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Abstract

Background: In a series of studies of the gut microbiome, “enterotypes” have been used to classify gut
microbiome samples that cluster together in ordination analyses. Initially, three distinct enterotypes were described,
although later studies reduced this to two clusters, one dominated by Bacteroides or Clostridiales species found
more commonly in Western (American and Western European) subjects and the other dominated by Prevotella
more often associated with non-Western subjects. The two taxa, Bacteroides and Prevotella, have been presumed to
represent consistent underlying microbial communities, but no one has demonstrated the presence of additional
microbial taxa across studies that can define these communities.

Results: We analyzed the combined microbiome data from five previous studies with samples across five
continents. We clearly demonstrate that there are no consistent bacterial taxa associated with either Bacteroides- or
Prevotella-dominated communities across the studies. By increasing the number and diversity of samples, we found
gradients of both Bacteroides and Prevotella and a lack of the distinct clusters in the principal coordinate plots
originally proposed in the “enterotypes” hypothesis. The apparent segregation of the samples seen in many
ordination plots is due to the differences in the samples’ Prevotella and Bacteroides abundances and does not
represent consistent microbial communities within the “enterotypes” and is not associated with other taxa across
studies. The projections we see are consistent with a continuum of values created from a simple mixture of
Bacteroides and Prevotella; these two biomarkers are significantly correlated to the projection axes. We suggest that
previous findings citing Bacteroides- and Prevotella-dominated clusters are the result of an artifact caused by the
greater relative abundance of these two taxa over other taxa in the human gut and the sparsity of Prevotella
abundant samples.

Conclusions: We believe that the term “enterotypes” is misleading because it implies both an underlying
consistency of community taxa and a clear separation of sets of human gut samples, neither of which is supported
by the broader data. We propose the use of “biomarker” as a more accurate description of these and other taxa
that correlate with diet, lifestyle, and disease state.
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Background
The gut microbiome plays an important role in human
health and disease. Understanding what constitutes a
health-promoting (eubiotic) or disease-promoting (dys-
biotic) microbial community has become the focus of
significant research. In 2011, Arumugam et al. [1] postu-
lated that all human gut microbiomes could be classified
as one of three distinct bacterial communities or “entero-
types”1. The researchers used ordination analysis on three

datasets: a set of 33 European, Japanese, and American
subjects, a set of 85 Danish, and a set of 154 Americans.
Each dataset independently displayed a similar clustering
pattern with subjects dominated by one of three different
taxa: Bacteroides, Provetella, or members of the order Clos-
tridiales. The authors speculated that if this clear separation
of clusters were evident across all human gut samples,
people could be classified by their enterotype, which could
in turn be used to guide diagnostics and treatment options.
Only one of datasets showed clear separation between the
Bacteroides- and Clostridiales-dominated samples, while
two showed overlapping points consistent with a gradient.
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Since the introduction of the enterotypes hypothesis,
several studies have evaluated their presence in other
human gut communities. The first such study by Wu et
al. [2] sequenced 98 Americans and used multiple clus-
tering techniques but found only two of the three ori-
ginal clusters: Bacteroides and Prevotella, laying at either
end of a Prevotella-Bacteroides gradient. The third clus-
ter was not distinct in their data, with Ruminococcus (a
Clostridiales genus) equally abundant in both of the first
two enterotypes. They compared their findings with a
previously published study on Italian and rural African
children wherein Italian children had Bacteroides-domi-
nated gut microbiomes and African children Prevotella-
dominated gut microbiomes. As part of our own analysis
of over 200 healthy American subjects enrolled in the
Human Microbiome Project (HMP) [3], we confirmed
the results of Wu et al. that two of the three clusters
were not distinct. Samples high in Bacteroides or mem-
bers of the order Clostridiales, including Ruminococcus,
form a continuum, rather than discrete clusters. While
the Prevotella-dominated samples did cluster separately
with the HMP data, we speculated that as more samples
and studies were evaluated, the separation between clus-
ters would diminish, and gut communities would appear
as a continuum of abundance gradients between Bacter-
oides, Prevotella, and various members of the order
Clostridiales. In a review article published soon after,
Jeffrey et al. [4] reached the same conclusion that a gra-
dient of microbial populations was a more accurate in-
terpretation of the data.
Several studies thereafter sought to re-examine entero-

