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Abstract
By means of the algebraic, analysis, convex geometry, computer, and inequality
theories we establish the following isoperimetric inequality in the centered
2-surround system S(2){P,Γ , l}:
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As an application of the inequality in space science, we obtain the best lower bounds
of the mean λ-gravity norm ‖Fλ(Γ ,P)‖ as follows:
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1 Introduction
The gravity is an essential attribute of any physical matter. Therefore, the study of gravity
has great theoretical significance and extensive application value.

The theory of satellite is important in space science. In [–], the authors systemati-
cally studied the theory of satellite and obtained some interesting results. In particular,
in [], the authors defined the centered -surround system, established several geometric
inequalities for the centered -surround system under the proper hypotheses, and illus-
trated the background of the centered -surround system in space science.

It is well known that the Moon is a satellite of the Earth. In space science, we are con-
cerned with the gravity of the Moon since the gravity may be disastrous causing tsunami
and tidal wave, etc.

In this paper, we first define the mean central distance r̄P of a centered -surround sys-
tem S(){P,Γ , l}. Next, we study the boundary curve of the l-central regions and the prop-
erties of the asymptotic system and establish several identities and inequalities involving
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the centered -surround system. Next, we prove an isoperimetric inequality in the cen-
tered -surround system. Finally, we demonstrate the application of our results in space
science and obtain the best lower bounds of the mean λ-gravity norm ‖Fλ(Γ , P)‖.

A large number of algebraic, functional analysis, differential equation, convex geometry,
physics, computer, and inequality theories are used in this paper. The proofs of our results
are both interesting and difficult, as well as which are depend on our previous work. Some
of our proof methods can also be found in the references of this paper, such as [–].

2 Basic concepts and main results
We continue to use the notation of the references [–].

We begin by recalling some of the basic concepts and preliminary results of [–].
Let γ : I → R

 be a continuous function, where I ⊂R is an interval, and let the image

Γ � γ (I) =
{
γ (t) ∈ R

|γ (t) = x(t)i + y(t)j, t ∈ I
}

of γ be a smooth curve [], that is, the derivatives x′(t) and y′(t) are continuous, and the
derivative of the vector γ (t) satisfies the condition

γ ′(t) � x′(t)i + y′(t)j 
= , ∀t ∈ I,

where

 = (, ), i = (, ), j = (, ), R� (–∞,∞), R
 �R×R.

Then the length |Γ | of the curve Γ exists:

|Γ |�
∫

I

∥∥γ ′(t)
∥∥dt =

∫

I

√[
x′(t)

] +
[
y′(t)

] dt > ,

and |Γ | < ∞ if I is a bounded interval, where the norm ‖xi + yj‖ of the vector xi + yj ∈R


is defined as

‖xi + yj‖ �√x + y.

In this paper, we assume that Γ is a smooth and convex Jordan closed curve in R
 [–].

Then

Γ � γ (R) =
{
γ (t) ∈R

|γ (t) = x(t)i + y(t)j, t ∈R
}

and γ (t) ≡ γ
(
t + |Γ |), ∀t ∈R,

that is, γ (t) is a periodic function, where the parameter t is the natural parameter, that is,

 < l ≤ |Γ | ⇒ ∣∣γ ([t, t + l]
)∣∣�

∫ t+l

t

√[
x′(t)

] +
[
y′(t)

] dt = l, ∀t ∈R.

We denote by D(Γ ) the convex region enclosed by the Jordan closed curve Γ , that is,

P, P ∈ D(Γ ) ⇒ λP + ( – λ)P ∈ D(Γ ), ∀λ ∈ [, ]
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and

∣∣D(Γ )
∣∣� Area D(Γ )

denote the area of the region D(Γ ).
We remark here that, for the Jordan closed curve, we have the following Jordan theorem

[]: An arbitrary Jordan closed curve must divide a plane into two regions, and one of
the regions is bounded and the another is unbounded. The bounded region is called the
interior and the another is called the outside of the Jordan closed curve.

In this paper, we also assume that

A– = γ (tA – l), A = γ (tA), A+ = γ (tA + l), tA ∈R. ()

If l is a fixed real number such that  < l < |Γ |/, then we say that the plane point set

D(Γ , l) �
⋂
A∈Γ

Â–AA+ ⊂ D(Γ ) ⊂R


is an l-central region of the curve Γ , where the angular region

Â–AA+ �
{

( – λ)γ (tA) + λγ (t)| < λ < ∞, tA + l < t < tA – l + |Γ |}.

Let the l-central region D(Γ , l) be nonempty, and let P ∈ D(Γ , l) be a fixed point. We say
that the set

S(){P,Γ , l}� {P,Γ , l}

is a centered -surround system or centered -satellite system, P is a center and A, A+ ∈ Γ

are two satellites of the system [–].
For the centered -surround system S(){P,Γ , l}, we may think of the point P as the

center of the Earth, Γ as the orbit of two satellites A, A+. In order to avoid hitting, the
satellites A, A+ must move by the same curve velocity, that is,

l �
∣∣γ ([tA, tA + l]

)∣∣ ∈
(

,
|Γ |


)

is invariable. This is the significance of the centered -surround system S(){P,Γ , l} in the
theory of satellites.

We remark here that, in [, ], the authors extended the centered -surround system
S(){P,Γ , l} and defined the centered N-surround system, that is, if S(){P,Γ , lj} is a cen-
tered -surround system, where j = , , . . . , N , N ≥ , then we say that the set

S(){P,Γ , l}� {P,Γ , l}

is a centered N-surround system and P is a center of the system, where

l � (l, l, . . . , lN ) ∈ R
N ,  < lj <

|Γ |


, ∀j:  ≤ j ≤ N ,
N∑
j=

lj = |Γ |,
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and if

Aj � γ

(
tA +

j∑
k=

lk

)
, j = , , . . . , N ,

then we say that A, A, . . . , AN are N satellites of the system.
We remark here that, where the () in S(){P,Γ , l} means that P ∈ R

 and Γ ⊂ R
. If

P ∈R
m and Γ ⊂R

m, m ≥  [], then we can define [, ]

S(m){P,Γ , l} � {P,Γ , l}

as a centered N-surround system and

S(m){Γ , l} � {Γ , l}

as a N-surround system without any central.
For centered -surround system S(){P,Γ , l}, let

P′ � ProjectionAA+ P

denote the projection of the point P in the line AA+, that is,

PP′ ⊥ AA+ and PP′ ∩ AA+ = P′.

