis

and thereby increase the incidence of HCC [Yoshioka et al., 2004; Calle et al., 2003].

While the current study was being completed, Park et al. [2010] could demon-

strate that genetically and dietary-induced obesity enhances development of chem-

ically induced HCC. Moreover, earlier studies described that consumption of

high fat diet (HFD) resulted in increased formation of pre-neoplastic lesions in

response to DEN administration in rats [Wang et al., 2009]. However, these rats
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were not evaluated for HCC and the mechanism underlying increased formation

of the lesions was not determined.

Another recent study used mice with hepatocyte-specific deficiency of the reg-

ulatory subunit NF-κB essential modulator (NEMO) of the inhibitor of kappa B

kinase (IKK) complex or the IKKs itself (Nemo/IKKγ∆hep), which spontaneously

develop liver damage, hepatosteatosis and HCC on a normal chow diet (NCD)

[Luedde et al., 2007]. These mice revealed enhanced development of hepatosteato-

sis and liver damage after HFD-feeding, which ultimately results in accelerated

tumor development in the liver [Wunderlich et al., 2008]. However, the pre-

existing hepatosteatosis and spontaneous liver damage in Nemo/IKKγ∆hep mice

upon NCD feeding prevented the conclusive demonstration that obesity per se

rather than chronic liver damage, caused by the absence of NF-κB, is responsible

for tumor promotion. Furthermore, the mechanism by which obesity accelerates

HCC development in these mice was not determined.

1.2.1 Linking chronic low grade inflammation in obesity to HCC

The excessive weight gain during obesity is associated with a chronic low grade

inflammatory state. The concept of chronic low grade inflammation in response

to obesity was first demonstrated by elevated expression of TNFα in the white

adipose tissue (WAT) [Hotamisligil et al., 1993]. Follow-up studies confirmed the

observation in humans, where WAT also expresses increased TNFα upon obesity,

which was decreased after weight loss [Gonzalez et al., 1999; Dandona et al., 1998;

Hotamisligil et al., 1995; Kern et al., 1995]. Additional work demonstrated that

the chronic low grade inflammation in obesity is not only locally in WAT, but also

systemically, indicated by elevated plasma concentrations of circulating TNFα

and IL-6 [Nishimura et al., 2009; Xu et al., 2003; Bastard et al., 2000; Mohamed-Ali

et al., 1997; Hotamisligil et al., 1993]. During the development of obesity, immune

cells, such as macrophages and T cells, infiltrate tissues, such as WAT or liver,

and lead to increased secretion of TNFα and IL-6 [Nishimura et al., 2009; Xu et al.,
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2003]. The tumor promoting effect of HFD depends to a large extent on this el-

evated levels of TNFα and IL-6, both of which are tumor-promoting cytokines

[Park et al., 2010; Lin & Karin, 2007].

Liver injury and compensatory proliferation are strongly depending on IL-6

and the absence of this cytokine results in almost complete inhibition of DEN-

induced HCC [Naugler et al., 2007]. Additionally, it could be demonstrated that

obesity increases IL-6 level compared to lean mice and thereby accelerates tumor

development [Park et al., 2010]. IL-6 may not be the only mediator responsible for

obesity-induced cancer promotion, however, it is well established that its produc-

tion is elevated in obese mice due to the low-grade inflammatory response caused

by lipid accumulation [Arkan et al., 2005; Shoelson et al., 2007; Solinas et al., 2007;

Hotamisligil, 2006].
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1.3 Interleukin 6 signaling pathway

IL-6 is a pleiotropic cytokine largely responsible for the hepatic response to in-

fections or systemic inflammation, often termed the "acute phase response". IL-

6 regulates activation of phagocytosis and acute phase proteins such as the c-

reactive protein or serum amyloid A in the inflammation process [Barton, 1996].

Moreover, IL-6 plays a key role in the transition from innate to adaptive immu-

nity by initiating differentiation of T- and B-lymphocytes [Brooks et al., 1985].

The IL-6 gene consists of 5 exons whose expression results in an inactive pre-

peptide of 212 amino acids which is then cleaved into the active form of 184 amino

acids. IL-6 has several splice forms and is posttranslationally modified by gly-

colisation and phosphorylation [Parekh et al., 1992]. The membrane bound IL-6

receptor (IL-6R) is expressed on hepatocytes, macrophages, T lymphocytes and

endothelial cells [Barton, 1996]. The heterotrimeric receptor consists of two signal

transduction β-chains glycoprotein 130 (gp130) and one IL-6R α-chains. Gp130 is

widely used by a cohort of cytokines receptors, especially by the IL-6 type cy-

tokine receptor family including Interleukin 11 receptor (IL-11R), oncostatin M

receptor (OSMR), ciliary neurotrophic factor receptor (CNTFR), Interleukin 27

receptor (IL-27R), Epstein-Barr virus induced gene 3 (EBI-3) and leukemia in-

hibitory factor receptor (LIFR) [Zhang et al., 1994]. In contrast the IL-6Rα chain

is specific for IL-6 signaling in hepatocytes, macrophages, endothelial cells and

T-lymphocytes [Hibi et al., 1996].

Besides the classical membrane bound IL-6 receptor signaling an alternative

pathway exists using a soluble form of the IL-6 receptor (sIL-6Rα). The sIL-6Rα is

either created by shedding of the extracellular part of the membrane bound IL-6

receptor which is triggered by the c-reactive protein or is produced by alternative

splicing of the messenger RNA (mRNA) [Jones et al., 1999]. A complex of IL-6

and the sIL-6Rα can bind to the gp130 signaling chain at virtually all cell types,

thereby rendering also cells responsible to IL-6 which do not express the IL-6Rα

chain [Graeve et al., 1996]. This kind of IL-6 signaling was described as “transsig-
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naling” which can be inhibited by soluble gp130 (sgp130) [Chalaris et al., 2007].

IL-6 expression is regulated by TNFα signaling which activates a dual kinase

system (Fig. 1.4). On the one hand, TNFα leads to survival which is mediated by

the IKK kinases phosphorylating the inhibitor of NF-κB (IκBα), thus, liberating

NF-κB transcription factors to induce IL-6 transcription and proliferation [Karin,

2008]. On the other hand, TNFα induced apoptosis as a consequence of c-Jun N

terminal kinase (JNK) activation phosphorylating the classical activated protein

1 (AP-1) [Karin & Gallagher, 2005; Ventura et al., 2003].

TRAF2 Caspase8 

Apoptosis 

Induction of pro-inflammatory genes: 
Cytokines 
Chemokines 
Adhesion molecules 

Induction of anti-apoptotic genes 
Anti-apoptotic proteins 
Acute phase proteins 

TNF alpha 
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IKK1 IKK2 
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Figure 1.4: TNFα signaling pathway
TNFα binds to its receptor and mediates signaling by the IKK complex (IKK1,
IKK2, NEMO). The IKK complex phosphorylates IκB leading to its ubiquiti-
nation and degradation by the proteasome. The transcription factor NF-κB
translocates to the nucleus and activates transcription of target genes such as
IL-6. Alternatively, the TNFα receptor phosphorylates MAP3K mediated by
Caspase 8 leading to phosphorylation of MKK which results in JNK activa-
tion. c-Jun, phosphorylated by JNK forms AP-1 with the JunB proteins and
regulates target genes.
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1.3.1 JAK/Stat-signaling

Upon IL-6 binding to the IL-6Rα, the gp130 complex recruits Janus-activated-

kinases (JAK) [O’Shea et al., 2002]. JAKs provide tyrosine kinase activity at the

activated IL-6Rα. These JAKs bind to the intracellular receptor domains and

phosphorylate tyrosines of the IL-6Rα after JAK dimers phosphorylate each other

[O’Shea et al., 2002]. These phosphorylated tyrosines of the receptor are binding

sites for proteins containing src- homology 2 (SH2) domains [O’Shea et al., 2002].

Signal transducer and activator of transcription 3 (Stat-3) binds to the receptor by

its SH2 domain and thereby tyrosin 705 of Stat-3 is phosphorylated by the JAKs

[O’Shea et al., 2002]. This induces a conformational change and creates new SH2

binding sites at the Stat-3 surface [Akira, 1997]. Therefore, Stat-3 dissociates from

the IL-6Rα, forms homodimers, translocates into the nucleus and enhances or in-

hibits transcription of target genes (Fig. 1.5) [Ramadori & Christ, 1999; Akira,

1997].

One of the target genes of Stat-3 is the suppressor of cytokine signaling (Socs)

3 [Endo et al., 1997]. Socs-3 in turn negatively regulates the IL-6 mediated sig-

naling transduction pathway in a negative feedback loop (Fig. 1.5). On the one

hand, Socs-3 binds to phosphorylated tyrosine at the IL-6Rα and therefore occu-

pies binding sites for Stat-3. On the other hand, Socs-3 binds directly to JAKs

thereby reducing JAK kinase activity [Kawazoe et al., 2001; Naka et al., 1999, 1997;

Bjørbaek et al., 1998; Endo et al., 1997].
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Figure 1.5: IL-6 signaling pathway
IL-6 binds to its receptor, composed of gp130 and IL6Rα. Gp130 recruits JAKs
which phosphorylate the receptor after transphosphorylation. The phospho-
rylated receptor recruits Stat-3 which is phosphorylated by JAKs and forms
homodimers. These dimers translocate to the nucleus and induce transcrip-
tion of target genes.

1.3.2 MAPK-signaling

Additionally to the JAK/Stat pathway, IL-6 activates the mitogen-activated pro-

tein kinase (MAPK) pathway (Fig. 1.5). The MAPK pathway regulates embryonic

development, cell differentiation, cell proliferation and apoptosis and is activated

by mitogenes, cytokines or cellular stress [Davis et al., 2002; Davis, 2000]. Three

groups of MAPK are described consisting of JNK, the extracellular signal-related

kinases (ERK) and the p38 protein kinases (Fig. 1.5) [Ramadori & Christ, 1999].

JNK is mainly activated by pro-inflammatory cytokines such as TNFα and IL-6

or by cellular stress [Weston & Davis, 2002]. The signal transduction from the

receptor to the MAP3K is not yet fully elucidated. However, it was demonstrated
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that mixed-lineage protein kinase (MLK) 1, apoptosis signal-regulating kinase

(ASK) 1, MAP kinse-ERK kinase (MEK) 1/4, TGF activated kinase (TAK) 1 and

JNK 1-3 are participating in this signaling pathway [Davis, 2000; Baud et al., 1999].

Finally, JNK phosphorylates c-Jun which forms a homodimer or heterodimer

with other Jun- or FBJ osteosarcoma oncogene- (Fos) proteins to produce AP-1

[Weston & Davis, 2002; Karin & Chang, 2001]. AP-1 activation regulates cytokine

production, enhances transcription of mitotic genes such as Cyclin D1 and re-

duces expression of cell cycle arrest genes such as p53 [Angel & Karin, 1991].

The ERK signaling pathway involves MEK 1 and 2, rapidly accelerated fi-

brosarcoma kinase (RAF) and ERK 1 and 2 and regulates cell growth, prolifer-

ation and differentiation [Zhang et al., 2004]. Over-expression and activation of

ERK can be detected in many types of cancer [Jin et al., 2013; Bartholomeusz et al.,

2012; Caja et al., 2009; Zhang et al., 2004].

The p38 pathway is activated by stress, UV light and osmotic stress. This path-

way involves signaling of MLK and ASK-1 as well as TAK, McKusick-Kaufman

syndrome kinase (MKK) 3/6, p38 and MAPKα/β and results in similar outcomes

as the ERK pathway [Shi & Gaestel, 2002; Tibbles & Woodgett, 1999].
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1.4 Apoptosis

Evading or inhibiting apoptosis is one of the hallmarks in the development of

cancer [Hanahan & Weinberg, 2000]. The hypothesis that apoptosis serves as a

barrier to cancer was first raised in 1972, when Kerr, Wyllie, and Currie described

massive apoptosis in the cells populating rapidly growing, hormone-dependent

tumors following hormone withdrawal [Kerr et al., 1972].

Apoptosis is the process of programmed cell death and can be induced by sev-

eral stimuli including cellular stress, UV-light, DNA damage and virus infections

[Green, 2005]. Apoptosis leads to characteristic morphological cell changes, in-

cluding cell shrinkage, nuclear fragmentation, chromatin condensation and chro-

mosomal DNA fragmentation, which subsequently results in cell death [Hanahan

& Weinberg, 2011]. In contrast to necrosis, which is a form of traumatic cell death,

apoptosis is necessary during an organism’s life cycle, for example for the separa-

tion of fingers and toes in a developing human embryo [Haruta et al., 2011]. Fur-

thermore, apoptosis is necessary to eliminate cells with DNA damage and keeps

proliferating tissue in balance [Hanahan & Weinberg, 2011]. Missregulation of

apoptosis results in wide range of pathophysiological consequences, including

carcinogenesis and Alzheimer’s disease [Rohn, 2010]. The apoptotic process is

tightly regulated and divided into two pathways which can overlap. On the one

hand the extrinsic pathway mediated by membrane-bound death receptors, such

as the TNF-receptor, on the other hand the intrinsic pathway mediated intracel-

lular via the mitochondria [Hanahan & Weinberg, 2011].



1 Introduction 14

1.4.1 Extrinsic apoptotic pathway

The extrinsic apoptotic pathway is mediated via death receptors (DR) from the

TNF-receptor family, including Fas (CD95/Apo1), TNFR, DR3, DR4, DR5, DR6,

NGFR and EDAR [Bhardwaj & Aggarwal, 2003] . After binding of the ligand at

the extracellular, cystein-rich part of the DR, adapter proteins are recruited to the

intracellular part of the receptor which cleaves and thereby activates Caspase 8

(Fig. 1.6A) [Hengartner, 2000]. This leads to recruitment of Caspase 3. Caspase

3 is cleaved by Caspase 9 and thereby activated which results in degradation of

cellular components (Fig. 1.6A) [Malhi et al., 2010].

1.4.2 Intrinsic apoptotic pathway

The key element of the intrinsic apoptotic pathway are the mitochondria which

are the central sensory organelle that can respond to DNA damage. The double

membrane of the mitochondria consists of the inner and the outer membrane. The

inner, impermeable mitochondrial membrane (IMM) consists of many invagina-

tions called cristae and harbor different enzyme complexes essential for the respi-

ratory chain. The outer, semi-permeable mitochondrial membrane (OMM) com-

prises different membrane-bound protein complexes which allow the exchange of

small molecules and proteins between mitochondria and cytosol. The intermem-

brane space (IMS) contains pro-apoptotic factors such as cytochrome C, apoptosis

inducing factor (AIF) or endonuclease G which cannot pass through the constitu-

tive protein channel and stay in the IMS. (Fig. 1.6B) The mitochondria respond to

DNA damage by mitochondrial outer membrane permeabilization [Green, 2005;

Chipuk et al., 2006]. By forming pores, cytochrome C can be released into the cyto-

plasm and interact with apoptotic protease activating factor-1 (Apaf-1) (Fig. 1.6C)

[Green, 2005; Chipuk et al., 2006]. Recruitment of pro-Caspase 9 to the complex

then leads to formation of the apoptosom, cleavage of Caspase 9 and activation

of Caspase 3 (Fig. 1.6C) [Green, 2005; Chipuk et al., 2006].
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Figure 1.6: Apoptotic pathway
(A) After stimulation by extrinsic signals adapter proteins are recruited to the
receptor, Caspase 8 is recruited and activated which results in cleavage and
thereby activation of Caspase 3. (B) In the physiological state Mcl-1 exists in a
complex with Bak associated with the OMM. (C) After cytotoxic stimuli Mcl-1
is separated from Bak by active BH3-only proteins, phosphorylated, ubiquiti-
nated by Mule and degraded by the proteasome. Bak and Bax can oligomerise
and integrate in the OMM to form pores which leads to the release of cy-
tochrome C. Cytochrome C interacts with Apaf-1 and recruits Caspase 9 to
form the apoptosom which leads to cleavage and activation of Caspase 3. (C)
The intrinsic pathway can be activated via extracellular signals by Bid. Cas-
pase 8, activated via DR signaling, can cleave Bid and the resulting truncated
Bid (tBid) interacts with Bax and leads to the integration in the OMM.
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1.4.3 B-cell lymphoma (Bcl-2) family

The balance between anti- and pro-apoptotic members of the Bcl-2 protein fam-

ily regulates mitochondrial outer membrane permeabilization and the efflux of

cytochrome C in response to cellular damage [Brunelle & Letai, 2009]. The Bcl-2

protein family consists of pro-apoptotic proteins such Bcl-2 homologues antago-

nist/killer (Bak) and Bcl-2-associated X protein (Bax) and anti-apoptotic proteins

such as Bcl-2, Bcl-XL and Myeloid leukemia cell 1 (Mcl-1). Another sub-group

consists of the pro-apoptotic BH3-only proteins such as p53 upregulated modu-

lator of apoptosis (Puma) and phorbol-12-myristate-13-acetate-induced protein 1

(PMAIP1), also known as Noxa, which have only one of the four Bcl-2 homology

domains [Thomas et al., 2010]. These proteins promote apoptosis by binding at

anti-apoptotic proteins [Brinkmann et al., 2013; Eskes et al., 2000].

Bax and Bak are constitutively expressed. Bak is associated with the OMM

whereas Bax is located in the cytosol (Fig. 1.6C). After initiation of apoptosis,

Bim binds at Bax which leads to a conformational change and to translocation

to the OMM (Fig. 1.6C) [Ren et al., 2010]. Bax oligomerise with Bak, integrates

into the OMM and creates pores which leads to the release of cytochrome C (Fig.

1.6C) [Malhi et al., 2010].

To avoid a constitutive activation of apoptosis, anti-apoptotic proteins are bound

to Bax and Bak to suppress membrane permeabilization. Bak is bound by Mcl-1

at the OMM which can be detached via replacement by Noxa (Fig. 1.6C) [Ren

et al., 2010]. After phosphorylation Mcl-1 is ubiquitinated by the Mcl-1 ubiquitin

ligase E3 (Mule) and degraded by the proteasome [Zhong et al., 2005].

The extrinsic and intrinsic apoptotic pathway are conected via BH3 interacting-

domain death agonist (Bid). Caspase 8, activated via death receptor signaling, can

cleave Bid and the resulting truncated Bid (tBid) interacts with Bax and leads to

integration in the OMM (Fig. 1.6D) [Eskes et al., 2000].
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1.4.4 Missregulation of apoptosis in cancer

The discovery of the upregulation of the Bcl-2 oncogene in follicular lymphoma

[Korsmeyer, 1992] and its recognition as having anti-apoptotic activity opened up

the investigation of apoptosis in cancer at the molecular level [Vaux et al., 1988].

Further insights into the myc-Bcl-2 interaction emerged later from studying the

effects of a myc oncogene on fibroblasts cultured under low serum conditions.

Widespread apoptosis was induced in myc-expressing cells cultured in serum-

free media and the consequent apoptosis could be abrogated by exogenous sur-

vival factors, by forced overexpression of Bcl-2 or the related Bcl-XL protein or by

disruption of the FAS death signaling circuit [Hueber et al., 1997]. Collectively, the

data indicate that the apoptotic program of the cell can be triggered by an over-

expressed oncogene. Indeed, elimination of cells bearing activated oncogenes

by apoptosis may represent the primary means by which such mutant cells are

continually eliminated from the tissues.
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1.5 Objectives

Hepatocellular carcinoma (HCC) and obesity are intimately connected diseases

and their incidences are steadily increasing worldwide. Thus, the obesity- asso-

ciated increase in HCC development gains substantial clinical relevance.

Previous work clearly evidenced the promoting role of IL-6 in liver tumori-

genesis [Naugler et al., 2007]. Nevertheless, how IL-6 signaling facilitates HCC

growth in the tumor itself or in the tumor microenvironment or whether both are

affected by IL-6 still remains elusive.

To precisely define the effects of IL-6 signaling pathway in tumors and in cells

contributing to the tumor microenvironment through a loss of function approaches

in mice, the IL-6Rα was genetically deleted in the entire body, hepatocytes, myeloid

cell and T cells of mice, respectively. A DEN induced liver carcinogenesis ap-

proach was applied to these mice to confirm the previously published protec-

tion of IL-6 signaling deficient animals to DEN induced HCC development and

to elucidate the underlying mechanism. Moreover, a group DEN injected mice

were also exposed to HFD feeding since HFD increased tumor number and size

in different HCC tumor model [Park et al., 2010; Wunderlich et al., 2008].

