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1 Introduction
In this paper, we consider the initial boundary value problem of the following model:

∂u
∂t + �

(|�u|p(x)–�u
)

+ |u|q(x)–u + a
(∫

�

|u|q(x) dx
)

∂u
∂t

= f (x, t), (x, t) ∈ QT ,

u = �u = , (x, t) ∈ ∂� × (, T), (.)

u(x, ) = u(x),
∂u(x, )

∂t
= u(x), x ∈ �,

where � ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂�,  < T < ∞ is a

given constant, and QT = �× (, T). The coefficient a : [,∞) → (,∞) and the exponents
p, q : � → (,∞) are given continuous functions and f : QT →R. PDEs with variable expo-
nent growth conditions are usually called equations with nonstandard growth conditions.
After Kováčik and Rákosník first discussed the variable exponent Lebesgue space Lp(x)

and Sobolev space W k,p(x) in [], a lot of research has been done concerning these kinds
of variable exponent spaces; see for example [, ] for the properties of such spaces and
[–] for the applications of variable exponent spaces on partial differential equations. In
[] Růžička presented the mathematical theory for the application of variable exponent
spaces in electro-rheological fluids. Problems with variable exponent growth conditions
also appear in the mathematical modeling of stationary thermo-rheological viscous flows
of non-Newtonian fluids [] and nonlinear elastics [–]. Another field of application
of equations with variable exponent growth conditions is image restoration [].
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We claim that the Young measure solutions of problem (.) can be approximated by the
following problem with a viscosity term ε� ∂u

∂t (ε > ):

∂u
∂t + �

(|�u|p(x)–�u
)

+ |u|q(x)–u

+ a
(∫

�

|u|q(x) dx
)

∂u
∂t

+ ε� ∂u
∂t

= f (x, t), (x, t) ∈ QT ,

u = �u = , (x, t) ∈ ∂� × (, T), (.)

u(x, ) = u(x),
∂u(x, )

∂t
= u(x), x ∈ �.

When p(x) ≡  and the space dimension N = , problems of the type (.) are a class of
essential fourth-order wave equations appearing in elastoplastic-microstructure models.
They govern the longitudinal motion of an elastoplastic bar and antiplane shearing de-
formation; see []. For p(x) ≡  and the multidimensional case, Chen and Yang [] dis-
cussed the global existence, asymptotic behavior and blow-up of solutions to the initial
boundary problem of the equation with weak damping term ∂u

∂t ; see also Messaoudi []
for wave equations with nonlinear damping. For the analysis of nonlinear second-order hy-
perbolic equations with damping, we refer to the seminal work of Lions and Strauss [];
see also Friedman and Nec̆as [], and Emmrich and Thalhammer [, ]. In recent years,
hyperbolic equations with variable exponent growth conditions were studied by Antont-
sev in [], Haehnle and Prohl in [], Pinasco in []; see also Autuori et al. in [, ]
for the Kirchhoff equations with p(x)-growth. It is to be noted here that the viscosity term
� ∂u

∂t plays a key role in the proof of the global existence. The global existence results of
weak solutions for second-order wave equations (even if p(x) ≡ constant �= ) without the
viscosity term � ∂u

∂t have been found only in one space dimension; see DiPerna [] and
Shearer []. To the best of our knowledge, the equations without the viscosity term are
studied only in [–]. In that work, the concept of Young measure solutions has been
introduced and applied to dynamic problems and wave equations.

Thus motivated, in the present paper, we prove the global existence of Young measure
solutions of problem (.), we first construct Young measure solutions as the limit of the
sequence of solutions of problem (.). Then we give a decay estimate to the Young mea-
sure solutions of problem (.).

Our work is organized as follows. In Section , we give some necessary definitions and
properties of variable exponent Lebesgue spaces and Sobolev spaces. In Section , we ob-
tain the existence of weak solutions of problem (.) by Galerkin’s approximation method.
In Section , under some conditions, from the sequence of solutions of problem (.) and
some a priori estimates, we get the existence of Young measure solutions by letting ε → .
In Section , we investigate the decay property of Young measure solutions and get a decay
rate estimate by using Nakao’s lemma.

2 Preliminaries
In this section, we first recall some necessary properties of variable exponent Lebesgue
spaces and Sobolev spaces; see [–] for the details.

Let � ⊂ R
N be a domain. A measurable function p : � → [,∞) is called a variable

exponent and we define p– = ess infx∈� p(x) and p+ = ess supx∈� p(x). If p+ is finite, then the
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exponent p is said to be bounded. The variable exponent Lebesgue space is

Lp(x)(�) =
{

u : � →R is a measurable function;ρp(x)(u) =
∫

�

∣∣u(x)
∣∣p(x) dx < ∞

}

with the Luxemburg norm

‖u‖Lp(x)(�) = inf
{
λ >  : ρp(x)

(
λ–u

) ≤ 
}

,

then Lp(x)(�) is a Banach space, and when p is bounded, we have the following relations:

min
{‖u‖p–

Lp(x)(�),‖u‖p+

Lp(x)(�)

} ≤ ρp(x)(u) ≤ max
{‖u‖p–

Lp(x)(�),‖u‖p+

Lp(x)(�)

}
.

That is, if p is bounded, then norm convergence is equivalent to convergence with respect
to the modular ρp(x). For a bounded exponent the dual space (Lp(x)(�))′ can be identified
with Lp′(x)(�), where the conjugate exponent p′(x) is defined by p′(x) = p(x)

p(x)– for each x ∈ �.
If  < p– ≤ p+ < ∞, then Lp(x)(�) is separable and reflexive.

In the variable exponent Lebesgue space, Hölder’s inequality is still valid; see [], Theo-
rem .. For all u ∈ Lp(x)(�), v ∈ Lp′(x)(�) with p(x) ∈ (,∞) the following inequality holds:

∫

�

|uv|dx ≤
(


p– +


(p′)–

)
‖u‖Lp(x)(�)‖v‖Lp′(x)(�) ≤ ‖u‖Lp(x)(�)‖v‖Lp′(x)(�).

If  < |�| < ∞ and p, q are variable exponents such that p(x) ≤ q(x) for each x ∈ �, then
there exists a continuous embedding Lp(x)(�) ↪→ Lq(x)(�).

Definition . (see []) We say that a bounded exponent p : � → R is log-Hölder contin-
uous if there is a constant C >  such that

∣∣p(y) – p(z)
∣∣ log |y – z| ≤ C

for all points y, z ∈ �.

The variable exponent Sobolev space W k,p(x)(�) is defined as

W k,p(x)(�) =
{

u ∈ Lp(x)(�) : Dαu ∈ Lp(x)(�), |α| ≤ k
}

and equipped with the norm

‖u‖W k,p(x)(�) =
∑

|α|≤k

∥∥Dαu
∥∥

Lp(x)(�),

then the space W k,p(x)(�) is a Banach space. The space W k,p(x)
 (�) is defined as the closure

of C∞
 (�) with the above norm. If  < p– ≤ p+ < ∞, then the space W k,p(x)(�) is separable

and reflexive; If p : � → (,∞) is a bounded log-Hölder continuous function, then C∞
 (�)

is dense in W k,p(x)
 (�).
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Theorem . (see []) Let � ⊂R
N be a bounded domain and assume that p : RN → (,∞)

is a bounded log-Hölder continuous exponent such that p– > , then for any u ∈ W ,p(x)
 (�)

we have

‖u‖Lp(x)(�) ≤ c‖∇u‖Lp(x)(�),

where the constant c only depends on the dimension N, |�| and the log-Hölder constant
of p.