In the centered -surround system S(){P,Γ , l}, we say that the distance

rP � Distance(P, AA+) =
∥∥P′ – P

∥∥

from the point P to line AA+ is a central distance of the system, the distances

rA � Distance(A, PA+) and rA+ � Distance(A+, PA)

are the Brocard distances of the system [], and the positive real number

r̄P � 
‖A+ – A‖

∫

M∈[AA+]
‖M – P‖

is the mean central distance of the system, which is the mean of the distance between the
point P and the point M in the straight line segment

[AA+] �
{

( – λ)A + λA+| ≤ λ ≤ 
}

.

We remark here that if l = , then r̄P = ‖A – P‖. This is another geometrical meaning of
r̄P , which has applications in space science; see Section .

According to the definitions of the central distance and the l-central region, we know
that rP is a support function of the curve ∂D(Γ , l), which is the boundary curve of the
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l-central region D(Γ , l), and we have that []

∣∣D(Γ , l)
∣∣ =




∮

∂D(Γ ,l)
rP, ()

where

∣∣D(Γ , l)
∣∣� Area D(Γ , l)

is the area of the l-central region D(Γ , l).
Let f : Γ → (,∞) be a continuous function defined on the curve Γ . Then the functional

M[p]
Γ (f ) �

{
( 
|Γ |
∫
Γ

f p)/p, p ∈R, p 
= ,
exp( 

|Γ |
∫
Γ

ln f ), p = ,

is called the p-power mean of the function f , where

MΓ (f ) � M[]
Γ (f ) =


|Γ |

∫

Γ

f

is the mean of the function f .
We remark here that M[p]

Γ (f ) is increasing with respect to p [–], that is,

p < q ⇒ M[p]
Γ (f ) ≤ M[q]

Γ (f ), ()

where equality in () holds if and only if f is a constant function.
As pointed out in [], the theory of inequalities plays an important role in all the fields of

mathematics. The concept of mean is the most prominent in the theory, and the p-power
mean is the crucial one. The references [–] studied the sharp bounds of the p-power
mean.

In the convex geometry, a well-known isoperimetric inequality can be expressed as fol-
lows: If Γ is a smooth Jordan closed curve, then we have

∣∣D(Γ )
∣∣≤ |Γ |

π
. ()

Equality in () holds if and only if Γ is a circle.
In the convex geometry, a large number of isoperimetric inequalities similar to () was

obtained [–]. Recently, we obtained some new isoperimetric inequalities in the sur-
round system [–].

In [], the authors obtained the following results. For the centered -surround system
S(){P,Γ , l}, we have the following isoperimetric inequalities:

(


|Γ |
∮

Γ

rp
P

)/p

≤ |Γ |
π

cos
lπ
|Γ | , ∀l:  < l ≤ |Γ |/,∀p ≤ – ()

and

(


|Γ |
∮

Γ

rq
P

)/q

≥ inf lπ
|Γ | ≤t<π

{(
|D(Γ )|

|Γ | t –
l


)
csc t +

l


cos t
t

}
, ∀q ≥ . ()



Wen et al. Journal of Inequalities and Applications  (2016) 2016:74 Page 6 of 28

Equalities in () and () hold if and only if Γ is a circle and P is the center of the cir-
cle.

In [], the authors obtained the following results. For the centered -surround system
S(){P,Γ , l}, we have the following isoperimetric inequalities:

exp

(


|Γ |
∮

Γ

ln rA

)
+
(


|Γ |

∮

Γ

r


A

) 
 ≤ |Γ |

π
sin

lπ
|Γ | , ()

[


|Γ |
∮

Γ

(
rA + rA+



) 

] 

 ≤ |Γ |
π

sin
lπ
|Γ | , ()

(


|Γ |
∮

Γ

r–
P

)– 
 ≤ |Γ |

π
cos

lπ
|Γ | , ()

and

(


|Γ |
∮

Γ

r–p
P

)– 
p

≤
(


|Γ |

∮

Γ

∥∥P′ – A
∥∥q
) 

q
cot

lπ
|Γ | . ()

In (), where p > , p– + q– =  and

 < ∠A–AA+ ≤ π – arctan

(
 sin

lπ
|Γ |

)
, ∀A ∈ Γ .

Equalities in ()-() hold if and only if Γ is a circle and P is the center of the circle.
In [], the authors established a isoperimetric inequality in the N-surround system with-

out any central S(){Γ , l}:


|Γ |

∮

Γ

Area
(
Ω[P,ΓN ]

)≤ N |Γ |
π sin

π

N
, ()

where the N-polygon ΓN is inscribed in Γ [] and P is a vertex of ΓN , and the Ω[P,ΓN ]
is a cone surface its vertex is P and alignment is ΓN .

Convexity and concavity are essential attributes of any real-variable function, their re-
search and applications are important topics in mathematics and, in particular, the convex
analysis [].

In [], the authors generalized the traditional covariance and variance of random vari-
ables, defined the φ-covariance, φ-variance, φ-Jensen variance, φ-Jensen covariance, inte-
gral variance, and γ -order variance, and studied the relationships among these variances.
They also studied the monotonicity of the interval function JVarφ ϕ(X[a,b]) and proved
an interesting quasi-log-concavity conjecture. They also demonstrated the applications
of these results in higher education. Based on the monotonicity of the interval function
Var[γ ]X[a,b], they show that the hierarchical teaching model is normally better than the
traditional teaching model under the hypothesis that

XI ⊂ X ∼ Nk(μ,σ ), k > .