Taken together, these experiments should determine the molecular mechanisms

and the cell type (s) responsible for mediating the recently published protection

to HCC development in IL-6 knock out mice. Thus, this work will clarify whether

the tumor originating from hepatocytes or specific cell types contributing to the

microenvironment such as macrophages and T lymphocytes mediate IL-6’s abil-

ity to promote tumor growth in the HCC mouse model.
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2.1 Materials

2.1.1 Chemicals

Table 2.1: Chemicals

Chemical Supplier

β-mercaptoethanol Applichem, Darmstadt, Germany

ε-aminocaproic acid Sigma-Aldrich, Seelze, Germany

0.9% saline (sterile) Delta Select, Pfullingen, Germany

2,2,2-Tribromoethanol (Avertin) Sigma-Aldrich, Seelze, Germany

2-Methyl-2-Butanol Sigma-Aldrich, Seelze, Germany

Acetic acid Merck, Darmstadt, Germany

Acetone KMF Laborchemie, Lohmar, Germany

Acrylamide Roth, Karlsruhe, Germany

Agarose Peqlab, Erlangen, Germany

Agarose (Ultra Pure) Invitrogen, Karlsruhe, Germany

Ammonium Acetate Merck, Darmstadt, Germany

Ammoniumpersulfat (APS) Sigma-Aldrich, Seelze, Germany

Aprotinin Sigma-Aldrich, Seelze, Germany

Bacillol Bode Chemie, Hamburg, Germany

Benzamidine Sigma-Aldrich, Seelze, Germany

Bovine serum albumin (BSA) Sigma-Aldrich, Seelze, Germany

Bromphenol blue Merck, Darmstadt, Germany

Calcium chloride Merck, Darmstadt, Germany

Chloroform Merck, Darmstadt, Germany

Continued on next page
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Table 2.1 – continued from previous page

Chemical Supplier

Desoxy-ribonucleotid-triphosphates

(dNTPs)

Amersham, Freiburg, Germany

Developer G153 AGFA, Mortsel, Belgium

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany

di-Natriumhydrogenphosphat Merck, Darmstadt, Germany

Di-thiothreitol Applichem, Darmstadt, Germany

Enhanced chemiluminescence (ECL) Kit Perbio Science, Bonn, Germany

Ethanol, absolute Applichem, Darmstadt, Germany

Ethidium bromide Sigma-Aldrich, Seelze, Germany

Ethylendiamine tetraacetate (EDTA) Applichem, Darmstadt, Germany

Fixer G354 AGFA, Mortsel, Belgium

Forene (isoflurane) Abbot GmbH, Wiesbaden, Germany

Glucose 20% DeltaSelect, Pfullingen, Germany

Glycerol Serva, Heidelberg, Germany

Glycine Applichem, Darmstadt, Germany

HEPES Applichem, Darmstadt, Germany

Hydrochloric acid (37%) KMF Laborchemie, Lohmar, Germany

Hydrogen peroxide Sigma-Aldrich, Seelze, Germany

Insulin Novo Nordisk, Bagsvaerd, Denmark

Isopropanol (2-propanol) Roth, Karlsruhe, Germany

Magnesium chloride Merck, Darmstadt, Germany

Methanol Roth, Karlsruhe, Germany

Nitrogen (liquid) Linde, Pullach, Germany

N-Nitrosodiethylamine Sigma-Aldrich, Seelze, Germany

Paraformaldehyde (PFA) Sigma-Aldrich, Seelze, Germany

Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich, Seelze, Germany

Phosphate buffered saline (PBS) Gibco BRL, Eggenstein, Germany

Potassium chloride Merck, Darmstadt, Germany

Continued on next page
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Table 2.1 – continued from previous page

Chemical Supplier

Potassium dihydrogenphosphat Merck, Darmstadt, Germany

Potassium hydroxide Merck, Darmstadt, Germany

Sodium acetate Applichem, Darmstadt, Germany

Sodium chloride Applichem, Darmstadt, Germany

Sodium citrate Merck, Darmstadt, Germany

Sodium dodecyl sulfate Applichem, Darmstadt, Germany

Sodium fluoride Merck, Darmstadt, Germany

Sodium heparin (Liquemin) Roche, Grenzach-Wyhlen, Switzerland

Sodium hydrogen phosphate Merck, Darmstadt, Germany

Sodium hydroxide Applichem, Darmstadt, Germany

Sodium orthovanadate Sigma-Aldrich, Seelze, Germany

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, Seelze, Germany

Tissue Freezing Medium Jung, Heidelberg, Germany

Tramadolhydrochlorid (Tramal) Grünenthal, Aachen, Germany

Trishydroxymethylaminomethane (Tris) Applichem, Darmstadt, Germany

Triton X-100 Applichem, Darmstadt, Germany

Trizol Applichem, Darmstadt, Germany

Tween 20 Applichem, Darmstadt, Germany

Vectashield Mounting Medium with DAPI Vector, Burlingame, USA

Western Blocking Reagent Roche, Mannheim, Germany
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2.1.2 Buffer and solutions

Table 2.2: Buffer and solutions

Buffer/Solution Composition

Anode buffer 1 0,3 M Tris

20% (v/v) Methanol

Anode buffer 2 25 mM tris

20% (v/v) Methanol

Antibody Solution 5% (v/v) Roche Western Blocking

Reagent in TBS-T

Avertin-injectable solution 20.3 mg/ml Avertin Stocksulution

mixed in 0.9 % NaCl

steril filter and store at 4°C in the dark

Avertin-stocksolution 1.6 mg/ml Avertin

in 2-Methyl-2-Butanol

incubate for 12 h at RT

Cathode buffer 40 mM 6-Aminocapron acid

0.01 % (v/v) SDS

20% (v/v) Methanol

Organ Lyses Buffer 50 mM HEPES

1 % Triton X-100

50 mM NaCl

0.1 M NaF

10 mM EDTA

10 mM Sodium orthovanadat

0.1 % (w/v) SDS

2 mM Benzamidin

10 µl/ml Aprotinin

adjust pH 7.4

2 mM PMSF

Continued on next page
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Table 2.2 – continued from previous page

Buffer/Solution Composition

PBS (1x) 137 mM NaCl

2.7 mM KCl

8.1 mM Na2HPO4

1.5 mM KH2PO4

adjust pH 7.4

SDS-PAGE electrophorese buffer (10x) 0.25 M Tris

2 M Glycin

35 mM SDS

SDS-protein-loading-buffer (4x) 250 mM Tris-HCl, pH 6.8

200 mM DTT

8% (v/v) SDS

0.04% (w/v) Bromphenolblue

40% (v/v) Glycerol

Stripping solution 0.7% β-Mercaptoethanol

2% (v/v) SDS

12.5% 0.5 M Tris, pH 6.8

TAE (50x) 2 M Tris

50 mM EDTA

adjust pH 8 with acetate acid

Tail-Lyses-Buffer 100 mM Tris-HCl, pH 8.5

200 mM NaCl

5 mM EDTA

0.2% (w/v) SDS

TBS (10x) 1.47 M NaCl

0.2 M Tris

adjust pH 7.4

TBS-Tween (1x) 1 x TBS

0.1% Tween20

Continued on next page
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Table 2.2 – continued from previous page

Buffer/Solution Composition

TE-Buffer 10 mM Tris-HCl, pH 7.4

10 mM EDTA, pH 7.8

Western Blocking solution 10% (v/v) Roche Western Blocking

Reagent in TBS-T

2.1.3 Kits

Table 2.3: Kits

Kit Company

Real-time detection PCR

TaqMan universal PDR master mix Applied Biosystems, Darmstadt, Ger-

many

Reverse transcription PCR

Reverse transcription core kit Qiagen, Hilden, Germany

SuperScript III first-strand kit Invitrogen, Karlsruhe, Germany

RNA isolation

RNAeasy extraction kit Quiagen, Hilden, Germany

peqGOLD TriFast Peqlab, Erlangen, Germany

Developing of western blots

Enhanced chemiluminescence kit Amersham Pharmacia Biotech,

Freiburg, Germany
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2.1.4 Enzymes

Table 2.4: Enzymes

Enzymes Supplier

DNase Promega, Mannheim, Germany

Proteinase K Roche Diagnostics, Basel, Swiss

DreamTaq ThermoScientific, Schwerte, Germany

RNase A ThermoScientific, Schwerte, Germany

2.1.5 Standards

Table 2.5: Standards

Standard Company

GeneRulerTM DNA ladder mix ThermoScientific, Schwerte, Germany

PageRulerTM protein ladder ThermoScientific, Schwerte, Germany
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2.2 Animal care

Keeping of mice, used for the experiments, occured in agreement with the animal

protection guidelines of the district president of Cologne. The authorization for

animal procedures was approved by the district government of Cologne and in

accordance with NIH guidelines. Authorization for accomplishment of the ex-

periments: 50.203.2 – K 13, 35/03 Genetic analysis of molecular mechanisms in

the regulation of gluconeogenesis and glucose disposal. The mice were housed

in a constant 12 hour day-night-cycle, the room temperature was constantly 22°C

and they had ad libitum access to food and drinking water. After weaning (P21),

mice were separated by sex and were kept in groups of 2 to 5 animals per cage.

During weaning the mice were marked by eartags. For genotyping by PCR the

tail top was cut. During the experiments the mice were exposed to high fat diet

(HFD; C1057; Altromin) containing 32.7 % carbohydrates, 20 % protein, and 35.5

% fat (55.2 % of calories from fat) or normal chow diet (NCD; Teklad Global Ro-

dent 2918; Harlan) containing 53.5 % carbohydrates, 18.5 % protein, and 5.5 % fat

(12 % of calories from fat).

2.3 Metabolic measurements

2.3.1 Serum extraction

Blood samples were taken from the mice by two different methods. Blood was

either collected from the tail vene or from the submandibular veins by piercing

the cheek with a lancet. For coagulation the blood was stored on ice for 30 min-

utes and afterwards centrifuged for 60 minutes at 13.000 rpm at 4 °C. The blood

serum was collected and frozen at -20 °C until further application.
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2.3.2 Measuring of blood glucose level

For measuring blood glucose level Glucomen® blood glucose meter was used.

Therefore the tail vene was cut and a drop of blood was transfered to Glucomen®-

test strip.

2.3.3 Glucose tolerance test

A glucose tolerance test was used to test metabolic reaction of mice to hypergly-

colemic stimuli. Therefore mice were fasted for 6 hours and afterwards injected

with 2 mg/g body weight glucose i.p.. Blood glucose levels were measures be-

fore, 15, 30, 60 and 120 minutes after injection.

2.4 Treatments

2.4.1 Diethylnitrosamine (DEN)-injection

Liver tumors were induced by DEN to investigate the role of IL-6 in hepato-

carcinogenesis. Mice were injected intra peritoneal (i.p.) with 25 mg/kg DEN

(Sigma) 15 days after birth for long term studies. Tumor development was inves-

tigated for 8 months. For short term studies 8 weeks old mice were injected i.p.

with 100 mg/kg DEN and sacrificed 4, 12, 24 hours or 48 hours after injection.

2.4.2 IL-6 signaling

50 ng recombinant IL-6 was injected either via the Vena carva or via tail vene in

8 weeks old mice to induce IL-6 signaling and mice were sacrificed at different

time points.

2.4.3 NK T cell induction

Eight weeks old mice were injected i.p. with 4 µg Galactosylceramide to specifi-

cally activate NK T cells and sacrificed at different time points.
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2.4.4 Constitutiv active GSK-3 via Adeno-associated-virus (AAV)

8 weeks old mice were injected with 5 x 101 viral particles 5 days before DEN

treatment to test the effect of constitutive active GSK-3β (GSK-3βCA). Adeno-

associated viral vector particle production was carried out by calcium phosphate

transient co-transfection of the vector plasmid p87GSK-3CA or pscAAV/EGFP,

pXR8 AAV serotype 8 helper plasmid (kindly provided by James Wilson, Univer-

sity of Pennsylvania, Philadelphia, USA) and pXX6-80 adenovirus helper plas-

mid (kindly provided by Jude Samulski, University of North Carolina at Chapel

Hill, USA) into human embryonic kidney 293 (HEK293) cells. p87GSK-3βCA

contained the TTR-promoter driven GSK-3CA cassette that was amplified from

mouse liver cDNA using primers 5NcomycGSKCA: ccATGGGCGGCGAGCA-

GAAACTCATCTCTGAAGAGGATCTGTCGGGGCGACCGAGAACCACCgCC

TTTGCGGAGAGCTGCAAGCC and 3NotGsk3: GCGGCCGCTCAGGTGGAGT

TGGAAGCTG and subsequently cloned into p87 using restriction endonucle-

ases NcoI and NotI thereby replacing the luciferase transgene by GSK-3CA. p87

is designed for production of AAV8-inverted terminal repeat (ITR)-flanked self-

complementary AAV vector genomes. HEK293 cells were harvested post trans-

fection and subjected to benzonase treatment after lysis. AAV particles were pu-

rified using a discontinuous iodixanol gradient (15-60%). Recombinant viral par-

ticle titer was determined by qPCR and found to be 2 x 109 per µl for AAV8 TTR

GSK-3βCA and 3,3 x 108 for AAV8 GFP. The control vector encoding for GFP was

produced accordingly.

2.4.5 PI-3K-inhibitor

8 month old mice injected with 25 mg/kg DEN were treated with 1 mg of PI3K

inhibitor GDC-0941 by oral gavage daily for 10 days to inhibit PI3K and were

subsequently sacrificed. GDC-0941 was dissolved as previously described (Sos et

al., 2009).
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2.4.6 Depletion of regulatory T cells

Thirteen days old mice were injected with 1 mg αCD25 antibody to deplete reg-

ulatory T cells before injection with 100 mg/kg DEN injection on day 15 initiates

tumor development.

2.4.7 PP-1 inhibition by Ocadaic acid

Eight weeks old mice were injected i.p. with 0.75µg/kg BW ocadaic acid to specif-

ically inhibit PP-1 activity 1 hour before DEN injection. Mice were sacrificed at

different time points.

2.5 Organ preparation

2.5.1 Organ extraction

After 8 weeks (short-term experiments) and 8 month (long-term experiments), re-

spectively, mice were sacrificed with CO2. Blood was taken from the heart, liver,

muscle, white adipose tissue and brain were extracted and shock frozen in liq-

uid nitrogen. A small part of the liver was embedded in tissue freezing medium

for subsequent tissue slices. The big lobe of the liver of mice from the long-term

experiments was deposite in formalin for further analysis. White adipose tissue

was weighed. The organs were stored at -80 °C until further application.

2.5.2 Tumor quantification in the liver

For the macroscopical quantification tumor numbers in livers of eight months old

mice were determined. Livers were extracted and tumors were counted which

were visible by eye. The big lobe of the liver from eight months old mice (long-

term experiment) was deposited in formalin and sent to Beate Straub, a pathol-

ogist in the Institute of Pathology in the University Hospital in Heidelberg, for

microscopical analyses.
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2.5.3 Liver status

Quantitation of inflammation measured in the big liver lobe of DEN-injected 8

month old mice was performed by the following score:

1 = mild inflammation (mild portal inflammation, 3-5 single cell necrosis, no

grouped necrosis)

2 = moderate inflammation (moderate portal inflammation, 6-9 single cell necro-

sis, 1 grouped necrosis)

3 = severe inflammation (severe portal inflammation, more than 10 single cell

necrosis, more than 1 grouped necrosis)

Quantitation of steatosis measured in the big liver lobe of DEN-injected 8 month

old mice was performed by the following score:

1 = 0 - 10%

2 = 11 - 50 %

3 = above 50 %

Quantitation of fibrosis measured in the big liver lobe of DEN-injected 8-mo

mice was performed by the following score:

1 = increased portal connective tissue

2 = early formation of septa
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2.6 Bio molecular methods - nucleic acids

2.6.1 DNA-isolation from tail cuts

To isolate genomic DNA from tailcuts, tails were incubated with 600 µl tail lysis

buffer containing Proteinase K (1:100) at 55°C over night. On the next day lysed

tails were centrifuged for 10 minutes at 10.000 rpm to collect coat residues. The

supernatant was mixed with 600 µl isopropanol for precipitation of DNA. The

mix was centrifuged at 13.000 rpm for 15 minutes, the supernatant was discarded

and pellet was washed with 200 µl 70 % ethanol. After centrifugation at 13.000

rpm for 10 minutes, the supernatant was again discarded and DNA pellet dried

for 15 minutes. The DNA was resuspended in 50 µl Tris-EDTA buffer containing

RNase A (1:1000).

2.6.2 RNA-isolation with RNAeasy kit

To obtain pure RNA for real-time analysis RNAeasy Mini Kit (Qiagen) was used.

The procedure was performed according to the RNAeasy Mini Kit protocol for

purification of total RNA from animal tissue.

2.6.3 Determination of nucleic acid concentration

For quantitation of DNA or RNA in solution a spectral photometer was used. The

photometer measured optical density at a wavelength of 260 nm. The absorption

of purine and pyrimidine aromatic bases is maximal at this wavelength. The

following formula was used for determination of DNA:

C [ng/µl] = OD260 x D x E

C = concentration of DNA solution OD260 = absorption at 260 nm D = dilution

factor E = extinction coefficient

Around 50 µg/ml double-stranded DNA or 40 µg/ml RNA or single-stranded

DNA corresponds to an OD260 of 1. Optical density of a wavelength at 280 nm

was measured to detect protein contaminations. A ratio between 1.8 – 2.0 (OD260
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/OD280) shows minimal protein contaminations. Measurements were done in

the NanoDrop® instrument.

2.6.4 Polymerase chain reaction (PCR) for genotyping of mice

Table 2.6: Primer

Primer notation Sequence

5’Cre ACG AGT GAT GAG GTT CGC A

3’Cre ATG TTT AGC TGG CCC AAA TGT

5’IL6Ex3 CCA GAG GAG CCC AAG CTC TC

3’IL6a TAG GGC CCA GTT CCT TTA T

5GK12 CCGCGGGCGATCGCCTAGG

5’gp130 GGT GGC TGA TTC ACC TGC A

3’gp130 TAC GCT GGG CAG CGT CCT

gp130 delta AAC ACA CTC ATG CTG AAA CC

Table 2.7: PCR mix

Reagent Amount

H2O 20.1 µl

Buffer 2.5 µl

dNTPs 0.2 µl

Primer 0.25 µl per primer

DreamTaq 0.2 µl

DNA 1.5 µl
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Table 2.8: PCR programms

PCR Programm

Cre 95◦C 30 sec

95◦C 30 sec

54◦C 30 sec

72◦C 1 min

72◦C 5 min

4◦C endless

IL-6Rα 94◦C 3 min

94◦C 45 sec

54◦C 45 sec

72◦C 1.30 min

72◦C 10 min

4◦C endless

gp130 94◦C 4 min

94◦C 30 sec

54◦C 30 sec

72◦C 45 min

72◦C 10 min

4◦C endless

2.6.5 Agarose gel electrophoresis

Gel electrophoresis was used to separate DNA with different size.
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2.6.6 Reverse transcription (RT)

A RT-PCR was performed to produce cDNA for real-time analysis. Using the

High Capacity cDNA Reverse Transcription Kit from Applied Biosystems, RT-

PCR was performed according to manufacturer’s instructions.

Table 2.9: RT programm

Temperature Time

25◦C 10 min

37◦C 2 h

85◦C 5 min

4◦C endless

Table 2.10: RT mix

Reagent Amount

RNase free H2O 4.2 µl

10x Buffer 2 µl

dNTPs 0.8 µl

random Oligos 2 µl

reverse transkriptase 0.25 µl

RNA 1-2 µg in 10 µl
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2.6.7 Quantitative real-time PCR (qRT-PCR)

Quantitative qRT-PCR was performed to measure expression levels, using Taq-

Man probes from Applied biosystem. The qRT-PCR was performed as followed.

Table 2.11: Oligonucleotides for qRT-PCR (applied Biosystems, Darmstadt, Germany)

Probe Order number

Bak Mm00432042m1

Bax Mm00432045m1

Bbc3 Mm00519268m1

Bcl-2 Mm00477631m1

Bclxl Mm00437783m1

Clcf-1 Mm0136492m1

Cntf Mm00446373m1

Cntfr Mm00516693m1

Ctf-1 Mm00432772m1

Cul1 Mm00516318m1

Ebi-3 Mm00469294m1

Fbxw7 Mm00504452m1

gp130 Mm00438665m1

Gusb Mm00446953m1

Huwe1 Mm00615533m1

IL-6 Mm00446190m1

IL-11 Mm00434162m1

IL-33 Mm00505403m1

IL-6ra Mm00439649m1

IL-11ra Mm00494938m1

IL-20ra Mm00555504m1

Lif Mm00434762m1

Lifr Mm00442942m1

Mcl-1 Mm01257352g1

Continued on next page
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Table 2.11 – continued from previous page

Probe Order number

Osm Mm01193966m1

Osmr Mm01307326m1

Pmaip1 Mm00451763m1

Pp1ca Mm00453291g1

Puma Mm00437783m1

Table 2.12: Realtime mix

Reagent Amount

DEPC- H2O 3.4 µl

MasterMiix (TaqMan) 6 µl

probe 0.6 µl

cDNA 2 µl

2.6.8 Chromatin Immunoprecipitation

HepG2 cells were grown on 15cm dishes to 80-90% confluency in EF Medium.

