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Abstract
A sharp theorem by Kiguradze and Partsvania ensures the existence of extremal
solutions between given lower and upper solutions for singular Dirichlet problems.
This paper has a twofold purpose: first, we present a new sufficient condition for one
of Kiguradze and Partsvania’s assumptions, and we illustrate its applicability in the
study of a new family of examples; second, we combine Kiguradze and Partsvania’s
theorem with Heikkilä’s iterative technique to obtain a new result on the existence of
extremal solutions for a more general class of discontinuous and singular functional
boundary value problems. In particular, our framework includes classical equations
with delay (or advance), singularities with respect to the independent variable, and
implicit functional boundary conditions.
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1 Introduction and first results
We are going to review the results in a paper by Kiguradze and Partsvania [] and then
we are going to use them in the proof of a new more general existence result of extremal
solutions for functional and singular second-order problems.
Our revision of the results in [] is not merely a reproduction, as it includes some con-

tributions of our own. Specifically, Proposition . provides us with a new sufficient con-
dition for a technical assumption in [], and we will use it in the analysis of a new family
of examples.
Let us start by recalling the main results in []. Consider the Dirichlet problem

u′′(t) = f
(
t,u(t),u′(t)

)
, t ∈ (a,b),

u(a) = c, u(b) = c,
(.)

where –∞ < a < b < +∞, ci ∈R (i = , ), and f : (a,b)×R
 →R satisfies

(i) for all (u, v) ∈R
 the mapping t ∈ (a,b) �→ f (t,u, v) is measurable;

(ii) for almost all (a.a.) t ∈ (a,b) the mapping (u, v) ∈R
 �→ f (t,u, v) is continuous;
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(iii) for every r >  the function defined almost everywhere by

f ∗
r (t) = max

{∣∣f (t,u, v)
∣
∣ : |u| + |v| ≤ r

}

is integrable on [a + ε,b – ε] for every sufficiently small ε > .
LetACloc(a,b) denote the set of all real valued functions which are absolutely continuous

over each compact subinterval of (a,b).

Definition . (Kiguradze [, ]) A lower (upper) solution of (.) is a function σ : (a,b)→
R such that
(a) σ ∈ ACloc(a,b) and σ ′ admits the representation

σ ′(t) = γ (t) + γ(t),

where γ ∈ ACloc(a,b) and γ : (a,b)→ R is a nondecreasing (nonincreasing)
function whose first derivative is equal to zero almost everywhere on (a,b);

(b) the inequality

f
(
t,σ (t),σ ′(t)

) ≤ σ ′′(t)
(
f
(
t,σ (t),σ ′(t)

) ≥ σ ′′(t)
)

holds almost everywhere on (a,b);
(c) the limits σ (a+) and σ (b–) exist and

σ
(
a+

) ≤ c, σ
(
b–

) ≤ c
(
σ
(
a+

) ≥ c,σ
(
b–

) ≥ c
)
.

The previous definitions are very general and allow downwards (upwards) corners in the
graphs of the lower (upper) solutions. Readers are referred to [–] for similar definitions.
We say that u : (a,b)→R is a solution of (.) if it is both a lower and an upper solution,

and we are interested in solutions of (.) which are extremal in the following sense.

Definition . Let Y ⊂ ACloc(a,b).
We say that a solution û of (.) is the greatest (smallest) solution of (.) in Y if û ∈ Y

and û ≥ u (û≤ u) on (a,b) for any other solution u ∈ Y .
When both the smallest and the greatest solutions of (.) in Y exist we call them the

extremal solutions of (.) in Y .

The main contribution in [] concerns the existence of extremal solutions of (.) in the
presence of lower and upper solutions σ and σ. Kiguradze and Partsvania proved their
existence result for nonlinearities which belong to the class B(σ,σ) defined as follows:
a function f : (a,b)×R

 → R belongs to B(σ,σ) if there exist two constants, a ∈ (a,b),
b ∈ (a,b) and a function ρ ∈ L([a,b], [, +∞)) such that ρ is continuous in (a,b) and
for any t ∈ (a,a), t ∈ (b,b) and continuous η : (a,b) → [, ], an arbitrary solution u :
(t, t) →R of the differential equation

u′′(t) = η(t)f
(
t,u(t),u′(t)

)

http://www.boundaryvalueproblems.com/content/2014/1/160
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such that σ(t) ≤ u(t) ≤ σ(t) for t ≤ t ≤ t admits the estimate

∣∣u′(t)
∣∣ ≤ ρ(t) for t ≤ t ≤ t.

