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Abstract
Closed form formulas of the solutions to the following system of difference equations:

xn =
yn–1yn–2

xn–1(an + bnyn–1yn–2)
, yn =

xn–1xn–2
yn–1(αn + βnxn–1xn–2)

, n ∈N0,

where an, bn, αn, βn, n ∈ N0, and initial values x–i , y–i , i ∈ {1, 2} are real numbers, are
found. The domain of undefinable solutions to the system is described. The long-term
behavior of its solutions is studied in detail for the case of constant an, bn, αn and βn,
n ∈ N0.
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1 Introduction
Studying concrete nonlinear difference equations and systems is a topic of a great recent
interest (see, e.g., [–] and the references therein). Studying systems of difference equa-
tions, especially symmetric and close to symmetric ones, is a topic of considerable interest
(see, e.g., [, , , , –, , , , , –, –, , , , ]). Another topic of
interest is solvable difference equations and systems and their applications (see, e.g., [–,
, , , , –, –, –]). Renewed interest in the area started after the pub-
lication of [] where a formula for a solution of a difference equation was theoretically
explained. The most interesting thing in [] was a change of variables which reduced the
equation to a linear one with constant coefficients. Related ideas were later used, e.g., in
[, , , , , –, –, –].

Quite recently in [] the following systems of difference equations were presented:

xn =
yn–yn–

xn–(± ± yn–yn–)
,

yn =
xn–xn–

yn–(± ± xn–xn–)
, n ∈N,

()

where x–i, y–i, i ∈ {, } are real numbers, and some formulas for their solutions are given,
some of which are proved by induction.
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The next system of difference equations

xn =
yn–yn–

xn–(an + bnyn–yn–)
,

yn =
xn–xn–

yn–(αn + βnxn–xn–)
, n ∈N,

()

where an, bn, αn, βn, n ∈ N, and initial values x–i, y–i, i ∈ {, }, are real numbers, is a
generalization of the system in (). Our aim is to show that more general system () is
solvable by giving a natural method for getting its solutions. The domain of undefinable
solutions to the system is also described. For the case when an, bn, αn, βn, n ∈ N, are
constant, the long-term behavior of its solutions is investigated in detail.

A solution (xn, yn)n≥– of system () is called periodic, or eventually periodic, with period
p if there is n ≥ – such that

xn+p = xn and yn+p = yn for n ≥ n.

For some results in the area, see, e.g., [, –, , , , ].

2 Solutions to system (2) in closed form
Assume first that x–i �= , y–i �= , i ∈ {, }. Then, by the method of induction and the
equations in (), it follows that for every well-defined solution to system (), xn �=  and
yn �= , for every n ∈ N. On the other hand, if xn =  for some n ∈ N, then the first
equation in () implies that yn– =  or yn– = . If yn– = , then xn– =  or xn– = ,
while if yn– = , then xn– =  or xn– = . Repeating this procedure, we get that x–i = 
or y–i =  for some i ∈ {, }. Similarly, if yn =  for some n ∈ N, we get x–i =  or y–i = 
for some i ∈ {, }. Hence, for a well-defined solution (xn, yn)n≥– of system (), we have
that

xnyn �= , n ≥ – ()

if and only if x–iy–i �= , i ∈ {, }.
Assume now that (xn, yn)n≥– is a solution to system () such that () holds. Then, by

multiplying the first equation in () by xn– and the second one by yn–, and using the
following changes of variables

un =


xnxn–
, vn =


ynyn–

, ()

n ≥ –, system () is transformed in the following one:

un = anvn– + bn, vn = αnun– + βn, n ∈N. ()

From () it follows that

un = anαn–un– + anβn– + bn, ()

vn = αnan–vn– + αnbn– + βn, n ∈N. ()
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This means that (un)n∈N , (un–)n∈N , (vn)n∈N , and (vn–)n∈N are solutions to two linear
first-order difference equations, which are solvable.