In this paper, we study the best upper bounds of the p-power mean

M[p]
Γ (r̄P) �

(


|Γ |
∮

Γ

r̄p
P

)/p
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and establish a new isoperimetric inequality in the centered -surround system S(){P,Γ , l}
as follows.

Theorem  (Mean central distance inequality) Let S(){P,Γ , l} be a centered -surround
system. If p ∈ (–∞, –] and

 < ∠APA+ ≤ η, ∀A ∈ Γ ,

then we have the following isoperimetric inequality:

(


|Γ |
∮

Γ

r̄p
P

)/p

≤ |Γ |
π

sin
lπ
|Γ |

[
csc

lπ
|Γ | + cot lπ

|Γ | ln

(
tan

lπ
|Γ | + sec

lπ
|Γ |

)]
, ()

where η = . . . . is the unique real root of the equation

∫ 



√
t + cot η


dt = , η ∈ (,π ). ()

Equality in () holds if and only if Γ is a circle and P is the center of the circle.

Let S(){P,Γ , l} be a centered -surround system. We say that the set

S(){P,Γ }� lim
l→

S(){P,Γ , l} = {P,Γ , }

is a centered surround system and P is the center of the system.
For the centered surround system S(){P,Γ }, we may think of the point P as the center

of the Earth and Γ as the orbit of a satellite A (such as the Moon or an artificial Earth
satellite). This is the significance of the centered surround system S(){P,Γ } in the theory
of satellite.

From () in Section  we know that the centered surround system S(){P,Γ } exists for
any smooth and convex Jordan closed curve Γ .

Theorem  implies the following interesting corollary.

Corollary  Let S(){P,Γ } be a centered surround system. Then for all p ∈ (–∞, –], we
have the following isoperimetric inequality:

(


|Γ |
∮

Γ

‖A – P‖p
)/p

≤ |Γ |
π

. ()

Equality in () holds if and only if Γ is a circle and P is the center of the circle.

Proof Consider the -surround system S(){P,Γ , l}. Since

 < ‖A+ – A‖ ≤ l,

there exists ε ∈ (, |Γ |/) such that for any l ∈ (, ε), we have

 < ∠APA+ ≤ η, ∀A ∈ Γ .
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Letting ε → , by Theorem , we get

(


|Γ |
∮

Γ

‖A – P‖p
)/p

= lim
ε→

(


|Γ |
∮

Γ

r̄p
P

)/p

= lim
l→

(


|Γ |
∮

Γ

r̄p
P

)/p

≤ lim
l→

|Γ |
π

sin
lπ
|Γ |

[
csc

lπ
|Γ | + cot lπ

|Γ | ln

(
tan

lπ
|Γ | + sec

lπ
|Γ |

)]

= lim
l→

|Γ |
π

[
 + sin– lπ

|Γ | cos lπ
|Γ | ln

(
tan

lπ
|Γ | + sec

lπ
|Γ |

)]

=
|Γ |
π

,

that is, inequality () holds.
According to Theorem , equality in () holds if and only if Γ is a circle and P is the

center of the circle. Corollary  is proved. �

In Section , we will demonstrate the applications of Corollary  in space science and
establish an isoperimetric inequality involving the λ-gravity of the Moon to the Earth.

3 Preliminaries
In order to prove Theorem , we need some preliminaries involving the centered -sur-
round system.

3.1 Boundary curve of the l-central region
In the definition of the centered -surround system S(){P,Γ , l}, an important assumption
is that the l-central region D(Γ , l) is nonempty, that is, the boundary curve ∂D(Γ , l) of the
l-central region D(Γ , l) is a Jordan closed curve. Unfortunately, the l-central region D(Γ , l)
may be empty. For example, let Γ be a regular triangle of side length , then D(Γ , ) = ∅,
where ∅ denote the empty set, see [].

Since

lim
l→

D(Γ , l) = D(Γ ) 
= ∅, ()

there exists ε ∈ (, |Γ |/) such that, for any l ∈ (, ε), we have D(Γ , l) 
= ∅.
On the other hand, in [], the following statement is proved (see Lemmas . and .

in []): Let Γ be a smooth and convex Jordan closed curve. Then D(Γ , l) 
= ∅ for all l ∈
(, |Γ |/) if and only if Γ is a central symmetric curve.

According to this result, we know that if Γ is an ellipse, which is a central symmetric
curve, then the l-central region D(Γ , l) is nonempty. In space science, the orbit of a satel-
lite is an ellipse, and P in S(){P,Γ , l} is one of the focuses of the ellipse []. Therefore,
the centered -surround system S(){P,Γ , l} is of great application value in the theory of
satellite.

Based on the definition of the l-central region D(Γ , l), we know that the boundary curve
∂D(Γ , l) of the l-central region D(Γ , l) is the envelope curve of the family of straight line
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AA+, that is, for any point xi+yj ∈ ∂D(Γ , l), there exists a line AA+ such that AA+ is tangent
to ∂D(Γ , l) at the point xi + yj. Hence, the point xi + yj must satisfy the equation

det

⎡
⎢⎣

x y 
x(tA) y(tA) 

x(tA + l) y(tA + l) 

⎤
⎥⎦ =  ()

and the differential equation

dy
dx

=
y(tA + l) – y(tA)
x(tA + l) – x(tA)

. ()

Eliminating the parameter tA from () and (), we can obtain the equation of the bound-
ary curve ∂D(Γ , l); see the following Propositions  and .

Proposition  Let Γ be a unit circle, that is,

Γ �
{

(x, y)|x = cos t, y = sin t, t ∈R
}

,

where t is the natural parameter. Then the equation of the boundary curve ∂D(Γ , l) is

∂D(Γ , l): x + y = cos l


, ∀l:  < l < π . ()

Proof Indeed, () and () can be rewritten as
{

x cos(tA + l
 ) + y sin(tA + l

 ) = cos l
 ,

dx cos(tA + l
 ) + dy sin(tA + l

 ) = .
()

Eliminating the parameter tA from (), we obtain that

(x dy – y dx) =
[
(dx) + (dy)] cos l


. ()

Setting

x = ρ cos θ , y = ρ sin θ , θ ∈R,

and substituting them into (), we get

ρ =
[(

dρ

dθ

)

+ ρ
]

cos l


⇔ ρ = cos
l


∨ ρ = cos
l


sec(θ + C).