Theorem . (see []) Let � be a bounded domain with smooth boundary. Assume that
p : � → (,∞) is a bounded log-Hölder continuous function with p+ < N

k and q : � → (,∞)
is a bounded measurable function with q(x) ≤ p∗ = Np(x)

N–kp(x) . Then there is a continuous em-
bedding

W k,p(x)(�) ↪→ Lq(x)(�),

where the embedding constant depends on |�|, N , q+ and the log-Hölder constant of p.

Theorem . (see []) Let � ⊂R
N be a bounded domain with smooth boundary. Suppose

that p is a bounded log-Hölder continuous functions in �, with p– > . Then there exists a
constant C >  depending only on N , � and the log-Hölder constant of p such that for each
u ∈ W ,p(x)

 (�), the following inequality holds:

‖u‖W ,p(x)
 (�) ≤ C‖�u‖Lp(x)(�).

Proposition . (see [, ]) Let � be a bounded domain in R
N and let {ωi}∞i= be an

orthogonal basis in L(�). Then for any ε > , there exists a positive number Nε such that

‖u‖L(�) ≤
( Nε∑

i=

(∫

�

uωi dx
)

) 


+ ε‖u‖W ,p
 (�)

for all u ∈ W ,p
 (�) where  ≤ p < ∞.

The following theorem gives a relation between almost everywhere convergence and
weak convergence.

Theorem . (see []) Let p : � → R be a bounded log-Hölder continuous function with
p– > . If {un}∞n= is bounded in Lp(x)(QT ) and un → u a.e. in QT as n → ∞, then there exists
a subsequence of {un} still denoted by {un} such that un ⇀ u weakly in Lp(x)(QT ) as n → ∞.

Denote by C(RN ) (N ≥ ) the closure of continuous functions in R
N with compact

support. The dual of C(RN ) can be identified with the space M(RN ) of signed Radon
measures with finite mass via the pairing

〈μ, f 〉 =
∫

RN
f dμ.
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A map μ : E →M(RN ) (E ⊂R
N ) is called weak ∗ measurable if the functions x → 〈μ(x), f 〉

are measurable for all f ∈ C(RN ). We write μx instead of μ(x).

Theorem . (see [], Theorem .) Let E ⊂ R
N be a measurable set of finite measure

and let zj : E →R
N be a sequence of measurable functions. Then there exist a subsequence

zjk and a weak ∗ measurable map ν : E →M(RN ) such that
(i) νx ≥ , ‖νx‖M(RN ) =

∫
Rd dνx ≤ , for a.e. x ∈ E.

(ii) For all f ∈ C(RN )

f (zjk ) ⇀ 〈νx, f 〉 weakly ∗ in L∞(E).

(iii) Let K ⊂R
N be compact. Then

suppνx ⊂ K if dist(zjk , K) →  in measure.

(iv) Furthermore one has

(
i′
) ‖νx‖M(RN ) = , for a.e. x ∈ E

if and only if the sequence does not escape to infinity, i.e. if

lim
L→∞ sup

k

∣∣{x ∈ E : |zjk | ≥ L}∣∣ = . (.)

(v) If (i′) holds, if A ⊂ E is measurable and f ∈ C(RN ) and if f (zjk ) is relatively weakly
compact in L(A), then f (zjk ) ⇀ 〈νx, f 〉 weakly in L(A).

(vi) If (i′) holds, then in (iii) one can replace ‘if ’ by ‘if and only if ’.

Remark . If for some s >  and all j ∈N

∫

E
|zj|s ≤ C

then (.) holds.

3 Existence of weak solutions of problem (1.2)
In this section, let ε ∈ (, ) fixed, we prove the existence of weak solutions for problem
(.). Our main hypotheses are the following:

(H) p, q : � → (,∞) are two log-Hölder continuous functions satisfying

max

{
,

N
N + 

}
< p– = inf

�

p(x) ≤ p+ = sup
�

p(x) <
N


and

 < q– = inf
�

q(x) ≤ q(x) <
Np(x)

N – p(x)
, for x ∈ �.

Here � denotes the closure of �.
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(H) a ∈ C([,∞)) and there exists a constant a >  such that

a(s) ≥ a > , for s ∈ [,∞).

(H) u ∈ W ,p(x)(�) ∩ W ,
 (�), u ∈ L(�), f ∈ L(QT ).

Definition . A function uε : QT →R is called a weak solution of (.), if
⎧
⎨

⎩
uε ∈ L∞(, T ; W ,p(x)

 (�)) ∩ L∞(, T ; Lq(x)(�)) ∩ C(, T ; W ,
 (�)),

∂uε

∂t ∈ L∞(, T ; L(�)) ∩ L(, T ; W ,
 (�)),

and

–
∫

�

∂uε(x, τ )
∂t

ϕ(x, τ ) dx –
∫

QT

∂uε

∂t
∂ϕ

∂t
dx dt +

∫

QT

|�uε|p(x)–�uε�ϕ

+ ε�
∂uε

∂t
�ϕ dx dt +

∫

QT

a
(∫

�

|uε|q(x) dx
)

∂uε

∂t
ϕ dx dt

=
∫

QT

f ϕ dx dt +
∫

�

uϕ(x, ) dx,

for all ϕ ∈ C(, T ; C∞
 (�)) and τ ∈ (, T].

We choose a sequence {ωj}∞j= ⊂ C∞
 (�) such that C∞

 (�) ⊂ ⋃∞
n= Vn

C(�̄)
and {ωj}∞j= is a

complete orthogonal basis in L(�), where Vn = span{ω,ω, . . . ,ωn}; see [, ].
Since

⋃∞
n= Vn is dense in C(�̄), we have the following lemma.

Lemma . (see []) For the function u ∈ W ,p(x)(�) ∩ W ,
 (�), there exists a sequence

ψn with ψn ∈ Vn such that ψn → u in W ,p(x)(�) ∩ W ,
 (�) as n → ∞.

Proof For u ∈ W ,p(x)(�)∩W ,
 (�), there exists a sequence {vn} in C∞

 (�) such that vn →
u in W ,p(x)(�) ∩ W ,

 (�). Since {vn} ⊂ C∞
 (�) ⊂ ⋃∞

m= Vm
C(�̄)

, we can find a sequence
{vk

n} ⊂ ⋃∞
m= Vm such that, for each n ∈ N, we have vk

n → un in C(�) as k → ∞. For 
n ,

there exists kn ≥  such that ‖vkn
n – un‖C(�) ≤ 

n . Thus

∥
∥vkn

n – u
∥
∥

W ,p(x)(�)∩W ,
 (�) ≤ C

∥
∥vkn

n – vn
∥
∥

C(�) + ‖vn – u‖W ,p(x)(�)∩W ,
 (�).

That is, vkn
n → u in W ,p(x)(�)∩W ,

 (�) as n → ∞. Denote un = vkn
n . Since un ∈ ⋃∞

m= Vm,
there exists Vmn such that un ∈ Vmn ; without loss of generality, we assume that Vm ⊂ Vm

as m ≤ m. We assume that m >  and define ψn as follows: ψn(x) = , n = , . . . , m – ;
ψn = u, n = m, . . . , m – ; ψn = u, n = m, . . . , m – ; . . . , then we obtain the sequence
{ψn} and ψn → u in W ,p(x)(�) ∩ W ,

 (�) as n → ∞. �

The existence of weak solutions of problem (.) is proved by Galerkin’s approximation.
We shall find the sequence of approximate solutions in the form

un(x, t) =
n∑

j=

(
ηn(t)

)
jωj(x).
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The unknown functions (ηn(t))j are determined by ordinary differential equations in the
following.