types using more careful clustering analyses [5–7]. Over-
all, these additional studies demonstrated that with
increased statistical rigor, support remained for only two
community types: one dominated by Prevotella and one
dominated by Bacteroides or members of the Firmicutes
[5]. Additionally, the utility of enterotypes to classify pa-
tients was shown to be limited given that individuals can
shift between Bacteroides/Firmicutes- and Prevotella-
dominated communities over time, with as many as
30 % of samples in one dataset shifting between entero-
types [6, 7]. Knights et al. [6] further cautioned that su-
pervised ordination methods can lead to false clustering
when the number of features in the data (here microbial
genera) is much higher than the number of samples, as
is the case in most human gut microbiome studies.
Overall, these studies found that the weight of evidence
did not support the classification of human gut micro-
biomes into discrete and stable enterotypes.
Despite the ongoing refutation of the appropriateness

and stability of enterotypes, researchers continue to use
them to interpret ordination analyses that separate
Prevotella-dominated communities from those domi-
nated by Bacteroides, Clostridiales, and a fourth taxon,

Bifidobacterium. These communities recur across vari-
ous study populations and diets. For instance, in a study
that predated the enterotypes hypothesis, De Filippo
et al. [8] studied 29 children, 15 from Italy and 14 from
Burkino Faso. The gut microbiomes of the Burkino Faso
children were mostly dominated by Prevotella, while the
Italian children were mostly dominated by Bacteroides
and Clostridiales. Both populations included a few sub-
jects dominated by Actinobacteria, mainly Bifidobacter-
ium, a beneficial microbe associated with milk-based
diets such as breast-feeding [9]. The Burkino Faso diet
was rich in vegetables and fiber, and children were
breast-fed up to 2 years of age. The diet of the Italian
children was a “Western diet” low in fiber, incorporating
more animal protein, fat, and sugar, and children tended
to be breast-fed for only 1 year. It was postulated that
diet could be a driving factor in shaping the gut
microbiome.
Ou et al. [10] compared twelve African Americans and

twelve native Africans as part of a study examining
the higher prevalence of colon cancer in Americans.
The populations clustered distinctly, with the African
Americans dominated by Bacteroides and the native
Africans by Prevotella. The native African diet was high in
complex fiber, while the African American diet was a
Western diet high in protein. Yatsunenko et al. [11] com-
pared gut microbiome samples of healthy adults and chil-
dren from Malawi, Venezuela, and the USA. They found a
gradient of Bacteroides and Prevotella in both adults and
children over 6 months. They also found a discrete group
of samples dominated by Bifidobacterium, in children
under 6 months of age, which is consistent with its associ-
ation with breast-feeding. The US subjects clustered sep-
arately from the Malawian and Venezuelans, who had
relatively more Prevotella.
In a comparison of 50 metropolitan and 46 rural