Cells were stimulated with 200 ng/ml human IL-6 (#200-006, PeproTech) for 45

minutes and subsequently crosslinked with 1% PFA for 10 minutes at room tem-

perature. The reaction was quenched with addition of 1.7 ml 1.25 M Glycine

for 5 minutes and cells were washed twice with PBS. Cells were scraped off the

plates in 2 ml PBS, supplemented with protease inhibitor (Roche cOmplete pro-

tease inhibitor cocktail), and collected in 15 ml falcon tubes (700 xg, 5 minutes,

4°C). The cell pellet was resuspended in 1 ml cell lysis buffer (5 mM HEPES, 140

mM NaCl, 1 mM EDTA, 10% Glycerol, 0.25% Triton X-100, 1 mM PMSF, Roche

cOmplete protease inhibitor cocktail) and rotated for 15 minutes at 4°C. Cells

were collected (700 xg, 5 minutes, 4°C), resuspended in 1 ml MNase Buffer (0.32

M Sucrose, 50 mM Tris-HCL pH7.5, 4 mM MgCl2, 1 mM CaCl2, 0.1 mM PSMF,

Roche cOmplete protease inhibitor cocktail, 300u MNase [Thermo Scientific]) and
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incubated at 4°C for 60 minutes. Cells were collected (700 xg, 5 minutes, 4°C), re-

suspended in 1 ml nuclear lysis buffer (50 mM Tris-HCL pH8.0, 10 mM EDTA,

1% SDS, 1 mM PMSF, Roche cOmplete protease inhibitor cocktail) and again ro-

tated for 15 minutes at 4°C. The cell suspension was sonicated with 20 pulses a

30 seconds (Branson Sonifier 250, output control 4, duty cycle 50%, 90 seconds

cooldown between pulses). 100 µl cell suspension, containing 1x106 cells, were

used per immunoprecipitation. Subsequent sample handling was done with the

EZ-ChIP kit (#17- 371, Millipore) according to the manufacturer’s instructions.

Immunoprecipitation was performed with an antibody against RNA-Polymerase

II, mouse IgG (both included with the kit) and an antibody against p-Stat3 Y705

(#9145, Cell-Signaling). Precipitation of the promoter regions was analyzed by

PCR, utilizing the primers

5hMULEChIP (GAGGGAAGGAGTCTGGATAAT) and 3hMULEChIP (CCGATC-

TAGGTGTCTAGAGC) or 5hMULEUSChIP (GCATTGTATGATTGTACTACAGTT-

TAT) and 3hMULEUSChIP (CCAGCGGTTACTCTTCTAAGAA) for MULE, re-

sulting in 296 bp and 180 bp fragments respectively; 5hPP1CAChIP (AGTGCGCTG

GGAATTCAGCC) and 3hPP1CAChIP (GAGGCGCCCAGCCCTGT) for PP1CA,

resulting in a 307 bp fragment.

2.7 Bio molecular methods - proteins

2.7.1 Extraction of proteins from mouse organs

To extract proteins from mouse organs the organs were covered with 1 ml organ

lysis buffer and homogenized with an Ultraturrax. Afterwards the homogenate

was centrifuged for one hour at 13.000 rpm at 4 °C. After centrifugation the clear

medial of the three phases was collected in a new tube and the protein content

was measured by the Warburg-method. The absorption of the protein solution

was measured at 280 nm.
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2.7.2 Mitochondrial isolation

Isolation of mitochrondria from mouse liver was done as previously described

(Frezza et al., 2007). Mitochondria were washed twice in MSB (400mM manitol,

10 mM KH2PO4, 50 mM Tris-HCl, 0.5% BSA, pH 7.2) and protein concentrations

were determined (BCA Protein Assay, Pierce).

2.7.3 Bax treatment of isolated mitochondria

100 µg mitochondria, supported with 1 mM ATP, 5 µM rotenone and 4 mM

MgCl2, were treated with increasing amounts of recombinant Bax protein (0.25µg-

1µg; SignalChem) for 30’ at 30°C. After centrifugation (20.000g), the supernatant

was further analyzed by western-blot for release of cytochrome c.

2.7.4 SDS-polyacrylamid-gelelectrophorese (SDS-PAGE)

For electrophoretic separation by means of their molecular size protein samples

were diluted with organ lyses buffer and 4x SDS-loading dye to a concentration of

10 µg/µl. The samples were heated to 98 °C for 5 minutes to denaturate proteins

for SDS binding. In the experiments 10 % and 15 % resolving gels where used.

2.7.5 Western blot analysis

For determination of protein levels, proteins, which were separated by SDS-PAGE,

were transferred onto a Polyvinylidendifluorid (PVDF)-membrane. A Semi-Dry-

Blot and a Wet-Blot were used bevor blocking for one hour in 1 % Western Block-

ing reagent in TBS-T. First antibody were diluted in 0,5 % Western Blocking reagent

(antibody dilution in 2.13) and incubated at 4° C over night. The second antibody

were diluted in 0.5 % Western Blocking reagent (antibody dilution in 2.13) and

incubated for one hour at room temperature. For detection 10 ml ECL was used

for one minute. For reuse membrane was stripped 30 minutes in a 56°C water

bath with stripping solution.
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Table 2.13: Antibodies

Antibodies Type Dilution Supplier

α-panAKT rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-Bax rabbit,

monoclonal

1:500 Santacruz, Heidelberg, Germany

α-Bcl-2 rabbit,

monoclonal

1:500 Santacruz, Heidelberg, Germany

α-BclXL rabbit,

monoclonal

1:500 Santacruz, Heidelberg, Germany

α-Calnexin rabbit,

monoclonal

1:1000 Millipoore, Germany

α-cleaved

Caspase 3

rabbit,

monoclonal

1:500 Cell Signaling, Danvers, USA

α-Complex II rabbit,

monoclonal

1:1000 Santacruz, Heidelberg, Germany

α-GSK-3β rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-Mcl-1 rabbit,

monoclonal

1:2000 Rockland Inc., Gilbertsville, PA 19525

α-pAKT rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-pERK 1/2 rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-pGSK-3β rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-pJNK rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

Continued on next page
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Table 2.13 – continued from previous page

Antibodies Type Dilution Supplier

α-Puma rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-pStat-3 rabbit,

monoclonal

1:1000 Cell Signaling, Danvers, USA

α-rabbit,

conjugated

with peroxi-

dase

rabbit,

monoclonal

1:1000 Sigma, Deisenhofen, Germany

2.7.6 Quantitation of western blots

Quantitation of Western blots was done by Quantity One by BioRad.

2.8 Bio molecular methods - serum

2.8.1 Serum analysis

For evaluation of liver injury, levels of glutamate-pyruvate-transaminase and

aspartate-aminotransferase in the serum were measured. Level of triglycerides

and cholesterol were also measured. Serum was diluted 1:10 in 0.9 % NaCl and

measured in the central lab of the university hospital in cologne.
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2.8.2 Insulin, Leptin, IL-6 and TNFα enzyme linked immuno sorbent assay

(ELISA)

Serum insulin (mouse Insulin ELISA, Crystal Chem inc.), serum leptin (mouse

leptin ELISA, Crystal Chem inc.), serum TNFα (Quantikine Immunoassay ELISA

TNFα, R&D Systems), serum sgp130 (Glucoprotein 130 ELISA kit, antikörper-

online), serum IL-6 sR (Quantikine Immunoassay ELISA IL-6, R&D Systems) and

serum IL-6 (Quantikine Immunoassay ELISA IL-6, R&D Systems) were deter-

mined by ELISA according to manufacturer’s instructions.

2.8.3 AKT, Caspase-3, GSK-3β and PI3K activity assay

AKT activity (AKT kinase assay, Cell Signaling), Caspase-3 activity, (PathScan

Cleaved Caspase 3 ELISA kit, Cell Signaling), GSK-3β activity (GSK-3β activity

assay, sigma-aldrich) and PI3K activity (PI-3 kinase activity assay, echolon) in

liver lysates were determined according to manufacturer’s instructions.

2.9 Immunohistochemical and immunofluorescence stainings

2.9.1 HE staining

For histological analysis of tumors formalin-fixed liver specimen were embedded

in paraffin, 2 µm sections were cut and stained with hematoxylin/eosin, distase-

PAS silver stain.

2.9.2 Mcl-1 staining

For histological analysis of tumors formalin-fixed liver specimen were embedded

in paraffin, 2 µm sections were cut and stained Mcl-1 (abcam #32087) or HUWE1

(lifespan biosciences LS-B1359/20559).

2.9.3 Oil Red O staining

Steatosis was detected by Oil-Red-O Staining.
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2.9.4 TUNEL staining

Tissue sections were used for DeadEnd Fluorometric TUNEL system (Promega)

according to manufacturer’s instructions to detect apoptotic cells. TUNEL- posi-

tive cells were quantified using image tool software (Imaris 7.0).

2.9.5 Ki67 staining

To detect proliferating cells, tissue sections were stained with Ki67 antibody (#ab

15580, Abcam) and donkey α-rabbit red (#711-025-152, Jackson). Ki67-positive

cells were quantified using image tool software (Imaris 7.0).

2.10 Cell culture

2.10.1 Dual Luciferase Reporter Assay

For the pTE-MULE-Luc reporter construct generation, 1000 bp promoter region

of the mouse MULE locus were inserted downstream of the luciferase open read-

ing frame in the pTE-Luc plasmid instead of the CAG promoter (Jordan et al.,

2011, Nat Cell Biol). The MULE promoter was amplified by PCR with the primers

5MluMule (ACGCGTTATAGACTTTAGGCAGTCTG) and 3NcoMule (CCATG-

GTTTTCAGTTTTCTGATTTAAG). Insertion into pTE-Luc was performed with

NcoI-MluI double restriction. HepG2 were plated on 6-well plates and trans-

fected with 1000 ng DNA (100 ng pRL-Null and 900 ng pTE-MULE-Luc) using

the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manu-

facturer’s instructions. 24 hours after transfection, cells were pre-incubated with

20 µM STATTIC Stat3 inhibitor for 1 hr (#573099, Calbiochem, DMSO vehicle,

manufacturer’s instruction were followed) and subsequently stimulated with 250

ng/ml human IL-6 (#200-006, PeproTech) over night respectively. Dual luciferase

reporter assays were performed 48 hours after transfection using a luciferase As-

say System (Promega) according to the manufacturer’s instructions.
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2.10.2 Primary murine hepatocyte and human hepatoma culture

Anesthesized mice were perfused 5 min with EBSS solution (Gibco, 4155-048)

containing 0.5 mM EGTA via vena cava. Subsequently, mice were perfused with

50 ml EBSS (Gibco, 24010-043) containing 10 mM Hepes, 15 mg Collagenase

Type II (Worthington) and 2 mg Trypsin inhibitor (Sigma). After perfusion,the

liver was transferred in 10 ml ice cold EBSS (Gibco, 24010-043) containing 10

mM Hepes. The gall bladder was removed and hepatocytes were released from

the cell association. The cell suspension was pressed through a sieve with 20

µm mesh and centrifuged for 5 min. at 500 g at 4°C. The supernatant was re-

moved and the pellet was washed twice in William’s E medium (PPA) containing

6 ml sodium pyruvate, 6 ml non essential amino acids, 30 ml FCS, 6 ml Peni-

cilin/Streptamycin, 6 ml Glucose, 11,5 ml Hepes and 6 ml Glutamate. Subse-

quently, the pellet was dissolved in 10 ml medium. The viability should be >90

%, as determined by trypan blue dye exclusion. 3x106 hepatocytes isolated from

control and IL-6Rα-deficient animals were incubated with medium containing

DEN at different concentrations for 48 h. Subsequently, mitochondria and cy-

tosolic fractions were separated and used for Western blot analysis. Hep3B cells

were cultivated in hepatocyte medium and stimulated with 50 ng human IL-6

(#200-006, PeproTech) for the indicated time. Neutralization of hIL-6R using anti-

IL-6Rα (R&D mab227) and control rat IgG (BD 554682) was performed prior to

IL-6 treatment.
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3.1 Obesity increases basal hepatic Stat-3 activation and

impairs acute IL-6 responsiveness

To determine the molecular mechanisms mediating the recently published pro-

tection to HCC development in IL-6 deficient mice, the IL-6Rα was genetically

deleted in the entire body and a DEN induced liver carcinogenesis approach was

applied. Furthermore, DEN injected mice were exposed to HFD feeding to deter-

mine the effect of obesity to HCC development.

IL-6 initiates downstream signaling by binding to the IL-6 receptor (IL-6R),

whose activation results in multiple downstream signaling events in the liver

such as activation of the JAK/Stat-3 and MAPK/ERK pathways [Heinrich et al.,

1998].

To determine the time course of IL-6 activated downstream signaling 8 weeks

old control mice were injected with 50 ng IL-6 / g BW intraveneously (i.v.) and

phosphorylation of several downstream targets were analysed by western blot

after 30, 60, 120 and 240 minutes. Phosphorylation of Stat-3 appeared already 30

min post IL-6 injection and progressively declined thereafter whereas activation

of ERK-1/2 was detected after 30 min and progressively increasing up to 120 min

(Fig. 3.1A). However, IL-6 injection did not activate hepatic JNK phosphoryla-

tion in control mice (Fig. 3.1A). Next, dose response to IL-6 in lean control mice

was measured by western blotting. IL-6-induced Stat-3 activation in liver was

detected upon injection of 3 ng IL-6/g body weight (BW) intraperitoneally (i.p.),

but increased dose-dependently when 30 and 300 ng IL-6/g BW were applied

(Fig. 3.1B). To investigate the effect of obesity to IL-6 signaling lean and obese
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Figure 3.1: IL-6 responisveness in control mice on NCD and HFD
(A) Western blot analysis using pStat-3, pERK1/2, pJNK, and AKT antibodies
on liver tissue from 8 wk C57BL/6 mice after i.v. injection of 50 ng IL-6 / g
BW. (B) Western blot analysis using pStat-3 and Calnexin antibodies on liver
tissue from control mice 1 hr post i.p. injection of indicated amounts of IL-6 /
g BW. (C) Western blot analysis using pStat-3 and Calnexin antibodies on liver
tissue of control mice exposed to NCD or HFD for 23 wk before and 1 hr after
i.p. injection of 50 ng IL-6 /g BW. (D) Body weight of from C at 24 wk (n=7).
Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001
versus control. Data in B/C/D produced in collaboration with Jan Mauer.

mice were injected with 50 ng IL-6/g BW i.p. (Fig. 3.1C/D). While injection of

50 ng IL-6/g BW induced a strong hepatic activation of Stat-3 in lean mice, this

response was massively decreased in obese control mice (Fig. 3.1C/D). Further-

more, livers from obese mice displayed increased Stat-3 activation in the basal

state compared to lean mice (Fig. 3.1C/D).

Collectively, these experiments demonstrate that obesity increases basal Stat-3

activation and impairs the responsiveness to acute IL-6 stimulation.
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3.2 Generation of IL-6Rα knock out mice

To adress the role of IL-6Rα signaling in the development of hepatocellular car-

cinoma (HCC), a conditional IL-6Rα mouse strain, in which exon 2 and 3 of the

IL-6Rα gene are flanked by loxP sites (IL-6Rα f l/ f l) was used [Wunderlich et al.,

2010]. These mice were crossed to mice expressing the Cre recombinase under the

control of the human cytomegalovirus minimal promoter [Schwenk et al., 1995]

and further intercrossed with siblings leading to mice lacking the IL-6Rα in the

whole body (IL-6Rα∆/∆). IL-6Rα f l/ f l mice served as controls throughout experi-

ments.

Determination of efficiency and specificity was previously shown in "The role

of Interleukin 6 in the development of hepatocellular carcinoma" [Gruber, 2009].

As this work is mainly focussed on the liver, determination of efficiency in the

liver was tested again (Fig. 3.2A). qPCR of liver cDNA of control and IL-6Rα∆/∆

mice revealed the absence of IL-6Rα expression in IL-6Rα∆/∆ mice (Fig. 3.2A). Ac-

cordingly, IL-6 was unable to induce hepatic Stat-3 phosphorylation in IL-6Rα∆/∆

mice, whereas CNTF potently induced Stat-3 activation in these mice (Fig. 3.2B).

Furthermore, Lipopolysaccharide (LPS) was observed to potently induce Stat-

3 and JNK phosphorylation in control mice but failed to activate Stat-3 in IL-

6Rα∆/∆ mice (Fig. 3.2B). Thus, the experiments revealed successful inactivation

of IL-6 signaling in IL-6Rα∆/∆ mice while the responsiveness to alternative IL-

6Rα-independent gp130 cytokines such as CNTF remained unaltered.
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Figure 3.2: Inactivation of IL-6 signaling in IL-6Rα∆/∆

(A) qPCR of IL-6Rα in livers of control and IL-6Rα∆/∆ mice (n=6). (B) Western
blot analysis using pStat-3, pERK1/2, pJNK and Calnexin antibodies on liver
tissue from 8 wk old control and IL-6Rα∆/∆ mice after i.p. injection of 100 ng
IL-6, CNTF and LPS. Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p
≤ 0.01; ***, p ≤ 0.001 versus control. Data in B produced in collaboration with
Justus Ackermann
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3.3 HFD causes obesity in control and IL-6Rα∆/∆ mice in the

DEN-induced HCC model

HCC represents a classical inflammation-induced cancer entity whose develop-

ment is significantly enhanced under obese conditions. To investigate whether

IL-6Rα deficiency affects HCC development under lean and obese conditions,

male IL-6Rα f l/ f l and IL-6Rα∆/∆ mice were injected with 25 mg/kg BW DEN i.p.

at 15 days of age and separated after weaning in cohorts fed either a NCD or HFD

for 8 month. To examine whether IL-6Rα deficiency has an impact on metabolic

or inflammatory state different parameters were measured.

As expected, upon HFD feeding body weight was significantly increased both

in IL-6Rα∆/∆ and control mice compared to mice fed a NCD, whereas no differ-

ences could be detected between genotypes both upon NCD and HFD feeding

(Fig. 3.3A).

Previously, it could be shown that HFD feeding impairs glucose metabolism

[Xu et al., 2003]. Hence, an i.p. Glucose tolerance test was performed, demon-

strating an unaltered glucose clearance between IL-6Rα∆/∆ and control mice un-

der NCD conditions (Fig. 3.3B). Upon HFD feeding both IL-6Rα∆/∆ and control

mice revealed an impaired glucose tolerance, which was further impaired in IL-

6Rα∆/∆ under HFD conditions (Fig. 3.3B).

Recent studies could demonstrate that serum Insulin and Leptin levels increase

upon HFD feeding [Benoit et al., 2004]. Therefore concentrations of circulating

Insulin and Leptin were measured by ELISA. Insulin levels were significantly in-

creased upon HFD feeding both in IL-6Rα∆/∆ and control mice, but no differences

could be detected between the genotypes neither on NCD nor on HFD conditions

(Fig. 3.3C). Upon NCD no difference in Leptin levels could be detected between

the genotypes, whereas HFD feeding led to a significant increase of serum Leptin

levels both in IL-6Rα∆/∆ and control mice (Fig. 3.3D). While the Leptin level in

control mice was doubled under HFD conditions compared to NCD conditions,
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IL-6Rα∆/∆ mice revealed a 4-fold increase in serum Leptin level upon HFD com-

pared to NCD feeding (Fig. 3.3D), suggesting a greater impairment in Leptin

signaling.
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Figure 3.3: Metabolic parameters of control and IL-6Rα∆/∆ mice
(A) Weight determination of 8 month (mo) control and IL-6Rα∆/∆ mice (n=15)
injected with 25 mg/kg DEN at 15 days of age and exposed to NCD or HFD
after weaning.(B) Glucose tolerance test of 8 mo control and IL-6Rα∆/∆ mice
(n=6). Examination of (C) serum Insulin concentrations and (D) serum Leptin
concentrations by ELISA from DEN-injected 8 mo control and IL-6Rα∆/∆ mice
(n=8). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤
0.001 versus control.

To determine the inflammatory status of IL-6Rα∆/∆ and control mice after 8

month of tumor development, inflammatory cytokine such as TNFα and IL-6

were measured by ELISA in the sera of these mice. As expected, TNFα and IL-

6 measurements revealed a significant increase in sera of control and IL-6Rα∆/∆

mice under obese conditions (Fig. 3.4A/B). These data demonstrate that IL-6Rα

deficiency did not affect HFD-induced obesity or obesity-induced insulin resis-
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tance and inflammation.

However, alternative modulation of IL-6 type cytokine signaling by trans- sig-

naling of soluble receptors such as sIL-6Rα and sgp130 might also contribute to

obesity-induced inflammation. Therefore, sIL-6Rα and sgp130 levels in the serum

were measured. While in IL-6Rα-deficient mice the sIL-6Rα was consistently at

the lowest detection level but unchanged between control mice on both diets (Fig.

3.4C), sgp130 was reduced in obese IL-6Rα∆/∆ mice compared to lean but com-

parable to control animals upon HFD feeding (Fig. 3.4D).