The main result in [] reads as follows.

Theorem . [, Theorem ] Let f : (a,b) × R
 → R be a function satisfying (i), (ii), and

(iii) and assume that σ and σ are lower and upper solutions of (.) such that σ(t)≤ σ(t)
for all t ∈ (a,b). If f ∈ B(σ,σ), then (.) has extremal solutions in the set

[σ,σ] =
{
ξ ∈ ACloc(a,b) : σ(t)≤ ξ (t)≤ σ(t) for all t ∈ (a,b)

}
.

Notice that the condition f ∈ B(σ,σ) implies, moreover, that the solutions provided by
the previous theorem satisfy the estimate

∣∣u′(t)
∣∣ ≤ ρ(t) for all t ∈ (a,b).

The condition ‘f ∈ B(σ,σ)’ is hard to check in practice. For that reason, the authors
included some sufficient hypotheses which imply it. One of them is a one-sided Nagumo
condition, in the spirit of []. The following is a slight modification of Corollary  in [].

Corollary . Assume that there exist σ, σ which are, respectively, a lower and an up-
per solution of problem (.) such that σ(t) ≤ σ(t) for all t ∈ (a,b) and that the following
conditions hold:

(H) For each u ∈ [inft∈(a,b) σ(t), supt∈(a,b) σ(t)] and all v ∈ R the mapping t ∈ (a,b) �→
f (t,u, v) is measurable.

(H) For almost all t ∈ (a,b), all u ∈ [σ(t),σ(t)] and all v ∈ R the functions f (t, ·, v) and
f (t,u, ·) are continuous.

(H) For every r >  the function

f ∗
r (t) = max

{∣∣f (t,u, v)
∣
∣ : |u| + |v| ≤ r

}

is integrable on [a + ε,b – ε] for every sufficiently small ε > .
(H) There exist a ∈ (a,b), b ∈ (a,b), ψ ∈ Lloc((a,b), [, +∞)), and ϕ ∈ C(R, (, +∞))

such that for a.a. t ∈ (a,b), all u ∈ [σ(t),σ(t)] and all v ∈R we have

f (t,u, v) sgn v ≥ –ψ(t)ϕ(v), (.)

and for a.a. t ∈ (a,b), all u ∈ [σ(t),σ(t)] and all v ∈R we have

f (t,u, v) sgn v ≤ ψ(t)ϕ(v). (.)

Moreover, for

r = max

{
σ(a) – σ(b)

b – a
,
σ(b) – σ(a)

b – a

}
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/160
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there exists a continuous function ρ : (a,b) → [r, +∞) such that ρ ∈ L(a,b) and for
all t ∈ (a,b) we have

min

{∫ –r

–ρ(t)

dv
ϕ(v)

,
∫ ρ(t)

r

dv
ϕ(v)

}
> max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
. (.)

Then problem (.) has the extremal solutions in [σ,σ]. Moreover, if u is a solution of
(.) such that σ ≤ u≤ σ, then |u′(t)| ≤ ρ(t) for all t ∈ (a,b).

Proof We only have to show that f ∈ B(σ,σ) and then the conclusion follows from The-
orem .. To do this, let t, t be such that a < t < a < b < t < b, η ∈ C((a,b), [, ]), and
u ∈ [σ,σ] is an arbitrary solution of the differential equation

u′′(t) = η(t)f
(
t,u(t),u′(t)

)
for a.a. t ∈ [t, t].

