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multi valued mappings in complete b-metric spaces.

Introduction and preliminaries

Fixed point theory plays one of the important roles in nonlinear analysis. It has been
applied in physical sciences, Computing sciences and Engineering. In 1922, Stefan
Banach proved a famous fixed point theorem for contractive mappings in complete met-
ric spaces. Later, Czerwik (1993, 1998) has come up with b-metrics which generalized
usual metric spaces. After his contribution, many results were presented in S-general-
ized weak contractive multifunctions and b-metric spaces (Alikhani et al. 2013; Boric-
eanu 2009; Mehemet and Kiziltunc 2013). The following definitions will be needed in the

sequel:

Definition 1 Nadler (1969) Let X and Y be nonempty sets. T is said to be multi-valued
mapping from X to Yif T is a function for X to the power set of Y. we denote a multi-
valued map by:

T:X — 2.
Definition 2 Nadler (1969) A point of xp € X is said to be a fixed point of the multi-
valued mapping T if xg € Txq.

Example 3 Joseph (2013) Every single valued mapping can be viewed as a multi-valued
mapping. Let f:X — Y be a single valued mapping. Define T:X — 2Y¥ by Tx = {f(x)}.
Note that T is a multi-valued mapping iff for each x € X, TX C Y. Unless otherwise
stated we always assume Tx is non-empty for each x,y € X.

Definition 4 Banach (1922) Led (X, d) be a metric space. A map 7:X — X is called
contraction if there exists 0 < 4 < 1such that d(Tx, Ty) < Ad(x,y), forall x,y € X.
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Definition 5 Nadler (1969) Let (X, d) be a metric space. We define the Hausdorff met-
ric on CB(X) induced by d. That is

H(A, B) = max{supd(x,B),supd(y,A)}
xeA yeB
for all A,B e CB(X), where CB(X) denotes the family of all nonempty closed and
bounded subsets of X and d(x, B) = inf{d(x,b) : b € B}, forallx € X.

Definition 6 Nadler (1969) Let (X, d) be a metric space. A map T:X — CB(X) is said
to be multi valued contraction if there exists 0 < 4 < 1 such that H(Tx, Ty) < id(x,y),
forallx,y € X

Lemma 7 Nadler (1969) If A,B € CB(X) and a € A, then for each € > 0, there exists
b € Bsuch thatd(a,b) < H(A,B) + e

Definition 8 Aydi et al. (2012) Let X be a nonempty set and let s > 1 be a given real
number. A function d:X x X — R7 is called a b-metric provide that, for all x,y,z € X,

1. d(x,y) =0ifand onlyifx = y
2. d(x,y) =d(y,x)
3. dx,z) <sldx,y) +d(y,2)]

A pair(X, d) is called a b-metric space.
oo
Example 9 Boriceanu (2009) The space [,(0 < p < 1), I, = {(xy: E . |y lP < oo},
n=
together with the function d:l, x [, — R™.

Example 10 Boriceanu (2009) The space L,(0 <p <1) for all real func-
tion x(¢),t € [0,1] such thlat fol lx(@)|Pdt < oo, is b-metric space if we take
d@,y) = (f, |x(t) — y(@&)Pde)?.

Example 11 Aydi et al. (2012) Let X ={0,1,2} and d(2,0) =d(0,2) = m > 2,
d0,1) =d(1,2) =d(0,1) =d(2,1) =1 and d(0,0) =d(1,1) =d(2,2) =0. Then
d(x,y) < 5ld(x,2) +d(z,)] for all x,y,z € X. If m > 2,the ordinary triangle inequality
does not hold.

Definition 12 Boriceanu (2009) Let (X, d) be a b-metric space. Then a sequence (x;,) in
X is called Cauchy sequence if and only if for all ¢ > 0 there exists n(¢) € N such that for

each m, n > n(¢)we have d(x,,x,,) < €.

Definition 13 Boriceanu (2009) Let be a (X, d) b-metric space. Then a sequence (x;,)
in X is called convergent sequence if and only if there exists x € X such that for alle > 0
there exists n(¢) € N such that for all # > n(¢) we have d(x,, x) < €. In this case we write

lim x, =«
n—0o0
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Our first result is the following theorem.

