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Abstract

Background: Trophic structure and trophic transfer efficiency are among the most fundamental characteristics of
an ecosystem. They characterize the transfer of nutrient and energy and are crucial in estimating the yield of
harvestable biomass. In this study, we investigated the regulation of trophic structure (phytoplankton, zooplankton,
and larval fish abundance) and biomass ratio of zooplankton to phytoplankton (as an indicator of transfer efficiency)
in the East China Sea, one of the largest marginal seas in the world and an important fishing ground.

Results: The results showed that when sea surface temperature was below 25°C, temperature co-acted with resource
availability (zooplankton for larval fish and phytoplankton for zooplankton) in determining the trophic structure. When
sea surface temperature was above 25°C, resource availability dominated the regulation of trophic structure. Biomass
ratio of zooplankton to phytoplankton decreased with increasing phosphate concentration.

Conclusions: Our study suggested that the trophic structure of the East China Sea might be controlled by bottom-up
processes, and this control is mediated by temperature.

Keywords: Bottom-up control; Top-down control; Transfer efficiency; Phytoplankton; Zooplankton; Fish; Temperature;
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Background
The trophic structure organizes the biological components
of an ecosystem and channels the flow of nutrient and en-
ergy; thus, its regulation is a central issue in ecological re-
search (Ware and Thomson 2005; Casini et al. 2008;
Llope et al. 2012). In some marine ecosystems, the bio-
mass of each trophic level is largely determined by avail-
able resources, suggesting a bottom-up control (e.g.,
Iverson 1990; Ware and Thomson 2005; Chassot et al.
2007), whereas in other marine ecosystems, the predator-
prey interaction at higher trophic levels cascades down to
the lower ones, demonstrating a top-down process (e.g.,
Frank et al. 2005; Daskalov et al. 2007; Casini et al. 2008).
Actually, both processes could act simultaneously in an
ecosystem, and the balance of bottom-up versus top-
down control might depend on the ecosystem's state
and integrity (Hunter and Price 1992; Gripenberg and
Roslin 2007).
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In addition to the direction of trophic interactions, the
strength of these interactions, characterized by trophic
transfer efficiency, is crucial for understanding many
ecological processes (Pauly et al. 1998). Trophic transfer
efficiency describes the proportion of prey production
that is converted to predator production. It may influ-
ence trophic structure and food chain length (Hairston
and Hairston 1993; Post 2002) and is necessary for esti-
mating fishery production and the amount of carbon
transfer (Pauly et al. 1998; Richardson and Jackson
2007). Therefore, great research efforts have been devoted
to understand the regulation of trophic transfer efficiency,
and the factors proposed include environmental condi-
tions such as temperature, light or nutrients (Dickman
et al. 2008; Davis et al. 2010; Hoekman 2010), the indirect
effect from a third trophic level (bottom-up or top-
down cascade) (Hairston and Hairston 1993; Dickman
et al. 2008), and the composition, diversity and struc-
ture of the trophic levels in issue (Mallin and Paerl
1994; Ye et al. 2013).
Here, we investigated the trophic structure in the East

China Sea (ECS), one of the largest marginal seas in the
world. The ECS consists of a broad continental shelf
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bordered by China Mainland, Taiwan Island, Japanese
Archipelago, and Korean Peninsula and is characterized
by a complex hydrographic system with highly seasonal
dynamics (Ichikawa and Beardsley 2002; Takahashi and
Morimoto 2013). Parallel to the eastern edge of the ECS,
the Kuroshio Current flows northwards year round;
along the China coast, the southward China Coastal
Current dominates when the northeastern monsoon pre-
vails, and the northward Taiwan Strait Warm Current
enters from the south when the southwestern monsoon
governs. Freshwater discharge from Changjiang at the
northwest of the ECS and the Kuroshio upwelling at the
southeast of the ECS are the main nutrient sources for
the region (Liu et al. 1992; Gong et al. 2003). The ECS
ever supported a productive fishery and rich biodiversity
but has suffered heavy overfishing, eutrophication, and
other disturbances in the past decades (Chen et al. 1997;
Li et al. 2009).
Extensive studies have investigated the spatiotemporal