We claim that |u′(t)| ≤ ρ(t) for all t ∈ [t, t]. Indeed, as

–r ≤ σ(b) – σ(a)
b – a

≤ u(b) – u(a)
b – a

≤ σ(b) – σ(a)
b – a

≤ r,

there exists τ ∈ [a,b] such that u′(τ) ≤ r.
Reasoning by contradiction, assume that for some τ ∈ [t, t] we have u′(τ) > ρ(τ) and,

without loss of generality, that u′(t) ≥  for all t ∈ [τ, τ] or [τ, τ]. Then

∫ ρ(τ)

r

dv
ϕ(v)

≤
∫ u′(τ)

u′(τ)

dv
ϕ(v)

=
∫ τ

τ

u′′(s)ds
ϕ(u′(s))

=
∫ τ

τ

η(s)f (s,u(s),u′(s))ds
ϕ(u′(s))

,

so, in case τ < τ, we have

∫ ρ(τ)

r

dv
ϕ(v)

≤
∫ τ

τ

η(s)ψ(s)ds≤
∫ τ

τ

ψ(s)ds≤
∫ τ

a
ψ(s)ds,

and if τ < τ, then

∫ ρ(τ)

r

dv
ϕ(v)

≤
∫ τ

τ

η(s)ψ(s)ds≤
∫ τ

τ

ψ(s)ds≤
∫ b

τ

ψ(s)ds.

The previous two inequalities contradict (.), thus proving that u′(τ) > ρ(τ) is possible
for no τ ∈ [t, t].
One can prove in an analogous way that u′(t)≥ –ρ(t) for all t ∈ [t, t]. �

Finding a function ρ(t) to check (.) with is not easy, but the following proposition quite
simplifies that task.

Proposition . Let ψ ∈ Lloc((a,b), [, +∞)), ϕ ∈ C(R, (, +∞)), a ∈ (a,b), b ∈ (a,b),
and r > .
Define

φ(x) =
∫ x

r

dv
ϕ(v)

for x ≥ r

http://www.boundaryvalueproblems.com/content/2014/1/160
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and

φ(x) =
∫ –r

x

dv
ϕ(v)

for x≤ –r.

If the functions

ρ(t) = φ–


(
max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
+ r

)
, t ∈ (a,b),

ρ(t) = –φ–


(
max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
+ r

)
, t ∈ (a,b),

are well defined and integrable in (a,b), then condition (.) holds with

ρ(t) = max
{
ρ(t),ρ(t)

}
, t ∈ (a,b).

Proof The assumptions guarantee that ρ : (a,b)→ [r, +∞) is continuous and integrable.
Now let t ∈ (a,b) be fixed. If ρ(t) = ρ(t), then

∫ ρ(t)

r

dv
ϕ(v)

=
∫ ρ(t)

r

dv
ϕ(v)

= φ
(
ρ(t)

)

= max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
+ r

> max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
.

On the other hand, the identity ρ(t) = ρ(t) yields ρ(t) ≥ ρ(t); hence

∫ –r

–ρ(t)

dv
ϕ(v)

=
∫ –r

–ρ(t)

dv
ϕ(v)

≥ φ
(
–ρ(t)

)
> max

{∫ t

a
ψ(s)ds,

∫ b

t
ψ(s)ds

}
.

The proof is similar if ρ(t) = ρ(t). �

We close this section with a new example of the applicability of Kiguradze and Partsva-
nia’s results. Notice how our Proposition . simplifies the verification of condition (H)
in Corollary ..

Example . For every n ∈N and every λ ∈ (, +∞) the singular Dirichlet problem

u′′(t) = f
(
t,u(t),u′(t)

)
=
un(t)u′(t)
λt( – t)

, t ∈ (, ), (.)

u() = –, u() = , (.)

has the extremal solutions between the lower solution σ ≡ – and the upper solution
σ ≡ .
Conditions (H) through (H) in Corollary . are obviously satisfied. The hardest part

concerns showing that (H) is satisfied with, for instance, the following choice of the func-
tions and the constants: let us define ψ(t) = /[t( – t)] for all t ∈ (, ), ϕ(v) = (|v|+)/λ for
all v ∈R, a = /, b = /, and, according to (.), r = .

http://www.boundaryvalueproblems.com/content/2014/1/160
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First, notice that for all t ∈ (, ), all v ∈R and all u ∈ [σ,σ] = [–, ] we have

∣∣f (t,u, v)
∣∣ =

|u|n|v|
λt( – t)

≤ ψ(t)ϕ(v),

and this implies (.) and (.).
Let us use now Proposition . to show that (.) is satisfied too. First, we have to define

a function on [r, +∞) = [,+∞) by

φ(x) =
∫ x

r

dv
ϕ(v)

=
∫ x



λ

v + 
dv = λ ln

x + 


,

and for all x ≤ –r = – we define

φ(x) =
∫ –r

x

dv
ϕ(v)

= λ ln
 – x


= φ(–x).