We first define a vector-valued function Pn(t,μ,ν) : [, T] ×R
n ×R

n →R
n as follows:

(
Pn(t,μ,ν)

)
i

=
∫

�

∣
∣∣∣
∣

n∑

j=

μj�ωj

∣
∣∣∣
∣

p(x)–( n∑

j=

μj�ωj

)

�ωi +

∣
∣∣∣
∣

n∑

j=

μj�ωj

∣
∣∣∣
∣

q(x)–( n∑

j=

μj�ωj

)

�ωi dx

+
∫

�

ε

n∑

j=

νj�ωj�ωi + a

(∫

�

∣∣
∣∣∣

n∑

j=

νjωj

∣∣
∣∣∣

q(x)

dx

)

ωi dx, i = , . . . , n,

where μ = (μ, . . . ,μn) and ν = (ν, . . . ,νn). Now we consider the following Cauchy problem
of second-order ordinary differential equations:

⎧
⎨

⎩
η′′(t) + Pn(t,η(t),η′(t)) = Fn(t),

η() = Un, η′() = Un,
(.)

where (Un)i =
∫
�

ψnωi dx, (Un)i =
∫
�

φnωi dx, Fn =
∫
�

fnωi dx, ψn ∈ Vn, φn ∈ Vn, fn ∈
C∞

 (QT ), and ψn → u strongly in W ,p(x)(�) ∩ W ,
 (�) (ψn from Lemma .), φn → u

strongly in L(�), fn → f strongly in L(QT ) (since C∞
 (QT ) is dense in L(QT )).

Let η′(t) = X(t), Y (t) = (η(t), X(t)), and Hn(t, Y ) = (X, Fn – Pn(t,η, X)). Then the problem
(.) is transformed into the following problem:

⎧
⎨

⎩
Y ′(t) = Hn

(
t, Y (t)

)
,

Y () = (Un, Un).
(.)

The assumption (H) implies

Pn(t,η, X)X = Pn
(
t,η,η′)η′

=
∫

�

|�un|p(x)–�un�
∂un

∂t
+ |un|q(x)–un

∂un

∂t
dx + ε

∫

�

�
∂un

∂t
�

∂un

∂t
dx

+
∫

�

a
(∫

�

|un|q(x) dx
)∣∣∣

∣
∂un

∂t

∣∣∣
∣



dx

≥ d
dt

∫

�

|�un|p(x)

p(x)
+

|un|q(x)

q(x)
dx + ε

∫

�

∣
∣∣
∣�

∂un

∂t

∣
∣∣
∣



dx + a

∫

�

∣
∣∣
∣
∂un

∂t

∣
∣∣
∣



dx.

From (.) and Young’s inequality, we obtain

Y ′Y +
d
dt

∫

�

|�un|p(x)

p(x)
+

|un|q(x)

q(x)
dx + ε

∫

�

∣
∣∣
∣�

∂un

∂t

∣
∣∣
∣



dx +
a



∫

�

∣
∣∣
∣
∂un

∂t

∣
∣∣
∣



dx

≤ C
(



|Y | +

∫

�

|�un|p(x)

p(x)
dx +

∫

�

f 
n dx

)
. (.)
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Thus,

d
dt

(


|Y | +

∫

�

|�un|p(x)

p(x)
+

|un|q(x)

q(x)
dx

)
≤ C

(


|Y | +

∫

�

|�un|p(x)

p(x)
dx +

∫

�

f 
n dx

)
.

Gronwall’s inequality and fn → f strongly in L(QT ) imply

|Y | +
∫

�

|�un|p(x)

p(x)
dx ≤ C, (.)

where C is a constant independent of n and ε. Thus, |Y – Y ()| ≤ 
√

C. We denote

Ln = max
(t,Y )∈[,T]×B(Y (),

√
C)

∣∣Hn(t, Y )
∣∣, τn = min

{
T ,


√

C
Ln

}
,

where B(Y (), 
√

C) is the ball of radius 
√

C with center at the point Y () in R
n. From

the definition of H(t, Y ), H(t, Y ) is continuous with respect to (t, Y ). By Peano’s theorem,
we know that (.) admits a C solution on [, τn], that is, (.) has a C solution on [, τn]
denoted by η

n(t). Let η(τn), ∂η(τn)
∂t be the initial value of problem (.), then we can repeat

the above process and get a C solution η
n(t) on [τn, τn]. Without loss of generality, we

assume that T = [ T
τn

]τn + ( T
τn

)τn,  < ( T
τn

) < , where [ T
τn

] is the integer part of T
τn

, ( T
τn

) is the
decimal part of T

τn
. We can divide [, T] into [(i – )τn, iτn], i = , . . . , L, and [Lτn, T] where

L = [ T
τn

], then there exists a C solution ηi
n(t) in [(i – )τn, iτn], i = , . . . , L, and ηL+

n (t) in
[Lτn, T]. Therefore, we get a solution ηn(t) ∈ C([, T]) defined by

ηn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
n(t), if t ∈ [, τn],

η
n(t), if t ∈ (τn, τn],

· · ·
ηL

n(t), if t ∈ ((L – )τn, Lτn],

ηL+
n (t), if t ∈ (Lτn, T].

Lemma . (A priori estimates) The estimates

∫

�

∣
∣∣
∣
∂un(x, t)

∂t

∣
∣∣
∣



dx +
∫

�

∣∣�un(x, t)
∣∣p(x) +

∣∣un(x, t)
∣∣q(x) dx + ε

∫

�

∣∣�un(x, t)
∣∣ dx ≤ C,

∀t ∈ [, T],
∫

QT

∣∣∣
∣
∂un

∂t

∣∣∣
∣



dx dt +
∫

QT

|�un|p(x) + |un|q(x) dx dt + ε

∫

QT

∣∣∣
∣�

∂un

∂t

∣∣∣
∣



dx dt ≤ C

hold uniformly with respect to n.

Proof By (.), we have

∫

�

∣
∣un(x, t)

∣
∣ +

∣∣
∣∣
∂un(x, t)

∂t

∣∣
∣∣



dx +
∫

�

∣
∣�un(x, t)

∣
∣p(x) +

∣
∣un(x, t)

∣
∣q(x) dx ≤ C,

for t ∈ [, T].
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Further, integrating the inequality (.) with respect to t over [, T], we obtain

∫

QT

ε

∣
∣∣
∣�

∂un

∂t

∣
∣∣
∣



+
∣
∣∣
∣
∂un

∂t

∣
∣∣
∣



dx dt ≤ C.

Moreover, for each t ∈ [, T],

∫

�

∣
∣�un(x, t)

∣
∣ dx ≤ T

∫

�

∫ T



∣∣
∣∣�

∂un

∂t

∣∣
∣∣



dx dt + 
∫

�

∣
∣�un(x, )

∣
∣ dx ≤ C

ε
.

Thus, this lemma is proved �

By Lemma ., we have the following.

Lemma . The estimate

‖un‖L∞(,T ;W ,p(x)
 (�)) +

∥
∥|�un|p(x)–�un

∥
∥

Lp′(x)(QT )

+
∥∥|un|q(x)–un

∥∥
Lp′(x)(QT ) +

∥
∥∥
∥a

(∫

�

|un|q(x) dx
)

∂un

∂t

∥
∥∥
∥

L(QT )
≤ C

holds uniformly with respect to n and ε.

Proof By Theorem ., we have

‖un‖W ,p(x)
 (�) ≤ C‖�un‖Lp(x)(�) ≤ C.

Thus, ‖un‖L∞(,T ;W ,p(x)
 (�)) ≤ C. By Lemma ., we obtain

∫

QT

∣
∣
∣
∣�un

∣
∣p(x)–∇un

∣
∣p′(x) dx dt ≤

∫

QT

|∇un|p(x) dx dt ≤ C.