A B

0

20

40

60
WT

IL-6Rα∆/∆

NCD HFD

S
e

ru
m

 T
N

F
α

 [
p

g
/m

l]

0

20

40

60

80

100

WT 

IL-6Rα∆/∆

*

NCD HFD

S
e

ru
m

 I
L

-6
 [

p
g

/m
l]

0

1000

2000

3000

WT

IL-6Rα∆/∆

NCD HFD

*** ***

S
e

ru
m

 s
IL

-6
R

α
 [

p
g

/m
l]

0

1000

2000

3000

4000
WT 

IL-6Rα∆/∆

NCD HFD

*

S
e

ru
m

 s
g

p
1

3
0

 [
p

g
/m

l]

C D

Figure 3.4: Inflammatory signaling in control and IL-6Rα∆/∆ mice
(A) Examination of serum TNFα concentrations, (B) serum IL-6 concentra-
tions, (C) serum sIL-6R concentrations and (D) serum sgp130 concentrations
by ELISA from DEN-injected 8 mo control and IL-6Rα∆/∆ mice (n=8). Dis-
played values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001
versus control.
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To determine the extent of circulating lipids in the blood, cholesterol and triglyc-

eride level in the serum were measured by ELISA. Cholesterol measurement re-

vealed similar levels in control and IL-6Rα∆/∆ mice fed either a NCD or HFD

before DEN treatment (Fig. 3.5A). After DEN treatment Cholesterol levels sig-

nificantly increased upon NCD feeding but remained similar between genotypes

(Fig. 3.5A). Upon HFD feeding no alteration could be detected in both genotypes

compared to untreated mice (Fig. 3.5A). Triglyceride level were completely un-

altered between treated and non-treated mice, diets and genotypes (Fig. 3.5B).

To determine lipid accumulation in the liver Oil red O staining of liver sections

of the four different groups of mice were performed. These stainings revealed

increased hepatic fat storage in mice exposed to HFD feeding in both control and

IL-6Rα∆/∆ animals, although lipid accumulation was comparable between the

genotypes (Fig. 3.5C).
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Figure 3.5: Extent of lipid burden in control and IL-6Rα∆/∆ mice.
(A) Examination of serum Cholesterol level and (B) serum Triglyceride level of
untreated (-) or DEN-injected (+) 8 mo control and IL-6Rα∆/∆ mice (n=10). (C)
Oil Red O stainings of liver sections obtained from DEN-injected 8 mo control
and IL-6Rα∆/∆ mice. Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p
≤ 0.01; ***, p ≤ 0.001 versus control.

Taken together, these experiments demonstrate that HFD exposure causes sim-

ilar levels of obesity in both control and IL-6Rα∆/∆ mice upon DEN induction.
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3.4 IL-6Rα deficiency protects against DEN-induced liver

carcinogenesis but obesity abrogates this effect and

promotes HCC development

In the next step tumor development in 8 mo-old DEN-treated control and IL-

6Rα∆/∆ mice, that had been exposed to either NCD or HFD feeding, was inves-

tigated by visual inspection. Male control NCD-fed mice developed approxi-

mately 30 macroscopically visible liver tumors (Fig. 3.6A/B). 66% of the tumors

were smaller than 2 mm (Fig. 3.4C) whereas 33% reached a size of more than 2

mm (Fig. 3.6D). Similar to IL-6-deficient mice [Naugler et al., 2007], IL-6Rα defi-

ciency potently protected mice from developing DEN-induced HCC upon NCD

feeding (Fig. 3.6A/B). In line with previous studies, obesity increased tumor bur-

den to approximately 50 tumors in control mice (Fig. 3.6A/B) [Park et al., 2010].

However, when IL-6Rα∆/∆ mice were fed a HFD, the protective effect of IL-6Rα

deficiency on HCC development was abrogated as DEN treatment induced sig-

nificantly higher tumor numbers in these mice comparable to control mice upon

HFD feeding (Fig. 3.6A/B).
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Figure 3.6: Turmor burden macroscopic in control and IL-6Rα∆/∆ mice
(A) Livers of 8 mo control and IL-6Rα∆/∆ mice injected with 25 mg/kg BW
DEN at 15 days of age. (B) Quantitation of macroscopic tumor multiplicity
determined by visual inspection in DEN-injected 8 mo control and IL-6Rα∆/∆

mice (n=15). (C) Enumeration of tumor number for < 2 mm and (D) > 2 mm as
determined by visual inspection of DEN-injected 8 mo control and IL-6Rα∆/∆

mice (n=15). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01;
***, p ≤ 0.001 versus control.

Recent sudies observed that HFD feeding induce hepatic steatosis that can

eventually lead to the development of liver damage and steatohepatitis that in

turn might result in HCC development [Fujii et al., 2013; Nault & Zucman-Rossi,

2010]. As an indirect indicator of liver damage, the activity of the liver aspartate

transaminase (AST) and alanin transaminase (ALT) were measured in the serum

of IL-6Rα∆/∆ and control mice fed either a NCD and or HFD before and after

DEN treatment. AST and ALT levels were not significantly different in the serum
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of control and IL-6Rα∆/∆ mice fed either a NCD or HFD before DEN treatment

(Fig. 3.7A/B). After DEN treatment serum AST levels significantly increased to

the same extent both in control and IL-6Rα∆/∆ mice fed on either a NCD or HFD,

whereas no significant difference could be detected between NCD and HFD fed

mice (Fig.3.7A/B). Serum ALT levels of control and IL-6Rα∆/∆ mice revealed no

increase after DEN treatment neither on NCD nor on HFD feeding (Fig. 3.7A/B).

A B

0

50

100

150

200

WT

IL-6Rα∆/∆

NCD HFD

- -+ +

***

***

***
***

DEN

A
S

T
 A

c
tiv

ity
 in

 S
e

ru
m

 [
U

/l]

0

200

400

600

800

WT

IL-6Rα∆/∆

NCD HFD

- -+ +DEN

A
L

T
 A

c
tiv

ity
 in

 S
e

ru
m

 [
U

/l]

Figure 3.7: Liver damage of control and IL-6Rα∆/∆ mice
(A) Determination of serum AST and (B) ALT activity of untreated (-) or DEN-
injected (+) 8 mo control and IL-6Rα∆/∆ mice (n=6). Displayed values are
means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

Histological investigation of HE-stained liver sections confirmed that NCD-fed

IL-6Rα∆/∆ mice had significantly decreased number of HCC foci when compared

to NCD-fed control mice (Fig. 3.8A/B). Although, this difference was not as large

as observed upon macroscopic inspection (Fig.3.8A/B). Strikingly, HFD feeding

restored the carcinogenic capability of DEN in IL-6Rα∆/∆ animals as the num-

ber of HCC foci increased to the same extent in control mice and IL-6Rα∆/∆ mice

upon HFD feeding (Fig. 3.8A/B). Furthermore, tumor size was significantly de-

creased in IL-6Rα∆/∆ mice upon NCD feeding compared to control, whereas this

effect was blunted upon HFD feeding demonstrated by similar increase in tumor

size in both IL-6Rα∆/∆ and control mice upon HFD feeding (Fig. 3.8C).
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Figure 3.8: Turmor burden microscopic in control and IL-6Rα∆/∆ mice
(A) HE-stained sections of livers from DEN-injected 8 mo control and IL-
6Rα∆/∆ mice. Asterisks indicate tumor foci; arrows indicate tumorous blood
vessel infiltrates. (B) Quantitation of tumor number per 2 lobules counted on
liver sections from 8 mo control and IL-6Rα∆/∆ mice (n=15). (C) Quantitation
of tumor size measured in the big liver lobe of DEN-injected 8 mo control and
IL-6Rα∆/∆ mice (n=15). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **,
p ≤ 0.01; ***, p ≤ 0.001 versus control. Data produced in collaboration with
Beate Straub.

Moreover, the extent of inflammation as assessed by quantitation of infiltrating

immune cells was significantly reduced in livers of IL-6Rα∆/∆ mice compared to

control mice exposed to a NCD feeding (Fig. 3.9A). In contrast, HFD feeding

significantly increased liver inflammation in both control and IL-6Rα∆/∆ animals

(Fig. 3.9A). Previous studies demonstrated that HFD feeding induce hepatocyte

steatosis that can result in HCC development [Fujii et al., 2013; Nault & Zucman-
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Rossi, 2010]. Livers of IL-6Rα∆/∆ mice fed a NCD revealed a significantly re-

duced extent of steatosis compared to control mice (Fig. 3.9B). Upon HFD feed-

ing the extent of steatosis significantly increased both in control and IL-6Rα∆/∆

mice (Fig. 3.9B). Additionally necrotic hepatocytes per two lobules were counted

which revealed no significant alterations between the genotypes but a significant

increase of necrotic cells in both control and IL-6Rα∆/∆ mice upon HFD feed-

ing (Fig. 3.9C). Fibrosis is often connected with the development of liver can-

cer, therefore the extent of fibrosis was determined by score [Luedde & Schwabe,

2011]. Similar to the analysis of necrotic cells no significant alteration could be

detected between the genotypes but an significant higher extent of fibrosis upon

HFD feeding in both control and IL-6Rα∆/∆ mice (Fig. 3.9D).

Taken together, these data demonstrate that obesity promotes HCC develop-

ment and progression and renders tumor development independent of IL-6Rα

signaling, thus abrogating the protective function of IL-6Rα deficiency under

NCD conditions.
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Figure 3.9: Liver status of control and IL-6Rα∆/∆ mice
(A) Quantitation of inflammation measured in the big liver lobe of DEN-
injected 8 mo control and IL-6Rα∆/∆. 1 = mild inflammation (mild portal
inflammation, 3-5 single cell necrosis, no grouped necrosis); 2 = moderate in-
flammation (moderate portal inflammation, 6-9 single cell necrosis, 1 grouped
necrosis); 3 = severe inflammation (severe portal inflammation, more than 10
single cell necrosis, more than 1 grouped necrosis) (n=15). (B) Quantitation
of steatosis measured in the big liver lobe of DEN-injected 8 mo control and
IL-6Rα∆/∆. 1 = 0 - 10%; 2 = 11 - 50 %; 3 = above 50 % (C) Quantitation of
necrotic cells measured in the big liver lobe of DEN-injected 8 mo control and
IL-6Rα∆/∆. (D) Quantitation of fibrosis measured in the big liver lobe of DEN-
injected 8 mo control and IL-6Rα∆/∆. 1 = increased portal connective tissue; 2
= early formation of septa (n = 15) Displayed values are means ± S.E.M.; *, p ≤
0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data produced in collaboration
with Beate Straub.
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3.5 Obesity and IL-6 increase HCC development through the

inhibition of mitochondrial apoptosis

IL-6 is a potent survival signal in hepatocytes and deletion of its receptor may

thus affect hepatocyte death signaling and survival. Therefore, apoptosis in the

livers of the different cohorts of mice was examined by determining the presence

of active Caspase 3 by activity assay and western blot analysis.

Increased Caspase 3 activation was detected in liver lysates derived from NCD

fed IL-6Rα∆/∆ mice upon DEN treatment compared to control mice upon NCD

feeding (Fig. 3.10A). Upon HFD feeding Caspase 3 activation was significantly

decreased in IL-6Rα deficient mice compared to NCD-fed IL-6Rα∆/∆ mice (Fig.

3.10A). In comparision to control mice upon HFD feeding, IL-6Rα∆/∆ mice exhib-

ited the same level of Caspase 3 activation upon HFD feeding (Fig. 3.10A). In line

with this observation, Caspase 3 cleavage and thereby activation increased upon

a single DEN injection in livers of IL-6Rα∆/∆ mice compared to control mice (Fig.

3.10B). These data were further substantiated by the finding that AST and ALT

activity was elevated in sera of IL-6Rα∆/∆ mice upon acute DEN injection which

is another strong indicator of liver damage (Fig. 3.10C/D).
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Figure 3.10: Caspase 3 activity in the liver of control and IL-6Rα∆/∆ mice
(A) Determination of Caspase 3 activity using an ELISA based assay on liver
lysates from DEN-injected 8 mo control and IL-6Rα∆/∆ mice (n=5). (B) West-
ern blot analysis using cleaved Caspase 3 and AKT antibodies on liver tissue
from 8 wk control and IL-6Rα∆/∆ mice fed on a NCD sacrificed at the in-
dicated time points after a 100 mg/kg DEN injection. (C) Determination of
serum AST and (D) ALT activity to assess liver damage in 8 wk control and
IL-6Rα∆/∆ mice fed on a NCD sacrificed at the indicated time points after a
100 mg/kg BW DEN injection (n=6). Displayed values are means ± S.E.M.;
*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

Mitochondria represent a central sensory organelle that can respond to DNA

damage by mitochondrial outer membrane permeabilization. This process is

tightly regulated by Bcl-2 protein family members such as Bcl-2, Bcl-XL, Mcl-1,

Bak or Bax [Brunelle & Letai, 2009]. To experimentally address whether increased

DEN-induced apoptosis in IL-6Rα∆/∆ mice is a consequence of enhanced mito-

chondrial apoptotic response, freshly isolated mitochondria from livers of naive
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control and IL-6Rα∆/∆ mice were incubated with increasing amounts of recombi-

nant Bax protein and the release of mitochondrial Cytochrome C was measured

by western blot analysis. These data demonstrated that mitochondria derived

from the livers of IL-6Rα∆/∆ mice were more susceptible to recombinant Bax

as indicated by the increased release of Cytochrome C in the cytosol compared

to control mice (Fig. 3.11A). Consistently, IL-6Rα-deficient hepatocytes demon-

strated concentration dependent cytosolic Cytochrome C levels in response to

DEN (Fig. 3.11B) as well as increased Cytochrome C at the mitochondria itself

(Fig. 3.11C).

Cyt C

WT IL-6Rα∆/∆

Bax

A B

C

Actin

Cyt C

WT IL-6Rα∆/∆

DEN

Complex II

Cyt C

WT IL-6Rα∆/∆

DEN

Figure 3.11: Cytochrome C release from mitochondria of control and IL-6Rα∆/∆ mice
(A) Cytochrome C release of isolated mitochondria after treatment with in-
creasing concentrations of recombinant Bax. Mitochondria were isolated
from naive 8 wk control and IL-6Rα∆/∆ mice fed a NCD. (B) Western blot
analysis using Cytochrome C and Actin antibodies of cytosolic extracts and
(C) western blot analysis using Cytochrome C and Complex II antibodies of
mitochondrial extracts from primary hepatocytes isolated from 8 wk control
and IL-6Rα∆/∆ mice that were treated with 0, 0.25, 0.5, 1 and 5 mM DEN for
48h in culture. Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤
0.01; ***, p ≤ 0.001 versus control. Data produced in collaboration with Jens
Seeger.
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The balance between anti- and pro-apoptotic members of the Bcl-2 protein fam-

ily regulates mitochondrial outer membrane permeabilization and the efflux of

Cytochrome C in response to cellular damage [Brunelle & Letai, 2009]. The pres-

ence of the anti-apoptotic Bcl-2 protein family members Mcl-1, Bcl-2 and Bcl-XL

at mitochondria has been shown to prevent Cytochrome C release, whereas pro-

apoptotic protein such as Bax and Bak stimulate Cytochrome C release [Brunelle

& Letai, 2009]. To investigate levels of these proteins at the mitochondria of tu-

mor bearing mice, western blot analysis of mitochondrial extracts, derived from

tumor livers of the different cohorts of mice, was performed. This analysis re-

vealed a reduced mitochondrial level of Mcl-1 in NCD fed IL-6Rα∆/∆ mice (Fig.

3.12A). Interestingly, upon HFD-feeding mitochondrial Mcl-1 protein levels were

restored to comparable levels in both control and IL-6Rα-deficient animals (Fig.

3.12A). Furthermore, levels of pro-apoptotic protein Bax were decreased in NCD

fed IL-6Rα∆/∆ mice, an effect which was blunted upon HFD feeding (Fig. 3.12A).

Notably, protein levels of Bcl-2, Bcl-XL and Bak were not altered between di-

ets and genotypes (Fig. 3.12A). Strikingly, qPCR analyses of liver cDNA of the

four different groups of mice revealed that the transcriptional levels of the corre-

sponding genes were largely unaltered (Fig. 3.12B) suggesting that the reduced

Mcl-1 content of mitochondria of IL-6Rα∆/∆ mice might be caused by a posttrans-

lational regulatory mechanism.
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Figure 3.12: Pro- and anti-apoptotic proteins in tumor livers of control and IL-6Rα∆/∆

mice
(A) Western blot analysis using Bcl-2, Bcl-XL, Mcl-1, Bak, Bax and Complex
II antibodies on isolated mitochondria from DEN-injected 8 mo control and
IL-6Rα∆/∆ mice. (B) qPCR of Bcl-2, Bcl-XL, Mcl-1, Bak and Bax on livers from
DEN-injected 8 mo control and IL-6Rα∆/∆ mice. (n=6). Displayed values are
means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data
in A produced in collaboration with Jens Seeger.

Consistent with these data, immunohistochemistry of mouse liver sections demon-

strated that HFD feeding significantly increased Mcl-1 protein abundance in the

tumors independent from IL-6Rα signaling (Fig. 3.13A/B). The tumor-associated

Mcl-1 expression was further analyzed in dissected HCCs from livers of the dif-

ferent groups of mice by western blot analysis, demonstrating that Mcl-1 protein

was decreased in HCCs of lean IL-6Rα deficient mice compared to control tu-

mors, while HFD feeding increased Mcl-1 protein in HCCs of control as well as

IL-6Rα∆/∆ mice (Fig. 3.13C).

Hepatocyte apoptosis has been shown to result in compensatory proliferation

of adjacent hepatocytes to cause HCC development [Bisgaard et al., 1998]. IL-

6 is thought to contribute to hepatocyte proliferation and DEN administration

to male mice results in IL-6 production that depends on IKKβ in myleoid cells,

most likely the resident macrophages called Kupffer cells (KCs) Naugler et al.

[2007]; Cressman et al. [1996]. In addition to preventing IL-6 production, ablation

of IKKβ in myeloid cells prevents compensatory proliferation, one of the main

tumor promoting mechanisms [Maeda et al., 2005].



3 Results 64

Thus, proliferation of hepatocytes in response to DEN-induced apoptosis in

lean control and IL-6Rα∆/∆ mice (Fig. 3.13D) was compared. While hepatocyte

proliferation was significantly reduced in IL-6Rα-deficient animals without DEN

injection, DEN-induced compensatory proliferation of hepatocytes was compa-

rable between control and IL-6Rα∆/∆ mice as examined through quantitation of

Ki67-positive hepatocytes in livers of these mice (Fig. 3.13D).

Taken together, these experiments demonstrate that under NCD conditions,

loss of IL-6 signaling sensitizes hepatocytes to damage-induced apoptosis with-

out impairments in compensatory proliferation. However, under HFD condi-

tions, hepatocyte apoptosis is inhibited – even in the absence of IL-6Rα signaling.
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Figure 3.13: Mcl-1 level in tumor livers of control and IL-6Rα∆/∆ mice
(A) Representative Mcl-1-stained sections of livers from DEN-injected 8 mo
control and IL-6Rα∆/∆ mice. Dashed lines discriminate tumor and normal
liver tissue. (B) Quantitation of Mcl-1 in tumors of the big liver lobe from
DEN-injected 8 mo control and IL-6Rα∆/∆ mice. 0 = no Mcl-1, 1 = low Mcl-1,
2 = high Mcl-1 (C) Western blot analysis using Mcl-1 and Calnexin antibodies
on isolated tumors from DEN-injected 8 mo control and IL-6Rα∆/∆ mice. (D)
Quantitation of proliferating, Ki67 positive hepatocytes in liver sections from
8 wk control and IL-6Rα∆/∆ mice sacrificed at indicated time points upon in-
jection of 100 mg/kg BW DEN (n=3). Displayed values are means ± S.E.M.;
*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data in A/B produced
in collaboration with Beate Straub.
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3.6 GSK-3β inhibition stabilizes Mcl-1 under obese conditions

in HCC development

The Mcl-1 protein comprises a N-terminal PEST domain that is responsible for its

short half-life. Among the numerous protein kinases that have been implicated in

the regulation of Mcl-1, glycogen synthase kinase 3 β (GSK-3β) is known to play

a pivotal role in controlling Mcl-1 protein stability [Maurer et al., 2006]. GSK-3β is

a serine/threonine protein kinase that, unlike most other protein kinases, is con-

stantly active but becomes inactivated upon phosphorylation at serine residue 9

(S9) [Cross et al., 1995]. Interestingly, inactivation of GSK-3β via phosphoryla-

tion at S9 increases stabilization and accumulation of Mcl-1 protein and thereby

prevents apoptosis [Ding et al., 2007].