Now we have to check that the following (continuous) functions are also integrable on
(, ):

ρ(t) = φ–


(
max

{∫ t

/
ψ(s)ds,

∫ /

t
ψ(s)ds

}
+ 

)
, t ∈ (, ),

ρ(t) = –φ–


(
max

{∫ t

/
ψ(s)ds,

∫ /

t
ψ(s)ds

}
+ 

)
, t ∈ (, ).

Notice that the relation between φ and φ implies that ρ(t) = ρ(t) for all t ∈ (, ), so our
problem reduces to proving that ρ is integrable.
For all t ∈ (, /) we have

∫ t

/
ψ(s)ds < ,

and therefore

max

{∫ t

/
ψ(s)ds,

∫ /

t
ψ(s)ds

}
=

∫ /

t
ψ(s)ds = ln

 – t
t

.

Hence,

ρ(t) = e/λ
(
 – t
t

)/λ

–  for all t ∈ (, /),

which is integrable on (, /) because /λ ∈ (, ).
Similar computations show that ρ is integrable on (/, ), and then it is integrable on

the whole of (, ) because it is continuous. Hence, Proposition . ensures that condition
(.) holds with ρ = ρ.

2 Singular functional problems
In this section we are concerned with a generalization of problem (.) which includes
both past and future dependence. To do so, let us fix r–, r+ ≥ , define

Y =
{
γ : [a – r–,b + r+] →R : γ is continuous and γ|(a,b) ∈ ACloc(a,b)

}
,

http://www.boundaryvalueproblems.com/content/2014/1/160
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and consider the problem

⎧
⎪⎨

⎪⎩

u′′(t) = f (t,u(t),u′(t),u) for a.a. t ∈ (a,b),
u(t) = B–(t,u(t),u) for all t ∈ I– = [a – r–,a],
u(t) = B+(t,u(t),u) for all t ∈ I+ = [b,b + r+],

(.)

where f : (a,b)×R
 ×Y → R and B∓ : I∓ ×R×Y →R.

Notice that, in general, solutions of (.) are defined on an interval which is greater than
(a,b) and, moreover, the differential equation depends upon the behavior of the solution
in that extended interval. This implies, in particular, that we can study equations with
deviated arguments of the form

u′′(t) = f
(
t,u(t),u

(
τ (t)

))
,

where τ : t ∈ (a,b)→ [a– r–,b+ r+] is measurable.Moreover, classical start-final functions
for problems with delay or advance are also included in (.): we only have to take

B–
(
t,u(t),u

)
= φ–(t), B+

(
t,u(t),u

)
= φ+(t),

where φ– and φ+ represent, respectively, the initial and the final state of the solution. Prob-
lem (.) also includes multipoint boundary conditions, which have received a lot of at-
tention in the last few years; see [, ].
We begin by introducing the concepts of lower and upper solutions for problem (.).

We do this simply by extending Definition . in the obvious way.

Definition . We say that σ ∈ Y is a lower solution (respectively, an upper solution) of
problem (.) if it satisfies the following conditions:
(a) σ|(a,b) ∈ ACloc(a,b) and σ ′ admits the representation

σ ′(t) = γ (t) + γ(t),

where γ ∈ ACloc(a,b) and γ : (a,b)→ R is a nondecreasing (respectively,
nonincreasing) function whose first derivative is equal to zero almost everywhere
on (a,b);

(b) the inequality

f
(
t,σ (t),σ ′(t),σ

) ≤ σ ′′(t)
(
respectively, f

(
t,σ (t),σ ′(t),σ

) ≥ σ ′′(t)
)

holds almost everywhere on (a,b);
(c) for all t ∈ I– we have

σ (t)≤ B–
(
t,σ (t),σ

) (
respectively,σ (t)≥ B–

(
t,σ (t),σ

))
,

and for all t ∈ I+ we have

σ (t)≤ B+
(
t,σ (t),σ

) (
respectively,σ (t)≥ B+

(
t,σ (t),σ

))
.

http://www.boundaryvalueproblems.com/content/2014/1/160
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Our existence result for (.) will be proven by means of Kiguradze and Partsvania’s
results described in the previous section along with Heikkilä’s generalized iterative tech-
nique. The following result will be essential.