Main results

Definition 14 Let (X, d) be a b-metric space with constant s > 1. A map 7:X — CB(X)
is said to be multi valued generalized contraction if

H(Tx, Ty) < a1d(x, Tx) + azd(y, Ty) + asd(x, Ty) + aad(y, Tx) + asd (x,y)
d(x, Tx)(1 + d(x, Tx)) (D
14+dxy) ’

forallv,y €e Xanda; >0, i=1,2,3,...6witha; +as+2sas +as +as +ae < 1.

ae

Theorem 15 Let (X, d) be a complete b-metric space with constant s > 1. Let
T : X — CB(X) be a multi valued generalized contraction mapping. Then T has a unique
fixed point.

Proof Fix any x € X. Define x9 = x and let x; € Txp. By Lemma 7, we may choose
x9 € Txisuch that d(x1,x2) < H(Txg, Tx1) + (a1 + sas + as + ae).

Now,

d(x1,%2) < H(Txo, Tx1) + (a1 + sa3 + as + ae)
< a1d(xo, Txo) + azd(x1, Tx1) + asd(xo, Tx1) + asd(x1, Txo)
+ asd (x,x1) + %d(xo, D)1+ diwo, Tr0)) + (a1 + sas + as + as)
1+ d(xg,%1)
d(x1,%2) < ard(xo, x1) + axd(x1,x2) + asd(xo,x2) + aad(x1,x1) + asd(xo, x1)
+ aed(x0,x1) + (a1 + sas + as + ae)
< (a1 + as + ag)d (%0, x1) + axd(x1,%2) + assld(xo, x1) + d(x1,%2)]
+ (a1 + sa3 + as + ae)
< (a1 + sas + as + ag)d(xg, x1) + axd(x1,x2) + sasd(x1,x2)
+ (a1 + sas + as + as)
(a1 + sas + as + ae) (a1 + sas + as + ag)

d(x1, d(xo,
(x1,%2) < 1~ (a5 + sa3) (x0,%1) + 1~ (@ + sa3)

2
By Lemma 7, there exist x3 € Txy such that d(xy,x3) < d(Tx1,x2) + %

Now,

(a1 + sas + as + ag)*
1 — (az + sas)
<ard(x1, Tx1) + axd (x1, Txp) + azd(x1, Txy)

d(xp,x3) <H(Tx1,%2) +

(a1 + saz + as + ag)?
1 — (a2 + sas3)
ai+saz+as +a ay +saz+as+a 2
<( 1 3 +as 6)d(x1,x2)+( 1 3+ as 26)
1 — (a2 + sas) (1 — (a2 + sa3))
2 2
(a1+sa3+a5+a6)) d(xo,x1)+2[(ﬂ1 +saz + as + ae)
1 — (a2 + sa3) (1 — (a2 +sa3))

+ asgd (%2, Tx1) + asd(x1,%2) + aed(x1,%2) +

d(x2,%3) S(



Maria Joseph et al. SpringerPlus (2016) 5:217

Continuing this process, we obtain by induction a sequence {x,} such that
Xy € Txy—1,%n+1 € Txy, such that
(a1 + saz + as + ag)

d(xy, < d(xy—1,
(Xns Xnt1) < 1— (ay + sa3) (Xn—1,%n) + |:

(a1 + saz + as + ag) "
(1 — (a2 + sa3))

— (a1 tsaztas+ae)
foralln € Nandletk = T—(aytsas)

d(xn; xn+1) =< kd(xnfl;xn) + K"
< k|kd(ep_9, %0 1) + k"—l] + K
= K2d(xy—2,xp—1) + kK" 1 + K"

A &n, 1) < k"d(x0,%1) + nk”

Since k < 1,) k" and ) nk” have same radius of convergence. Then, {x,} is a Cauchy

sequence. But (X, d) is a complete b-metric space, it follows that {x,};- , is convergent.

u= lim x,.
n— 00

Now,
d(u, Tu) < s[d(u,xnﬂ) + d(@ps, Tu)}

d(u, Tu) < s[d(u,xnﬂ) +d(Tx, Tu)}
Using (1), we obtain,

d(u, Tu) < sld(u,x,41)] +s |:ﬂ1d(xnr Txn) + axd(u, Tu) + azd(xy, Tu)

+ aqd(u, Txy,) + asd(xy,, u) + agd(x,, u)} .
As n— oo,
d(u,Tu) <s {agd(u, Tu) + asd(u, Tu)}
(1 — (azs + ags))d(u, Tu) < 0.
The above inequality is true unless d (4, Tu) = 0. Thus, Tu = u.