Thus,

∥
∥|�un|p(x)–∇un

∥
∥

Lp′(x)(QT )

≤ max

{(∫

�

|�un|p(x) dx
) p––

p–

,
(∫

�

|�un|p(x) dx
) p+–

p+ }
≤ C.

Similarly, ‖|un|q(x)–un‖Lq′(x)(QT ) ≤ C. Since a ∈ C([,∞)) and
∫
�

|un(x, t)|q(x) dx ≤ C, we
have

∥∥
∥∥a

(∫

�

|un|q(x) dx
)

∂un

∂t

∥∥
∥∥

L(QT )
≤ C.

This lemma is proved. �

Theorem . Assume (H)-(H). Then for each ε ∈ (, ) problem (.) has a weak solu-
tion.
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Proof By Lemma . and Lemma ., there exist a subsequence of {un} (still denoted by
{un}), uε , ξ , η, and ζ such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂un
∂t ⇀ ∂uε

∂t weakly ∗ in L∞(, T ; L(�)),

un ⇀ uε weakly ∗ in L∞(, T ; W ,p(x)
 (�) ∩ Lq(x)(�))

∩L∞(, T ; W ,
 (�)),

∂un
∂t ⇀ ∂uε

∂t weakly in L(, T ; W ,
 (�)),

|�un|p(x)–�un ⇀ ξ weakly in Lp′(x)(QT ),

|un|q(x)–un ⇀ η weakly in Lq′(x)(QT ),

a(
∫
�

|un|q(x) dx) ∂un
∂t ⇀ ζ weakly in L(QT ).

Since un ∈ L∞(, T ; W ,
 (�)) and ∂un

∂t ∈ L(QT ), by the Lions-Aubin lemma, there exists a
subsequence of {un} still denoted by {un} such that un → uε strongly in L(QT ) and a.e.
on QT . Further, |un|q(x)–un → |uε|q(x)–uε a.e. on QT . In view of Theorem ., we obtain
η = |uε|q(x)–uε .

Next, we prove that there exists a subsequence of {un} (still denoted by {un}) such that
∂un
∂t → ∂uε

∂t strongly in L(QT ).
Since (η′

n(t))j =
∫
�

∂un
∂t ωj dx, by Lemma ., (η′

n(t))j is uniformly bounded on [, T]. For
∀ ≤ t < t ≤ T , integrating (.) with respect to t from t to t, we have

∫

�

∂un(x, t)
∂t

ωj dx –
∫

�

∂un(x, t)
∂t

ωj dx +
∫ t

t

∫

�

|�un|p(x)–�un�ωj + |un|q(x)–unωj

+ ε�
∂un

∂t
�ωj + a

(∫

�

|un|q(x) dx
)

∂un

∂t
ωj dx dt =

∫ t

t

∫

�

fnωj dx dt.

Hölder’s inequality, Lemma ., and Lemma . imply

∣∣(ηn(t)
)

j –
(
ηn(t)

)
j

∣∣

≤ 
(∥∥|�un|p(x)–�un

∥∥
Lp′(x)(QT )‖�ωj‖Lp(x)(Qt

t ) +
∥∥|un|q(x)–un

∥∥
Lq′(x)(QT )‖ωj‖Lq(x)(Qt

t )

+
∥∥
∥∥�

∂un

∂t

∥∥
∥∥

L(QT )
‖�ωj‖L(Qt

t ) +
∥∥
∥∥a

(∫

�

|un|q(x) dx
)

∂un

∂t

∥∥
∥∥

L(QT )
‖ωj‖L(Qt

t )

)

≤ C
(‖�ωj‖Lp(x)(Qt

t ) + ‖�ωj‖L(Qt
t ) + ‖ωj‖L(Qt

t ) + ‖ωj‖Lq(x)(Qt
t )

)

≤ max
{|t – t|


p– , |t – t|


p+ , |t – t| 

 , |t – t|


q– , |t – t|


q+ }

×
((∫

�

|�ωj|p(x) dx
) 

p–

+
(∫

�

|�ωj|p(x) dx
) 

p+

+
(∫

�

|�ωj| dx
) 



+
(∫

�

|ωj|q(x) dx
) 

q–

+
(∫

�

|ωj|q(x) dx
) 

q+

+
(∫

�

|ωj| dx
) 


)

≤ C(j) max
{|t – t|


p– , |t – t|


p+ , |t – t| 

 , |t – t|


q– , |t – t|


q+ }
,

where Qt
t = � × (t, t). Thus, the sequence {(ηn(t))j}∞n= is uniformly bounded and equi-

continuous for fixed j and arbitrary n ≥ j. By the Ascoli-Arzela theorem and the usual



Xiang Boundary Value Problems  (2015) 2015:123 Page 11 of 23

diagonal procedure, there exists a subsequence of {(ηn)j} still denoted by {(ηn)j} such that
(ηn(t))j converges uniformly on [, T] to some continuous function λε

j (t) for each fixed
j = , , . . . .

For r ≤ n with r ∈ N, by Lemma ., we have

r∑

j=

∣
∣(η′

n(t)
)

j

∣
∣ ≤

∫

�

∣∣
∣∣
∂un

∂t

∣∣
∣∣



dx ≤ C, ∀t ∈ [, T].

Letting n → ∞, we get

r∑

j=

∣
∣λε

j (t)
∣
∣ ≤ C, ∀t ∈ [, T].

Then letting r → ∞, we obtain

∞∑

j=

∣∣λε
j (t)

∣∣ ≤ C, ∀t ∈ [, T].

Set uε(x, t) =
∑∞

j= λε
j (t)ωj(x), then sup≤t≤T ‖uε(x, t)‖L(�) ≤ C(T) and, for each j ∈ N, we

have

lim
n→∞

∫

�

∂un

∂t
ωj dx =

∫

�

uεωj dx (.)

uniformly on [, T]. For each δ >  and φ ∈ L(�), by the completeness of {ωj}, there exists
a m >  such that ‖φ –

∑m
i=(

∫
�

φωi dx)ωi‖L(�) ≤ δ. Thus,

∣
∣∣∣

∫

�

(
∂un

∂t
– ūε

)
φ dx

∣
∣∣∣ ≤

∥
∥∥∥
∂un

∂t
– ūε

∥
∥∥∥

L(�)

∥
∥∥
∥∥
φ –

m∑

i=

(∫

�

φωi dx
)

ωi

∥
∥∥
∥∥

L(�)

+

∣∣∣
∣∣

∫

�

(
∂u
∂t

– ūε

) m∑

i=

(∫

�

φωi dx
)

ωi dx

∣∣∣
∣∣

≤ Cδ +

∣∣
∣∣
∣

∫

�

(
∂un

∂t
– ūε

) m∑

i=

(∫

�

φωi dx
)

ωi dx

∣∣
∣∣
∣
. (.)

For δ > , by (.), there exists a M >  such that

∣∣∣
∣

∫

�

(
∂un

∂t
– ūε

)
ωi dx

∣∣∣
∣ ≤ δ

m
, for n > M and i = , . . . , m.

By (.) and the Hölder inequality, we have

∣
∣∣
∣

∫

�

(
∂un

∂t
– ūε

)
φ dx

∣
∣∣
∣ ≤

∥
∥∥
∥
∂un

∂t
– ūε

∥
∥∥
∥

L(�)

∥∥
∥∥
∥
φ –

m∑

i=

(∫

�

φωi dx
)

ωi

∥∥
∥∥
∥

L(�)

+
∣
∣∣∣

∫

�

(
∂u
∂t

– ūε

) m∑

i=

(∫

�

φωi dx
)

ωi dx
∣
∣∣∣
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≤ Cδ +
m∑

i=

∣
∣∣∣

∫

�

φωi dx
∣
∣∣∣

∣
∣∣∣

∫

�

(
∂un

∂t
– ūε

)
ωi dx

∣
∣∣∣

≤ (
C + ‖φ‖L(�)

)
δ, for n > M. (.)