Solving these equations, we get

un = u

n∏

j=

ajαj– +
n∑

i=

(aiβi– + bi)
n∏

s=i+

asαs–, ()

un– = u–

n∏

j=

aj–αj– +
n∑

i=

(ai–βi– + bi–)
n∏

s=i+

as–αs–, ()

vn = v

n∏

j=

αjaj– +
n∑

i=

(αibi– + βi)
n∏

s=i+

αsas–, ()

vn– = v–

n∏

j=

αj–aj– +
n∑

i=

(αi–bi– + βi–)
n∏

s=i+

αs–as–. ()

Using () we obtain

xn+i =


un+ixn+i–
=

un+i–

un+i
x(n–)+i, i ∈ {, },

and

yn+i =


vn+iyn+i–
=

vn+i–

vn+i
y(n–)+i, i ∈ {, },

for n + i ≥ , from which it follows that

xm+i = xi–

m∏

j=

uj+i–

uj+i
, ()

ym+i = yi–

m∏

j=

vj+i–

vj+i
()

for every m ∈ N, i ∈ {, }.

3 Case of constant coefficients
In this section we consider the case when all the coefficients in system () are constant,
that is, when

an = a, bn = b, αn = α, βn = β , n ∈N.

Then () is

xn =
yn–yn–

xn–(a + byn–yn–)
,

yn =
xn–xn–

yn–(α + βxn–xn–)
, n ∈N.

()
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Assume that (xn, yn)n≥– is a solution to system () such that () holds. Then we have

un = avn– + b, vn = αun– + β , n ∈N, ()

and

un = aαun– + aβ + b, ()

vn = aαvn– + αb + β , n ∈N. ()

From ()-(), we obtain

un–l = u–l(aα)n + (aβ + b)
 – (aα)n

 – aα

=
aβ + b + (aα)n(u–l( – aα) – aβ – b)

 – aα
()

for n ∈N, l ∈ {, } when aα �= , while if aα = , we have

un–l = u–l + (aβ + b)n, n ∈N, l ∈ {, }, ()

and we also have

vn–l = v–l(aα)n + (αb + β)
 – (aα)n

 – aα

=
αb + β + (aα)n(v–l( – aα) – αb – β)

 – aα
, ()

n ∈N, l ∈ {, } if aα �= , while if aα = , we have

vn–l = v–l + (αb + β)n, n ∈ N, l ∈ {, }. ()

Now we present formulae for solutions to system ().
Case aα �= . We have

xm = x–

m∏

j=

uj–

uj
= x–

m∏

j=

aβ + b + (aα)j(u–( – aα) – aβ – b)
aβ + b + (aα)j(u( – aα) – aβ – b)

, ()

xm+ = x–

m∏

j=

uj

uj+
= x–

m∏

j=

aβ + b + (aα)j(u( – aα) – aβ – b)
aβ + b + (aα)j+(u–( – aα) – aβ – b)

, ()

ym = y–

m∏

j=

vj–

vj
= y–

m∏

j=

αb + β + (aα)j(v–( – aα) – αb – β)
αb + β + (aα)j(v( – aα) – αb – β)

, ()

ym+ = y–

m∏

j=

vj

vj+
= y–

m∏

j=

αb + β + (aα)j(v( – aα) – αb – β)
αb + β + (aα)j+(v–( – aα) – αb – β)

()

for every m ∈ N.
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Case aα = . We have

xm = x–

m∏

j=

uj–

uj
= x–

m∏

j=

u– + (aβ + b)j
u + (aβ + b)j

, ()

xm+ = x–

m∏

j=

uj

uj+
= x–

m∏

j=

u + (aβ + b)j
u– + (aβ + b)(j + )

, ()

ym = y–

m∏

j=

vj–

vj
= y–

m∏

j=

v– + (αb + β)j
v + (αb + β)j

, ()

ym+ = y–

m∏

j=

vj

vj+
= y–

m∏

j=

v + (αb + β)j
v– + (αb + β)(j + )

()

for every m ∈ N.