variation in the abundance or composition of larval fish
(Okazaki and Nakata 2007; Hsieh et al. 2011; Lefébure
et al. 2013), zooplankton (e.g., Liao et al. 2006; Lan et al.
2008; Tseng et al. 2008), and phytoplankton (e.g., Gong
et al. 2006; Liu et al. 2010; Gong et al. 2011) in the ECS.
Many of these previous studies used the abundance of
neighboring trophic levels to explain the variation of the
focal study group, but the multi-level trophic interac-
tions and the factors regulating them remained to be
Figure 1 Location of sampling stations in the East China Sea.
investigated. Furthermore, many studies focused on a
specific season or a confined area in the ECS, and infor-
mation about the overall pattern of this highly variable
ecosystem was scarce. In this study, we analyzed the
trophic interactions between larval fish, zooplankton,
and phytoplankton using a dataset covering the entire
ECS and comprised of data from different seasons. The
main objective is to answer (1) whether the trophic
structure of the ECS is controlled by a top-down or
bottom-up process and how the processes are mediated
by temperature, and (2) which factors may influence the
trophic transfer efficiency from phytoplankton to zoo-
plankton in the ECS.

Methods
Sample collection and data treatment
Biological samples and corresponding environmental
data were collected in seven cruises between 2007 and
2010 over the ECS (Figure 1, Additional file 1: Table S1).
Due to constraints of weather and ship time, not all sta-
tions were sampled during each cruise. In total, 120 sets
of samples were used in the analyses. For collecting lar-
val fishes and zooplankton, an ORI net (Omori 1965)
with a mesh size of 330 μm and a mouth diameter of
160 cm was towed obliquely from near the bottom to
the sea surface. The volume of filtered water per tow
was obtained from readings of a flowmeter attached to
the net. At each sampling station, water temperature
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and salinity along the vertical profile were recorded with
a CTD profiler (SBE 9/11 plus, SeaBird Inc., Bellevue,
WA, USA). Seawater samples were taken using Go-Flo
bottles at four to six depths spanning the water column.
From these samples, concentrations of chlorophyll-a, ni-
trate (NO3), nitrite (NO2), ammonium (NH4), phosphate
(PO4), and silicate (SiO3) were analyzed according to the
standard methods (Gong et al. 2003).
Larval fishes were counted and standardized to per

cubic meter. The majority of larval fishes sampled in
plankton nets are in very early stages of their develop-
ment; therefore, their density can be used as a rough
proxy for the abundance of spawning adults (Hsieh et al.
2009). We did not convert larval fish density to carbon
biomass, as we had no adequate information about the
length distribution and the weight-length relationship of
larval fish, which are necessary for the conversion. The
zooplankton settled volume was determined using the
displacement method (Ballón et al. 2011). To exclude
carnivorous zooplankton from the analyses, the samples
were digitized with the ZooScan integrated system, and
the scanned images were manually classified to calculate
the volume percentage of chaetognaths and jellyfishes
(Ye et al. 2011; Chang et al. 2012; García-Comas et al.
2013). The displacement volume of each sample was
then modified by multiplying a factor of (1 − percentage
of carnivorous zooplankton) and then converted to car-
bon biomass based on the regression formula from the
literature (Wiebe 1988; Sánchez and Olaso 2004).
Chlorophyll-a concentration was averaged over the towing
depth and converted to carbon biomass using a carbon:
chlorophyll-a ratio of 30 (Geider 1987). The abundance of
larval fish and the biomasses of zooplankton and phyto-
plankton were log-transformed prior to analyses. Concen-
trations of dissolved inorganic nitrogen (DIN, sum of
NO3, NO2, and NH4), PO4 and SiO3 were averaged over
the towing depth to indicate the nutrient status of each
station. Sea surface temperature (SST) and surface salinity
(SSS) were adopted to indicate the physical features of the
water.
The log-transformed ratio of zooplankton biomass to