Russians, Tyakht et al. [12, 13] found between two and
three community types. Prevotella accounted for one of
the clusters and was prevalent in samples from one of
the rural villages, but Firmicutes (rather than the
combination of Bacteroides and Firmicutes) and Bifido-
bacterium dominated the remaining samples. The ingre-
dients of the diet eaten by the metropolitan subjects
were similar to those in a Western diet, but the sources
of their food were very different. The authors speculated
that the lack of Bacteroides-dominated samples could be
due to the metropolitan Russian food sources, which
were homegrown rather than industrially processed.
Overall, the results from these various studies are
consistent. The gut microbiomes of Americans and
Europeans having a Western diet tend to be dominated
by Bacteroides and Clostridiales, while rural populations
with a high fiber, low-protein diet tend to be dominated
by Prevotella.
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Despite the frequent use of the term “enterotype” to
describe clustering of the gut microbiomes of research
subjects from different cultures and with different diet-
ary habits, the membership of the microbial communi-
ties associated with the enterotypes has not been clearly
defined. Prevotella, Bacteroides, Clostridiales, and Bifido-
bacterium are recurring taxa, but a deeper understand-
ing of the community structure of samples dominated
by these taxa across continents and cultures has not
been undertaken. Whether distinct community types or
gradients, stable over time or not, we do not have a
functional description of what other bacteria comprise
the Prevotella- or Bacteroides/Clostridiales-dominated
clusters beyond the dominant taxon. Here we present an
analysis of the combined data from these published
studies to characterize the broader community member-
ship of the two primary enterotypes, so that we might
better understand what these communities can tell us
about the human gut microbiome.

Results and discussion
Our analysis compiled 747 samples from five studies
encompassing 484 genera. We included 126 samples
from the Arumugam et al. [14]: 41 mixed Europe
and Asia, 85 Europeans, 24 Native African and
African American samples [10], 96 urban and rural
Russians samples [12], 210 samples of healthy American
adults from the Human Microbiome Project [15], and 291
adult samples from Malawi, Venezuela, and America [11].

Multivariate analysis
The “enterotype” hypothesis was initially proposed based
on clustering results seen in a principal coordinates ana-
lysis. In our initial ordination analysis, we found that all
three populations from the Yatsunenko study clustered
separately from the remaining studies (Additional file 1:
Figure S1). We therefore performed our primary multi-
variate analyses without these samples but then con-
firmed our findings with an independent analysis of
them. Combined samples from the four remaining data-
sets do not cluster discretely with either metric or non-
metric multidimensional scaling (PCoA2 or NMDS3),
using Bray-Curtis or Morisita-Horn distances, but in-
stead show a gradient across both dominant taxa and
study populations (Fig. 1, Additional file 2: Figure S10).
Coloring by dominant taxa (Fig. 1a) and the Prevotella
ratio (the ratio of Prevotella to the sum of Prevotella and
Bacteroides) (Fig. 1b) illustrate the relationship of axes 1
and 2 to Bacteroides (toward the upper right) and Prevo-
tella (toward the lower left) in the samples. When col-
ored by population, we see that the second axis
separates the samples within a population, as does the
first axis but to a lesser extent (Fig. 1c). In PCoA analysis
of the Malawi, Venezuela, and US populations from the

Yatsunenko study (Additional file 3: Figure S7), the first
axis appears to correspond primarily to the Prevotella
ratio. The three countries are spread along the second
axis with the US samples separating from the other two,
but the Malawian and Venezuelan samples are inter-
mingled. In general, these data do segregate along the
first axis, with fewer intermediate samples than in the
combined studies, but distinct clustering is unclear.
These ordination results show that the primary axes
continue to correlate with Bacteroides and Prevotella
when the studies are combined.
To assess the persistent clustering of the microbial

communities independent of the relative abundances of
Bacteroides and Prevotella, we removed these two taxa
from all the samples and reran the PCoA analysis
(Fig. 1d, Additional file 3: Figure S7B). Without Prevo-
tella and Bacteroides, the original microbial community
classifications (“enterotypes”) no longer segregate the
samples. The ellipses in Figs. 1a and 1d were constructed
as confidence regions for each of the groups; these re-
gions would represent 95 % of the points if the bivariate
data were Gaussian. This demonstrates the effect on the
clustering of removing the two dominant taxa. When
the dominant taxa are included, the ellipses abut without
overlapping. When the dominant taxa are removed, two
of the ellipses are almost completely within the third,
and all but three of the Prevotella-dominated samples
are contained within the ellipse delineating the central
Bacteroides samples. Separation of the original clusters
is no longer present, and the remaining taxa now ac-
count for only 33 % of the variability along axes 1 and 2,
as opposed to 54 %. The ordinations of the full samples
appear to be driven primarily by the relative quantities
of these two highly abundant taxa and not by the pres-
ence of distinct microbial communities associated with
each group. Interestingly, there is still clustering struc-
ture and differentiation of samples visible in Fig. 1d, as
one would expect when comparing samples from pa-
tients in different geographic regions having different
lifestyles and diets. These data structures, however, no
longer correlate clearly with Bacteroides and Prevotella.