It follows from (.) and the arbitrariness of δ that

∂un

∂t
⇀ uε weakly in L(�). (.)

uniformly on [, T] as n → ∞. For each ϕ ∈ C∞
 (QT ), by Lebesgue’s dominated conver-

gence theorem, we obtain

lim
n→∞

∫

QT

(
∂un

∂t
– uε

)
ϕ dx dt = .

Hence,

lim
n→∞

∫

QT

∂un

∂t
ϕ dx dt =

∫

QT

uεϕ dx dt.

On the other hand, by integration by parts, we get

∫

QT

∂un

∂t
ϕ dx dt = –

∫

QT

un
∂ϕ

∂t
dx dt.

Letting n → ∞ in above equality, we have

∫

QT

uεϕ dx dt = –
∫

QT

uε

∂ϕ

∂t
dx dt, for ϕ ∈ C∞

 (QT ).

Thus, we obtain u = ∂uε

∂t . Moreover, for each j ∈N, Lemma ., and Lebesgue’s dominated
convergence theorem yield

lim
n→∞

∫ T



(∫

�

(
∂un

∂t
–

∂uε

∂t

)
ωj dx

)

dt = .

Thus, for δ > , by Proposition ., there exists a positive number Nδ independent of n
such that

∥
∥∥
∥
∂un

∂t
–

∂uε

∂t

∥
∥∥
∥

L(QT )

≤ 
Nδ∑

i=

∫ T



(∫

�

(
∂un

∂t
–

∂uε

∂t

)
ωi dx

)

dt + δ
∫ T



∥∥
∥∥
∂un

∂t
–

∂uε

∂t

∥∥
∥∥



W ,
 (�)

dt.

A similar discussion to (.) shows that there is a M̃(δ) >  such that

∥
∥∥∥
∂un

∂t
–

∂uε

∂t

∥
∥∥∥

L(QT )
≤ Cδ, for n > M̃(δ).
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Thus, ∂un
∂t → ∂uε

∂t strongly in L(QT ). Further, there exists a subsequence of {un} still de-
noted by {un} such that ∂un

∂t → ∂uε

∂t a.e. on QT .
For ∀ϕ ∈ C(, T ; C∞

 (�)), we can choose a sequence ϕk ∈ C(, T ; Vk) such that ϕk → ϕ

in C,(QT ). Here for v ∈ C,(QT ) equipped with the norm ‖v‖ = sup|α|≤,(x,t)∈QT {|Dαv|,
| ∂v
∂t |}. For ∀τ ∈ (, T], we have

lim
k→∞

lim
n→∞

∫

Qτ

∂un

∂t ϕk dx dt

= lim
k→∞

lim
n→∞

(∫

�

∂un(x, τ )
∂t

ϕk(x, τ ) dx –
∫

�

∂un(x, )
∂t

ϕk(x, ) dx

–
∫

Qτ

∂un

∂t
∂ϕk

∂t
dx dt

)

= lim
k→∞

(∫

�

∂uε(x, τ )
∂t

ϕk(x, τ ) dx –
∫

�

uϕ(x, ) dx –
∫

Qτ

∂uε

∂t
∂ϕk

∂t
dx dt

)

=
∫

�

∂uε(x, τ )
∂t

ϕ(x, τ ) dx –
∫

�

uϕ(x, ) dx –
∫

Qτ

∂uε

∂t
∂ϕ

∂t
dx dt

= lim
n→∞

∫

Qτ

∂un

∂t ϕ dx dt,

where Qτ = � × (, τ ). Replacing ωi in (.) by ϕk , we obtain

∫

Qτ

∂un

∂t ϕk dx dt +
∫

Qτ

|�un|p(x)–�un�ϕk + |un|q(x)–unϕk + ε�
∂un

∂t
�ϕk

+ a
(

t,
∫

�

|un|q(x) dx
)

∂un

∂t
ϕk dx dt =

∫

Qτ

fnϕk dx dt.

Thus, we have

lim
n→∞

∫

Qτ

∂un

∂t ϕ dx dt =
∫

Qτ

f ϕ – ξ�ϕ – |uε|q(x)–uεϕ – ε�
∂uε

∂t
�ϕ – ζϕ dx dt. (.)

Furthermore, for any ψ(x) ∈ C∞
 (�), we get

∫

�

(
∂uε(x, τ )

∂t
– u

)
ψ dx

= lim
n→∞

∫

�

(
∂un(x, τ )

∂t
–

∂un(x, )
∂t

)
ψ(x) dx

= lim
n→∞

∫ τ



∫

�

∂un

∂t ψ(x) dx dt

=
∫

Qτ

f ϕ – ξ�ϕ – |uε|q(x)–uεϕ – ε�
∂uε

∂t
�ϕ – ζϕ dx dt → 

as τ → . Similarly, for t ∈ [, T], we have

lim
τ→

∫

�

(
∂uε(x, τ )

∂t
–

∂uε(x, t)
∂t

)
ψ dx = , for ψ ∈ C∞

 (�).



Xiang Boundary Value Problems  (2015) 2015:123 Page 14 of 23

Furthermore, we obtain ∂uε(x,)
∂t = u. Since uε ∈ L∞(, T ; W ,

 (�)) and ∂uε

∂t ∈ L(, T ;
W ,

 (�)), we can assume that uε ∈ C(, T ; W ,
 (�)). Lemma . and the embedding

W ,
 (�) ↪→ L(�) imply that

∫
�

u
n(x, T) dx ≤ C(T). Thus, there exist a subsequence of

{un} still denoted by {un} and a function û such that un(x, T) ⇀ û weakly in L(�). For
each ϕ ∈ C∞

 (�) and η ∈ C([, T]), we have

∫

QT

∂un

∂t
ϕη dx dt =

∫

�

un(x, T)ϕη(T) – un(x, )ϕη() dx –
∫

QT

unϕη′(t) dx dt.

Letting n → ∞, we get

∫

QT

∂uε

∂t
ϕη dx dt =

∫

�

ûϕη(T) – uϕη() dx –
∫

QT

uεϕη′(t) dx dt.

By integration by parts, we have

∫

�

(
uε(x, T) – û

)
ϕη(T) dx =

∫

�

(
uε(x, ) – u

)
ϕη() dx.

Choosing η(T) = , η() =  or η(T) = , η() = , we obtain û = uε(x, T) and uε(x, ) =
u(x) for x ∈ �. Similarly, we can prove that �uε(x, ) = �u, �un(x, T) ⇀ �uε(x, T)
weakly in L(�) (up to a subsequence) and

∫

�

∣
∣�uε(x, T)

∣
∣ dx ≤ lim inf

n→∞

∫

�

∣
∣�un(x, T)

∣
∣ dx. (.)

Further, by the compact embedding W ,
 (�) ↪→↪→ L(�), we get un(x, T) → uε(x, T)

strongly in L(�).
Taking ϕ = uk in (.) and letting k → ∞, we get

∫

�

∂uε(x, T)
∂t

uε(x, T) dx –
∫

�

uu dx –
∫

QT

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx dt +
∫

QT

ξ�uε + |uε|q(x)

+ ε�
∂uε

∂t
�uε + ζuε dx dt =

∫

QT

fuε dx dt. (.)