Lemma . [, Theorem ..] Let Y be a subset of an ordered metric space X , [α,β]
a nonempty order interval in Y , and G : [α,β] → [α,β] a nondecreasing mapping. If
{Gun}∞n= converges in Y whenever {un}∞n= is a monotone sequence in [α,β], then G has
in [α,β] the extremal fixed points, u∗ and u∗, which satisfy

u∗ = min{u :Gu ≤ u}, u∗ = max{u : u ≤ Gu}. (.)

We are at last in a position to introduce and prove our main result.

Theorem . Let σ and σ be, respectively, a lower and an upper solution of problem (.)
such that σ ≤ σ on [a – r–,b + r+], put

[σ,σ] =
{
γ ∈ Y : σ(t)≤ γ (t) ≤ σ(t) for all t ∈ [a – r–,b + r+]

}
,

and assume that the following conditions hold:

(F) For each γ ∈ [σ,σ] themapping fγ (t,u, v) = f (t,u, v,γ ) satisfies conditions (i), (ii), and
(iii), and fγ ∈ B(σ,σ) uniformly in γ ∈ [σ,σ], in the sense that the function ρ does
not depend on γ .

(F) For a.a. t ∈ (a,b), all u ∈ [σ(t),σ(t)] and all v ∈ R the mapping f (t,u, v, ·) is nonin-
creasing on [σ,σ].

(B) For each ε >  there exists δ >  such that for any t, s ∈ I∓ the inequality |t – s| < δ

implies

∣
∣B∓(t,u,γ ) – B∓(s,u,γ )

∣
∣ < ε

for all u ∈ [minI∓ σ,maxI∓ σ] and all γ ∈ [σ,σ].
(B) There exists λ ∈ [, ) such that for all t ∈ I∓ and all γ ∈ [σ,σ] we have

∣
∣B∓(t,u,γ ) – B∓(t, v,γ )

∣
∣ ≤ λ|u – v|

(
u, v ∈

[
min
I∓

σ,max
I∓

σ

])
.

(B) For all t ∈ I∓ and all u ∈ [minI∓ σ,maxI∓ σ], the mapping B∓(t,u, ·) is nondecreasing
in [σ,σ].

Then problem (.) has extremal solutions in [σ,σ].

Proof Consider the set X = {γ : [a – r–,b + r+] → R : γ is continuous}, which becomes
an ordered metric space (in fact, a Banach space) when endowed with the supremum
norm and the pointwise ordering. In X consider the subset Y and the ordered interval
[σ,σ] ⊂ Y . Now, define an operatorG : [σ,σ] → [σ,σ] as follows: for each γ ∈ [σ,σ],
Gγ is the greatest solution in [σ,σ] of the Dirichlet problem

(Pγ )

⎧
⎪⎨

⎪⎩

u′′(t) = fγ (t,u(t),u′(t)) = f (t,u(t),u′(t),γ ) for a.a. t ∈ (a,b),
u(t) = �–(t) for all t ∈ [a – r–,a],
u(t) = �+(t) for all t ∈ [b,b + r+],

(.)

http://www.boundaryvalueproblems.com/content/2014/1/160
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where for each t ∈ [a– r–,a] (respectively, each t ∈ [b,b+ r+]), �–(t) (respectively, �+(t)) is
the unique fixed point x ∈ [σ(t),σ(t)] of the contractive mapping B–(t, ·,γ ) (respectively,
B+(t, ·,γ )).
Claim : Operator G is well defined. Fix γ ∈ [σ,σ]. First, the definitions of lower and

upper solutions and condition (B) ensure that for any t ∈ [a – r,a] we have

σ(t) ≤ B–
(
t,σ(t),σ

) ≤ B–
(
t,σ(t),γ

)
,

and σ(t) ≥ B–(t,σ(t),γ ). Hence B–(t, ·,γ ) has at least one fixed point in [σ(t),σ(t)],
which is unique by virtue of (B). Hence, the number �–(t) is well defined for every t ∈ I–;
let us prove now that �– is continuous on I–. To do so, let us fix s, t ∈ I– and notice that