Now we show that u is the unique fixed point of T. Assume that v is another fixed

point of T. Then we have Tv = v and

d(u,v) = d(Tu, Tv)
<s [d(u, Tv) +d(v, Tu)}

we obtain, d(u, v) < 2sd(u,v). This implies that # = v. This completes the proof. O

Theorem 16 Let (X,d) be a complete b-metric space with constant 1 > 1. Let
T,8:X — CB(X) be a multi valued mapping satisfies the condition:

H(Tx, Sy) < ard(x, Tx) + axd(y, Sy) + azd(x, Sy) + asd(y, Tx) + asd(x,y),

Page 4 of 8
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for all xy € X and a; > 0, i=1,2,...5 with
(a1+ a)(+1) + (a3 +aa) (> + 1) +20as <2, a1 +ay+az+as+as <1. Then T
and S have a unique common fixed point.

Proof Fix any xe€X. Define xp=x and let x € Txp,x2 € Sx such that

Xon+1 = TXon, Xont2 = Sx2n+1, By Lemma 7, we may choose xp € Sx; such that
d(x1,%2) < H(Txo,Sx1) + (a1 + as + Aa3z)

d(x1,%2) < aid(xg, Txg) + ard(x1,Sx1) + asd(xg, Sx1) + asd(x1, Txp)
+ asd(x0,x1) + (a1 + as + Ja3)
= a1d(x0,%1) + axd(x1,%2) + asd(xo, x2)
+ aad(x0, x1) + asd(xo,x1) + (a1 + a5 + Aas)
< a1d(x0,x1) + azd(x1,%2) + azAld(xo,x1) + d(x1,%2)] (2)
+ asd(xo,x1) + (a1 + as + Jas)
d(x1,%2) < (a1 + Aaz + as)d(xo, x1) + (a2 + Aaz)d(x1,%2) + (a1 + as + Laz)

(a1 + as + Jaz) (a1 + as + Jaz)

d(x1,%) < ————F— ———
1— (ay + Zas) 1— (ap + 4a3)

d(x0,%1) +

On the other hand and by symmetry,we have

d(x2,x1) = d(Sx1, Txo)
< H(Sx1, Txo) + (a2 + a5 + Jas)
< a1d(x1, Sx1) + azd (x0, Txo) + azd(x1, Txo) + aad(xo, Sx1)
+ asd(x1,%0) + (a2 + as + ias)

= a1d(x1,%2) + axd (%o, x1) + azd(x1,x1) + asd(xo,%2)

+ asd(xo,x1) + (az + as + Aag)

3)
< a1d(x1,%2) + axd(xo, x1) + aa[d(x0,x1) + d(x1,%2)] + asd(xo,%1)

+ (as + as + Aag)
= (a2 + as + Jag)d(xg, %1) + (a1 + Aaa)d (x2,%1)(az + as + Aas)

(a2 + as + Jag) (a2 + as + Aas)

d , d ’
G = G T an C T TG T

Adding inequalities (2) and (3) , we obtain

ai + ay + Sasz + Say + 2as
d(x1,%) <
2 — (a1 + ay + Saz + Say)
(a1 + ay + Jas + lag + 2as 1
where, k =

. < —.
2 — (a1 + ay + las + lay) 2

(a1 + ay + Sas + Saq + 2as)
d (%0, x1) +
2 — (a1 +ay + Saz + Say)

Similarly, it can be shown that, there exists x3 € Txy such that

2 — (a1 + ap + Jas + Aay)