Multiplying (.) by (ηn)j and summing up j from  to n, then integrating with respect to
t over [, T], we have

∫ T



∫

�

∂un

∂t un dx dt +
∫ T



∫

�

|�un|p(x) + |un|q(x) + ε�
∂un

∂t
�un

+ a
(∫

�

|un|q(x) dx
)

∂un

∂t
un dx dt =

∫ T



∫

�

fnun dx dt. (.)

Thus,

 ≤
∫ T



∫

�

(|�un|p(x)–�un – |�uε|p(x)–�uε

)
(�un – �uε) dx dt

=
∫ T



∫

�

fnun – |un|q(x) – a
(∫

�

|un|p(x) dx
)

∂un

∂t
un – ε�

∂un

∂t
�un dx dt
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–
∫

�

∂un(x, T)
∂t

un(x, T) dx +
∫

�

∂un(x, )
∂t

un(x, ) dx +
∫ T



∫

�

∣
∣∣
∣
∂un

∂t

∣
∣∣
∣



dx dt

–
∫ T



∫

�

|�un|p(x)–�un�uε + |�uε|p(x)–�uε(�un – �uε) dx dt.

By (.) and (.), we get

lim sup
n→∞

∫ T



∫

�

(|�un|p(x)–�un – |�uε|p(x)–�uε

)
(�un – �uε) dx dt

≤
∫ T



∫

�

fuε – |uε|p(x) – a
(∫

�

|uε|q(x) dx
)

∂uε

∂t
uε – ξ�uε dx dt

–
ε



∫

�

∣
∣�uε(x, T)

∣
∣ dx +

ε



∫

�

∣
∣�uε(x, )

∣
∣ dx –

∫

�

uε(x, T)
∂t

uε(x, T) dx

+
∫

�

uu dx +
∫ T



∫

�

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt

= .

It follows that

lim
n→∞

∫ T



∫

�

(|�un|p(x)–�un – |�uε|p(x)–�uε

)
(�un – �uε) dx dt = .

Following the ideas of [], we set Q = {(x, t) ∈ QT : p(x) ≥ } and Q = {(x, t) ∈ QT :  <
p(x) < }, then, as n → ∞,

∫

Q

|�un – �uε|p(x) dx dt

≤ C
∫

Q

(|�un|p(x)–�un – |�uε|p(x)–�uε

)
(�un – �uε) dx dt

→ 

and
∫

Q

|�un – �uε|p(x) dx dt

≤ C
∥
∥[(|�un|p(x)–�un – |�uε|p(x)–�uε

)
(�un – �uε)

] p(x)


∥
∥

L


p(x) (Q)

× ∥∥(|�un|p(x) + |�uε|p(x)) –p(x)


∥∥
L


–p(x) (Q)

→ .

Therefore, we obtain �un → �uε strongly in Lp(x)(Qτ ). Thus, there exists a subsequence
of {un} still denoted by {un} such that �un → �uε a.e. on QT . Further,

|�un|p(x)–�un → |�uε|p(x)–�uε , for a.e. (x, t) ∈ QT .
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In view of Theorem ., we get ξ = |�uε|p(x)–�uε . Similarly, we can prove that un → uε

strongly in Lq(x)(QT ). Thus, there exists a subsequence of {un} still denoted {un} such that

lim
n→

∫

�

∣∣un(x, t) – uε(x, t)
∣∣q(x) dx = , for a.e. t ∈ [, T].

Furthermore, we have

lim
n→

∫

�

∣
∣un(x, t)

∣
∣q(x) dx =

∫

�

∣
∣uε(x, t)

∣
∣q(x) dx, for a.e. t ∈ [, T].

Thus, a(
∫
�

|un|q(x) dx) ∂un
∂t → a(

∫
�

|uε|q(x) dx) ∂uε

∂t a.e. on QT . By Theorem ., we obtain
ζ = a(

∫
�

|uε|q(x) dx) ∂uε

∂t . It follows from (.) that the theorem is proved. �

Remark . Obviously, in this section, the two inequalities in (H) can be replaced by
 < p– ≤ p+ < ∞ and  < q– ≤ q+ < ∞, respectively.

4 Existence of Young measure solutions for problem (1.2)
In this section, from the sequence of approximate solutions {uε}<ε< of problem (.), we
shall prove that the limit of uε (as ε → +) is a Young measure solution of problem (.).

Definition . A pair (u,ν) is called a Young measure solution of problem (.) if

u ∈ L∞(
, T ; W ,p(x)

 (�)
) ∩ L∞(

, T ; Lq(x)(�)
) ∩ W ,∞(

, T ; L(�)
)
,

ν = {νx,t}x,t is a probability measure,

and
∫

�

∂u(x, τ )
∂t

ϕ dx –
∫

�

uϕ(x, ) dx –
∫

QT

∂u
∂t

∂ϕ

∂t
dx dt +

∫

QT

∫

R

|A|p(x)–A dν(A)�ϕ

+ |u|q(x)–uϕ dx dt +
∫

QT

a
(∫

�

|u|q(x) dx
)

∂u
∂t

ϕ dx dt =
∫

QT

f ϕ dx dt,

for all ϕ ∈ C(, T ; C∞
 (�)) and τ ∈ (, T].

Theorem . Under conditions (H)-(H), problem (.) has a Young measure solution.

Proof For each τ ∈ (, T] and ϕ ∈ C(, T ; C∞
 (�)), we have by (.)

∫

�

∂uε(x, τ )
∂t

ϕ(x, τ ) dx –
∫

�

uϕ(x, ) dx –
∫

Qτ

∂uε

∂t
∂ϕ

∂t
dx dt +

∫

Qτ

|�uε|p(x)–�uε�ϕ

+ |uε|q(x)–uεϕ + a
(∫

�

|uε|q(x) dx
)

∂uε

∂t
ϕ + ε�

∂uε

∂t
�ϕ dx dt =

∫

Qτ

f ϕ dx dt. (.)

Since the constant in Lemma . is independent of n and ε, by the convergence of un and
∂un
∂t in Section , we have

∫

�

∣∣
∣∣
∂uε(x, t)

∂t

∣∣
∣∣



dx +
∫

�

∣
∣�uε(x, t)

∣
∣p(x) +

∣
∣uε(x, t)

∣
∣q(x) dx + ε

∫

�

∣
∣�uε(x, t)

∣
∣ dx ≤ C
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for a.e t ∈ [, T] and

∫

QT

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx dt +
∫

QT

|�uε|p(x) + |uε|q(x) dx dt + ε

∫

QT

∣∣
∣∣�

∂uε

∂t

∣∣
∣∣



dx dt ≤ C.

Similarly, by Lemma ., we have

‖uε‖L∞(,T ;W ,p(x)
 (�)) +

∥
∥|�uε|p(x)–�uε

∥
∥

Lp′(x)(QT )

+
∥
∥|uε|q(x)–uε

∥
∥

Lq′(x)(QT ) +
∥∥
∥∥a

(∫

�

|uε|q(x) dx
)

∂uε

∂t

∥∥
∥∥

L(QT )
≤ C. (.)

Thus, there exists a subsequence of {uε}<ε< still denoted by {uε}<ε< such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ⇀ u weakly ∗ in L∞(, T ; W ,p(x)
 (�) ∩ Lq(x)(�)),

�uε ⇀ �u weakly in Lp(x)(QT ),

uε ⇀ u weakly in Lq(x)(QT ),
∂uε

∂t ⇀ ∂u
∂t weakly ∗ in L∞(, T ; L(�)),

|uε|q(x)–uε ⇀ α weakly inLq′(x)(QT ),

a(
∫
�

|uε|q(x) dx) ∂uε

∂t ⇀ β weakly inL(QT ).