Since

ρ = cos
l


sec(θ + C)

is the equation of the family of straight line AA+, the equation of ∂D(Γ , l) is

ρ = cos
l


⇔ x + y = cos l


,

that is, () holds. This ends the proof. �
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We can also find the equation of ∂D(Γ , l) if Γ is piecewise smooth.

Proposition  Let ΓN � {A,A, . . . , AN }, where N ≥ , be a convex polygon [], and let

 < l ≤ 


min
≤i≤N

{‖Ai+ – Ai‖
}

.

Then we have

∣∣D(ΓN )
∣∣ –
∣∣D(ΓN , l)

∣∣ =



l
N∑

i=

sin∠Ai–AiAi+ ≤ 


Nl sin
π

N
. ()

Equality in () holds if and only if

∠Ai–AiAi+ =
N – 

N
π , i = , , . . . , N ,

where A � AN and AN+ � A.

Proof Notice that

 < l ≤ min
≤i≤N



{‖Ai+ – Ai‖

} ⇒  < l <
|ΓN |


and D(ΓN , l) 
= φ.

Consider the regular region ̂Aj–AjAj+. Let the rays AiAi– and AiAi+ be tangent to
∂D(ΓN , l) at the points Ti and T ′

i , respectively, and let

T̃iT ′
i ⊂ ∂D(ΓN , l) for i = , , . . . , N .

Then we have

∂D(ΓN , l) =
N∑

i=

[
T ′

i–Ti
]

+
N∑

i=

T̃iT ′
i

and

∣∣D(ΓN )
∣∣ –
∣∣D(ΓN , l)

∣∣ =
N∑

i=

∣∣D([AiTi] +
[
AiT ′

i
]

+ T̃iT ′
i
)∣∣. ()

For any

A ∈ AiAi+, B ∈ AiAi– and ∠Ai–AiAi+ = α ∈ (,π ),

let the corresponding coordinates of A and B be

A
((

l


– t
)

cosα,
(

l


– t
)

sinα

)
and B

((
l


+ t
)

cosα, –
(

l


+ t
)

sinα

)
,

respectively, where

–
l


≤ t ≤ l


;

see Figure .



Wen et al. Journal of Inequalities and Applications  (2016) 2016:74 Page 11 of 28

Figure 1 The graph of the curve ˜T1T ′
1.

Then the equation of the curve T̃iT ′
i is determined by () and (). Hence,

T̃iT ′
i :

y + t sinα

x – l/ cosα
=

dy
dx

= –
l

t
tanα, ()

where
(

l


cosα, –t sinα

)

is the midpoint of [AB]. Eliminating the parameter tA from (), we get

y
l sinα

–
d x

l cosα

d y
l sinα

=
( x

l cosα
– ) d y

l sinα

d x
l cosα

. ()

Set

x∗ =
x

l cosα
, y∗ =

y
l sinα

and u =
dx∗

dy∗ .

Then () can be rewritten as

y∗ – u = u–(x∗ – 
)

and dx∗ = u dy∗. ()

From () we get

dy∗ – du =
u dx∗ – (x∗ – ) du

u = dy∗ –
(x∗ – ) du

u

and

x∗ =  + u, y∗ = u. ()

Eliminating the parameter u in (), we see that the curve T̃iT ′
i is a parabola whose equa-

tion is

T̃iT ′
i : x∗ =  +

(
y∗



)

⇔ x
l cosα

=  +
(

y
l sinα

)

, –l sinα ≤ y ≤ l sinα. ()
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Consequently,

∣∣D([AiTi] +
[
AiT ′

i
]

+ T̃iT ′
i
)∣∣ = 

∫ l sinα



{
l cosα



[
 +
(

y
l sinα

)]
– y cotα

}
dy

= l cosα sinα

∫ l sinα



(
y

l sinα
– 
)

d
(

y
l sinα

– 
)

= l cosα sinα
( y

l sinα
– )



∣∣∣∣
l sinα



=
l


sin α

=
l


sin∠Ai–AiAi+.

From (), the formula

N∑
i=

∠Ai–AiAi+ = (N – )π ,  < ∠Ai–AiAi+ < π , i = , , . . . , N ,

and the Jensen inequality [, ]


N

N∑
i=

sin∠Ai–AiAi+ ≤ sin

N

N∑
i=

∠Ai–AiAi+ = sin

(
π –

π

N

)
= sin

π

N

we get

∣∣D(ΓN )
∣∣ –
∣∣D(ΓN , l)

∣∣ =
N∑

i=

∣∣D([AiTi] +
[
AiT ′

i
]

+ T̃iT ′
i
)∣∣

=
N∑

i=

l


sin∠Ai–AiAi+

=
l



N∑
i=

sin∠Ai–AiAi+

≤ 


Nl sin
π

N
,

that is, () holds.
Based on this proof, we see that the equality in () holds if and only if

∠Ai–AiAi+ =
N – 

N
π , i = , , . . . , N .

The proof is completed. �

For example, if N = , Γ is a square of side length  and l = , then, by Proposition , we
have

D(ΓN , l) 
= φ and
∣∣D(ΓN )

∣∣ –
∣∣D(ΓN , l)

∣∣ =



Nl sin
π

N
=




.
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3.2 Asymptotic system
In the theory of surround system, one of the important concepts is the asymptotic system.