4 Long-term behavior of solutions to system (14)
Before we formulate and prove the main results regarding the long-term behavior of well-
defined solutions to system (), we quote the following well-known asymptotic formula
which will be used in the proofs of the main results:

( + x)– =  – x + O
(
x), as x → . ()

We also define the following quantities:

L :=
u–( – aα) – aβ – b
u( – aα) – aβ – b

, L :=
u( – aα) – aβ – b

aα(u–( – aα) – aβ – b)
,

L :=
v–( – aα) – αb – β

v( – aα) – αb – β
, L :=

v( – aα) – αb – β

aα(v–( – aα) – αb – β)
.

Finally, we give another auxiliary result.

Lemma  If aα �= , aβ + b �=  �= αb + β . Then system () has two-periodic solutions.

Proof The equilibrium solution to system () is

un = ū =
aβ + b
 – aα

�= , vn = v̄ =
αb + β

 – aα
�= , n ∈N. ()

From () and () it follows that

xn =
 – aα

(aβ + b)xn–
= xn–, n ∈N, ()

and

yn =
 – aα

(αb + β)yn–
= yn–, n ∈N, ()

as desired. �
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The next three results are devoted to the long-term behavior of well-defined solutions
to system ().

Theorem  Assume that |aα| �=  and (xn, yn)n≥– is a well-defined solution to system ().
Then the following statements are true.

(a) If aβ + b �=  �= αb + β and |aα| < , then (xn, yn) converges to a, not necessarily
prime, two-periodic solution.

(b) If u– = u = (aβ + b)/( – aα), then the sequences (xm)m≥– and (xm+)m≥– are
constant.

(c) If v– = v = (αb + β)/( – aα), then the sequences (ym)m≥– and (ym+)m≥– are
constant.

(d) If |aα| >  and u– = (aβ + b)/( – aα) �= u, then xm →  and |xm+| → ∞, as
m → ∞.

(e) If |aα| >  and u– �= (aβ + b)/( – aα) = u, then xm+ →  and |xm| → ∞, as
m → ∞.

(f ) If |aα| >  and v– = (aβ + b)/( – aα) �= v, then ym →  and |ym+| → ∞, as
m → ∞.

(g) If |aα| >  and v– �= (aβ + b)/( – aα) = v, then ym+ →  and |ym| → ∞, as
m → ∞.

(h) If |aα| > , u– �= (aβ + b)/( – aα) �= u and |L| < , then xm → , as m → ∞.
(i) If |aα| > , u– �= (aβ + b)/( – aα) �= u and |L| > , then |xm| → ∞, as m → ∞.
(j) If |aα| > , u– �= (aβ + b)/( – aα) �= u and L = , then (xm)m≥– is constant.

(k) If |aα| > , u– �= (aβ + b)/( – aα) �= u and L = –, then (xm)m≥– and (xm+)m≥–

are convergent.
(l) If |aα| > , u– �= (aβ + b)/( – aα) �= u and |L| < , then xm+ → , as m → ∞.

(m) If |aα| > , u– �= (aβ + b)/( – aα) �= u and |L| > , then |xm+| → ∞, as m → ∞.
(n) If |aα| > , u– �= (aβ + b)/( – aα) �= u and L = , then (xm+)m≥– is constant.
(o) If |aα| > , u– �= (aβ + b)/( – aα) �= u and L = –, then (xm+)m≥– and

(xm+)m≥– are convergent.
(p) If |aα| > , v– �= (αb + β)/( – aα) �= v and |L| < , then ym → , as m → ∞.
(q) If |aα| > , v– �= (αb + β)/( – aα) �= v and |L| > , then |ym| → ∞, as m → ∞.
(r) If |aα| > , v– �= (αb + β)/( – aα) �= v and L = , then (ym)m≥– is constant.
(s) If |aα| > , v– �= (αb + β)/( – aα) �= v and L = –, then (ym)m≥– and (ym+)m≥–

are convergent.
(t) If |aα| > , v– �= (αb + β)/( – aα) �= v and |L| < , then ym+ → , as m → ∞.
(u) If |aα| > , v– �= (αb + β)/( – aα) �= v and |L| > , then |ym+| → ∞, as m → ∞.
(v) If |aα| > , v– �= (αb + β)/( – aα) �= v and L = , then (ym+)m≥– is constant.

(w) If |aα| > , v– �= (αb + β)/( – aα) �= v and L = –, then (ym+)m≥– and
(ym+)m≥– are convergent.