phytoplankton biomass (Z:P ratio) was calculated as an
indicator of the trophic transfer efficiency from phyto-
plankton to zooplankton. The actual trophic transfer ef-
ficiency, defined as the production ratio of predator
versus prey, is very difficult to derive in natural marine
ecosystems. Therefore, the biomass ratio of adjacent
trophic levels has been used to infer the trophic transfer
efficiency (Gaedke and Straile 1994), despite that bio-
mass ratios may differ from production ratios and bio-
mass development of different trophic levels may not be
perfectly synchronized. A recent work, using the ship-
board incubation method to measure the production of
zooplankton and phytoplankton in the ECS, has proved
that there is indeed a very strong correlation between
biomass ratio and production ratio for the two tropic
levels (Su, in preparation).

Data analysis
We applied mixed-effects models to investigate which
factors may affect the abundance of each trophic level
and the Z:P ratio. For the larval fish density, we used the
biomass of zooplankton (food for fish), SST and SSS as
fixed-effect variables. For the biomass of zooplankton,
we used both the larval fish density (proxy of predation
on zooplankton) and the biomass of phytoplankton
(food for zooplankton) as well as SST and SSS as fixed-
effect variables. For the biomass of phytoplankton, we
used the biomass of zooplankton (proxy of predation on
phytoplankton), nutrient status (DIN, PO4, and SiO3,
which represent resources for phytoplankton), as well as
SST and SSS as fixed-effect variables. For the Z:P ratio,
we used larval fish density, SST, SSS, and nutrient status
as fixed-effect variables. We considered sampling cruise
as a random effect on both intercept and slope in all
analyses to account for variation among cruises, such as
seasonal effects.
As ecological relationships might show an abrupt

change which could indicate a change in underlying
mechanisms, we used piecewise regression analysis to
detect potential discontinuities in univariate models
prior to multivariate analyses (Toms and Lesperance
2003; Casini et al. 2009). Both the mixed-effects piece-
wise regression and generalized linear mixed-effects
model (GLMM) (Bolker et al. 2009) were applied to
model the relationship between each response variable
and each predictor. Fits of the two models were then
compared based on Akaike's information criterion (AIC)
(Akaike 1974). A reduction of 10 units or more in AIC
values is generally considered as a significant improve-
ment of the model fit (Bolker et al. 2009). Therefore, we
treated a relationship as segmented when the piecewise
model had an AIC value of at least 10 units lower than
the linear model (ΔAIC ≥ 10), and conducted the follow-
ing analyses for the specific response variable in groups
delineated by the point of discontinuity estimated by the
piecewise model with best fit.
We then used multivariate GLMMs with normal dis-

tribution and identity link function to identify the vari-
able combinations that could best model the biomass of
each trophic level and trophic efficiency. For each re-
sponse variable, all corresponding fixed-effect variables
were included in the initial model, and backward step-
wise selection was applied. The best models were deter-
mined based on AIC. The piecewise regression analysis
and GLMMs were performed with NLMIXED and
GLIMMIX procedures, respectively, in SAS 9.3 (SAS
Institute Inc., Cary, NC, USA).
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We further examined how much variance of the abun-
dance/biomass of each trophic level could be explained
by the abundance/biomass of other trophic levels by cal-
culating the marginal R2

GLMM (Nakagawa and Schielzeth
2013). Although the AIC value and other information
criteria are useful for comparing and selecting models,
they provide no information about the absolute model
fit and are not comparable between different datasets
(Burnham et al. 2011). A recent statistical development
offers a method for calculating the variance explained by
the fixed effect (marginal R2GLMM) and comparing cross-
datasets model fit for GLMMs (Nakagawa and Schiel-
zeth 2013). We constructed GLMMs for the abundance/
biomass of each trophic level using only the abundance
of one of the other trophic levels as the fixed effect, and
then calculated the marginal R2

GLMM as an indicator of
the strength of trophic interactions. The R2

GLMM was cal-
culated using the MuMIn package in R (R Core Team).