Definition  (see [–]) Let S(){P,Γ , l} be a centered -surround system. Suppose that:
(i) {Nn}∞n= and {kn}∞n= are two positive integer sequences, and

Nn ≥ ,  ≤ kn <
Nn


, lim

n→∞ Nn = +∞, lim
n→∞

kn

Nn
=

l
|Γ | ;

(ii) ΓNn � {A, A, . . . , ANn} is the inscribed Nn-sided polygonal of the closed curve Γ ,
and

‖A – A‖ = ‖A – A‖ = · · · = ‖ANn – ANn–‖ = ‖A – ANn‖.

Then the set

S()
{

P,ΓNn ,
kn

Nn
|ΓNn |

}
�
{

P,ΓNn ,
kn

Nn
|ΓNn |

}

is called an asymptotic system of the system S(){P,Γ , l}.

The asymptotic system has the properties as follows.

Lemma  (see Lemma . in []) If S(){P,Γ , l} is a centered -surround system, then we
have

lim
n→∞ S()

{
P,ΓNn ,

kn

Nn
|ΓNn |

}
= S(){P,Γ , l}. ()

Lemma  (see Lemma . in []) If S(){P,ΓNn , kn
Nn

|ΓNn |} is an asymptotic system of
S(){P,Γ , l}, then there exists a sequence

{
A(n)

in

}∞
n= ⊆ {A(n)

i
}∞

n=, in ∈ {, , . . . , Nn},

such that

lim
n→∞ A(n)

in = A, lim
n→∞ A(n)

in+kn
= A+ and lim

n→∞ A(n)
in–kn

= A–. ()

Lemma  (see Lemma . in []) Let the image Γ = γ ([a, b]) of a continuous function
γ : [a, b] → R

m be a smooth curve, and let f : Γ → R be a Riemann-integrable function
over Γ . Suppose that Γ is partitioned by means of N +  points

A, A, . . . , Ai–, Ai, . . . , AN , N ≥ ,

such that

Ai = γ (ti), i = , , , . . . , N , a = t < t < · · · < tN = b,

lim
N→∞(ti+ – ti) = , i = , , , . . . , N – ,
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and

‖A – A‖ = ‖A – A‖ = · · · = ‖Ai – Ai–‖ = · · · = ‖AN – AN–‖ = |ΓN |/N .

Then we have


|Γ |

∫

Γ

f = lim
N→∞


N

N–∑
i=

f (Ai). ()

3.3 Associated identities and inequalities
In order to prove Theorem , we need to establish several identities and inequalities in-
volving the centered -surround system as follows.

Lemma  Let S(){P,Γ , l} be a centered -surround system. Then we have the following
identity:

∮

Γ

∠A–PA+ = lπ . ()

Proof This proof is similar to that of Lemma . in [].
We need the following definition:

Ai = Aj ⇔ i = j (mod Nn).

Consider the asymptotic system S(){P,ΓNn , kn
Nn

|ΓNn |}. By Lemmas  and  we have that
P ∈ D(ΓNn ) if n is sufficiently large. By Lemmas , , and  and by the identity

Nn∑
i=

∠AiPAi+ = π

we get


|Γ |

∮

Γ

∠A–PA+ = lim
n→∞


Nn

Nn∑
i=

∠AiPAi+kn

= lim
n→∞


Nn

Nn∑
i=

kn–∑
j=

∠Ai+jPAi++j

= lim
n→∞


Nn

kn–∑
j=

Nn∑
i=

∠Ai+jPAi++j

= lim
n→∞


Nn

kn–∑
j=

π

= lim
n→∞

knπ

Nn

=
lπ
|Γ | .

The proof of Lemma  is completed. �
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Lemma  (see Lemma . in []) Let S(){P,Γ , l} be a centered -surround system. Then
we have the following inequality:

√


|Γ |
∮

Γ

‖A+ – A‖ ≤ |Γ |
π

sin
lπ
|Γ | . ()

Equality in () holds if Γ is a circle in R
.

Lemma  Let  < θ < π/. Then the inequality

∫ 



√
t + cot θ dt ≥  ()

holds if and only if  < θ ≤ η/, where η = . . . . is the unique real root
of equation ().

Proof Using the formula

∫ √
t + a dt =



[
t
√

t + a + a ln
(
t +

√
t + a

)]
+ C, ()

we get

∫ 



√
t + cot θ dt =



[√

 + cot θ + cot θ ln
(
 +

√
 + cot θ

)]
–




cot θ ln cot θ

=


[
csc θ + cot θ ln( + csc θ )

]
–




cot θ ln cot θ

=



(
csc θ + cot θ ln

 + csc θ

cot θ

)

=


[
csc θ + cot θ ln(tan θ + sec θ )

]
,

that is,

∫ 



√
t + cot θ dt =



[
csc θ + cot θ ln(tan θ + sec θ )

]
. ()

Consider the auxiliary function

ϕ∗ :
(

,
π



)
→R,

ϕ∗(θ ) =
∫ 



√
t + cot θ dt –  =



[
csc θ + cot θ ln(tan θ + sec θ )

]
– .

The graph of the function ϕ∗ is depicted in Figures  and .
Inequality () can be rewritten as

ϕ∗(θ ) ≥ , θ ∈
(

,
π



)
.
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Figure 2 The graph of the function ϕ∗ , where t ∈ (0, π
4 ].

Figure 3 The graph of the function ϕ∗ , where t ∈ [ π
4 , π

2 ).

By means of the Mathematica software we know that the equation

dϕ∗
dθ

= , θ ∈ (,π/),

has no real roots and dϕ∗/dθ < . Hence, the function ϕ∗ is decreasing. The solution of the
inequality

ϕ∗(θ ) ≥ , θ ∈
(

,
π



)
,

is

 < θ ≤ . . . . =
η


,

where η = . . . . is the unique real root of equation (). This ends the
proof. �
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Lemma  Let S(){P,Γ , l} be a centered -surround system. Then the inequality

r̄P ≤ ‖A+ – A‖


∫ 



√
t + cot ∠APA+


dt, ∀A ∈ Γ , ()

holds if and only if

 < ∠APA+ ≤ η, ∀A ∈ Γ , ()

where η = . . . . is the unique real root of equation (). Equality in ()
holds if and only if P′ is the midpoint of the closed straight line segment [AA+].