Proof Let

pm =
aβ + b + (aα)m(u–( – aα) – aβ – b)
aβ + b + (aα)m(u( – aα) – aβ – b)

,

p̂m =
aβ + b + (aα)m(u( – aα) – aβ – b)

aβ + b + (aα)m+(u–( – aα) – aβ – b)
,
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qm =
αb + β + (aα)m(v–( – aα) – αb – β)
αb + β + (aα)m(v( – aα) – αb – β)

,

q̂m =
αb + β + (aα)m(v( – aα) – αb – β)

αb + β + (aα)m+(v–( – aα) – αb – β)

for m ∈N.
(a) By using () we have

pm =
 + (aα)m(u–( – aα) – aβ – b)(aβ + b)–

 + (aα)m(u( – aα) – aβ – b)(aβ + b)–

=  + (u– – u)( – aα)(aβ + b)–(aα)m + o
(
(aα)m)

, ()

p̂m =
 + (aα)m(u( – aα) – aβ – b)(aβ + b)–

 + (aα)m+(u–( – aα) – aβ – b)(aβ + b)–

=  +
( – aα)(u – aαu– – aβ – b)

aβ + b
(aα)m + o

(
(aα)m)

, ()

qm =
 + (aα)m(v–( – aα) – αb – β)(αb + β)–

 + (aα)m(v( – aα) – αb – β)(αb + β)–

=  + (v– – v)( – aα)(αb + β)–(aα)m + o
(
(aα)m)

, ()

q̂m =
 + (aα)m(v( – aα) – αb – β)(αb + β)–

 + (aα)m+(v–( – aα) – αb – β)(αb + β)–

=  +
( – aα)(v – aαv– – αb – β)

αb + β
(aα)m + o

(
(aα)m)

()

for sufficiently large m.
From ()-(), by using the condition |aα| <  and a well-known criterion for the con-

vergence of products, the statement easily follows.
(b) By using the condition u– = u = (aβ + b)/( – aα) in () and (), the statement

immediately follows.
(c) By using the condition v– = v = (αb + β)/( – aα) in () and (), the statement

immediately follows.
(d) By using the condition u– = (aβ + b)/( – aα) �= u, we get

pm =
aβ + b

aβ + b + (aα)m(u( – aα) – aβ – b)
, ()

p̂m =
aβ + b + (aα)m(u( – aα) – aβ – b)

aβ + b
. ()

Letting m → ∞ in () and () and using the condition |aα| > , we have pm →  and
|p̂m| → ∞, from which along with () and () the statement easily follows.

(e) By using the condition u– �= (aβ + b)/( – aα) = u, we get

pm =
aβ + b + (aα)m(u–( – aα) – aβ – b)

aβ + b
, ()

p̂m =
aβ + b

aβ + b + (aα)m+(u–( – aα) – aβ – b)
. ()
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Letting m → ∞ in () and () and using the condition |aα| > , we have |pm| → ∞ and
p̂m → , from which along with () and () the statement easily follows.

(f ) By using the condition v– = (aβ + b)/( – aα) �= v, we get

qm =
αb + β

αb + β + (aα)m(v( – aα) – αb – β)
, ()

q̂m =
αb + β + (aα)m(v( – aα) – αb – β)

αb + β
. ()

Letting m → ∞ in () and () and using the condition |aα| > , we have qm →  and
|q̂m| → ∞, from which along with () and () the statement easily follows.

(g) By using the condition v– �= (aβ + b)/( – aα) = v, we get

qm =
αb + β + (aα)m(v–( – aα) – αb – β)

αb + β
, ()

q̂m =
αb + β

αb + β + (aα)m+(v–( – aα) – αb – β)
. ()

Letting m → ∞ in () and () and using the condition |aα| > , we have |qm| → ∞ and
q̂m → , from which along with () and () the statement easily follows.

(h), (i) Note that limm→∞ pm = L. Hence, from the assumptions |L| < , that is, |L| > 
along with (), the statements easily follow.