Taxonomic components of microbial communities
To identify taxa integral to a broader definition of mi-
crobial community structures, we looked for taxa that
correlated with the dominant genus (Prevotella or
Bacteroides) across studies (Additional file 4: Table S1).
Several researchers reported correlations within Bacter-
oides-dominated samples within their studies, including
Acidminococcus, Roseburia, Faecalibacterium, Anaeros-
tipes, Parabacteroides, and Clostridiales [14], Alistipes
only [16], Escherichia (Enterobacteriaceae) and Acineto-
bacter [10], and Faecalibacterium and Enterobacteria-
ceae [8]. None of these associations, however, were
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Fig. 1 (See legend on next page.)
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apparent across all studies. In fact, only Faecalibacter-
ium and Enterobacteriaceae appear in even two of the
four studies that reported correlation analyses. No corre-
lations were found within the Prevotella-dominated sam-
ples in more than one previous study. Prevotella was
associated with Streptococcus, Enterococcus, Desulfovibrio,
and Lachnospiraceae [14], Succinivibrio and Oscillospira
[10], and Xylanibacter and Butyrivibrio [8]. The majority
of taxa found in the Russian communities [12, 13] were
not found in previously reported studies. Tyakht et al.
used triplets of the three most abundant members of their
various samples to compare with these other studies and
found that 43 % of their samples were dominated by trip-
lets not found in the non-Russian groups.
To confirm this finding of no consistent multi-study

taxa associated with either dominant taxon, and to in-
crease our statistical power of detection, we combined
the samples from all of the studies and reanalyzed them.
We used the Spearman coefficient (a nonparametric
method used in most of the previous studies) as well as
SparCC [17]. Using Spearman on all the data and the
DESeq2 [18] negative binomial test on the HMP data,
we found no taxa in the combined set of Prevotella-
dominated samples that correlated with Prevotella above
our threshold for statistical and biological significance
(Additional file 4: Table S1). SparCC did find two
Clostridiales genera that correlated with Prevotella in
the combined dataset, Ruminococcus (R2 = 0.77) and
Dialister (R2 = 0.73), but neither of these had a signifi-
cant correlation in any single study. In the combined
Bacteroides-dominated samples, we did not find any sig-
nificant correlations using the Spearman correlation. A
few Clostridiales taxa and one Bacteroidales genus in in-
dividual studies did seem correlated with Bacteroides,
but none of these were found in more than two of the
studies. Using SparCC, Subdoligranulum (R2 = 0.75) and
Faecalibacterium (R2 = 0.73) correlated with Bacteroides
but only in the combined set, not in any of the individ-
ual datasets. No taxa were significant in more than one
of the studies when analyzed separately. These data do
highlight that members of both Bacteroidales and
Clostridiales are prominent members of the human gut
microbiome of Americans and Western Europeans.
To explore additional taxonomic differences between
groups defined in the Yatsunenko and HMP studies