To address the role of GSK-3β action in Mcl-1 protein stability during HCC

development, GSK-3β phosphorylation in the livers of DEN-treated control and

IL-6Rα∆/∆ mice upon either a NCD or HFD feeding was analysed. Remarkably,

GSK-3β was less phosphorylated at S9 and thus more active in livers of IL-6Rα∆/∆

mice upon NCD feeding (Fig. 3.14A/B), whereas total GSK-3β levels were unal-

tered (Fig. 3.14A/C). Interestingly, GSK-3β S9 phosphorylation was reconstituted

and Mcl-1 levels were increased in livers of IL-6Rα∆/∆ mice when exposed to

HFD feeding (Fig. 3.14A). Consistent with these observations, direct assessment

of GSK-3β kinase activity revealed significantly enhanced GSK-3β activity in liv-

ers of IL-6Rα∆/∆ mice fed a NCD but not a HFD (Fig. 3.14D).
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Figure 3.14: GSK-3β activity in tumor livers of control and IL-6Rα∆/∆ mice
(A) Western blot analysis using pGSK-3β, GSK-3β, Mcl-1, and AKT anti-
bodies on liver tissue from DEN-injected 8 mo control and IL-6Rα∆/∆ mice.
(B) Quantitation of pGSK-3β level and (C) GSK-3β level from A relative to
AKT levels. (D) Determination of GSK-3β activity in liver lysates from DEN-
injected 8 mo control and IL-6Rα∆/∆ mice (n=5). Displayed values are means
± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

Active GSK-3β has been previously demonstrated to regulate apoptosis through

expression of the BH3 only member PUMA that antagonizes Mcl-1 to sensitize

for apoptosis [Charvet et al., 2011]. Consistently, PUMA expression was 2-fold in-

creased in tumor livers of IL-6Rα∆/∆ mice but restored under obese conditions

(Fig. 3.15A). However, in the initial phase of tumor development PUMA ex-

pression was unchanged between genotypes (Fig. 3.15B). Of note, expression

of NOXA was unchanged between genotypes and diets (Fig. 3.15C).



3 Results 68

A B

C

0

1

2

3

WT 

IL-6Rα∆/∆

NCD HFD

*

P
U

M
A

 m
R

N
A

 E
x
p

re
s
s
io

n
 [

re
l. 

to
 c

o
n

tr
o

l]

0.0

0.5

1.0

1.5

2.0

2.5

WT

IL-6Rα∆/∆

NCD HFD

N
o

x
a

 m
R

N
A

 E
x
p

re
s
s
io

n
 [

re
l. 

to
 c

o
n

tr
o

l]

0 h 4 h
24 h

0

1

2

3

4

WT 

IL-6Rα∆/∆

100 mg/kg DEN

P
U

M
A

 m
R

N
A

 E
x
p

re
s
s
io

n
 [

re
l. 

to
 c

o
n

tr
o

l]

Figure 3.15: Puma and Noxa in tumor livers of control and IL-6Rα∆/∆ mice
(A) qPCR of Puma in liver of DEN-injected 8 mo male control and IL-6Rα∆/∆

mice (n=6). (B) qPCR of PUMA in livers of 8 wk control and IL-6Rα∆/∆ mice
after injection of 100 mg/kg DEN. (C) qPCR of Noxa in liver of DEN-injected
8 mo male control and IL-6Rα∆/∆ mice (n=6). Displayed values are means ±
S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

Next it was examined whether inactivation of GSK-3β is a downstream event

of IL-6 signaling that in turn stabilizes Mcl-1. Indeed, injection of IL-6 in control

mice resulted in marked phosphorylation of GSK-3β at S9 already 30 min post-

injection, which was paralleled by increased Mcl-1 protein levels (Fig. 3.16A). To

assess Mcl-1 stability and GSK-3β activity in the initial phase of tumor develop-

ment, control and IL-6Rα∆/∆ animals were injected with 100 mg/kg DEN and

Mcl-1 expression and GSK-3β phosphorylation were determined.
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While in control mice DEN injection stabilized Mcl-1 over time as a conse-

quence of GSK-3β inactivation, this response was largely blunted in IL-6Rα∆/∆

mice (Fig. 3.16B). Mcl-1 stabilization as well as GSK-3β phosphorylation in con-

trols corresponded with circulating IL-6 that peaked 8 h upon injection (Fig. 3.16C),

whereas Mcl-1 stability was maintained up to 24 h (Fig. 3.16B). However, PUMA

protein levels peaked in both genotypes 24h after DEN injection (Fig. 3.16B) indi-

cating that a GSK-3β independent mechanisms control PUMA expression. Thus,

abrogation of IL-6 signaling resulted in decreased Mcl-1 protein expression dur-

ing the early phases of DEN-induced liver tumorigenesis (Fig. 3.166B).

To directly address the role of GSK-3β regarding Mcl-1 stabilization in vivo,

control mice were injected with adeno-associated viral vectors (AAV) expressing

either GFP or a myc-tagged constitutive active GSK-3β variant (GSK-3βCA) har-

boring a serine to alanine substitution at position 9 of GSK-3β (S9A). Western blot

analysis using Mcl-1 antibody demonstrated that expression of GSK-3βCA in liv-

ers of control mice reduced Mcl-1 protein level after DEN injection (Fig. 3.16D),

similar to the observation in IL-6Rα∆/∆ (Fig. 3.16B). In line with the previous ex-

periment, PUMA levels failed to correlate with GSK-3β activity under acute DEN

conditions, although increased PUMA protein could be observed in non-injected

GSK-3βCA expressing livers (Fig. 3.16D).

These experiments therefore reveal that GSK-3β inactivation by phosphoryla-

tion at S9 is required during the initial phases of tumorigenesis to stabilize Mcl-1

protein levels.
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Figure 3.16: GSK-3β activity in initital phase of tumor development of control and IL-
6Rα∆/∆ mice
(A) Western blot analysis using pGSK-3β, Mcl-1, and AKT antibodies on liver
tissue from 8 wk control mice fed on NCD after i.v. injection of 50 ng IL-6.
(B) Western blot analysis using pGSK-3β, GSK-3β, Mcl-1, Puma and Calnexin
antibodies on liver tissue from 8 wk male control and IIL-6Rα∆/∆ mice fed on
NCD sacrificed at indicated time points after injection of 100 mg/kg DEN.
(C) Examination of serum IL-6 concentrations by ELISA taken from DEN-
injected 8 wk control mice at the indicated time points (n=10). (D) Western
blot analysis using pGSK-3β, GSK-3β, Mcl-1, Puma and Calnexin antibod-
ies on liver tissue from 8 wk control mice pre-infected with AAV8 viruses
expressing GFP or GSK-3βCA at indicated time points after injection of 100
mg/kg BW DEN. Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤
0.01; ***, p ≤ 0.001 versus control. Data in D produced in collaboration with
Claudia Wunderlich.
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GSK-3β S9 phosphorylation mainly occurs through the action of Phosphatidyli-

nositide 3-kinase (PI3K) signaling [Cross et al., 1995]. The PI3K/AKT pathway,

which transmits anti-apoptotic survival signals, is likely involved in mitigating

apoptosis in a substantial fraction of human tumors [Jiang & Liu, 2008; Cully

et al., 2006]. To determine the role of PI3K signaling in DEN-induced HCC devel-

opment of HFD fed mice, HCC-bearing HFD fed control mice were treated with

the specific PI3K inhibitor GDC-0941.

Accordingly, administration of GDC-0941 to tumor-bearing HFD fed mice re-

sulted in reactivation of GSK-3β (Fig. 3.17A). Consequently, Mcl-1 protein lev-

els were reduced in the livers of these mice when compared to HFD fed control

mice, though livers of NCD fed IL-6Rα∆/∆ mice still exhibited less Mcl-1 protein

(Fig. 3.17A). Furthermore, the reduction of Mcl-1 protein by inhibition of PI3K in

tumor-bearing HFD fed control mice resulted in an increase of TUNEL-positive

cells – a marker for apoptosis (Fig. 3.17B/C). Moreover, Ki67 staining of tumor

liver sections demonstrated that PI3K inhibition reduced hepatocyte prolifera-

tion (Fig. 3.17D/E). Importantly, the quantitative evaluation of apoptosis and

hepatocyte proliferation in livers of PI3K inhibitor-treated HFD fed control mice

revealed a significant increase in apoptosis and reduction in proliferation compa-

rable to that observed for NCD-fed IL-6Rα∆/∆ mice, which are protected against

HCC development.

However regardless of the result obtained from the pharmacological inhibition

of PI3K, the formation of PIP3 was similar in the cohorts of mice independent on

diet and genotype (Fig. 3.18A). Even downstream AKT activity was unaltered

in those groups of mice as examined on one hand by phosphorylation of AKT at

serine 473 (Fig. 3.18B/C) as well as by the ability of immunoprecipitated AKT to

phosphorylate a GSK-3β S9 including peptide on the other (Fig. 3.18D).

Thus, PI3K/AKT signaling is active but not altered in the absence of IL-6Rα

signaling in HCC development independent on dietary condition.
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Figure 3.17: PI3K inhibition in tumor bearing control and IL-6Rα∆/∆ mice
(A) Western blot analysis using pGSK-3β, Mcl-1 and Calnexin antibodies on
liver tissue from DEN-injected 8 mo control and IL-6Rα∆/∆ mice treated with
GDC-0941 or with vehicle. (B) Quantitation of C (n=4).(C) TUNEL stainings
of tumor liver sections from DEN-injected 8 mo IL-6Rα∆/∆ and control mice
treated with or without GDC-0941.(D) Quantitation E (n=4). (E) Ki67 staining
of tumor liver sections from DEN-injected 8-mo IL-6Rα∆/∆ and control mice
treated with or without GDC-0941. Displayed values are means ± S.E.M.; *,
p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.
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Figure 3.18: PI3K pathway in tumor bearing control and IL-6Rα∆/∆ mice
(A)Determination of PIP3 concentration in liver lysates from DEN-injected
8 mo control and IL-6Rα∆/∆ mice examined by PI3K activity assay (n=6).
(B) Western blot analysis of liver lysates from DEN-injected 8 mo control
and IL-6Rα∆/∆ mice using pAKT and Calnexin antibodies. (C) Quantitation
of pAKT level from B relative to Calnexin (n=6). (D) AKT kinase activity
assay of liver lysates from DEN-injected 8 mo control and IL-6Rα∆/∆ mice.
Immunoprecipitated AKT was incubated in a reaction with GSK-3β peptide.
Western blots of reaction and input using pGSK-3β and AKT antibodies. Dis-
played values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001
versus control.
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3.7 Obesity and IL-6 controlled expression of PP-1α and

Mule synergize to stabilize Mcl-1

Hence alteration of PI3K/AKT activity in lean IL-6Rα-deficient animals failed to

explain increased GSK-3β action, the expression levels of protein phosphatase 1

α (PP-1α) that catalyzes the reverse reaction, namely GSK-3β dephosphorylation

at S9 were examined. Strikingly, expression levels of PP-1α were more than 2-

fold increased in IL-6Rα-deficient mice in the DEN-induced HCC protocol when

compared to controls (Fig. 3.19A). Transcriptional control of IL-6 regulated gene

expression is mainly mediated through the transcription factor Stat-3, whose ac-

tivation was reduced in lean IL-6Rα∆/∆ mice in acute as well as chronic DEN

experiments (Fig. 3.19B/C). Evidently, not only the restored hepatic Stat-3 activa-

tion in obese IL-6Rα∆/∆ mice occured independent of IL-6 but also the remaining

DEN-induced Stat-3 activation in lean IL-6Rα∆/∆ mice, thus indicating another

obesity- and/or DEN-induced factor that activates Stat-3 in the absence of IL-6Rα

(Fig. 3.19B/C).
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Figure 3.19: PP-1α expression and Stat-3 activation in control and IL-6Rα∆/∆ mice
(A)qPCR of PP-1CA in liver of DEN-injected 8 mo male control and IL-
6Rα∆/∆ mice (n=6). (B) Western blot analysis using pStat-3 and GSK-3β anti-
bodies on liver tissue from 8 wk control and IIL-6Rα∆/∆ mice after injection
of 100 mg/kg DEN. (C) Western blot analysis using pStat-3 and Calnexin an-
tibodies on liver tissue from DEN-injected 8 mo control and IL-6Rα∆/∆ mice.
Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001
versus control.
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Careful investigation of the PP-1α promoter revealed a conserved Stat-3 bind-

ing site between mouse and human upstream of transcriptional initiation (Fig.

3.20A). To address whether this motif is bound by phosphorylated Stat-3 in re-

sponse to IL-6, chromatin immunoprecipitation (ChIP) experiments of basal and

IL-6-stimulated HepG2 cells were performed that demonstrated activated Stat-3

at this site under basal conditions but IL-6 stimulation increased the presence of

Stat-3 at this motif (Fig. 3.20B). To determine whether PP-1α is a direct IL-6 target

in vivo and how expression is affected by IL-6-induced Stat-3 activation, a cohort

of C57/BL6 mice were injected with IL-6 and relative hepatic expression of PP-1α

was examined in a time frame of 240 min after IL-6 injection. PP-1α expression

was significantly reduced upon IL-6 treatment 60 min post injection and progres-

sively declined up to 240 min, indicating that PP-1α is a transcriptional target for

IL-6-induced repression (Fig. 3.20C). To examine whether PP-1α inhibition is suf-

ficient to stabilize Mcl-1 protein in acute DEN injection experiments in vivo, the

specific PP-1α inhibitor okadaic acid (OA) was applied 1 hour before DEN injec-

tion in lean control and in IL-6Rα-deficient animals and the S9 phosphorylation of

GSK-3β was investigated as well as Mcl-1 protein abundance. Expectedly, PP-1α

inhibition resulted in the persistent phosphorylation of GSK-3β in both IL-6Rα-

deficient and control mice (Fig. 3.20D). However, hepatic Mcl-1 protein levels in

IL-6Rα-deficient mice were still reduced when PP-1α was inhibited (Fig. 3.20D),

hinting to another synergistic pathway independent of PP-1α and GSK-3β that

destabilizes Mcl-1 in lean IL-6Rα-deficient mice.
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Figure 3.20: PP-1 promoter analysis in control and IL-6Rα∆/∆ mice
(A) llustration of PP-1CA promoter region for ChIP analysis. Putative Stat-3
binding sites are indicated by vertical black lines and include matrix sim-
ilarity (above) and human and murine sequences with base pair precision
(below). Capitals in the sequence indicate the core sequence, black letters
a ci-value > 60. Oligos (5hPP1CAChip/3hPP1CAChip) used for PCR am-
plification are indicated by open triangles outside of the expected fragment.
(B) ChIP using RNA PolII, IgG and pStat-3 antibodies on sonicated DNA
isolated from HepG2 cells stimulated with 200ng/ml IL-6 for 45 min using
oligos 5hPP1CAChip and 3hPP1CAChip to examine PP-1CA promoter. (C)
qPCR of PP-1CA in liver of 8 wk control mice fed on NCD after i.v. injection
of 50 ng IL-6 (n=5). (D) Western blot analysis using pGSK-3β, Mcl-1, and Cal-
nexin antibodies on liver tissue from 8 wk old male control and IL-6Rα∆/∆

mice fed on NCD pre-treated with 750 ng OA/g BW 1 hr before injection of
a 100 mg/kg BW DEN dose. Displayed values are means ± S.E.M.; *, p ≤
0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data in A/B produced in
collaboration with Justus Ackermann

Recently, GSK-3β-phosphorylated Mcl-1 has been shown to be recognized by

either Mcl-1 ubiquitin ligase E3 (Mule) or the SKP1-cullin-F-box WD repeat-Ć

containing protein 7 (SCF-FBW7) E3 ligase both of which ligate polyubiquitin

chains to Mcl-1 that lead to its proteasomal degradation [Wertz et al., 2011; Zhong

et al., 2005]. In order to determine whether the expression of these E3 ligases

correlate with Mcl-1 levels in lean and obese control and IL-6Rα∆/∆ mice, qPCR

analyses of tumor livers from these mice was performed.
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Strikingly, while a 2-fold elevated expression of Mule could be observed in lean

IL-6Rα∆/∆ mice compared to lean controls, Mule expression was significantly

reduced under obese conditions in mice of both genotypes (Fig. 3.21A). Inter-

estingly, comparison of the expression levels of the subunits FBW7 and cullin 1

(Cul-1) of the SCF-FBW7 complex to Mule expression revealed a 20-fold lower

FBW7 expression and 5-fold lower Cul-1 expression indicating that Mule rather

than the SCF-FBW7 E3 ligase complex might play a role in liver carcinogenesis by

interfering with Mcl-1 protein stability (Fig. 3.21A). Consistently, examination of

Mule expression in acute DEN injection experiments revealed an impaired sup-

pression of Mule IL-6Rα∆/∆ mice in response to DEN when compared to controls

(Fig. 3.21B).
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Figure 3.21: Mule expression in control and IL-6Rα∆/∆ mice
(A) qPCR of Mule, FBW7 and Cul1 in liver of DEN-injected 8 mo male control
and IL-6Rα∆/∆ mice (n=6). (B) qPCR of Mule in liver of 8 wk control mice
fed on NCD after injection of 100 mg/kg BW DEN (n=5). Displayed values
are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

This result support the assumption that Mule expression is directly inhibited

by IL-6 and that impaired suppression of Mule upon IL-6Rα deficiency during

HCC initiation might result in increased Mcl-1 protein turnover and apoptosis.
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In line with these experiments that suggest an important role of IL-6-induced

Stat-3 in the inhibition of Mule expression, the promoter region of Mule was anal-

ysed and two conserved Stat-3 binding motifs between mouse and human were

identified within a region upstream of Mule transcriptional initiation (Fig. 3.22A).

Chip experiments of basal and IL-6-stimulated HepG2 cells revealed active Stat-3

bound to the Mule promoter at the basal state, whereas IL-6 stimulation increased

Stat-3 binding to these sites (Fig. 3.22B). Of note, binding of activated Stat-3 to

the Stat-3 motifs in the Mule promoter was specific as using oligos more distal

to these sites revealed still actively bound RNA pol II but not active Stat-3 (Fig.

3.22C).
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Figure 3.22: ChIP experiments with Mule promoter
(A) Ilustration of Huwe1/Mule promoter region for ChIP analysis. Putative
Stat-3 binding sites are indicated by vertical black lines and include matrix
similarity (above) and human and murine sequences with basepair precision
(below). Capitals in the sequence indicate the core sequence, black letters
a ci-value > 60. Oligos (5hMULEChip/3hMULEChip) used for PCR ampli-
fication are indicated by open triangles outside of the expected fragment.
(B) ChIP using RNA PolII, IgG and p-Stat3 antibodies on sonicated DNA
isolated from HepG2 cells stimulated with 200 ng/ml IL-6 for 45 min us-
ing oligos 5hMULEChip and 3hMULEChip to examine Mule promoter. (C)
ChIP using RNA PolII, IgG and pStat-3 antibodies on sonicated DNA iso-
lated from HepG2 cells stimulated with 200 ng/ml IL-6 for 45 min using oli-
gos 5hMULEUSChIP and 3hMULEUSChIP to examine Mule promoter. Dis-
played values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001
versus control. Data produced in collaboration with Justus Ackermann
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To directly clarify whether Mule expression is subjected to IL-6-induced re-

pression, 1000 bp upstream of Mule exon 1 that contains the promoter including

regulatory elements was cloned in front of a firefly luciferase and this construct

was transfected into HepG2 cells. Examination of luciferase activity revealed sig-

nificantly 40% reduced Mule promoter activity upon IL-6 stimulation, whereas

luciferase activity substantially increased when transfected cells were incubated

in the presence of the Stat-3 inhibitor STATTIC (Fig. 3.23A). Accordingly, inves-

tigation of mice expressing a constitutive active Stat-3 variant in hepatocytes re-

vealed a 40% reduced Mule expression similar to the in vitro findings (Fig. 3.23B).

Therefore, these analyses reveal that expression of the ubiquitin ligase Mule is

regulated by IL-6- and obesity-controlled Stat-3 activation that impacts on Mcl-1

stability and thus alters apoptosis sensitivity.

In order to verify the mechanism of Mcl-1 stabilization in vitro, primary hep-

atocytes derived from control and IL-6Rα∆/∆ animals were stimulated with 50

ng/ml IL-6 in a time frame and Western Blot analysis was performed. This analy-

sis revealed that IL-6 treatment increased Mcl-1 protein, inhibited GSK-3β activity

and repressed Mule expression in control hepatocytes, whereas these processes

were not present in IL-6Rα-deficient cells (Fig. 3.23C). To prove the mechanism

directly in tumor cells, Hep3B cells were stimulated with IL-6 for 1, 4 and 8 h.

While IL-6 treatment increased Mcl-1 protein, this effect was blunted when IL-

6Rα action was inhibited through the supplementation of a neutralizing antibody

(Fig. 3.23D). Similar to the in vivo data, IL-6 treatment inhibited GSK-3β activity

and repressed Mule expression, whereas these processes were not present when

IL-6Rα action was neutralized (Fig. 3.23D). Importantly, supplementation of IgG

control antibody failed to affect IL-6-induced Mcl-1 stabilization.

In summary, these data clearly prove the key role of IL-6 mediated inhibition

of Mule expression in the development of HCC.