(j) The statement immediately follows by using the condition L =  in ().
(k) Since L = – and by using (), we have that

pm =
aβ + b + (aα)m(u–( – aα) – aβ – b)
aβ + b – (aα)m(u–( – aα) – aβ – b)

= –
 + aβ+b

(aα)m(u–(–aα)–aβ–b)

 – aβ+b
(aα)m(u–(–aα)–aβ–b)

= –
(

 +
(aβ + b)

(aα)m(u–( – aα) – aβ – b)
+ o

(


(aα)m

))
. ()

From (), by using the condition |aα| >  and a well-known criterion for the convergence
of products, the statement easily follows.

(l), (m) Note that limm→∞ p̂m = L. Hence, from the assumptions |L| < , that is, |L| > 
along with (), the statements easily follow.

(n) The statement immediately follows by using the condition L =  in ().
(o) Since L = – and by using (), we have that

p̂m =
aβ + b + (aα)m(u( – aα) – aβ – b)
aβ + b – (aα)m(u( – aα) – aβ – b)

= –
 + aβ+b

(aα)m(u(–aα)–aβ–b)

 – aβ+b
(aα)m(u(–aα)–aβ–b)

= –
(

 +
(aβ + b)

(aα)m(u( – aα) – aβ – b)
+ o

(


(aα)m

))
. ()
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From (), by using the condition |aα| >  and a well-known criterion for the convergence
of products, the statement easily follows.

(p), (q) Note that limm→∞ qm = L. Hence, from the assumptions |L| < , that is, |L| > 
along with (), the statements easily follow.

(r) The statement immediately follows by using the condition L =  in ().
(s) Since L = – and by using (), we have that

qm =
αb + β + (aα)m(v–( – aα) – αb – β)
αb + β – (aα)m(v–( – aα) – αb – β)

= –
 + αb+β

(aα)m(v–(–aα)–αb–β)

 – αb+β

(aα)m(v–(–aα)–αb–β)

= –
(

 +
(αb + β)

(aα)m(v–( – aα) – αb – β)
+ o

(


(aα)m

))
. ()

From (), by using the condition |aα| >  and a well-known criterion for the convergence
of products, the statement easily follows.

(t), (u) Note that limm→∞ q̂m = L. Hence, from the assumptions |L| < , that is, |L| > 
along with (), the statements easily follow.

(v) The statement immediately follows by using the condition L =  in ().
(w) Since L = – and by using (), we have that

q̂m =
αb + β + (aα)m(v( – aα) – αb – β)
αb + β – (aα)m(v( – aα) – αb – β)

= –
 + αb+β

(aα)m(v(–aα)–αb–β)

 – αb+β

(aα)m(v(–aα)–αb–β)

= –
(

 +
(αb + β)

(aα)m(v( – aα) – αb – β)
+ o

(


(aα)m

))
. ()

From (), by using the condition |aα| >  and a well-known criterion for the convergence
of products, the statement easily follows. �

Let

M :=
u–(u– – b – aβ)
u(u – b – aβ)

, M :=
v–(v– – β – αb)
v(v – β – αb)

.

Theorem  Assume that aα = – and (xn, yn)n≥– is a well-defined solution to system ().
Then the following statements are true.

(a) If |M| < , then xm →  and |xm+| → ∞, as m → ∞.
(b) If |M| > , then xm+ →  and |xm| → ∞, as m → ∞.
(c) If M = , then (xn)n≥– is four-periodic.
(d) If M = –, then (xn)n≥– is eight-periodic.
(e) If |M| < , then ym →  and |ym+| → ∞, as m → ∞.
(f ) If |M| > , then ym+ →  and |ym| → ∞, as m → ∞.
(g) If M = , then (yn)n≥– is four-periodic.
(h) If M = –, then (yn)n≥– is eight-periodic.
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Proof First, note that since aα = –, from ()-() we have

xm = xMm
 , xm+ = x–Mm+

 , xm+ =
x

Mm


, xm+ =
x–

Mm+


, ()

ym = yMm
 , ym+ = y–Mm+

 , ym+ =
y

Mm


, ym+ =
y–

Mm+


, ()

for m ∈N. From () and () all the statements easily follow. �

Let

N :=
u–

u
, N :=

v–

v
.