Results
In univariate analyses, the variation of larval fish density
could be best described by the piecewise model of SST
(Table 1). Larval fish density increased with increasing
SST when SST was lower than 25.3°C, but decreased with
increasing SST when SST was higher (Figure 2). For
phytoplankton biomass, abrupt changes occurred in its re-
lationships with SST (at SST = 24.8°C), SSS (at SSS = 32.0
psu), and DIN (at DIN = 10.4 μM), and the piecewise
model based on SST had the best fit among all models.
Table 1 Comparison of linear models and piecewise models

Response Predictor

Larval fish SSTa

SSS

Zooplankton biomass

Zooplankton SST

SSS

Phytoplankton biomass

Phytoplankton SSTa

SSSa

DINa

PO4

SiO3

Zooplankton/phytoplankton ratio SST

SSS

DIN

PO4

SiO3

Larval fish density

The relationships between the abundance/biomass of each trophic level and each p
and mixed-effects piecewise regression models, and the AIC values of the two appr
aThe piecewise model had a much better fit compared to the linear model (ΔAIC ≥
Therefore, we built multivariate GLMMs for larval fish
density and phytoplankton biomass in the temperature
ranges above and below 25°C, separately. However, for the
zooplankton biomass and the Z:P ratio, no piecewise
model performed significantly better than the correspond-
ing linear model according to the criterion of ΔAIC ≥ 10.
Thus, for the zooplankton biomass and the Z:P ratio, we
used the complete dataset. Nevertheless, we additionally
modeled zooplankton biomass in the two temperature
ranges for comparison purposes.
The results of multivariate GLMMs showed that

bottom-up forces played an important role in shaping
the trophic structure of the ECS (Table 2). In both
temperature ranges, the biomass of phytoplankton was
determined only by physical and nutritional variables,
the zooplankton biomass increased with increasing
phytoplankton biomass, and the larval fish density in-
creased with increasing zooplankton biomass. The larval
fish density was positively correlated with both zooplank-
ton biomass and SST when SST was below 25°C. When
SST was above 25°C, only zooplankton biomass influ-
enced larval fish density. Zooplankton biomass could be
best explained by phytoplankton biomass when using the
complete dataset, although, when SST was below 25°C,
the model including the effect of SST in addition to
phytoplankton biomass offered a better fit to zooplankton
biomass than the model with phytoplankton biomass
alone. For the Z:P ratio, only the negative effect of PO4

concentration was included in the final model.
AIC linear model AIC piecewise model Cut point

452.1 440.5 25.3

460.6 462.1 32.2

446.6 447.0 −1.9

358.4 360.2 25.2

363.9 362.9 32.8

354.2 358.0 8.9

216.0 192.6 24.8

216.6 204.7 32.0

211.4 198.9 10.4

219.4 223.4 0.2

219.6 213.1 16.3

363.0 364.8 24.5

362.4 365.4 28.3

353.2 355.5 9.0

342.9 348.2 0.5

353.8 356.8 4.7

356.2 360.2 −1.3

redictor variable were analyzed using generalized linear mixed-effects models
oaches were compared.
10), indicating a change of relationship at the cut point.



Figure 2 Relationships between the abundance/biomass of
each trophic level and SST. (a) Larval fish abundance and SST,
(b) zooplankton biomass and SST, and (c) phytoplankton biomass and
SST. The trend lines were based on piecewise regression with random
effects in (a) and (c), and on generalized linear mixed models in (b).
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When SST was below 25°C, about 9% of the variation
in larval fish density could be explained by zooplankton
biomass, and about 5% of the variation in zooplankton
biomass could be explained by phytoplankton biomass
(Figure 3). When SST was above 25°C, the explained
variation of larval fish density by zooplankton biomass
and zooplankton biomass by phytoplankton biomass
raised to 23% and 14%, respectively. Less than 1% of the
variation in larval fish density could be explained by
phytoplankton biomass when SST was below 25°C, while
21% could be explained by phytoplankton biomass when
SST was higher.