as Prevotella-rich and Bacteroides-rich, we used the
package DESeq2 and the tests based on variance
transformed data using the negative binomial model
(DESeq function with default arguments) as explained
in [18]. This provided a ranking of the most differentially
abundant taxa. The analysis of the Yatsunenko data
showed Parabacteroides, Alistipes, and Subdoligranulum,
to be more prevalent in Bacteroides-dominated samples,
but these results were not reflected in the HMP data. The
DESeq2 analysis confirmed the previous analyses, showing
no taxa consistently associating with the Bacteroides- and
Prevotella-dominated samples. Recent work by Lovell et
al. [19] has emphasized the importance of proportionality
analysis when working with relative abundance data. Ap-
plying their proposed algorithm on our compiled data, we
still found no significant proportionalities across studies.
The taxa that had proportionality statistics less than 0.01
were either very rare or even possibly artifacts of the se-
quencing process. Two of these taxa were found in only
one sample, and all of the others were identified in only
populations from one study (the European samples from
the Arumugam study). They are not prevalent in either
the Prevotella- or Bacteroides-dominated samples, and in
fact, are absent from the majority of both. These taxa are
clearly not important functional components or bio-
markers of a human gut community. The analysis itself
can be found in the Additional file 5 containing the Rmd
commands, data and output. This file contains all the code
the reader could require to follow the same workflow on a
different data set.
To further understand groupings based on the abun-

dance of Prevotella, we compared the Prevotella ratio
(Prevotella/[Bacteroides + Prevotella]) for all samples in
each study. Figure 2 illustrates the clear presence of
samples across the full spectrum of relative abundances
of Prevotella and Bacteroides, although different studies
have varying numbers of samples in the intermediate
ranges. Americans and Europeans, which make up the
largest number of subjects, have fewer samples with
intermediate Prevotella ratios, while studies containing
more rural subjects have a greater number of intermedi-
ate samples. Bacteroides tends to be higher in Western
populations, with a more even distribution of values
across samples (Additional file 1: Figure S1), while Pre-
votella tends to have fewer intermediate values in the

(See figure on previous page.)
Fig. 1 PCoA plots using the Bray distance metric with all the samples except for the Yatsunenko study. a Samples colored by their most
prominent taxon. If the sample is dominated neither by Prevotella nor Bacteroides, it is classified as other. Ellipses were projected for each group
in the plot. The ellipse axes represent the directions of the within-group covariance matrices, and their bounds represent two standard deviations
in each direction from the cluster mean. b Samples are colored by their value for the Prevotella ratio (relative abundance of Prevotella/[Bacteroides+
Prevotella]) on a spectrum with red indicating no Prevotella and purple no Bacteroides. c Samples are colored by population of origin. d The Bray
distance has been recalculated without the relative abundances of Bacteroides and Prevotella. Samples are colored by most prominent taxon in the
original samples distributions, and ellipses were projected for each group in the plot (same as in plot a)
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Western samples and more in Russian and rural samples
(Additional file 6: Figure S2).
We compared the abundance distributions of Prevo-

tella and Bacteroides with other common genera in the
combined studies (Fig. 3 and Figure S11 in the Add-
itional file 7 for the same boxplot without the Yatsu-
nenko study). Bacteroides, Prevotella, Lachnospiraceae,
Faecalibacterium, Roseburia, Ruminococcus, Alistipes,
and Coprococcus are among the next most common gen-
era across all studies. Bacteroides, Prevotella, and Alis-
tipes are members of the order Bacteroidales, while the
remaining taxa are all members of Clostridiales. In ap-
proximately 42 % of samples, Bacteroides has a relative
abundance between 10 and 40 %, with more than 80 %
of samples having a relative abundance greater than 5 %.
Prevotella has a relative abundance between 10 and 40 %
in 16 % of samples, but 75 % of samples have a relative
abundance less than 5 %. While Bacteroides exhibits a
higher proportion of intermediate abundances overall than
does Prevotella, Prevotella shows a spectrum of abun-
dances rather than a bimodal distribution as some have
assumed, with more samples between 40 and 80 % than
any taxon other than Bacteroides.