∣∣�–(t) – �–(s)
∣∣ =

∣∣B–
(
t,�–(t),γ

)
– B–

(
s,�–(s),γ

)∣∣

≤ ∣
∣B–

(
t,�–(t),γ

)
– B–

(
t,�–(s),γ

)∣∣

+
∣
∣B–

(
t,�–(s),γ

)
– B–

(
s,�–(s),γ

)∣∣

≤ λ
∣∣�–(t) – �–(s)

∣∣ +
∣∣B–

(
t,�–(s),γ

)
– B–

(
s,�–(s),γ

)∣∣,

hence

∣
∣�–(t) – �–(s)

∣
∣ ≤ 

 – λ

∣
∣B–

(
t,�–(s),γ

)
– B–

(
s,�–(s),γ

)∣∣,

and therefore �– is continuous by virtue of (B).
A similar argument shows that �+(t) is well defined and continuous too.
Now, condition (F) guarantees by application ofTheorem . that the extremal solutions

in [σ,σ] of problem (Pγ ) exist and, in particular, Gγ is well defined.
Moreover, condition (F) also ensures that there exists a continuous and integrable func-

tion ρ : (a,b)→R such that |(Gγ )′(t)| ≤ ρ(t) for all t ∈ (a,b) and all γ ∈ [σ,σ].
Claim : Operator G is nondecreasing. Let γ,γ ∈ [σ,σ] be such that γ ≤ γ. Then by

condition (F) we have for a.a. t ∈ (a,b) that

Gγ ′′
 (t) = f

(
t,Gγ(t),Gγ ′

 (t),γ
) ≥ f

(
t,Gγ(t),Gγ ′

 (t),γ
)
.

Let us prove now that Gγ(t) ≤ Gγ(t) for each t ∈ I–. Indeed, condition (B) yields

Gγ(t) = B–
(
t,Gγ(t),γ

) ≤ B–
(
t,Gγ(t),γ

)
,

which implies that B–(t, ·,γ) has its fixed point, namely Gγ(t), inside the interval
[Gγ(t),σ(t)]. Hence, Gγ ≤ Gγ on I–.
A similar argument shows that Gγ(t) ≤ Gγ(t) for all t ∈ I+.
Summing up, Gγ is a lower solution of problem (Pγ ), whose greatest solution between

σ and σ is precisely Gγ. Therefore Gγ ≤ Gγ on the whole of [a – r–,b + r+].
Claim : Operator G has the extremal fixed points. Let {γn}∞n= ⊂ [σ,σ] be a mono-

tone sequence. As G is nondecreasing, the sequence {zn}∞n= = {Gγn}∞n= is monotone and
bounded and therefore it has a pointwise limit, say z.
We are going to prove that {zn}∞n= tends to z uniformly on [a– r–,b+ r+] and that z ∈ Y .
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First, for s, t ∈ [a,b], s < t, and every n ∈N we have

∣∣zn(t) – zn(s)
∣∣ ≤

∫ t

s

∣∣z′
n(r)

∣∣dr ≤
∫ t

s
ρ(r)dr. (.)

Second, for s, t ∈ I– and n ∈N we have

∣∣zn(t) – zn(s)
∣∣ =

∣∣B–
(
t, zn(t),γn

)
– B–

(
s, zn(s),γn

)∣∣

≤ ∣
∣B–

(
t, zn(t),γn

)
– B–

(
t, zn(s),γn

)∣∣

+
∣
∣B–

(
t, zn(s),γn

)
– B–

(
s, zn(s),γn

)∣∣

≤ λ
∣
∣zn(t) – zn(s)

∣
∣ +

∣
∣B–

(
t, zn(s),γn

)
– B–

(
s, zn(s),γn

)∣∣,

hence

∣∣zn(t) – zn(s)
∣∣ ≤ 

 – λ

∣∣B–
(
t, zn(s),γn

)
– B–

(
s, zn(s),γn

)∣∣. (.)