Proof The relevant calculations in the proof are dependent on the Mathematica software
since these calculations are very complex.

Let

A = xAi, A+ = xA+ i, M = xi, xA ≤ x ≤ xA+ , P = rj, P′ = i + j,

where r � rP > , and let

∠APA+ = θ , α �∠APP′ = – arctan
xA

r
, β �∠A+PP′ = arctan

xA+

r
.

Then

α,β ∈
(

–
π


,
π



)
, α + β = θ , θ ∈

(
,

π



)
, ‖M – P‖ =

√
x + r,

‖A+ – A‖ = xA+ – xA, r =
‖A+ – A‖

tanα + tanβ
=

‖A+ – A‖ cosα cosβ

sin θ
,

and

r̄P =


‖A+ – A‖
∫

[AA+]
‖M – P‖

=


‖A+ – A‖
∫ xA+

xA

√
x + r dx

=


‖A+ – A‖
∫ r tanβ

–r tanα

√
x + r dx

=


‖A+ – A‖
∫ ‖A+–A‖ cosα sinβ

sin θ

‖A+–A‖ sinα cosβ
sin θ

√
x +

(‖A+ – A‖ cosα cosβ

sin θ

)

dx

=


‖A+ – A‖
(‖A+ – A‖ cosα cosβ

sin θ

) ∫ tanβ

– tanα

√
t +  dt

=
‖A+ – A‖

sin θ ( + tan α)( + tan β)

∫ tanβ

– tanα

√
t +  dt,

where

x =
‖A+ – A‖ cosα cosβ

sin θ
t.
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Hence,

r̄P =
‖A+ – A‖

sin θ ( + tan α)( + tan β)

∫ tanβ

– tanα

√
t +  dt. ()

By () we see that inequality () can be rewritten as


( + tan α)( + tan β)

∫ tanβ

– tanα

√
t +  dt ≤ sin θ



∫ 



√
t + cot θ dt. ()

Equality in () holds if α = β .
By the symmetry we can further assume that β ≥ α.
For any fixed θ , set

β – α


= ω.

Then

α = α(ω) = θ – ω,
dα

dω
= –, β = β(ω) = θ + ω,

dβ

dω
= , ()

and

ω ∈
[

,
π


– θ

)
⇔ cosω ∈ (sin θ , ]. ()

Now we define two auxiliary functions:

ϕ :
[

,
π


– θ

)
→R, ϕ(ω) � 

( + tan α)( + tan β)

∫ tanβ

– tanα

√
t +  dt

and

f :
[

,
π


– θ

)
→R, f (ω) �

∫ tanβ

– tanα

√
t +  dt –

(
 + tan α

)(
 + tan β

)
ϕ().

Since equality in () holds if α = β ⇔ ω = , by () we see that

ϕ() =
sin θ



∫ 



√
t + cot θ dt =

sin θ


[
csc θ + cot θ ln(tan θ + sec θ )

]
. ()

By () we know that inequality () can be rewritten as

f (ω) ≤ , ∀ω ∈
[

,
π


– θ

)
. ()

Next, we prove that if () holds, then () holds, that is, () holds.
By means of the Mathematica software and () we can get

cos α + cos β + cosα cosβ

cosα + cosβ
=

 cos θ – 
 cos θ

cosω +
sin θ

 cos θ cosω
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and

df
dω

=
√

tan β +  sec β
dβ

dω
–

√
tan α + 

(
– sec α

)dα

dω

–
[

 tanα sec α
(
 + tan β

)
ϕ()

dα

dω
+  tanβ sec β

(
 + tan α

)
ϕ()

dβ

dω

]

= sec β – sec α –  sec α sec β(tanβ – tanα)ϕ()

= (tanβ – tanα)
[

(tanβ + tanα)
sec β – sec α

sec β – sec α
–  sec α sec βϕ()

]

=
sin ω

cosβ cosα

[
sin θ

cosβ cosα

sec β + sec α + secβ secα

secβ + secα
–  sec α sec βϕ()

]

= sin ω sec α sec β

[
sin θ

cos β + cos α + cosβ cosα

cosβ + cosα
– ϕ()

]

= sin ω sec α sec β

[
sin θ

(
 cos θ – 

 cos θ
cosω +

sin θ

 cos θ cosω

)
– ϕ()

]

= sin ω sec α sec β

{
sin θ

[(
 cos θ – 

)
cosω +

sin θ

cosω

]
– ϕ()

}

= sin ω sec α sec βg(ω),

that is,

df
dω

= sin ω sec α sec βg(ω), ()

where

g :
[

,
π


– θ
)

→R, g(ω) � sin θ

[(
 cos θ – 

)
cosω +

sin θ

cosω

]
– ϕ().

Since

g∗ : (sin θ , ] →R, g∗(ξ ) � sin θ

[(
 cos θ – 

)
ξ +

sin θ

ξ

]
– ϕ()

is a convex function, that is,

dg∗
dξ  =

 sin θ

ξ  > , ∀ξ ∈ (sin θ , ]

and

g(ω) = g∗(cos ξ ),

we have

g∗(ξ ) ≤ max
{

g∗(sin θ ), g∗()
} ⇔ g(ω) ≤ max

{
g(), g

(
π


– θ

)}
. ()
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Figure 4 The graph of the function g∗ , where θ ∈ (0, π
2 ).

Figure 5 The graph of the function g∗ , where θ ∈ [ π
4 , π

2 ).

Now we prove that

g() ≤  and g
(

π


– θ

)
≤ . ()

Consider the auxiliary function:

g∗ :
(

,
π



)
→R, g∗(θ ) = csc θ –  cot θ ln(tan θ + sec θ ).