Discussion
Our study suggested that the bottom-up control regulates
the trophic structure in the East China Sea, and this con-
trol is mediated by temperature (Table 2, Figure 3). The
results of multiple GLMMs showed that temperature co-
acted with resource availability in determining the trophic
structure when SST was below 25°C (Table 2). Corres-
pondingly, phytoplankton biomass alone was a poor pre-
dictor for zooplankton biomass, and likewise, zooplankton
biomass alone was a poor predictor for larval fish density
(Figure 3). By contrast, while SST was above 25°C, the
bottom-up process dominated the regulation of trophic
structure; thus, the trophic levels were well coupled and
the fish production could be better predicted by primary
production.
It is worthy to clarify the effects of temperature on

trophic structure in the ECS. We found that the relation-
ship between phytoplankton biomass and temperature
showed an abrupt change at SST of about 25°C (Table 1,
Figure 2). Such a change may be related to the spatiotem-
poral variation of the temperature and nutrient conditions
in the system. Specifically, the temperature of the coastal
area affected by the Changjiang discharge (the main
source of nutrient input into the ECS) is relatively low and
changes seasonally (SST from 11°C to 26°C; Gong et al.
2003). On the contrary, the oligotrophic Kuroshio Current
bordering the ECS is warm and relatively stable in
temperature (SST from 20°C to 30°C). That is, the nutrient
level is negatively correlated with water temperature in
the ECS, and the decline is particularly sharp when the
shelf water encounters the Kuroshio Current, on average
at SST around 25°C. It is well known that SST is a reason-
able proxy for nutrient status in the ECS (Gong et al.
2003). Thus, our finding of the relationship between
phytoplankton biomass and temperature (Figure 2) basic-
ally signals the bottom-up effects of nutrient on phyto-
plankton, which is mediated by the hydrography of ECS.
Indeed, the phytoplankton biomass also showed a signifi-
cant relationship with nutrients (Table 1).
The change of the relationship between fish abun-

dance and SST at about 25°C (Table 1, Figure 2) may be
related to the physiology of fish, the change in fish as-
semblage, and food availability. When SST was below
25°C, the larval fish abundance was positively correlated
with SST. This observed relationship could be underlain
by the fact that fish assemblage changes along the
temperature gradient (Hsieh et al. 2011; Lefébure et al.
2013) and different fish species may have different
physiological responses. Note, however, that zooplankton
biomass also play some roles when SST is below 25°C



Table 2 Generalized linear mixed-effects models for the abundance/biomass of each trophic level and the Z:P ratio