Analogously, for s, t ∈ I+ and n ∈N we have

∣
∣zn(t) – zn(s)

∣
∣ ≤ 

 – λ

∣
∣B+

(
t, zn(s),γn

)
– B+

(
s, zn(s),γn

)∣∣. (.)

Since the zn are continuous at a and b, we deduce from (.), (.), (.), and condition
(B) that {zn}∞n= is uniformly equicontinuous on [a – r–,b + r+]. Hence {zn}∞n= tends to z
uniformly on [a – r–,b + r+] and z is continuous on [a – r–,b + r+].
Moreover, (.) implies that z is absolutely continuous on [a,b], thus proving that z ∈ Y .
Now we can apply Lemma . to ensure that operatorG has the extremal fixed points in

[σ,σ].
Claim : The greatest fixed point of G corresponds with the greatest solution of problem

(.) in [σ,σ]. Let u∗ be the greatest fixed point of G. As Gu∗ = u∗, it is clear that u∗ is
a solution of problem (.). Now, let u ∈ [σ,σ] be another solution of (.). In this case,
both u andGu solve (Pu), and so u≤ Gu taking into account thatGu is the greatest of such
solutions. Now, condition (.) implies that u≤ u∗.
The existence of the least solution of (.) in [σ,σ] follows from a proper redefinition

of the operator G. �

The next less general version of Theorem . is easier to use in practice.

Corollary . Under the conditions of Theorem ., replace (F) by

(F)′ For each γ ∈ [σ,σ] the function fγ (t,u, v) = f (t,u, v,γ ) satisfies (H)-(H) with the
same function ρ in (H) for all γ ∈ [σ,σ].

Then the conclusion of Theorem . holds.

3 An example of application
We finish this paper with a corollary of our main result which applies to a large family of
boundary conditions satisfying stronger conditions that (B)-(B). This corollary is illus-
trated later with a concrete example.

http://www.boundaryvalueproblems.com/content/2014/1/160


Figueroa and López Pouso Boundary Value Problems 2014, 2014:160 Page 11 of 13
http://www.boundaryvalueproblems.com/content/2014/1/160

Corollary . Let f satisfy (F) (or (F)′) and (F) and assume that the functions B–, B+

can be written as follows:

B∓(t,u,γ ) = ψ(t) +ψ(t,γ )ψ(u).

Then the following conditions are sufficient to guarantee the conclusion of Theorem .:

(̃B) The function ψ is uniformly continuous in (a,b).
(̃B) For all t ∈ (a,b) and all γ ∈ [σ,σ] the function ψ(·,γ ) is Lipschitzian with Lip-

schitz constant Lγ , and the function ψ(t, ·) is nondecreasing. Moreover, there exists
L = sup{Lγ : γ ∈ [σ,σ]}.

(̃B) For all u ∈ [minσ,maxσ] the function ψ is nonnegative, differentiable, and

∣∣ψ ′
(u)

∣∣ <
(

max
t∈(a,b)

max
{∣∣ψ(t,σ)

∣∣,
∣∣ψ(t,σ)

∣∣}
)–

. (.)

Proof We will show that these conditions imply (B)-(B).
To see (B), we take t, s ∈ (a,b) and apply (̃B) to obtain for u ∈ [minσ,maxσ] and

γ ∈ [σ,σ] that

∣∣B∓(t,u,γ ) – B∓(s,u,γ )
∣∣ ≤ ∣∣ψ(t) –ψ(s)

∣∣ +ψ(u)L|t – s|,

and now (B) follows from (̃B) and the fact that ψ is bounded in the compact set
[minσ,maxσ].
To see (B) we notice that for u, v ∈ [minσ,maxσ], u < v, condition (̃B) provides that

there exists ξ ∈ (u, v) such that

∣
∣B∓(t,u,γ ) – B∓(t, v,γ )

∣
∣ ≤ ∣

∣ψ(t,γ )
∣
∣
∣
∣ψ ′

(ξ )
∣
∣|u – v| for all t ∈ (a,b),γ ∈ [σ,σ].