The graph of the function g∗ is depicted in Figures  and .
By () we get

g() = sin θ
[(

 cos θ – 
)

+ sin θ
]

– ϕ()

=  sin θ cos θ –
sin θ


[
csc θ + cot θ ln(tan θ + sec θ )

]
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=  sin θ cos θ –  sin θ cos θ
[
csc θ + cot θ ln(tan θ + sec θ )

]

= sin θ cos θ
[
csc θ –  cot θ ln(tan θ + sec θ )

]

= sin θ cos θg∗(θ ),

that is,

g() = sin θ cos θg∗(θ ). ()

By means of the Mathematica software we get

dg∗

dθ
= – cot θ csc θ +  cot θ csc θ ln(tan θ + sec θ )

–
 cot θ (sec θ + sec θ tan θ )

sec θ + tan θ
.

The equation dg∗/dθ =  has no real roots in the interval (,π/), and dg∗/dθ > . Hence,

g∗(θ ) ≤  ⇔  < θ ≤ θ and g∗(θ ) ≥  ⇔ θ ≤ θ <
π


,

where θ � . . . . is the root of the equation

g∗(θ ) = , θ ∈
(

,
π



)
.

Since () holds, and

 < θ ≤ η


= . . . . < . . . . = θ,

by () we get

g∗(θ ) ≤  ⇔ g() = sin θ cos θg∗(θ ) ≤ . ()

By () and Lemma  we get

g
(

π


– θ

)
= sin θ

[(
 cos θ – 

)
cosω +

sin θ

cosω

]

ω= π
 –θ

– ϕ()

= sin θ
[(

 cos θ – 
)

sin θ + sin θ
]

– 
sin θ



∫ 



√
t + cot θ dt

=  sin θ cos θ – sin θ

∫ 



√
t + cot θ dt

= sin θ – sin θ

∫ 



√
t + cot θ dt

= sin θ

(
 –
∫ 



√
t + cot θ dt

)

≤ ,
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that is,

g
(

π


– θ

)
≤ . ()

Combining () and (), we get (). Hence, () is proved.
From () and () we get

g(ω) ≤ max

{
g(), g

(
π


– θ

)}
≤ , ∀ω ∈

[
,

π


– θ

)
. ()

From () and () we get

df
dω

= sin ω sec α sec βg(ω) ≤ , ∀ω ∈
[
,

π


– θ
)

.

Therefore,

f (ω) ≤ f () = , ∀ω ∈
[
,

π


– θ
)

,

which is just inequality (). Hence, () holds, and () is proved.
Next, we prove that if inequality () holds (i.e., () holds), then () holds.
Indeed, inequality () is equivalent to inequality (). Since


( + tan α)( + tan β)

∫ tanβ

– tanα

√
t +  dt

= cos α cos β

∫ tanβ

– tanα

√
t +  dt

=
∫ tanβ

– tanα

√
(cosα cosβt) + (cosα cosβ) d(cosα cosβt)

=
∫ cosα sinβ

– cosβ sinα

√
t + (cosα cosβ) dt,

we can rewrite inequality () as


sin θ

∫ cosα sinβ

– cosβ sinα

√
t + (cosα cosβ) dt ≤

∫ 



√
t + cot θ dt. ()

Set

β → π


⇔ α = θ – β → θ –

π



in (). Then


sin θ

∫ cosα sinβ

– cosβ sinα

√
t + (cosα cosβ) dt ≤

∫ 



√
t + cot θ dt

⇔ 
sin θ

∫ sin θ


t dt ≤

∫ 



√
t + cot θ dt
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⇔ 
sin θ

t|sin θ
 ≤

∫ 



√
t + cot θ dt

⇔
∫ 



√
t + cot θ dt ≥ ,

that is, inequality () holds. By Lemma  we have

 < ∠APA+ = θ ≤ η, ∀A ∈ Γ ;

hence, () holds.
Based on this proof, we know that equality in () holds if and only if P′ is the midpoint

of the closed straight line segment [AA+]. This completes the proof of Lemma . �

Lemma  (see [, ]) Let E ⊂R
m be a bounded and closed region (or curve), and let the

functions f : E →R and φ : f (E) →R be integrable, where f (E) is an interval. If φ : f (E) →
R is a convex function, then we have the following Jensen inequality:

∫
E φ(f )∫

E
≥ φ

(∫
E f∫
E

)
. ()

4 Proof of Theorem 1
Proof Consider the auxiliary function

ψ :
(

,
π



)
→ R, ψ(θ ) =

(∫ 



√
t + cot θ dt

)–

.

By means of the Mathematica software and () we get

ψ(θ ) = 
[
csc θ + cot θ ln(tan θ + sec θ )

]–

and

dψ

dθ
= –

– cot θ csc θ –  cot θ csc θ ln(sec θ + tan θ ) + cot θ (sec θ+sec θ tan θ )
sec θ+tan θ

[csc θ + cot θ ln(sec θ + tan θ )] .

The graph of the function dψ/dθ is depicted in Figure .
The function dψ/dθ has unique extremum point θ = . . . . in the

interval (,π/).
The increasing and decreasing intervals of the function dψ/dθ are (, θ] and [θ,π/),

respectively. Hence, the convex and concave intervals of the function ψ are (, θ] and
[θ,π/), respectively. Since

 <
η


= . . . . < . . . . = θ,

we see that the function

ψ :
(

,
η



]
→R
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Figure 6 The graph of the function dψ/dθ , where θ ∈ (0, π
2 ).

is a convex function.
Since

 < ∠APA+ ≤ η ⇔  <
∠APA+


≤ η


, ∀A ∈ Γ ,

by Lemma  we have

r̄P ≤ ‖A+ – A‖


∫ 



√
t + cot ∠APA+


dt,

that is,

ψ

(∠APA+



)
≤ ‖A+ – A‖

r̄P
. ()

Form () we get


|Γ |

∮

Γ

ψ

(∠APA+



)
≤ 

|Γ |
∮

Γ

‖A+ – A‖
r̄P

. ()

Since

∠APA+ ∈ (,η],
∮

Γ

= |Γ |,

by Lemmas  and  we get


|Γ |

∮

Γ

ψ

(∠APA+



)
≥ ψ

(


|Γ |
∮

Γ

∠APA+



)
=
(∫ 



√
t + cot lπ

|Γ | dt
)–

. ()