A yl 2a5\ 2
d(x3,%2) < H(Tx2,Sx1) + (“1 t+ag + Az + 2a4 + a5>
< k*d (%1, %0) + 2k*

Continuing this process,we obtain by induction a sequence {x,} such that
Xop+1 € Txoy, X2n42 € Sxo,+1 such that
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dXoni1,%2n42) < HA(Txop, Sxoni1) + (a1 + as + daz)® !
< a1d (x2n, Txon) + a2d (X2n+1, S¥2n41) + aszd (X2, Sx2p-+1)
+ a4d (x2n41, T2n) + a5d (%o Xans1) + (a1 + a5 + daz)™ (4)
(a1 + as + Jas) (a1 + as + Jaz)*" !

d , < — d(xop,
(Xon+1, X2n42) < 1 — (@ + at3) (%21, ¥2n42) + (1 — (apiaz)) >

Also,

(a2 + as + Aas) (a2 + as + Jag)*" !
d , <—-d ,
(X2n42, Xons1) < 1 — @y + Jaa) (%2041, %21) + (1 — (@yan) >

®)

From (4) and (5)
d(Xons1,%on42) < kd (Kant1,%20) + k21

Therefore,

a1 + az + Aaz + day + 2as
d(xn’xn+l) = 2 — (a1 + ay + Jaz + Jaz) d(Xy—1,%n)
a1+ ay + Aaz + Aag + 2as\”
(2— (1 +a2+)»a3+la4))
(a1 + ay + Las + lag + 2as

2 — (a1 + ax + Aas + Jas)

for all neN and let k=

d(xn: xn+1) < kd(xn—l»xn) + k"
< k(d@a-g, 1) + K1) K7
= K2 d (%2, %p—1) + 2k"

< k"d(xg,x1) + nk".

Since 0 < k < 1,> k" and > nk" have same radius of convergence. Then, {x,} is a
Cauchy sequence. Since (X, d) is complete,there exists z € X such that x, — z.
We shall prove that z is a common fixed point of T and S.

d(z, Tz) < Ald(z,%u41) + d(X2411, T2)]
< Ald(z, %ou41) + H *241, T2)]

) 6

d(z,52) < d(@ xans1) + d (e, S2)] ©
< Ald(z,%2u41) + H (%24, S2)]

H (%21, S2) < a1d(Xon, TX2n) + a2d(z, Sz) + azd(x2u, Sz) + aad(z, Txyy) o

+ asd(xan, 2)
Using (7) in (6) and letting as n — oo, we obtain,

d(z,8z) < 2d(z,2) + Ala1d(z,2) + axd(z, 52) + azd(z, Sz) + asd(z, 2) + asd(z, )]
= Jaxd(z,Sz) + azd(z,Sz)]
< Mag + a3)d(z, Sz)

Page 6 of 8
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[1—A(ay + a3)ld(z,Sz) < 0.
1 — A(ay + a3) < 0and S(z)is closed. Thus, S(z) = z.
Similarly, T'(z) = z.
We show that z is the unique fixed point of S and T. Now,

d(z,v) < H(Tz, Sv)

a1d(z, Tz) + ad (v, Sv) + azd(z,Sv) + asd (v, Tz) + asd(z,v)
azd(z,v) + asd(z,v) + asd(z,v).

IA

A

Since [1 — (a3 + a4 + as5)] > 0,d(z,v) = 0. Hence, S and T have a unique common fixed
point. (|

Example 17 Let X =R. We define d: X x X — X by d(x,y) = (|x —y|), for all
%,y € X. Then (X, d) is a complete b— metric space.

DefineT : X — CB(X)byTx = %, for all x,y € X. Then,

1 1
H(Tx, Ty) = ﬁd(x,y) where, a1 = a; = a3 = a4 = ag = 0,a5 = ol

Therefore, 0 € X is the unique fixed point of T.

Conclusion

Many authors have contributed some fixed point results for a self mappings in b-metric
spaces. In this paper, we have proved the existence and uniqueness of fixed point results
for a multivalued mappings in b-metric spaces. Our contraction mappings also general-
ize various known contractions like Hardy Roger contraction in the current literature.
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