Theorem  Assume that aα =  and (xn, yn)n≥– is a well-defined solution to system ().
Then the following statements hold true.

(a) If aβ + b =  and |N| < , then xm →  and |xm+| → ∞, as m → ∞;
(b) If aβ + b =  and |N| > , then |xm| → ∞ and xm+ → , as m → ∞;
(c) If aβ + b =  and N = , then (xm)m≥– and (xm+)m≥– are constant;
(d) If aβ + b =  and N = –, then (xm+i)m≥–, i = , , are constant.
(e) If aβ + b �=  and (u– – u)/(aβ + b) > , then |xm| → ∞, as m → ∞;
(f ) If aβ + b �=  and (u– – u)/(aβ + b) < , then xm → , as m → ∞;
(g) If aβ + b �=  and u– = u, then (xm)m≥– is constant;
(h) If aβ + b �=  and (u – u–)/(aβ + b) > , then |xm+| → ∞, as m → ∞;
(i) If aβ + b �=  and (u – u–)/(aβ + b) < , then xm+ → , as m → ∞;
(j) If aβ + b �=  and u– – u = aβ + b, then (xm+)m≥– is constant;

(k) If αb + β =  and |N| < , then ym →  and |ym+| → ∞, as m → ∞;
(l) If αb + β =  and |N| > , then |ym| → ∞ and ym+ → , as m → ∞;

(m) If αb + β =  and N = , then (ym)m≥– and (ym+)m≥– are constant;
(n) If αb + β =  and N = –, then (ym+i)m≥–, i = , , are constant.
(o) If αb + β �=  and (v– – v)/(αb + β) > , then |ym| → ∞, as m → ∞;
(p) If αb + β �=  and (v– – v)/(αb + β) < , then ym → , as m → ∞;
(q) If αb + β �=  and v– = v, then (ym)m≥– is constant.
(r) If αb + β �=  and (v – v–)/(αb + β) < , then ym+ → , as m → ∞;
(s) If αb + β �=  and (v – v–)/(αb + β) > , then |ym+| → ∞, as m → ∞;
(t) If αb + β �=  and v– – v = αb + β , then (ym+)m≥– is constant.

Proof Let

rm =
u– + (aβ + b)m
u + (aβ + b)m

, r̂m =
u + (aβ + b)m

u– + (aβ + b)(m + )
,

sm =
v– + (αb + β)m
v + (αb + β)m

, ŝm =
v + (αb + β)m

v– + (αb + β)(m + )
, m ∈N.

(a)-(d) Since in this case we have

xm = x–

(
u–

u

)m+

, xm+ = x–

(
u

u–

)m+

, m ∈N,

these statements easily follow.
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(e), (f ) By using () we have

rm =
u– + (aβ + b)m
u + (aβ + b)m

=
(

 +
u–

(aβ + b)m

)(
 +

u

(aβ + b)m

)–

=
(

 +
u–

(aβ + b)m
+ O

(


m

))(
 –

u

(aβ + b)m
+ O

(


m

))

=  +
u– – u

(aβ + b)m
+ O

(


m

)
()

for sufficiently large m.
From (), by using the fact that for every k ∈N

m∑

j=k


j

→ ∞, as m → ∞, ()

and a known criterion for convergence of products, the statements easily follow.
(g) Using the condition u– = u in (), the statement immediately follows.
(h), (i) By using () we have

r̂m =
u + (aβ + b)m

u– + (aβ + b)(m + )
=

(
 +

u

(aβ + b)m

)(
 +

u– + aβ + b
(aβ + b)m

)–

=
(

 +
u

(aβ + b)m

)(
 –

u– + aβ + b
(aβ + b)m

+ O
(


m

))

=  +
u – u– – aβ – b

(aβ + b)m
+ O

(


m

)
()

for sufficiently large m.
From (), (), () and a known criterion for convergence of products, the statements

easily follow.
(j) Using the condition u = u– + aβ + b in (), the statement immediately follows.
(k)-(n) Since in this case we have

ym = y–

(
v–

v

)m+

, ym+ = y–

(
v

v–

)m+

, m ∈N,

these statements easily follow.
(o), (p) By using () we have

sm =
v– + (αb + β)m
v + (αb + β)m

=
(

 +
v–

(αb + β)m

)(
 +

v

(αb + β)m

)–

=
(

 +
v–

(αb + β)m

)(
 –

v

(αb + β)m
+ O

(


m

))

=  +
v– – v

(αb + β)m
+ O

(


m

)
()

for sufficiently large m.
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From (), (), () and a known criterion for convergence of products, the statements
easily follow.