Since p– > max{, N
N+ }, the embedding W ,p(x)

 (�) ↪→ L(�) is compact. Further, as uε ∈
L∞(, T ; W ,p(x)

 (�)) and ∂uε

∂t ∈ L∞(, T ; L(�)), by the Lions-Aubin lemma, there exists a
subsequence of {uε}<ε< still denoted by {uε}<ε< such that uε → u strongly in L(QT ) and
a.e. on QT . Thus, |uε|q(x)–uε → |u|q(x)–u a.e. on QT . In view of Theorem ., we obtain α =
|u|q(x)–u. By assumption (H), we have μ = inf�( Np(x)

N–p(x) – q(x)) > . For each measurable
subset U ⊂ QT with |U| ≤ , by Hölder’s inequality, Theorem ., and Theorem ., we
obtain

∫

�

|uε|q(x) ≤ 
∥∥|uε|q(x)∥∥

L
Np(x)

(N–p(x))q(x) (U)
‖‖

L
Np(x)

Np(x)–Nq(x)+p(x)q(x) (U)
≤ C|U|μ(N–p+)

Np+ .

Thus, the sequence {|uε – u|q(x)}<ε< is equi-integrable on L(QT ). The Vitali convergence
theorem implies that

∫
QT

|uε – u|q(x) dx dt → , that is to say, we obtain uε → u strongly in
Lq(x)(QT ). Thus, there exists a subsequence of {uε}<ε< still labeled by {uε}<ε< such that

lim
ε→

∫

�

|uε – u|q(x) dx = , for a.e. t ∈ [, T].

Furthermore,

lim
ε→

∫

�

∣∣|uε|q(x) – |u|q(x)∣∣dx = , for a.e. t ∈ [, T].

Hence, we find by the continuity of a that a(
∫
�

|uε|q(x) dx) → a(
∫
�

|u|q(x) dx) for a.e. t ∈
[, T]. Since

∫
�

|uε|q(x) dx ≤ C for a.e. t ∈ [, T] and a ∈ C([,∞)), for each ϕ ∈ L(QT ), by
Lebesgue’s dominated convergence theorem, we have

a
(∫

�

|uε|q(x) dx
)

ϕ → a
(∫

�

|u|q(x) dx
)

ϕ strongly in L(QT ).
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Further, by the weak convergence of ∂uε

∂t in L(QT ), we get

lim
ε→

∫

QT

a
(∫

�

|uε|q(x) dx
)

∂uε

∂t
ϕ dx dt = lim

ε→

∫

QT

∂uε

∂t

(
a
(∫

�

|uε|q(x) dx
)

ϕ

)
dx dt

=
∫

QT

a
(∫

�

|u|q(x) dx
)

∂u
∂t

ϕ dx dt.

Thus, a(
∫
�

|uε|q(x) dx) ∂uε

∂t ⇀ a(
∫
�

|u|q(x) dx) ∂u
∂t weakly in L(QT ). The uniqueness of the

limit implies that β = a(
∫
�

|u|q(x) dx) ∂u
∂t .

Finally, we prove that the sequence {�uε}<ε< generates a Young measure {νx,t}x,t such
that

|�uε|p(x)–�uε ⇀

∫

R

|A|p(x)–A dνx,t(A) weakly in L(QT ). (.)

Following Theorem ., we first verify that the Young measure νx,t generated by the se-
quence {�uε}<ε< is a probability measure for a.e. (x, t) ∈ QT . Indeed, for s ≤ p–, we have

∫

QT

|�uε|s dx ≤ |�|T +
∫

QT

|�uε|p(x) dx ≤ C.

It follows from (iv) in Theorem . that νx,t is a probability measure. Set H(x, A) =
|A|p(x)–A. Next, we prove that the sequence {H(x,�uε)}ε is weakly relatively compact in
L(QT ). It is clear that {H(x,�uε)}ε will be weakly relatively compact in L(QT ), if we prove
that {H(x,�uε)}ε is uniformly bounded and equi-integrable on L(QT ); see [], Proposi-
tion .. Indeed, for each measurable subset U ⊂ QT with |U| ≤ , by (.) and Hölder’s
inequality, we have

∫

U

∣∣H(x,�uε)
∣∣dx dt =

∫

U
|�uε|p(x)– dx dt ≤ ‖�uε‖Lp′(x)(U)‖‖Lp(x)(U) ≤ C|U| 

p+ .

Thus, the sequence {H(x,�uε)}ε is equi-integrable. Similarly, the sequence {H(x,�uε)}ε
is uniformly bounded on L(QT ). Therefore, the convergence property (.) holds.

The estimate (.) implies

ε�
∂uε

∂t
→  strongly in L(QT ).

From the same procedures as in Section , we can prove there exists a subsequence of
{uε}<ε< still denoted by {uε}<ε< such that ∂uε(x,t)

∂t ⇀
∂u(x,t)

∂t weakly in L(�) uniformly on
[, T]. Taking ε →  in Definition ., we obtain

∫

�

∂u(x, τ )
∂t

ϕ(x, τ ) dx –
∫

�

uϕ(x, ) dx –
∫

QT

∂u
∂t

∂ϕ

∂t
dx dt

+
∫

QT

∫

R

|A|p(x)–A dνx,t(A)�ϕ + |u|q(x)–uϕ + a
(∫

�

|u|q(x) dx
)

∂u
∂t

ϕ dx dt

=
∫

QT

f ϕ dx dt,

for all ϕ ∈ C(, T ; C∞
 (�)) and τ ∈ (, T]. �
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By Theorem ., we have the following corollary.

Corollary . Suppose that f (x, t) ≡  and (H) and (H) are satisfied. Then for a given
u ∈ W ,p(x)(�) ∩ W ,

 (�), there exist a function u : �× (,∞) →R and a Young measure
νx,t such that for ∀T > ,

u ∈ L∞(
, T ; W ,p(x)

 (�)
) ∩ L∞(

, T ; Lq(x)(�)
) ∩ W ,∞(

, T ; L(�)
)

and
∫

�

∂u(x, τ )
∂t

ϕ(x, τ ) dx –
∫

�

∂u(x, )
∂t

ϕ(x, ) dx –
∫

QT

∂u
∂t

∂ϕ

∂t
dx dt

+
∫

QT

∫

R

|A|p(x)–Adνx,t(A)�ϕ + |u|q(x)–uϕ + a
(∫

�

|u|q(x) dx
)

∂u
∂t

ϕ dx dt = ,

for all ϕ ∈ C(, T ; C∞
 (�)) and τ ∈ (, T].

5 Energy decay of Young measure solutions
In this section, we give the decay estimates of weak solutions obtained by Corollary ..
First we give a lemma by Nakao []

Lemma . (see []) Let � : (,∞) → R be a bounded nonnegative function. If there exist
two constants α >  and β ≥  such that

sup
t≤s≤t+

�+β (s) ≤ α
(
�(t) – �(t + )

)
, for ∀t ≥ ,

then there exist positive constants C and γ such that
⎧
⎨

⎩
�(t) ≤ Ce–γ t , ∀t ≥ , as β = ,

�(t) ≤ C(t + )– 
β , ∀t ≥ , as β > .

Theorem . Let p– ≥ . Then there exist constants C,γ >  such that the weak solutions
obtained by Corollary . have the following estimates: If p+ = , then

∫

�

∣∣
∣∣
∂u(x, t)

∂t

∣∣
∣∣



dx +
∫

�

∣
∣u(x, t)

∣
∣q(x) dx ≤ Ce–γ t , for a.e. t ≥ .