3 Results 81

A

C D

B

0.0

0.5

1.0

1.5

WT  

Stat3-C

*

M
u

le
 m

R
N

A
 E

x
p

re
s
s
io

n
 [

re
l. 

to
 C

o
n

tr
o

l]

pStat-3

Calnexin

Mule

Mcl-1

pGSK-3β

0   30   60  120  240

Calnexin

IL-6Rα∆/∆

0   30   60  120  240 min

WT

50 ng/ml IL-6

0.0

0.5

1.0

1.5

2.0

***

*

- IL-6 STATTIC IL-6 + 
STATTIC

L
u

c
ife

ra
s
e

 a
c
tiv

ity

pStat-3

Calnexin

Mule

Mcl-1

pGSK-3β

- IL-6
IL-6 +
αIL-6Rα

IL-6 +
αIgG

0   1    4   8 1    4    8 1    4    8   h

AKT

Figure 3.23: Mule promoter analysis in control and IL-6Rα∆/∆ mice
(A) Luciferase activity of lysates obtained from HepG2 cells transfected with
pTEMule-Luc and pRL-Null stimulated with IL-6 and/or preincubated with
20 µM STATTIC (n=9/stimulation). (B) qPCR of Mule in livers of 8 wk con-
trol and constitutive active Stat-3-C mice (n=4). (C) Western blot analysis
using pStat-3, Mcl-1, AKT, Mule, pGSK-3β and Calnexin antibodies of pri-
mary hepatocytes derived from control and IL-6Rα∆/∆ mice stimulated with
50 ng/ml IL-6 for the indicated time points. (D) Western blot analysis using
pStat-3, Mcl-1, AKT, Mule, pGSK-3β and Calnexin antibodies of Hep3B cells
stimulated with 50 ng/ml IL-6 and IL-6 plus 5 µg/ml neutralizing IL-6Rα
antibody or control antibody. Displayed values are means ± S.E.M.; *, p ≤
0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data in A/C produced in
collaboration with Justus Ackermann
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Increased Mcl-1 levels have previously been reported in a subset of human

HCC [Fleischer et al., 2006], however the correlation between Mcl-1 and Mule has

never been addressed in HCC. Therefore, human HCC samples were examined

in immunohistochemistry using anti-Mule and anti-Mcl-1 antibodies revealing

that Mcl-1 expression in human HCC negatively correlated with Mule expression.

Cases that showed no steatosis (#1, #2), steatosis (#3) and a steatohepatitic pattern

(#4, #5) were classified by visible lipid inclusions into the liver (Fig. 3.24). While,

the non-steatotic cases #1, #2 revealed almost no Mcl-1 expression and high Mule

expression, the steatohepatitic HCC cases #4, #5 exhibited the most prominent

Mcl-1 expression accompanied with a reduction in Mule expression (Fig. 3.24).

Collectively, the experiments demonstrate that obesity and IL-6 signaling syn-

ergize to affect the protein stability of the Bcl-2 family member Mcl-1 via GSK-3β

inhibition and repression of Mule expression to inhibit the mitochondrial apop-

totic pathway during HCC development.

Mcl-1

Mule

# 1 # 2 # 3 # 4 # 5

Figure 3.24: Correlation between Mule and Mcl-1 level in human HCC
(A) Mcl-1 and Mule stainings of 5 different human HCC sections. Data pro-
duced in collaboration with the group of Lukas Heukamp
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3.8 Compensatory effects of IL-6 type cytokines and

receptors

3.8.1 HFD causes obesity in control, IL-6Rα∆/∆ and gp130L−KO mice

While it is certainly not clear which factor in obesity compensates for IL-6Rα de-

ficiency in HCC development, another IL-6 type cytokine or receptor might ac-

count for this observation. The common feature of all IL-6 type cytokine recep-

tors is the signaling transducing receptor unit glycoprotein 130 (gp130) [Zhang

et al., 1994]. To determine if another pathway of IL-6 type cytokines is involved

in the development of HCC conditional gp130-deficient mice were generated

allowing the cell type specific inactivation of gp130 in hepatocytes. Therefore,

gp130 f l/ f l mice were crossed to mice expressing the Cre recombinase under the

control of both the mouse albumin regulatory elements and the α-fetoprotein en-

hancers (AlfpCre transgene) [Kellendonk et al., 2000; Betz et al., 1998]. These mice

were further intercrossed with siblings leading to hepatocyte specific deletion of

gp130 (gp130L−KO). To investigate whether gp130-deficiency in hepatocytes af-

fects HCC development under normal and obese conditions, male gp130L−KO

mice were injected with 25 mg/kg BW DEN i.p. at 15 days of age and separated

after weaning in cohorts fed either a NCD or HFD for 8 month.

As expected, HFD feeding significantly increased body weight in gp130L−KO

compared to mice upon NCD feeding, whereas no differences could be detected

in comparision with IL-6Rα∆/∆ and control mice neither upon NCD nor HFD

feeding (Fig. 3.25). These data demonstrate that HFD exposure causes similar

levels of obesity in both control, IL-6Rα∆/∆ and gp130L−KO mice.
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Figure 3.25: Body weight of control, IL-6Rα∆/∆ and gp130L−KO mice
(A) Weight determination of 8 mo control, IL-6Rα∆/∆ and gp130L−KO mice
(n=15) injected with 25 mg/kg BW DEN at 15 days of age and exposed to
NCD or HFD after weaning. Displayed values are means ± S.E.M.; *, p ≤
0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.

3.8.2 Inactivation of gp130 in hepatocytes protected against DEN-induced

HCC development even under obese conditions

To determine if another pathway of IL-6 type cytokines is involved in the de-

velopment of HCC, tumor development in 8 month-old DEN-treated gp130L−KO

mice that had been exposed to either a NCD or HFD feeding was investigated

by visual inspection and compared to control and IL-6Rα∆/∆ mice. Similar to IL-

6Rα∆/∆ mice, gp130L−KO mice upon NCD feeding developed significantly less

macroscopically visible liver tumors compared to control mice (Fig. 3.26A/B).

90% of the tumors were smaller than 2 mm (Fig. 3.26C) whereas 10% reached

a size of more than 2 mm (Fig. 3.26D). Surprisingly, in contrast to control and

IL-6Rα∆/∆ mice, obesity did not increase tumor burden in gp130L−KO mice (Fig.

3.26A/B).



3 Results 85

0

10

20

30

40

WT

IL-6Rα∆/∆

gp130L-KO

NCD HFD NCD HFD NCD HFD

*

***

***

***

T
u

m
o

r 
N

u
m

b
e

r 
<

 2
 m

m
 [

n
]

0

20

40

60

80

gp130L-KO 

NCD HFD

WT

IL-6Rα∆/∆

***

***
***

NCD HFD NCD HFD

T
u

m
o

r 
N

u
m

b
e

r 
m

a
c
ro

s
c
o

p
ic

 [
n

]

0

5

10

15

20

25

WT

IL-6Rα∆/∆

gp130L-KO

NCD HFD NCD HFD NCD HFD

*

***

***

***

T
u

m
o

r 
N

u
m

b
e

r 
>

 2
 m

m
 [

n
]

A B

C D

WT IL-6Rα∆/∆ gp130L-KO

NCD

HFD

Figure 3.26: Turmor burden macroscopic in control, IL-6Rα∆/∆ and gp130L−KO mice
(A) Livers of 8 mo control, IL-6Rα∆/∆ and gp130L−KO mice injected with 25
mg/kg BW DEN at 15 days of age. (B) Quantitation of macroscopic tumor
multiplicity determined by visual inspection in DEN-injected 8 mo control,
IL-6Rα∆/∆ and gp130L−KO mice (n=15). (C) Enumeration of tumor number
for < 2 mm and (D) > 2 mm as determined by visual inspection of DEN-
injected 8 mo control, IL-6Rα∆/∆ and gp130L−KO mice (n=15). Displayed
values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus
control.

Histological investigation of HE-stained liver sections confirmed that NCD-fed

gp130L−KO mice revealed significantly decreased number of HCC foci when com-

pared to NCD-fed control mice, similar to IL-6Rα∆/∆ mice (Fig. 3.27A). However,

this difference was not as large as observed upon macroscopic inspection. Fur-

thermore, tumor size was significantly decreased in gp130L−KO mice upon NCD

feeding compared to control mice, but comparable to IL-6Rα∆/∆ mice (Fig. 3.27B).
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HFD data were not available at this point.
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Figure 3.27: Turmor burden microscopic in control, IL-6Rα∆/∆ and gp130L−KO mice
(A) Quantitation of tumor number per 2 lobules counted on liver sections
from 8 mo control, IL-6Rα∆/∆ and gp130L−KO mice (n=15). (B) Quantitation
of tumor size measured in the big liver lobe of DEN-injected 8 mo control, IL-
6Rα∆/∆ and gp130L−KO mice (n=15). Displayed values are means ± S.E.M.;
*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control. Data produced in
collaboration with Beate Straub.

The extent of inflammation, assessed by quantitation of infiltrating immune

cells, was significantly reduced in livers of gp130L−KO mice compared to con-

trol mice upon NCD feeding, but similar to IL-6Rα∆/∆ mice (Fig. 3.28A). Liver

steatosis was determined in control, IL-6Rα∆/∆ and gp130L−KO mice. Livers of

gp130L−KO mice fed a NCD revealed a significantly reduced extent of steatosis

compared to control mice, similar to L-6Rα∆/∆ mice (Fig. 3.28B). Additionally,

counting of necrotic hepatocytes per two lobules revealed a significant decrease

in gp130L−KO mice compared to control mice upon NCD feeding (Fig. 3.28C). As

fibrosis is also connected to the development of liver cancer, the extent of fibro-

sis was determined by score. By comparison no significant alteration could be

detected between the genotypes (Fig. 3.28D).

Taken together, these data demonstrate that gp130-deficiency in hepatocytes

protected against DEN-induced HCC development even under obese conditions.
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Figure 3.28: Liver status of control, IL-6Rα∆/∆ and gp130L−KO mice
(A) Quantitation of inflammation measured in the big liver lobe of DEN-
injected 8 mo control, IL-6Rα∆/∆ and gp130L−KO. 1 = mild inflammation
(mild portal inflammation, 3-5 single cell necrosis, no grouped necrosis); 2 =
moderate inflammation (moderate portal inflammation, 6-9 single cell necro-
sis, 1 grouped necrosis); 3 = severe inflammation (severe portal inflamma-
tion, more than 10 single cell necrosis, more than 1 grouped necrosis) (n=15).
(B) Quantitation of steatosis measured in the big liver lobe of DEN-injected
8 mo control, IL-6Rα∆/∆ and gp130L−KO. 1 = 0 - 10%; 2 = 11 - 50 %; 3 = above
50 % (C) Quantitation of necrotic cells measured in the big liver lobe of DEN-
injected 8 mo control, IL-6Rα∆/∆ and gp130L−KO. (D) Quantitation of fibrosis
measured in the big liver lobe of DEN-injected 8 mo control, IL-6Rα∆/∆ and
gp130L−KO. 1 = increased portal connective tissue; 2 = early formation of
septa (n = 15). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤
0.01; ***, p ≤ 0.001 versus control. Data produced in collaboration with Beate
Straub.
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3.8.3 No compensation for IL-6Rα deficiency by IL-6 type cytokines in HCC

development upon HFD feeding

The gp130 subunit is part of every member of the IL-6 type cytokine receptor fam-

ily [Zhang et al., 1994]. To investigate which IL-6 type cytokine or receptor could

compensate for IL-6Rα deficiency in HCC development on HFD, expression of

different IL-6 type cytokines and receptors were investigated (Fig. 3.29A-D),

such as IL-6, IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), IL-

30, leukemia inhibitory factor (LIF), cardiothrophin 1(CTF-1) and cardiotrophin-

like cytokine factor 1 (CTCF-1) (Fig. 3.29A/B). As expected, IL-6 expression

was increased in IL-6Rα∆/∆ mice upon HFD feeding compared to control mice

(Fig. 3.29A). Furthermore, OSM revealed a significant decrease in IL-6Rα∆/∆ mice

upon HFD feeding compared to control mice (Fig. 3.29A), whereas CTF-1 exhib-

ited a significant decrease in control mice upon HFD feeding compared to control

mice upon NCD feeding (Fig. 3.29B).

Investigation of the different IL-6 type cytokine receptors, IL-6Rα, IL-11R, OSMR,

CNTFR, IL-27R, Epstein-Barr virus induced gene 3 (EBI-3), LIFR and gp130, re-

vealed a wide range of alterations between the diets and genotypes (Fig. 3.29C/D).

As expected IL-6Rα was significantly decreased in IL-6Rα∆/∆ mice both upon

NCD and HFD feeding (Fig. 3.29C). Furthermore, the IL-11R, whose structure is

very similar to the IL-6Rα, exhibited a significantly increase in IL-6Rα∆/∆ mice

upon NCD feeding compared to control mice upon NCD feeding as well as to

IL-6Rα∆/∆ mice upon HFD feeding (Fig. 3.29C). Similar to OSM, the OSMR was

significantly increased in IL-6Rα∆/∆ mice upon HFD feeding compared to con-

trol mice upon HFD feeding as well as to IL-6Rα∆/∆ upon NCD feeding (Fig.

3.29C). The CNTFR revealed a significant decrease upon HFD feeding but no al-

terations between genotypes (Fig. 3.29C). EBI-3 was significantly increased in

control mice upon HFD feeding whereas IL-6Rα∆/∆ displayed only a tendency to

increased EBI-3 upon HFD feeding compared to NCD feeding (Fig. 3.29D). Simi-

lar to CNTFR, LIFR was decreased upon HFD feeding both in control as well as in
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IL-6Rα∆/∆ mice (Fig. 3.29D). Surprisingly, gp130 revealed a significant decrease

in IL-6Rα∆/∆ mice upon HFD feeding compared to mice upon NCD feeding (Fig.

3.29D).

In summary, determination of IL-6 type cytokines and receptors expression in

tumor livers of control and IL-6Rα deficient animals under both dietary condi-

tions failed to directly clarify which factor compensates for IL-6Rα-deficiency in

HCC development upon HFD feeding and needs further investigation.
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Figure 3.29: IL-6 type cytokines and receptors in tumor livers of control and IL-6Rα∆/∆

mice
(A) qPCR of IL-6, IL-11, OSM and CNTF in livers from DEN-injected 8 month
control and IL-6Rα∆/∆ mice (n=6). (B) qPCR expression of IL-30, LIF, CTF-
1 and CLCF-1 in livers from DEN-injected 8 month control and IL-6Rα∆/∆

mice (n=6). (C) qPCR of IL-6R, IL-11R, OSMR and CNTFR in livers from
DEN-injected 8 month control and IL-6Rα∆/∆ mice (n=6). (D) qPCR of IL-
27R, EBI-3, LIFR and gp130 in livers from DEN-injected 8 month control and
IL-6Rα∆/∆ mice (n=6). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **,
p ≤ 0.01; ***, p ≤ 0.001 versus control.
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3.9 The cell-type specific role of the IL-6Rα in the

development of HCC

The expression of the IL-6Rα is restricted to certain types of cells including hep-

atocytes, myeloid cells and T cells. To investigate the cell specific role of IL-6

signaling in the development of hepatocellular carcinoma, conditional IL-6Rα-

deficient mice were generated. Therefore IL-6Rα f l/ f l mice were crossed to mice

expressing the Cre recombinase under the control of both the mouse albumin

regulatory elements and the α-fetoprotein enhancers (AlfpCre transgene), under

the control of the murine lysozyme M gene (LysMcre) and under the control of

the CD4 enhancer/ promoter/silencer, respectively [Wunderlich et al., 2010; Lee

et al., 2001; Kellendonk et al., 2000; Clausen et al., 1999]. These mice were further

intercrossed with siblings leading to hepatocyte specific (IL-6RαL−KO), myeloid

specific (IL-6RαM−KO) and T cell specific (IL-6RαT−KO) deletion of the IL-6Rα. IL-

6Rα f l/ f l mice served as controls for all groups throughout experiments.

To investigate the cell-type specific role of IL-6 signaling in the development of

hepatocellular carcinoma under normal and obese conditions, male IL-6Rα f l/ f l,

IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice were treated with

DEN as described before and separated after weaning in cohorts fed either a

NCD or HFD for 8 month. To examine whether IL-6Rα deficiency in different

cell types has an impact on metabolic or inflammatory state, different parameters

were measured.
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3.9.1 Less effects on body weight through HFD feeding in IL-6RαL−KO,

IL-6RαM−KO and IL-6RαT−KO mice

Upon NCD feeding no differences in body weight could be detected between

the genotypes (Fig. 3.30A). In contrast to control and IL-6Rα∆/∆ mice upon HFD

feeding, no differences could be detected in IL-6RαL−KO, IL-6RαM−KO and IL-

6RαT−KO mice between NCD and HFD feeding (Fig. 3.30A). To determine the

extent of lipid burden in the blood, cholesterol and triglyceride level in the serum

were measured (Fig. 3.30B/C). Cholesterol measurement revealed similar levels

in all genotypes upon NCD feeding before DEN treatment (Fig. 3.30B). No al-

teration in Cholesterol levels could be detected in IL-6RαL−KO, IL-6RαM−KO and

IL-6RαT−KO mice after DEN treatment compared to non-treated animals whereas

Cholesterol levels significantly increased in control and IL-6Rα∆/∆ upon NCD

feeding (Fig. 3.30B). HFD data were not available at this point. Triglyceride levels

were completely unaltered between treated and non-treated mice and between

genotypes (Fig. 3.30C).

Taken together, these data demonstrate that HFD exposure causes similar lev-

els of obesity in control and IL-6Rα∆/∆ mice upon DEN induction, but less effects

of HFD feeding in IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice.
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Figure 3.30: Metabolic status of control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice
(A) Weight determination of 8 mo DEN-injected control, IL-6Rα∆/∆, IL-
6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice (n=15) (B) Examination of
serum cholesterol level and (C) serum triglyceride level of untreated (-) or
DEN-injected (+) 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice (n=6). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p
≤ 0.01; ***, p ≤ 0.001 versus control.
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3.9.2 IL-6RαT−KO mice are protected against DEN-induced HCC even on

HFD

In the next step tumor development in 8 month old DEN-treated control, IL-

6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice that had been exposed

to either a NCD or HFD were investigated by visual inspection. IL-6RαL−KO mice

on NCD revealed a tendency for decreased tumor numbers compared to con-

trol mice, whereas IL-6RαM−KO mice had no differences in tumor burden upon

NCD feeding (Fig. 3.31A/B). Surprisingly, IL-6RαT−KO mice upon NCD feed-

ing exhibited almost the same protection for tumor development as IL-6Rα∆/∆

on NCD (Fig. 3.31A/B). In line with previous experiments, obesity increased tu-

mor burden in control mice, IL-6Rα∆/∆, IL-6RαL−KO and IL-6RαM−KO mice (Fig.

3.31A/B). Only IL-6RαT−KO mice were almost protected against DEN-induced

HCC even upon HFD feeding (Fig. 3.31A/B). In contrast to IL-6Rα∆/∆ mice, IL-

6RαT−KO mice revealed no significant difference in tumor number <2mm upon

NCD feeding whereas upon HFD feeding IL-6RαT−KO mice had less tumors <2mm

compared to control mice, similar to IL-6Rα∆/∆ mice (Fig. 3.31C). Additionally,

IL-6RαT−KO mice exhibited significantly less tumors >2mm upon NCD feeding

as well as upon HFD feeding compared to control mice (Fig. 3.31D).
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Figure 3.31: Turmor burden macroscopic in control, IL-6Rα∆/∆, IL-6RαL−KO, IL-
6RαM−KO and IL-6RαT−KO mice
(A) Livers of 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice injected with 25 mg/kg BW DEN at 15 days of age. (B) Quan-
titation of macroscopic tumor multiplicity determined by visual inspection
in DEN-injected 8 mo ccontrol, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice (n=15). (C) Enumeration of tumor number for < 2 mm (D) and
> 2 mm as determined by visual inspection of DEN-injected 8 mo control, IL-
6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice (n=15). Displayed
values are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus
control.

Hepatocyte steatosis can sequentially lead to the development of liver damage

and steatohepatitis which are forerunners of HCC development. As an indirect

indicator of liver damage, the activity of the liver AST and ALT were measured

in control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice on NCD
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before and after DEN treatment (Fig. 3.32A/B). AST and ALT level were not sig-

nificantly different in the serum of control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO

and IL-6RαT−KO mice before DEN treatment (Fig. 3.32A/B). After DEN treatment

serum AST level significantly increased to the same extent in control, IL-6Rα∆/∆,

IL-6RαM−KO and IL-6RαT−KO mice, whereas IL-6RαL−KO revealed a significant

increase after DEN treatment compared to other genotypes after DEN treatment

(Fig. 3.32A). No alteration of serum ALT level could be observed between geno-

types after DEN treatment (Fig. 3.32B).
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Figure 3.32: Liver damage of control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice
(A) Investigation of AST and (B) ALT activity in serum of untreated (-) or
DEN-injected (+) 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice (n=6). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **, p
≤ 0.01; ***, p ≤ 0.001 versus control.