Model AIC of final model Variables in final model Estimate SE t P

Larval fish (SST ≤ 25°C) 231.4

~ Zooplankton, SST, SSS Zooplankton biomass 0.485 0.201 2.40 <0.05

SST 0.279 0.052 5.32 <0.01

Larval fish (SST > 25°C) 198.1

~ Zooplankton, SST, SSS Zooplankton biomass 0.657 0.170 3.87 <0.05

Zooplankton (full range) 354.2

~ Fish, phytoplankton SST, SSS Phytoplankton biomass 0.565 0.143 3.94 <0.01

Zooplankton (SST ≤ 25°C) 195.8

~ Fish, phytoplankton SST, SSS Phytoplankton biomass 0.593 0.261 2.36 0.05

SST −0.065 0.047 −1.39 0.22

Zooplankton (SST > 25°C) 157.6

~ Fish, phytoplankton SST, SSS Phytoplankton biomass 0.643 0.190 3.38 <0.05

Phytoplankton (SST ≤ 25°C) 100.9

~ Zooplankton, SST, SSS, nutrients SST −0.057 0.023 −2.52 0.05

SSS −0.149 0.048 −3.09 <0.05

PO4 0.673 0.488 1.38 0.22

Phytoplankton (SST > 25°C) 71.5

~ Zooplankton, SST, SSS, nutrients SST −0.193 0.047 −4.07 <0.05

SSS −0.096 0.026 −3.76 <0.05

PO4 0.585 0.480 1.22 0.30

Zooplankton/phytoplankton ratio (full range) 342.9

~ Fish, SST, SSS, nutrients PO4 −1.729 0.439 −3.87 <0.01
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(Table 2, Figure 3a). When SST was above 25°C, the larval
fish abundance decreased with increasing temperature.
The change of fish assemblage along the temperature gra-
dient could not provide a satisfactory explanation for this
unexpected finding, as SST was not a significant predictor
in the multivariate GLMMs (Table 2). The observed rela-
tionship between fish abundance and SST in warm waters
could be best explained by food availability. Specifically, in
the ECS, the biomass of zooplankton decreases with in-
creasing water temperature, as a result of decreasing
phytoplankton biomass through the bottom-up control.
At SST above 25°C, the larval fish abundance is limited by
zooplankton abundance and the increase of temperature
exhibits no beneficial effects to the larval fish abundance.
Our analyses are consistent with the results of Chen et al.
(2014), which suggested that the abundance of larval fish
in the ECS was mainly affected by SST in the cool season
and by food availability in the warm season.
Our finding that the bottom-up control regulates the

trophic structure in the East China Sea (Table 2, Figure 3)
is consistent with the patterns found along the continental
margin of western North America (Ware and Thomson
2005) and with the study using the cross-system compara-
tive method (Iverson 1990). However, our finding is
in contrast with some studies in the over-exploited
ecosystems of northwest Atlantic (Frank et al. 2005),
the Black Sea (Daskalov et al. 2007), and the Baltic Sea
(Casini et al. 2008; Mollmann et al. 2008; Casini et al.
2009), where the top-down process and trophic cascade
were found to control the trophic structure after the re-
moval of top predators. Despite being heavily exploited
(Chen et al. 1997; Liu and Zhan 1999), the top-down
control did not dominate the ECS ecosystem in the
trophic levels we examined. The current extent of exploit-
ation and the more diverse community of the subtropical
ECS compared to the other studied over-exploited systems
could be part of the reason, as simpler food webs are more
likely to be governed by top-down regulation (Bascompte
et al. 2005; Frank et al. 2007). The regulating mechanism
of the trophic structure may nevertheless change over
time (Casini et al. 2009; Davis et al. 2010). Our results pro-
vide the scenario in the ECS between 2007 and 2010. It is
worth further monitoring that, under the continuing nat-
ural and artificial changes into its environment and bio-
logical communities, whether the regulating mechanism
in the ECS may alter.
We found that the Z:P ratio decreased with increasing

PO4 concentration (Table 2). Similar results have been
found in phosphate-limited environments and could in-
dicate a cascade effect that regulates trophic transfer



Figure 3 Relationships between the abundance/biomass of different trophic levels. (a) Larval fish abundance versus zooplankton biomass,
(b) zooplankton biomass versus phytoplankton biomass, and (c) larval fish abundance versus phytoplankton biomass when SST ≤ 25°C and when
SST > 25°C. The trend lines were based on generalized linear mixed models.
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efficiency (Jeppesen et al. 1997, 2003; Dickman et al.
2008). Increasing concentration of PO4 may boost the
growth of fish via high food quality. This would result in
a high predation rate of fish on zooplankton, which then
further suppresses the grazing pressure of zooplankton
on phytoplankton. Whether this is the actual mechanism
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operating in the ECS, though, remains to be further
investigated.
We recognize that this study was based on a simplified

tri-trophic food chain, whereas the real food web is
much more complicated (Bascompte and Melian 2005).
For example, the microbial loop may provide mesozoo-
plankton with additional food sources (del Giorgio and
Gasol 1995). The microzooplankton may have significant
grazing impact on phytoplankton as well as contribute
to the diet of mesozooplankton (Calbet 2008). However,
we currently do not have the data to evaluate the roles of
the microbial loop and microzooplankton. The current
correlation analyses, nevertheless, reveal interesting infor-
mation that may provide a first step for further investiga-
tion into the mechanisms.

Conclusions
In summary, our study suggested that the bottom-up
control is the prevailing mechanism regulating the
trophic structure of the East China Sea. We also demon-
strated how temperature and nutrient status influence
the abundance of each trophic level. Our study could
offer a base in further understating how eutrophication
and temperature change may influence the ecosystem of
the East China Sea.

Additional file

Additional file 1: Table S1. Date and sampling stations of each cruise
used in this study.
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