Then (B) follows from (.).
Finally, condition (̃B) follows from the facts that ψ(t, ·) is nondecreasing and ψ is

nonnegative. �

Example . Let φi : [, ] →R, i = , , be nonincreasing functions (not necessarily con-
tinuous), and consider the following functional problem, which includes both a past and
a future dependence:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = u(t)|u′(t)|
λt(–t) [φ(u(t – /)) + φ(u(t + /))] for a.a. t ∈ (, ),

u(t) =
∫ t+/
–/ k(s)u(s)ds for all t ∈ [–/, ],

( – u(t))/ =
√

|  – tmaxt∈[–/,/] u(t)| for all t ∈ [, /],

(.)

where k ∈ L([–/, /], [, +∞)).
We claim that for sufficiently small value of ‖k‖ problem (.) has the extremal solutions

between the lower solution σ ≡  and the upper solution σ ≡ . Notice that σ ≡  and
σ ≡  are solutions of the differential equation in (.) but not solutions of the whole
problem.
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This problem falls inside the scope of our main result. To see it, simply define the func-
tions

f (t,u, v,γ ) =
u|v|

λt( – t)
[
φ

(
γ (t – /)

)
+ φ

(
γ (t + /)

)]
,

B–(t,γ ) = ψ–(t,γ ),

B+(t,u,γ ) =  +ψ+(t,γ )ψ+(u),

where

ψ–(t,γ ) =
∫ t+/

–/
k(s)γ (s)ds

and

ψ+(t,γ ) = –

√∣
∣∣
∣


– t max

t∈[–/,/]
γ (t)

∣
∣∣
∣, ψ+(u) = ( – u)/.

We are going to use Corollary . to prove that problem (.) has the extremal solutions
between σ ≡  and σ ≡  provided that


λ̃
=

max{|φ() + φ()|, |φ() + φ()|}
λ

∈ (, ) (.)

and

∫ /

–/
k(s)ds≤ . (.)

First we have to prove that σ and σ are, in fact, lower and upper solutions. To see that
σ is a lower solution, notice that B–(t, ) =  and B+(t, , ) =  – /

√
/ ≥ . Now, to

check that σ is an upper solution, we use

B–(t, ) =
∫ t+/

–/
k(s)ds≤  by virtue of (.)

and

B+(t, , ) =  –
√|/ – t| ≤  for t ∈ (, /).

Let us check the assumptions required in Corollary .. For all (t,u, v,γ ) ∈ (, )× [, ]×
R× [σ,σ] we have

∣∣f (t,u, v,γ )
∣∣ ≤ u|v|

λt( – t)
∣∣φ

(
γ (t – r–)

)
+ φ

(
γ (t + r+)

)∣∣ ≤ |v| + 
λ̃t( – t)

,

and then the condition (H) is satisfied as in Example . (with the same function ρ for all
γ ∈ [σ,σ]), thanks to condition (.).
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The remaining conditions over f are easily verified, and therefore we omit further ex-
planations.
Now for the boundary conditions. First, both ψ– and ψ+ are bounded w.r.t. t and non-

decreasing w.r.t. γ , and for s, t ∈ [–/, ] and γ ∈ [σ,σ] we have

∣∣ψ–(t,γ ) –ψ+(s,γ )
∣∣ ≤

∣
∣∣
∣

∫ t+/

s+/
k(s)ds

∣
∣∣
∣ ≤ |t – s|‖k‖,

so ψ–(·,γ ) is Lipschitzian for all γ with Lipschtitz constant ‖k‖. On the other hand, the
function ψ+ satisfies

∣∣
∣∣
∂

∂t
ψ+(t,γ )

∣∣
∣∣ ≤ 


,

and so condition (̃B) holds.
Finally, the function ψ+(u) = ( – u)/ is nonnegative for u ∈ [, ] and satisfies

∣
∣ψ ′

+(u)
∣
∣ ≤ 


≤

√


=

∣
∣ψ+(t, )

∣
∣– for all t ∈ (a,b),

and so condition (̃B) holds.
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