(q) Using the condition v = v– in (), the statement immediately follows.
(r), (s) By using () we have

ŝm =
v + (αb + β)m

v– + (αb + β)(m + )
=

(
 +

v

(αb + β)m

)(
 +

v– + αb + β

(αb + β)m

)–

=
(

 +
v

(αb + β)m

)(
 –

v– + αb + β

(αb + β)m
+ O

(


m

))

=  +
v – v– – αb – β

(αb + β)m
+ O

(


m

)
()

for sufficiently large m.
From (), (), () and a known criterion for convergence of products, the statements

easily follow.
(t) Using the condition v = v– + αb + β in (), the statement immediately follows. �

5 Domain of undefinable solutions to system (2)
In Section  we proved that solutions to system (), for which x–j =  or y–j =  for some
j ∈ {, }, are not defined. The set of all such initial values is characterized here.

Definition  Consider the system of difference equations

xn = f (xn–, . . . , xn–s, yn–, . . . , yn–s, n),

yn = g(xn–, . . . , xn–s, yn–, . . . , yn–s, n), n ∈N,
()

where s ∈N, and x–i, y–i ∈ R, i = , s. The string of vectors

(x–s, y–s), . . . , (x–, y–), (x, y), . . . , (xn , yn ),

where n ≥ –, is called an undefined solution of system () if

xj = f (xj–, . . . , xj–s, yj–, . . . , yj–s, j)

and

yj = g(xj–, . . . , xj–s, yj–, . . . , yj–s, j)

for  ≤ j < n + , and xn+ or yn+ is not a defined number, that is, the quantity

f (xn , . . . , xn–s+, yn , . . . , yn–s+, n + )

or

g(xn , . . . , xn–s+, yn , . . . , yn–s+, n + )

is not defined.
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The set of all initial values (x–s, y–s), . . . , (x–, y–) which generate undefined solutions to
system () is called domain of undefinable solutions of the system.

The next result characterizes the domain of undefinable solutions to system () when
anbnαnβn �= , n ∈N.

Theorem  Assume that anbnαnβn �= , n ∈ N. Then the domain of undefinable solutions
to system () is the following set:

U =
⋃

m∈N

{
(x–, x–, y–, y–) ∈R

 :


x–x–

= g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m ◦ f –

m+()

or


x–x–
= g–

 ◦ f –
 ◦ · · · ◦ g–

m– ◦ f –
m– ◦ g–

m()

or


y–y–
= f –

 ◦ g–
 ◦ · · · ◦ f –

m– ◦ g–
m– ◦ f –

m()

or


y–y–
= f –

 ◦ g–
 ◦ · · · ◦ g–

m– ◦ f –
m ◦ g–

m+()
}

∪ {
(x–, x–, y–, y–) ∈R

 :

x– =  or x– =  or y– =  or y– = 
}

, ()

where

fn(t) = ant + bn, gn(t) = αnt + βn, n ∈N.

Proof We have already proved that the set

{
(x–, x–, y–, y–) ∈R

 : x– =  or x– =  or y– =  or y– = 
}

belongs to the domain of undefinable solutions to system ().
If x–j �=  �= y–j, j = ,  (i.e., xn �=  �= yn for every n ≥ –), then such a solution (xn, yn)n≥–

is not defined if and only if

an + bnyn–yn– =  or αn + βnxn–xn– =  ()

for some n ∈N, which is equivalent to

vn– = –bn/an or un– = –βn/αn ()

for some n ∈N.
Note that

f –
n () = –bn/an and g–

n () = –βn/αn, n ∈N. ()
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We have