Histological investigation of HE-stained liver sections confirmed that NCD-

fed IL-6RαL−KO and IL-6RαM−KO mice had no significant difference in number of

HCC foci when compared to NCD-fed control mice (Fig. 3.33A). Strikingly, HFD

feeding increased the carcinogenic capability of DEN in IL-6RαM−KO animals but

not in IL-6RαL−KO mice (Fig. 3.33A). Furthermore decreased number of foci in IL-

6RαT−KO mice could not be confirmed by this analysis (Fig. 3.33A). HFD data for

IL-6RαT−KO mice were not available at this point. Determination of tumor size
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exhibited significant increase of foci size in IL-6RαL−KO and IL-6RαM−KO mice

upon NCD feeding compared to control mice, whereas IL-6RαT−KO mice revealed

no alterations in tumor size compared to control mice upon NCD feeding (Fig.

3.33B). Strikingly, tumor size in control, IL-6Rα∆/∆, IL-6RαM−KO and IL-6RαT−KO

mice did not change upon HFD feeding compared to NCD feeding, whereas foci

size significantly decreased in IL-6RαL−KO mice upon HFD feeding compared to

NCD feeding (Fig. 3.33B).
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Figure 3.33: Turmor burden microscopic in control, IL-6Rα∆/∆, IL-6RαL−KO, IL-
6RαM−KO and IL-6RαT−KO mice
(A) Quantitation of tumor number per 2 lobules counted on liver sections
from 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO

mice (n=15). (B) Quantitation of tumor size measured in the big liver lobe
of DEN-injected 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice (n=15). Displayed values are means ± S.E.M.; *, p ≤ 0.05; **,
p ≤ 0.01; ***, p ≤ 0.001 versus control. Data produced in collaboration with
Beate Straub.

To assess the extent of inflammation, infiltrating immune cells were quanti-

tated. This analysis revealed a significant reduced inflammation in livers of IL-

6RαT−KO mice upon NCD feeding compared to control mice upon NCD feeding,

similar to IL-6Rα∆/∆ mice (Fig. 3.34A), whereas IL-6RαL−KO and IL-6RαM−KO

mice exhibited no significant differences. Upon HFD feeding liver inflammation

significantly increased in control, IL-6Rα∆/∆ and IL-6RαL−KO animals but not in
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IL-6RαM−KO mice (Fig. 3.34A). HFD data of IL-6RαT−KO mice were not available

at this point.

As mentioned before, HFD feeding was observed to induce hepatocyte steato-

sis that can result in HCC development. Similar to IL-6Rα∆/∆ mice, livers of

IL-6RαT−KO mice fed a NCD revealed a significantly reduced extent of steatosis

compared to control mice whereas IL-6RαL−KO and IL-6RαM−KO mice exhibited

no alteration (Fig. 3.34B). In contrast to IL-6Rα∆/∆ mice, the extent of steatosis

did not increase both in IL-6RαL−KO and IL-6RαM−KO mice upon HFD feeding

compared to NCD fed mice (Fig. 3.34B). HFD data of IL-6RαT−KO mice were not

available at this point.

Counting of necrotic hepatocytes per two lobules revealed significant reduction

in IL-6RαT−KO mice on NCD compared to control mice upon NCD feeding, con-

trary to IL-6Rα∆/∆ mice (Fig. 3.34C). Similar to inflammation status upon HFD

feeding, necrotic cells increased in IL-6Rα∆/∆, IL-6RαL−KO and IL-6RαM−KO mice

but not in IL-6RαM−KO mice compared to HFD feeding (Fig. 3.34C). HFD data of

IL-6RαT−KO mice were not available at this point.

Assessment of fibrosis which is often connected with the development of liver

cancer, revealed no significant alteration between the genotypes. Even upon

HFD feeding no significant alteration could be detected in IL-6RαL−KO and IL-

6RαM−KO mice compared to NCD feeding, contrary to IL-6Rα∆/∆ mice after HFD

feeding (Fig. 3.34D). HFD data of IL-6RαT−KO mice were not available at this

point.
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Figure 3.34: Liver status of control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-
6RαT−KO mice
(A) Quantitation of inflammation measured in the big liver lobe of DEN-
injected 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO.
1 = mild inflammation (mild portal inflammation, 3-5 single cell necrosis, no
grouped necrosis); 2 = moderate inflammation (moderate portal inflamma-
tion, 6-9 single cell necrosis, 1 grouped necrosis); 3 = severe inflammation
(severe portal inflammation, more than 10 single cell necrosis, more than 1
grouped necrosis) (n=15). (B) Quantitation of steatosis measured in the big
liver lobe of DEN-injected 8 mo control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO

and IL-6RαT−KO. 1 = 0 - 10%; 2 = 11 - 50 %; 3 = above 50 % (n=15) (C) Quan-
titation of necrotic cells measured in the big liver lobe of DEN-injected 8 mo
control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO. (n=15) (D)
Quantitation of fibrosis measured in the big liver lobe of DEN-injected 8 mo
control, IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO. 1 = increased
portal connective tissue; 2 = early formation of septa (n = 15). Displayed val-
ues are means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.
Data produced in collaboration with Beate Straub.
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Regulatory T cells (Tregs) are the main regulators of the immune system. IL-

6 plays a crucial role in differentiation and activation of regulatory T cells and

it is known that different types of cancer are correlated with increased numbers

of Tregs which suppress the immune response and promote cancer development

[Haruta et al., 2011; Mougiakakos, 2011; Mougiakakos et al., 2010]. To investigate

weather Tregs play a role in the IL-6 dependent development of HCC, control,

IL-6Rα∆/∆ and IL-6RαT−KO mice were injected with 1 mg α-CD25 antibody i.p.

at 13 days of age to deplete Tregs in the initial phase of tumor development. As

before these mice were injected with 25 mg/kg BW DEN at 15 days of age i.p.

and exposed to NCD. Tumor investigation after 8 month revealed a duplication

of tumor number both in IL-6Rα∆/∆ and IL-6RαT−KO mice compared to control

mice suggesting a crucial role of Tregs in the IL-6 mediated development of HCC

(Fig. 3.35A). Collaboration with the lab of Ruslan Medzhitov indicated that IL-

6 signaling on effector T cells is necessary to release them from suppression by

Tregs. In this context natural killer like T cells (NKT cells) become the focus of

attention. To investigate the role of NKT cells, eight weeks old control, IL-6Rα∆/∆

and IL-6RαT−KO mice were injected i.p. with 4 µg αGalactosylceramide (αGalCer)

to specifically activate NK T cells and sacrificed at different time points. This

analysis revealed increased ALT and AST level in IL-6Rα∆/∆ and IL-6RαT−KO

mice upon αGalCer induction (Fig. 3.35B/C). To determine expression of IL-6Rα

specifically on NKT cells, activated NKT cells were analysed by Fluorescence-

activated cell sorting (Facs) analysis, revealing that maximum 2% of NKT cells

express the IIL-6Rα (Fig. 3.35D).

Taken together, these data demonstrate that IL-6Rα signaling in T cells play

an essentielle role whereas IL-6Rα signaling in hepatocytes and macrophages

is only minor involved in HCC development. In contrast, IL-6Rα signaling in

macrophages seems to be more important upon HFD feeding indicated by miss-

ing alteration of liver damage and inflammation upon HFD feeding.
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Figure 3.35: Turmor burden macroscopic in control, IL-6Rα∆/∆ and IL-6RαT−KO mice
(A) Quantitation of macroscopic tumor multiplicity determined by visual
inspection in DEN-injected 8 mo control, IL-6Rα∆/∆ and IL-6RαT−KO mice
(n=6) (B) Determination of serum AST (n=5) and (C) serum ALT activity to
assess liver damage in 8 wk control, IL-6Rα∆/∆ and IL-6RαT−KO mice fed on
a NCD sacrificed at the indicated time points after a 4 µg αGalCer injection
(n=5). (D) Facs analysis of NKT cells, gated for tetramer and IL-6Rα (n=4).
Data produced in collaboration with Christoph Vahl. Displayed values are
means ± S.E.M.; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 versus control.
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HCC is the most common primary liver cancer worldwide with about 700.000

new cases per year [El-Serag & Rudolph, 2007]. Only 3-5 % of the patients survive

due to very limited treatment strategies. All main risk factors for HCC, such as

Hepatitis B/C and alcoholic or non-alcoholic steatohepatitis, cause liver damage

and chronic inflammation, characterizing HCC as a classic case of inflammation

linked cancer [Mantovani et al., 2008; Fattovich et al., 2004]. This chronic hepatic

inflammation leads to cell death and consequently to compensatory proliferation

of hepatocytes and ultimately to tumor development [Bisgaard et al., 1998].

Epidemiological studies identified HCC as the strongest obesity-associated can-

cer [Calle et al., 2003]. The excessive weight gain during obesity is associated with

a chronic low grade inflammatory state as a consequence of infiltrating immune

cells into the white adipose tissue (WAT) and the liver [Xu et al., 2003; Weisberg

et al., 2003; Olefsky & Glass, 2010]. During obesity, adipocytes rise in size and

increasing mechanical stress results in ruption and leakage of adipocytes and in

liberating of free fatty acids into circulation [Ferrante, 2007]. This in turn leads

to the recruitment and activation of immune cells, such as macrophages and T

cells, to the WAT. These immune cells release cytokines, such as TNFα and IL-6

[Nishimura et al., 2009; Xu et al., 2003; Hotamisligil et al., 1993].

Human studies could demonstrate that the concentration of IL-6 in serum is in-

creased in situations of chronic inflammation including alcoholic hepatitis, HBV

and HCV infections and steatohepatitis, conditions that may lead to development

of HCC [Abiru et al., 2006]. IL-6 concentrations are also increased in patients with

HCC compared to normal subjects, but whether IL-6 is causal or contributory to

HCC is still unknown [Soresi et al., 2006]. Recent studies in mouse models de-
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scribed a pivotal role of IL-6 in the development of chemical induced HCC but

the underlying mechanism is still poorly understood [Naugler et al., 2007].

In contrast to other studies, the current study used the conditional gene target-

ing to disrupt the IL-6Rα instead of IL-6 to examine the intracellular effect of IL-6

signaling in chemical induced HCC and the influence of obesity to this mecha-

nism. To adress this question, IL-6Rα f l/ f l (controls) and IL-6Rα∆/∆ mice were

injected with DEN to induce HCC development and were exposed to either NCD

or HFD feeding after weaning for 8 month.

Furthermore, conditional gene targeting has been applied to facilitate hepato-

cyte specific, myeloid specific and T cell specific disruption of the IL-6R to in-

vestigate the cell type specific role of IL-6 signaling in the development of HCC,

which would be not possible if IL-6 knock out mice would be used. Therefore, IL-

6Rα f l/ f l (controls), IL-6Rα∆/∆, IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice

were injected with DEN to induce HCC development and were exposed to either

NCD or HFD feeding for 8 month.

4.1 IL-6Rα deficiency protects against DEN-induced liver

carcinogenesis, but obesity abrogates this effect

The current study could demonstrate that IL-6Rα signaling promotes DEN-induced

liver carcinogenesis accompanied by increased inflammation. The macroscopic

tumor investigation in the current study could confirm that IL-6Rα-deficiency

upon NCD feeding protects against DEN induced HCC - a finding that was also

validated by pathological investigation [Naugler et al., 2007] . Moreover, fur-

ther pathological investigations of the tumor livers revealed decreased inflam-

mation and steatosis upon IL-6Rα-deficiency under NCD conditions, which is in

line with Naugler et al. [2007] findings. However, abrogation of IL-6Rα-signaling

did not decrease liver AST level after DEN treatment in contrast to earlier obser-

vations in IL-6-deficient mice [Naugler et al., 2007]. Also, the amount of necrotic
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cells in livers lacking the IL-6Rα upon NCD feeding were contradictory to pre-

vious results of Naugler et al. [2007]. While the authors postulate a decrease

in necrosis in IL-6-deficient mice, the current study revealed similar amounts of

necrotic cells in control and IL-6Rα∆/∆ mice upon NCD feeding.

Additional studies of HCC development demonstrate that HFD-induced obe-

sity increases DEN-induced HCC development in control mice which is in line

with earlier observations [Park et al., 2010]. Surprisingly, HFD feeding abro-

gates the protective effect of IL-6Rα deficiency on HCC development which is

in contrast to previous findings [Park et al., 2010]. The results of the current study

demonstrate that obesity abrogates the protective effect of IL-6Rα deficiency and

promotes HCC development by inducing inflammatory conditions mediated by

elevated levels of TNFα and IL-6.

Earlier studies described that spontaneously developed liver damage in Nemo/

IKKγ∆hep mice is promoted by HFD-feeding and results in tumor development

[Wunderlich et al., 2008]. Furthermore, Park et al. [2010] demonstrated recently

that both dietary- and genetically-induced obesity in mice increased HCC de-

velopment and progression in control mice compared to NCD-fed control mice.

This study demonstrated that HFD-induced increase in HCC development and

progression in control mice is a consequence of obesity-induced elevation of both

TNFα and IL-6. In line with these findings, the current study can also confirm

increased levels of TNFα and IL-6 in tumor livers upon obesity. Interestingly,

also upon IL-6Rα deficiency HFD feeding leads to an increase of TNFα and IL-6

in the tumor livers, underlining the differences in tumor development between

IL-6- and IL-6Rα-deficiency. Further investigation of inflammatory status of the

liver revealed increased liver damage reflected by increased liver AST level af-

ter DEN treatment but no differences between genotypes or diets in contrast to

earlier observations [Park et al., 2010]. Moreover, pathological analysis of tumor

livers of the different cohorts revealed increased inflamm=ation upon HFD feed-

ing, which was also demonstrated by Park et al. [2010]. Differences between IL-6-
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and IL-6Rα deficiency turn up again in inflammatory status, demonstrated by

increased inflammation also in IL-6Rα-deficient livers upon HFD feeding. How-

ever, the number of necrotic cells and the existing fibrosis were increased upon

HFD feeding.

Taken together, there is a differential effect of previously described IL-6 defi-

ciency versus the results on IL-6Rα deficiency in obesity-induced HCC develop-

ment. Both IL-6 and IL-6Rα deficiency in lean mice protect against HCC devel-

opment, whereas in the obese state IL-6Rα∆/∆ mice exhibit similar tumor num-

bers as control mice but IL-6 knock out mice fail to develop HCC under these

conditions [Park et al., 2010]. In line with these reported differential effects, a

recent publication demonstrated a similarly different experimental outcome in

IL-6- and IL-6Rα-deficient mice when addressing the function of IL-6 in wound

healing [McFarland-Mancini et al., 2010]. While IL-6-deficient mice demonstrated

greatly reduced wound healing capacity, IL-6Rα deficiency showed only slightly

impaired wound healing. Further analysis of IL-6Rα and IL-6 double knock out

mice revealed that IL-6Rα deficiency dominated wound healing capacity. Thus,

these studies and the latest findings point towards a more complex role of IL-6Rα

signaling in inflammatory processes than assumed so far.

4.2 Similar extent of obesity in control and IL-6Rα∆/∆ mice in

the DEN-induced HCC model

One explanation for the different outcome of HCC incidence between IL-6 and

IL-6Rα deficient mice could be an altered influence of HFD feeding to these mice.

However, the current study demonstrated that control and IL-6Rα∆/∆ mice re-

vealed no differences concerning glucose and fatty acid metabolism and that HFD

exposure causes similar levels of obesity in both control and IL-6Rα∆/∆ mice upon

DEN induction. Moreover, HFD feeding results in IL-6 resistance in control mice

resulting in impaired Stat-3 activation.
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Investigation of glucose metabolism revealed no alterations in body weight

and blood glucose clearance, which is surprising in reference to previous studies

which revealed an impaired glucose metabolism in mice with impaired IL-6Rα

signaling in hepatocytes [Wunderlich et al., 2010]. Hepatic insulin resistance as

a consequence of HFD feeding leads to a diminished suppression of hepatic glu-

cose production and thus exhibits a crucial impact on the impairment of whole

body glucose metabolism [Li & Yang, 2004]. IL-6 signaling plays an important

role in the development of hepatic insulin resistance during obesity and previ-

ous observations revealed that IL-6 treatment increases glucose tolerance in rats

[Holmes et al., 2008; Klover & Mooney, 2004; Senn et al., 2002]. However, no ef-

fects of L-6Rα deficiency could be detected in the current study.

The Insulin levels in the current study revealed no difference between control

and IL-6Rα∆/∆ mice upon both NCD and HFD feeding. In contrast to that, Park

et al. [2010] could demonstrate decreased Insulin levels upon IL-6-deficiency af-

ter HFD feeding. Furthermore, the decreased triglyceride levels in IL-6 deficient

mice upon HFD feeding, could not be observed in IL-6Rα deficient mice in the

current study. No differences could be observed in fatty acid metabolism, mea-

sured by circulating cholesterol or triglycerides, as well as lipid accumulation in

the liver.

IL-6 initiates downstream signaling by binding to the IL-6 receptor (IL-6R)

whose activation results in multiple downstream signaling events in the liver

such as activation of the JAK/Stat-3 pathways Heinrich et al. [2003]. Treatment of

control mice with IL-6 revealed a robust Stat-3 phosphorylation in the liver. In-

terestingly, HFD feeding leads to an diminished Stat-3 activation in the liver sug-

gesting an impaired responsiveness to acute IL-6 stimulation as a consequence

of obesity. Recent studies could demonstrate that chronically raised IL-6 levels

in obesity could cause Insulin resistance and IL-6 resistance [Wunderlich et al.,

2013]. This may involve basal increase of Socs protein levels in peripheral or-

gans, such as the liver, similarly to the findings described for basal leptin-derived
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signal transduction in the CNS [Wunderlich et al., 2013].

4.3 Obesity and IL-6 increase HCC development through the

inhibition of mitochondrial apoptosis

Increased IL-6 levels under inflammatory conditions and in obesity were pre-

dicted to inhibit hepatocyte apoptosis, a driving force in DEN-induced HCC de-

velopment [Park et al., 2010]. The current study could demonstrate that under

NCD conditions, loss of IL-6 signaling sensitizes hepatocytes to damage-induced

apoptosis by decreased protein levels of anti-apoptotic Bcl-2 protein family mem-

ber Mcl-1 at the mitochondria without impairments in compensatory prolifera-

tion. However, under HFD conditions, hepatocyte apoptosis is inhibited – even

in the absence of IL-6Rα signaling.

Investigation of hepatocyte apoptosis in the DEN-induced HCC model revealed

that IL-6Rα∆/∆ mice, which have decreased tumor development, display increased

Caspase 3 activity upon NCD feeding which is in line with induction of Caspase

3 as a potent cancer therapy [Tatsukawa et al., 2011]. Furthermore, after acute

induction with DEN, an increased Caspase 3 cleavage could be observed, trans-

lating into an increase of liver AST levels, which reflects liver damage. These

effects were completely blunted upon HFD feeding, which was also reflected in

abrogated tumor protection in IL-6Rα∆/∆ mice.

Mitochondria represent a central sensory organelle that can respond to DNA

damage by outer membrane permeabilization. The current study revealed that

increased Caspase 3 activity in IL-6Rα∆/∆ mice upon NCD feeding is a conse-

quence of enhanced mitochondrial apoptotic response, demonstrated by elevated

release of Cytochrome C from isolated mitochondria after Bax treatment. Consis-

tently, IL-6Rα-deficient hepatocytes demonstrated concentration dependent cy-

tosolic Cytochrome C levels in response to DEN as well as increased Cytochrome

C at the mitochondria itself. The increased hepatic apoptosis sensitivity of lean
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IL-6Rα-deficient mice is due to a decrease of anti-apoptotic protein Mcl-1. This

effect is completely abolished under HFD conditions, which is reflected in the ab-

rogated protection from tumor development in IL-6Rα-deficient mice upon HFD

feeding. Notably, protein levels of other Bcl-2 family members were only slightly

altered betweens diets and genotypes.

The balance between anti- and pro-apoptotic members of the Bcl-2 protein fam-

ily regulates mitochondrial outer membrane permeabilization and the efflux of

Cytochrome C in response to cellular damage [Brunelle & Letai, 2009]. One of

these anti-apoptotic proteins is Mcl-1 which keeps Bak and Bax separated at the

outer membrane of the mitochondria [Tait & Green, 2010; Maurer et al., 2006].

After phosphorylation Mcl-1 is ubiquitinated and degraded, Bax and Bak can as-

semble which leads to the release of Cytochrome C, activation of caspases and

eventually to apoptosis [Tait & Green, 2010; Maurer et al., 2006]. Immunohisto-

chemistry of mouse liver sections and western blot analysis of dissected HCCs

underlined the finding that Mcl-1 protein is decreased in HCCs of lean IL-6Rα-

deficient mice compared to controls, while HFD feeding significantly increased

Mcl-1 protein abundance in HCCs of control as well as IL-6Rα∆/∆ mice indepen-

dent from IL-6Rα signaling.

Strikingly, qPCR analyses of the Bcl-2 family members revealed largely unal-

tered transcriptional levels of the corresponding genes suggesting that the re-

duced Mcl-1 content at the mitochondria of IL-6Rα∆/∆ mice might be caused by a

posttranslational regulatory mechanism. This results are contrary to earlier find-

ings that Mcl-1 expression is increased in HCC [?].