By the Cauchy inequality []


|Γ |

∮

Γ

‖A+ – A‖
r̄P

≤
√


|Γ |

∮

Γ

‖A+ – A‖

√


|Γ |
∮

Γ

r̄–
P
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and Lemma  we get


|Γ |

∮

Γ

‖A+ – A‖
r̄P

≤ |Γ |
π

sin
lπ
|Γ |

√


|Γ |
∮

Γ

r̄–
P . ()

By (), (), and () we get


(∫ 



√
t + cot lπ

|Γ | dt
)–

≤ |Γ |
π

sin
lπ
|Γ |

√


|Γ |
∮

Γ

r̄–
P . ()

By (), the power mean inequality (), and (), for p ∈ (–∞, –], we have

(


|Γ |
∮

Γ

r̄p
P

) 
p

≤
(


|Γ |

∮

Γ

r̄–
P

)– 


≤ |Γ |
π

sin
lπ
|Γ |

∫ 



√
t + cot lπ

|Γ | dt

=
|Γ |
π

sin
lπ
|Γ |

[
csc

lπ
|Γ | + cot lπ

|Γ | ln

(
tan

lπ
|Γ | + sec

lπ
|Γ |

)]
.

This proves inequality ().
Based on this proof, we know that the equality in () holds if and only if Γ is a circle

and P is the center of the circle. This completes the proof of Theorem . �

5 Applications in space science
Corollary  is of great significance in space science.

Let S(){P,Γ } be a centered surround system. We may regard P as the Earth (or an atomic
nucleus, etc.) with mass M, A as the Moon (or an electron of the atom, etc.) with mass m,
which is a satellite of the Earth, and Γ as the orbit of the Moon. According to the law of
universal gravitation, the gravity of the Moon A to the Earth P is

F(A, P) =
GmM(A – P)

‖A – P‖ , ()

and the norm ‖F(A, P)‖ of the gravity F(A, P) between the Moon A and the Earth P is

∥∥F(A, P)
∥∥ =

GmM
‖A – P‖ , ()

where G is the gravitational constant of the solar system. Without loss of generality, we
may assume that GmM = .

When the Moon A traverses one cycle along its orbit Γ , the mean of the norm ‖F(Γ , P)‖
of the gravity F(A, P) between the Moon A and the Earth P is

∥∥F(Γ , P)
∥∥� MΓ

(∥∥F(Γ , P)
∥∥) =


|Γ |

∮

Γ


‖A – P‖ . ()

In [], the authors defined the λ-gravity as follows:

Fλ(A, P) =
GmM(A – P)
‖A – P‖λ+ =

A – P
‖A – P‖λ+ , λ > , ()
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where

F(A, P) = F(A, P).

In the solar system, the gravity of the physical matter X to another physical matter P
is F(A, P), whereas for another galaxy in the universe, the gravity may be Fλ(A, P), where
λ ∈ (, ) ∪ (, +∞). For example, in the black hole of the universe, we conjecture that the
gravity is Fλ(A, P) with λ ∈ (, ), P can be regarded as an atomic nucleus of an atom, A can
be regarded as an electron of the atom, and Γ can be regarded as the orbit of the electron.

We define as

Fλ(A, P) � A – P
‖A – P‖λ+ , ()

∥∥Fλ(A, P)
∥∥� 

‖A – P‖λ
, ()

and

∥∥Fλ(Γ , P)
∥∥� 

|Γ |
∮

Γ


‖A – P‖λ

()

the λ-gravity function, λ-gravity norm, and mean λ-gravity norm between the Moon A
and the Earth P, respectively, where λ ∈ (,∞).

In [], the authors defined the planet system PS{P, m, B(g, r)}n
E

in an Euclidean space E

and the λ-gravity function

Fλ : En → E, Fλ(P) �
n∑

i=

mipi

‖pi‖λ+

in the planet system, and obtained some interesting results. For example, in the planet
system PS{P, m, B(g, r)}n

E
, if λ > μ >  and ‖g‖ ≥ √

, then we have the following inequality:

Var∗λ(P)
Var∗μ(P)

≥ μ

λ

[‖F(P)‖
‖F(P)‖

]λ–μ

, ()

where

Var∗λ(P) � 
λ(λ – )

[(‖Fλ(P)‖
‖F(P)‖

)

–
(‖F(P)‖

‖F(P)‖
)λ]

,

and the coefficient μ/λ in () is the best constant.
In this section, we will establish a new isoperimetric inequality involving the λ-gravity.
Corollary  implies the following interesting result, which is significant in space science.

Proposition  (λ-gravity inequality) Let S(){P,Γ } be a centered surround system. Then
we have the following isoperimetric inequality:

∥∥Fλ(Γ , P)
∥∥� 

|Γ |
∮

Γ


‖A – P‖λ

≥
(

π

|Γ |
)λ

, ∀λ ≥ . ()

Equality in () holds if and only if Γ is a circle and P is the center of the circle.
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In [], the authors obtained the following interesting inequality:

m∑
j=

μj
∥∥Fαj (A, P)

∥∥
γ
αj ≥ ∥∥Fλ(Γ , P)

∥∥
γ
λ , ()

where

α,μ ∈ (,∞)m,
m∑
j=

μj = , m ≥ , γ ∈ (,∞),  < λ ≤
( m∑

j=

μj

αj

)–

.

According to Proposition  and (), we know that in the centered surround system
S(){P,Γ }, if

α,μ ∈ (,∞)m,
m∑
j=

μj = , m ≥ , γ ∈ (,∞),

( m∑
j=

μj

αj

)–

≥ ,

then we have the following isoperimetric inequality:

m∑
j=

μj
∥∥Fαj (A, P)

∥∥
γ
αj ≥

(
π

|Γ |
)γ

. ()

Equality in () holds if and only if Γ is a circle and P is the center of the circle.
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