vm– = (gm– ◦ fm– ◦ · · · ◦ f ◦ g ◦ f)(v–), ()

vm = (gm ◦ fm– ◦ · · · ◦ g ◦ f ◦ g)(u–), ()

um– = (fm– ◦ gm– ◦ · · · ◦ g ◦ f ◦ g)(u–), ()

um = (fm ◦ gm– ◦ · · · ◦ f ◦ g ◦ f)(v–) ()

for m ∈N.
From () and () we have that

–
bm

am
= vm– = (gm– ◦ fm– ◦ · · · ◦ f ◦ g ◦ f)(v–)

for some m ∈N if and only if


y–y–

= f –
 ◦ g–

 ◦ · · · ◦ f –
m– ◦ g–

m– ◦ f –
m(). ()

From () and () we have that

–
bm+

am+
= vm = (gm ◦ fm– ◦ · · · ◦ g ◦ f ◦ g)(u–)

for some m ∈N if and only if


x–x–

= g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m ◦ f –

m+(). ()

From () and () we have that

–
βm

αm
= um– = (fm– ◦ gm– ◦ · · · ◦ g ◦ f ◦ g)(u–)

for some m ∈N if and only if


x–x–

= g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m(). ()

From () and () we have that

–
βm+

αm+
= um = (fm ◦ gm– ◦ · · · ◦ f ◦ g ◦ f)(v–)

for some m ∈N if and only if


y–y–

= f –
 ◦ g–

 ◦ · · · ◦ g–
m– ◦ f –

m ◦ g–
m+(). ()

From ()-() we see that the first union in () also belongs to the domain of unde-
finable solutions, finishing the proof of the theorem. �
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Remark  Quantities

g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m ◦ f –

m+(), ()

g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m(), ()

f –
 ◦ g–

 ◦ · · · ◦ f –
m– ◦ g–

m– ◦ f –
m(), ()

f –
 ◦ g–

 ◦ · · · ◦ g–
m– ◦ f –

m ◦ g–
m+() ()

can be calculated for every m ∈N.
Indeed, note that

g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m ◦ f –

m+() =

( m∏

j=

(
g–

j ◦ f –
j+

)
)

(t)
∣∣∣
t=

, ()

g–
 ◦ f –

 ◦ · · · ◦ g–
m– ◦ f –

m– ◦ g–
m() =

(m–∏

j=

(
g–

j ◦ f –
j+

)
)

(t)
∣∣∣
t=g–

m()
, ()

f –
 ◦ g–

 ◦ · · · ◦ f –
m– ◦ g–

m– ◦ f –
m() =

(m–∏

j=

(
f –
j ◦ g–

j+
)
)

(t)
∣∣∣
t=f –

m()
, ()

f –
 ◦ g–

 ◦ · · · ◦ g–
m– ◦ f –

m ◦ g–
m+() =

( m∏

j=

(
f –
j ◦ g–

j+
)
)

(t)
∣∣∣
t=

, ()

and also that

(
g–

j ◦ f –
j+

)
(t) =

t
αjaj+

–
bj+

αjaj+
–

βj

αj
, j ∈N, ()

and

(
f –
j ◦ g–

j+
)
(t) =

t
ajαj+

–
βj+

ajαj+
–

bj

aj
, j ∈N. ()

On the other hand, if

hj(t) = cjt + dj, j ∈N,

it is easy to see that

(h ◦ h ◦ · · · ◦ hn)(t) =

( n∏

j=

cj

)
t +

n∑

i=

dj

i–∏

j=

cj, n ∈N. ()

From ()-() explicit formulas for the quantities in ()-() are easily obtained.
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37. Stević, S, Alghamdi, MA, Alotaibi, A, Shahzad, N: On a higher-order system of difference equations. Electron. J. Qual.
Theory Differ. Equ. 2013, Article ID 47 (2013)
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42. Stević, S, Diblik, J, Iričanin, B, Šmarda, Z: On the difference equation xn+1 = xnxn–k/(xn–k+1(a + bxnxn–k )). Abstr. Appl. Anal.
2012, Article ID 108047 (2012)
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