If p+ > , then

∫

�

∣
∣∣
∣
∂u(x, t)

∂t

∣
∣∣
∣



dx +
∫

�

∣∣u(x, t)
∣∣q(x) dx ≤ C(t + )– p+

p+– , for a.e. t ≥ .

Proof We define

In(t) =



∫

�

∣∣∣
∣
∂un

∂t

∣∣∣
∣



dx +
∫

�

|�un|p(x)

p(x)
+

|un|q(x)

q(x)
dx.

The definition of In(t) and equality (.) imply In(t) is nonnegative and uniformly bounded.
We assume that In(t) ≤ M, M >  is a constant. For ∀t >  fixed, it follows from (.) and
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(H) that

d
dt

In(t) + ε

∫

�

∣∣
∣∣�

∂un

∂t

∣∣
∣∣



dx + a

∫

�

∣∣
∣∣
∂un

∂t

∣∣
∣∣



dx ≤ . (.)

This implies In(t) is a nonincreasing function. Putting J
n (t) = In(t)– In(t +) and integrating

(.) over (t, t + ), we get

J
n (t) ≥ ε

∫ t+

t

∫

�

∣∣
∣∣�

∂un(x, τ )
∂t

∣∣
∣∣



+ a

∣∣
∣∣
∂un(x, τ )

∂t

∣∣
∣∣



dx dτ

≥ a

∫ t+

t

∫

�

∣∣
∣∣
∂un(x, τ )

∂t

∣∣
∣∣



dx dτ . (.)

By the mean value theorem and (.), there exist t ∈ [t, t + 
 ] and t ∈ [t + 

 , t + ] such
that

∫

�

∣
∣∣
∣
∂un(x, ti)

∂t

∣
∣∣
∣



dx ≤ 
a

J
n (t), i = , . (.)

From (.), we have

∫

�

|�un|p(x) + |un|q(x) dx

= –
∫

�

∂un

∂t un + ε�
∂un

∂t
�un + a

(∫

�

|un|q(x) dx
)

∂un

∂t
un dx. (.)

Integrating (.) from t to t, we obtain

∫ t

t

∫

�

∣
∣�un(x, τ )

∣
∣p(x) dx dτ +

∫ t

t

∫

�

|un|q(x) dx dτ

= –
∫

�

∂un(x, t)
∂t

un(x, t) dx +
∫

�

∂un(x, t)
∂t

un(x, t) dx +
∫ t

t

∫

�

∣
∣∣
∣
∂un(x, τ )

∂t

∣
∣∣
∣



dx dτ

– ε

∫ t

t

∫

�

�
∂un(x, τ )

∂t
�un(x, τ ) dx dτ

–
∫ t

t

∫

�

a
(∫

�

|un|q(x) dx
)

∂un

∂t
un dx dτ . (.)

The Hölder inequality, (.), Theorem ., Theorem ., and In(t) being decreasing imply

∣∣
∣∣

∫

�

∂un(x, ti)
∂t

un(x, ti) dx
∣∣
∣∣ ≤ ∥

∥un(x, ti)
∥
∥

L(�)

∥∥
∥∥
∂un(x, ti)

∂t

∥∥
∥∥

L(�)

≤ C
∥∥�un(x, ti)

∥∥
Lp(x)(�)Jn(t)

≤ C

(∫

�

|�un(x, ti)|p(x)

p(x)
dx

) 
p+

Jn(t)

≤ C
(
In(t)

) 
p+ Jn(t), i = , . (.)
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Here the third inequality in (.) is obtained by

∥∥�un(x, ti)
∥∥

Lp(x)(�) ≤ (
p+) 

p– max

{(∫

�

|�un(x, ti)|p(x)

p(x)
dx

) 
p–

,

(∫

�

|�un(x, ti)|p(x)

p(x)
dx

) 
p+ }

≤ (
p+) 

p– max
{

M, M


p– – 
p+ }

(∫

�

|�un(x, ti)|p(x)

p(x)
dx

) 
p+

, i = , .

Similarly,

∣∣∣
∣ε

∫ t

t

∫

�

�
∂un

∂t
�un dx dτ

∣∣∣
∣

≤
∫ t

t

∥∥
∥∥ε�

∂un(x, τ )
∂t

∥∥
∥∥

L(�)
sup

t≤τ≤t+

∥
∥�un(x, τ )

∥
∥

L(�) dτ

≤ C

(
ε

∫ t

t

∫

�

�
∂un(x, τ )

∂t
dx dτ

) 


sup
t≤τ≤t+

∥
∥�un(x, τ )

∥
∥

W ,p(x)(�) dτ

≤ CJn(t)
(
In(t)

) 
p+ . (.)

From the assumption (H), Hölder’s inequality, the second inequality in (.), Theo-
rem ., Theorem ., and the boundedness of In, we have

∣
∣∣
∣

∫ t

t

∫

�

a
(∫

�

|un|q(x) dx
)

∂un(x, τ )
∂t

un(x, τ ) dx dτ

∣
∣∣
∣

≤ C

∫ t

t

∥∥∥
∥
∂un

∂t

∥∥∥
∥

L(�)
‖un‖L(�) dτ ≤ CJn(t)

(
In(t)

) 
p+ . (.)

Gathering (.) with (.)-(.), we obtain

∫ t

t

∫

�

∣∣�un(x, τ )
∣∣p(x) +

∣∣un(x, τ )
∣∣q(x) dx dτ ≤ 

a
J
n (t) + (C + C + C)Jn(t)

(
In(t)

) 
p+ .

Thus,

∫ t

t

In(τ ) dτ ≤ 
a

J
n (t) + (C + C + C)Jn(t)

(
In(t)

) 
p+ .

By In(t + ) ≤ 
∫ t

t
In(τ ) dτ and In(t + ) = In(t) – J

n (t), we have

In(t) ≤
(

 +

a

)
J
n (t) + (C + C + C)Jn(t)

(
In(t)

) 
p+ .

Further, Young’s inequality yields

In(t) ≤ CJ
n (t) + C

(
Jn(t)

) p+
p+– . (.)
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Now we divide the proof in two cases: p+ =  and p+ > . We consider the case p+ = 
first. By the boundedness of Jn(t), we have In(t) ≤ CJ

n (t). Since In(t) is nonincreasing, by
Lemma ., there exist constants C >  and γ >  such that

In(t) ≤ Ce–γ t , ∀t ≥ .

Letting n → ∞ in the above inequality, we arrive at

∫

�

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx +
∫

�

|�uε|p(x) + |uε|q(x) dx ≤ Ce–γ t , a.e. t ≥ .

Thus,

∫

�

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx +
∫

�

|uε|q(x) dx ≤ Ce–γ t , a.e. t ≥ .

Since ∂uε (x,t)
∂t ⇀ ∂u(x,t)

∂t weakly in L(�) uniformly on [, T] (∀T > ) and uε → u strongly
in Lq(x)(�) for a.e. t ∈ [, T], we obtain

∫

�

∣
∣∣∣
∂u
∂t

∣
∣∣∣



dx +
∫

�

|u|q(x) dx ≤ Ce–γ t , for a.e. t ≥ .

It remains to consider the case p+ > . It follows from (.) that In(t) ≤ C(Jn(t))
p+

p+– .
Employing Lemma ., we obtain

In(t) ≤ C(t + )– p+
p+– .

Then letting n → ∞, we deduce

∫

�

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx +
∫

�

|uε|q(x) dx ≤ C(t + )– p+
p+– , a.e. t ≥ .

Finally, letting ε → , we conclude

∫

�

∣∣
∣∣
∂u
∂t

∣∣
∣∣



dx +
∫

�

|u|q(x) dx ≤ C(t + )– p+
p+– , a.e. t ≥ .

Hence the theorem is proved. �
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