Along this line, previous studies have clearly demonstrated that Mcl-1 is an

anti-apoptotic factor for a subset of human HCC, whose inhibition might have

potential in human therapy, but may also result in liver damage and cancer de-

velopment [Weber et al., 2010; Vick et al., 2009; Fleischer et al., 2006; Schulze-

Bergkamen et al., 2006]. It has been previously demonstrated that hepatocyte-

specific Mcl-1 inactivation causes spontaneous HCC in old mice as a consequence
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of a microenvironment comprising apoptosis sensitive Mcl-1-deficient hepato-

cytes and compensating adjacent hepatocytes [Weber et al., 2010]. Of note, HCC

development in these mice occurs in the absence of chronic inflammation. The

current DEN-induced HCC model depends on inflammation and high Mcl-1 pro-

tein levels. Moreover, the current study could demonstrate that DEN-induced

compensatory proliferation of hepatocytes was comparable between control and

IL-6Rα∆/∆ mice. Interestingly, Bak protein level are slightly decreased in IL-

6Rα∆/∆ mice upon NCD feeding, which are protected against HCC. This result

is underlined by the recent finding that the compound inactivation of Mcl-1 and

BAK not only normalizes apoptosis sensitivity of hepatocytes but also prevents

liver cancer development [Hikita et al., 2012].

4.4 GSK-3β inhibition stabilizes Mcl-1 via IL-6 signaling and

under obese conditions in HCC development

The current study could demonstrate that IL-6Rα-deficiency decreases Mcl-1 pro-

tein levels at the mitochondria without decreasing transcription, suggesting a

posttranslational regulation of Mcl-1 within tumor lesions. The present work

could provides evidence that GSK-3β action increases the hepatic Mcl-1 turnover

rate in IL-6Rα deficiency, thereby decreasing Mcl-1 protein levels. Furthermore,

it could be demonstrated that GSK-3β inactivation by phosphorylation at S9 is

required to stabilize Mcl1 during the initial phases of tumorigenesis

Unlike other Bcl-2 family members, Mcl-1 has a dynamic turnover rate [Mau-

rer et al., 2006; Kozopas et al., 1993]. While Mcl-1 expression at the transcrip-

tional level depends on PI3K-mediated signal transduction as well as IL-6-evoked

signaling, the dynamic turnover rate of Mcl-1 is controlled by GSK-3β [Maurer

et al., 2006; Jourdan et al., 2003; Epling-Burnette et al., 2001a,b]. Mcl-1 comprises

a N-terminal proline, glutamic acid, serine, threonine peptide sequence (PEST

domain), which is responsible for its short half-life. Phosphorylation of Mcl-1
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in the PEST domain by GSK-3β leads to its polyubiquitination and subsequent

proteasome-mediated degradation, which initiates apoptosis [Maurer et al., 2006].

Investigation of GSK-3β in the current study revealed a remarkable decrease of

phosphorylation in livers of IL-6Rα∆/∆ mice upon NCD feeding, also reflected by

decreased Mcl-1 protein levels which leads to increased mitochondrial apoptosis

und subsequently to decreased tumor numbers. Moreover, in line with the stabi-

lized Mcl-1 levels in IL-6Rα∆/∆ mice upon HFD feeding, GSK-3β phosphorylation

is also restored. Consistent with these findings, direct assessment of GSK-3β ac-

tivity revealed a significant increase of activity in lean IL-6Rα∆/∆ mice, an effect

which is abrogated upon HFD feeding. Direct proof about the role of GSK-3β

regarding Mcl-1 stabilization in vivo, is provided by the injection of an adeno-

associated virus containing a constitutive active GSK-3β variant (GSK-3βCA) in

control mice. This GSK-3βCA reduces Mcl-1 protein level in the liver to a similar

extent as in IL-6Rα∆/∆ mice.

Active GSK-3β has been previously reported to regulate apoptosis through ex-

pression of the BH3 only member PUMA that antagonizes Mcl-1 to sensitize for

apoptosis [Charvet et al., 2011]. Investigation of PUMA expression in IL-6Rα∆/∆

mice revealed 2-fold increase compared to control mice which is restored under

obese conditions. However, in the initial phase of tumor development PUMA

expression is unchanged between genotypes. Moreover, PUMA protein level

peaked in both genotypes 24h after DEN injection, indicating a GSK-3β indepen-

dent mechanism controls PUMA expression under these conditions. This become

even more clear by the fact that PUMA levels failed to correlate with GSK-3β ac-

tivity under acute DEN conditions.

The regulation of GSK-3β is controlled at multiple levels and its misregulation

is known to contribute to the development of numerous diseases such as dia-

betes, Alzheimer’s disease, and cancer [Patel & Woodgett, 2008; Eldar-Finkelman

et al., 1999; Eldar-Finkelman & Krebs, 1997; Hanger et al., 1992]. GSK-3β is a ser-

ine/threonine protein kinase that is constantly active. Inactivation of GSK-3β by
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phosphorylation at serin residue 9 (S9) increases stabilization and accumulation

of Mcl-1 and therefore prevents apoptosis [Ding et al., 2007]. GSK-3β S9 phospho-

rylation mainly occurs through the action of Phosphatidyli- nositide 3-kinases

(PI3K) signaling as a substrate of AKT phosphorylation in response to insulin

[Cross et al., 1995]. The current work revealed that PI3K/AKT signaling is active

but not altered in IL-6Rα∆/∆ mice during HCC development independent from

dietary conditions. Determination of the role of PI3K signaling in DEN-induced

HCC development of HFD fed mice by treating HCC-bearing HFD fed control

mice with a PI3K inhibitor resulted in reactivation of GSK-3β leading to reduced

levels of Mcl-1. This reduction of Mcl-1 transfers into increased number of apop-

totic cells and a reduced proliferation in the liver of mice with inhibited PI3K.

This results are in line with previous studies, demonstrating that the PI3K/AKT

pathway transmits anti-apoptotic survival signals and is likely involved in mit-

igating apoptosis in a substantial fraction of human tumors [Jiang & Liu, 2008;

Cully et al., 2006]. Despite all that, the formation of PIP3 was similar between

diets and genotypes. Even the activity of downstream kinases such as PDK and

AKT were unaltered between diets and genotypes indicating the contribution of

another factor which regulates GSK-3β activity.

4.5 Obesity and IL-6 controlled expression of PP-1α and

Mule synergize to stabilize Mcl-1

The current study demonstrated that activation of PI3K/AKT signaling is not al-

tered between diets and genotypes. Therefore, another regulatory element must

be responsible for the differences in GSK-3β activity between diets and geno-

types. Protein phosphatase 1 α (PP-1α) catalyzes the reverse reaction, namely

GSK-3β dephosphorylation at S9. Investigation of PP-1α expression level re-

vealed a 2-fold increase in IL-6Rα-deficient mice upon NCD feeding, an effect

which is completely blunted after HFD feeding. This increase in expression level
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is due to decreased Stat-3 activation, which acts as a suppressor on the PP-1α

promoter, demonstrated by ChIP analysis of the PP-1α promoter.

Transcriptional control of IL-6 regulated genes mainly occurs via the transcrip-

tion factor Stat-3. Several studies demonstrated a key role of Stat-3 in cancer

development. Grivennikov & Karin [2008] demonstrated a constitutive Stat-3 ac-

tivation in different types of cancer. Furthermore, increased Stat-3 activity was

found in chemical induced HCC in rats, indicating an essential role of Stat-3 in

the formation of HCC [Sánchez et al., 2003]. If activation of Stat-3 is inhibited, pro-

liferation of HCC cells is suppressed, which is associated with increased apopto-

sis, cell arrest, reduced proliferation and inhibited expression of growth factors

[Sun et al., 2008; Li et al., 2006]. In consequence, expression of Stat-3- regulated

genes including B-cell lymphoma extra large (Bclxl), Cyclin D1 and c-Myc, which

are involved in apoptosis and cell cycle progression, were downregulated [Sun

et al., 2008]. Interestingly, tumor cells use IL-6 to constitutively activate Stat-3

whereas other cytokines like IL-11 or IL-22 could also provoke Stat-3 phospho-

rylation and tumor development. One consideration is that inflammatory cells

in close interaction to cancer cells can produce big amounts of “start-up” IL-6

which is required for early tumor production. IL-6 seems to have a dual role in

the development of chemically induced HCC. At first, IL-6 advances cell injury

and later the compensatory proliferation of hepatocytes. Secondly, IL-6 provides

growth signals to transformed hepatocytes [Grivennikov & Karin, 2008].

However, PP-1α inhibition by the inhibitor ocadaic acid is not sufficient to sta-

bilize Mcl-1 protein level, suggesting another synergistic pathway independent

from PP-1α. These data confirm that IL6Rα-deficiency increases PP1α expression

that regulates GSK-3β activity, but it is not sufficient to reduce Mcl-1.

While the current study clearly demonstrate that PI3K/AKT action is not im-

paired in the absence of IL-6Rα signaling, the experiments reveal a critical role

of IL-6 signaling in the control of PP-1α expression. However, while S9 phos-

phorylation dependent control of GSK-3β activity was shown to regulate Mcl-1
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protein stability, GSK-3β action requires pre-phosphorylation of Mcl-1 in order

to exert its regulatory function [Morel et al., 2009; Maurer et al., 2006]. Never-

theless, the experiments revealed a correlation between GSK-3β phosphorylation

and Mcl-1 protein stability in this mouse model. However, at this point it cannot

be excluded that, depending on dietary conditions, IL-6Rα signaling in addition

to GSK-3β regulation also controls the activity of additional Mcl-1 kinases, such

as ERK or JNK. In line with this notion, previous studies have suggested that

MAPK/ERK and JNK-dependent phosphorylation of Mcl-1 may also decrease

Mcl-1 stability [Morel et al., 2009; Kodama et al., 2009; Domina et al., 2004]. Fur-

thermore, increased and sustained JNK-1 activity, as observed in obesity and dur-

ing DEN-induced HCC development, can stabilize Mcl-1 [Kodama et al., 2009;

Hui et al., 2008; Hirosumi et al., 2002].

Recently, GSK-3β-phosphorylated Mcl-1 has been shown to be recognized by

either Mule or the SCFFBW7 E3 ligase both of which ligate polyubiquitin chains

to Mcl-1 that lead to its proteasomal degradation [Wertz et al., 2011; Zhong et al.,

2005]. Determination of the expression of these E3 ligases in the current study

displayed a correlation of Mule expression with Mcl-1 levels in lean and obese

control and IL-6Rα∆/∆, whereas expression of the subunits FBW7 and cullin-1 of

the SCF complex revealed only a minor expression in HCC. Promoter analysis

of the Mule promoter could demonstrate that Mule expression is a direct target

of IL-6-mediated Stat-3 repression which could be proven both in vivo by using

mice with a constitutive active Stat-3 as well as in vitro by a Luciferase assay and

ChIP analysis. These data clearly prove that expression of ubiquitin ligase Mule is

directly regulated by IL-6 mediated Stat-3 activation in the development of HCC.

Interestingly, while the increased tumor burden in obese mice in the current

study was accompanied with increased Mcl-1 levels in tumor lesions indepen-

dent of IL-6Rα signaling, the severity of tumor specific lipid accumulation in

human HCC positively correlated with Mcl-1 abundance [Fleischer et al., 2006].

Moreover, the current work could demonstrate a negative correlation between
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Mcl-1 and Mule levels in human HCC, indicating this mechanism as translational

to human disease.

4.6 Obesity promotes liver carcinogenesis via Mcl-1

stabilization independent of IL-6Rα signaling

Considering the insights from the current work, the following model has the abil-

ity to clarify the role of IL-6 signaling in the development of HCC.

In lean control mice IL-6 decreases apoptosis sensitivity through Stat-3 acti-

vation and Mcl-1 stabilization. Stat-3 activation controls the synergistic actions

of GSK-3β via inhibition of PP-1α expression and Mule via its inhibition which

results in HCC development. Accordingly, IL-6Rα-deficiency release PP-1α and

Mule expression from Stat-3-mediated inhibition, leading to an increased apop-

tosis sensitivity in hepatocytes. This sensitivity is caused by Mcl-1 degradation

mediated by active GSK-3β and Mule which protects against DEN-induced HCC.

In contrast in obesity, DEN-induced HCC development and progression oc-

curred even in the absence of IL-6Rα expression as a consequence of obesity-

induced GSK-3β inhibition and transcriptional repression of Mule leading to Mcl-

1 stabilization. Along these lines, inhibitory S9 phosphorylation of GSK-3β was

increased upon HFD feeding both in control and IL-6Rα∆/∆ mice, whereas Mule

and PP-1 α expression was significantly inhibited under obese conditions not only

in control but also in IL-6Rα-deficient animals.

Therefore in lean mice, IL-6 appears to be the critical regulator of GSK-3β as

well as Mule-inhibition, while alternative signals may control these molecules in

obese mice.
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Figure 4.1: Model of apoptosis-regulation in HCC via IL-6 signaling and obesity
(A) IL-6 signaling activates Stat-3 which inhibits PP-1α and Mule expression.
(B) Since PP-1α can not dephosphorylate GSK-3β, phosphorylation at S9 by
AKT inhibits GSK-3β action which leads to stabilization of Mcl-1. (C) Mcl-
1 keeps Bax and Bak seperated at the mitochondria which prevents release
of Cytochrom C and inhibits apoptosis. (D) Under obese conditions Stat-3-
mediated inhibition of PP-1α and Mule expression occurs independent from
IL-6 signaling. Picture produced with the help of Justus Ackermann.
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4.7 Inactivation of gp130 in hepatocytes protects against

DEN-induced HCC development even under obese

conditions

Apparently, the experiments refer to a not yet identified factor that compen-

sates for IL-6Rα deficiency in obesity-associated HCC development. In the pro-

inflammatory state in obesity this factor could be increased, thereby elevating

basal hepatic Stat-3 activation, but impairing acute responsiveness. Evidently, not

only the restored hepatic Stat-3 activation in obese IL-6Rα∆/∆ mice occured inde-

pendent of IL-6 but also the remaining DEN-induced Stat-3 activation in lean IL-

6Rα∆/∆ mice, thus indicating another obesity- and/or DEN-induced factor that

activates Stat-3 in the absence of IL- 6Rα.

While it is certainly not clear which factor in obesity compensates for IL-6Rα

deficiency in HCC development, another IL-6 type cytokine or receptor might

account for this observation. The common feature of all IL-6 type cytokine recep-

tors is the signaling transducing receptor unit glycoprotein 130 (gp130) [Zhang

et al., 1994]. Although, determination of HCC development in hepatocyte spe-

cific gp130-deficient mice revealed a protection against DEN induced HCC even

under obese conditions, investigation of IL-6 type cytokines and receptors expres-

sion in tumor livers of control and IL-6Rα deficient mice under both dietary con-

ditions failed to directly clarify which factor compensates for IL-6Rα deficiency

in HCC development upon HFD feeding. However, other signaling pathways,

such as Leptin signaling, use Stat-3 to initiate gene expression [Yang & Barouch,

2007]. Indeed, Leptin levels in IL-6Rα deficient mice upon HFD feeding are even

more increased than levels in control mice. Moreover, pilot experiments revealed

an increase in Leptin receptor expression in IL-6Rα deficient mice after HFD feed-

ing, indicating an unknown role of Leptin signaling in the development of HCC.

Though, the role of Leptin in liver carcinogenesis has to be further elucidated.
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4.8 IL-6RαT−KO mice are protected against DEN-induced

HCC even on HFD

The tumormicroenvironment, especially the infiltrating immune cells play a ma-

jor role in the development of cancer. In HCC development infiltrating immune

cells create a tumor microenvironment releasing elevated levels of pro-inflammatory

cytokines such as TNFα and IL-6, both of which are tumor-promoting cytokines

[Newell et al., 2008; Lin & Karin, 2007; Xu et al., 2003]. In the liver these IL-6 levels

can be recognized by hepatocytes, macrophages and T cells which all express the

IL6Rα.

The current work could demonstrate that IL-6Rα signaling on T cells has a piv-

otal role in the development of HCC, whereas IL-6Rα deficiency on hepatocytes

has only minor effects on liver carcinogenesis.

Investigation of IL-6RαL−KO, IL-6RαM−KO and IL-6RαT−KO mice in a DEN-

induced HCC approach revealed no differences in tumor development in IL-

6RαL−KO and IL-6RαM−KO mice compared to control mice whereas IL-6RαT−KO

mice are protected against DEN-induced HCC even upon HFD feeding indicat-

ing that IL-6 signaling on T cells promotes HCC development.

The CD4 cre construct which is used for the IL-6RαT−KO consists of the CD4

promoter, the Cre gene and a Poly A. The silencer from the CD4 is excised re-

sulting in Cre expression in CD4+, CD8+ and NKT cells. IL-6 plays a pivotal

role in differentiation and activation of different T cell subsets such as TH17 and

regulatory T cells (Tregs) [Bettelli et al., 2006]. Moreover it is known that IL-6 sig-

naling deficient mice have an impaired TH17 differentiation and that IL-6 is re-

quired to overcome Tregs mediated suppression [Haruta et al., 2011; Pasare, 2003].

Although, previous studys could observe an increase in Tregs in different types

of cancer, such as pancreatic cancer or colorectal cancer [Mougiakakos, 2011;

Mougiakakos et al., 2010; Beyer, 2006; Wolf et al., 2003], depletion of Tregs dur-

ing the initial phase of HCC development doubled tumor number in IL-6Rα∆/∆
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and IL-6RαT−KO mice compared to mice with Tregs.

Collaboration with Ruslan Medzhitov suggested that IL-6Rα signaling on effec-

tor T cells is required to overcome repression by Tregs [personal communication].

Considering that HCC is an inflammation-linked cancer with increased levels of

TNFα and IL-6 and that obesity increases HCC in this model, NKT cells could be

a potential candidate for the crucial cell type concernig IL-6 signaling in HCC.

NKT cells are a subset of T cells often found in the liver [Swain, 2008]. It

has been previously reported that NKT cells are associated with with liver in-

jury and inflammation [Gao et al., 2009]. They express the inhibitory NK cell

receptor NK1.1 and the semi-invariant T cell receptor Va14Ja18 [Harada et al.,

2004; Vivier & Anfossi, 2004]. This T cell receptor binds lipids and ceramides

leading to crosslinking of the TCR receptor which results in an inflammatory re-

sponse with release of TNFα and IL-6 [Gao et al., 2009]. The endogenous ligand

of the TCR receptor is still unknown but binding of α Galactosylceramide, a lipid

of a marine sponge, leads to hepatic injury and release of TNFα and IL-6 [Van

Der Vliet et al., 1999]. Although, activation of NKT cells in control, IL-6Rα∆/∆ and

IL-6RαT−KO mice by αGalCer mediates an increase liver damage in IL-6Rα∆/∆

and IL-6RαT−KO mice, only a very small fraction of NKT cells could be detected

which express the IL-6Rα.

IL-6-stimulation of primary hepatocytes and human liver tumor cells to verify

the mechanism of Mcl-1 stabilization in HCC in vitro, revealed a less potent effect

than observed in vivo indicating another factor which could contribute to inhi-

bition of apoptosis by stabilizing Mcl-1. Therefore, the question raises weather

there is another factor which contributes to the inhibition of hepatocyte apopto-

sis in HCC, which could be released by activated T cells.

Since the repression of Mule and PP-1α expression by activated Stat-3 could

be shown in vivo and in vitro, another synergistic pathway, which uses Stat-3 as

signal transducer, could be involved in the observed effects. Considering that

Dominik Schenten from the group of Ruslan Medzhitov could demonstrate that



4 Discussion 119

L-6Rα signaling on effector T cells is required to overcome Tregs-mediated sup-

pression, a signal from activated effector T cells could be in part responsible for

the Stat-3-mediated inhibition of apoptosis in hepatocytes [personal communica-

tion]. One potential candidate for this signal could be Interleukin 22. IL-22 is a

cytokines released by activated effector T cells, whose receptor is expressed on

hepatocytes [Rutz et al., 2013]. Radaeva et al. [2004] could demonstrate that IL-22

has a protective effect in T cell-mediated hepatitis in mice. This effect is mediated

by Stat-3 activation which serves as a survival factor for hepatocytes. Therefore,

IL-22 could be a potential candidate to inhibit Stat-3-mediated inhibition of apop-

tosis in hepatocytes, together with IL-6.

4.9 Conclusion

Collectively, this study has clearly identified IL-6- and obesity-induced Mcl-1 sta-

bilization as a critical factor for HCC development and progression. Moreover,

this study provides evidence that under obese conditions IL-6Rα-dependent reg-

ulation of GSK-3β and Mule is compensated for by an alternative mechanism,

which has to be further elucidated.

Moreover, it could be demonstrated that IL-6Rα signaling on T cells has a piv-

otal role in the development of HCC, which might be mediated by another cy-

tokine released from activated T cells.

Thus, the current work has strong implications for current translational re-

search on HCC and the development of novel therapeutic strategies aiming at

reactivating the mitochondrial apoptotic pathway under inflammatory and obese

conditions.

Therefor,e the current study implicate the provided mechanism as translational

to human disease in the light of increasing obesity in western countries.
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