Conclusions
Although several studies show some discrete clusters,
most other studies have shown a continuous gradient of
communities [2–7] that can change within an individual
over time [6, 7], and no one has evaluated the taxonomic
composition of the clusters across studies. The consistent
body of evidence accumulating about the structure and
role of the microbiome in human health demonstrates
that standard microbiome methods are sufficient to com-
pare across studies of the human gut. Here we analyze the
combined microbiome data of five earlier studies and
show that the gut microbiomes labeled as Bacteroides and
Prevotella “enterotypes” do not represent consistent or
predictable communities. No other bacterial taxa correlate
with either of the two primary biomarkers across studies
other than the taxa for which they are named. While the
original study included a correlation analysis, the results
represented the differences in their particular study popu-
lations, rather than a set of universal correlations. As was
pointed out as early as 1896 by Pearson [20], proportions
give rise to spurious correlations and our approach here
relies on the study of proportions that eliminate the com-
mon denominators as suggested in [19].

Fig. 2 Prevotella ratio distributions (relative abundance of Prevotella/[Bacteroides + Prevotella]) within each population. The x-axis represents quan-
tiles (from 0 to 1) to facilitate simultaneous plotting. The black line represents all the samples. The green points are from the Native African vs. Afri-
can American Ou et al. study, the yellow points are from the Russian Urban vs Rural Tyakht et al. study, the pink points are from the Malawi,
Venezuela, US Yatsunenko et al. study, the red points are from the Mixed Europe and Asia Arumugam et al. study, the blue points are from the
European Arumugam et al. study, and the light blue points are from the NIH Human Microbiome Project study
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Despite ongoing re-evaluation of the evidence, re-
searchers have continued to use the term “enterotype”
to describe differences between microbiome communi-
ties in study populations. The continued use of entero-
type classifications is primarily a result of the ordination
algorithms used to differentiate sets of samples based on
the most distinguishing taxa. Of all the taxa in the com-
bined studies, Bacteroides and Prevotella are the only
two whose relative abundances frequently exceed 40 %
(Fig. 3). Additionally, it is often the case that when Bac-
teroides is high in a sample, Prevotella will be low, and
vice versa. These two taxa, therefore, contribute more
than any others to the pairwise dissimilarity between
samples. The various ordination method (PCoA, NMDS)
plot samples with larger pairwise distances farther apart,
and samples with smaller pairwise distances closer to-
gether. Because Prevotella and Bacteroides have the
greatest range of values and tend to be inversely related,
they contribute the most to the magnitude of pairwise
distances, and therefore contribute the most to separ-
ation in ordination plots, leading to Bacteroides- and
Prevotella-dominated gradients in ordination plots.
Bacteroides abundance correlates significantly with
the first axis, having a correlation of 0.93 (p value
<10^-5). Prevotella abundance correlates significantly
with the second axis having a negative correlation of
−0.8 (p value <10^-4).
To illustrate how these Bacteroides and Prevotella

abundances can drive ordination plots and that no other

taxa were associated to the “enterotype” definitions, we
compared ordination results with and without these two
taxa (Fig. 1a, d, Additional file 8: Figure S4D, Additional
file 9: Figure S5D, Additional file 3: Figure S7D, and
Additional file 10: Figure S9D). We found that the
remaining taxonomic-community members did not con-
tinue to separate these samples by microbial component
classification. Ordination plots are not a means for de-
fining underlying community characteristics and can
only be part of the exploration of community structure
rather than the endpoint of analysis. The dearth of any
consistent features of these communities across inde-
pendent studies is a reminder for us not to extrapolate
from PCoA and NMDS plots to assumptions about the
defining characteristics of the entire communities. In
studies comparing only two very different populations
(e.g., Western urban and non-Western rural), separation
will likely remain even without Bacteroides and Prevo-
tella, but we cannot extrapolate from any two popula-
tions to consistent clustering across a range of diverse
populations when the two dominant taxa, Bacteroides
and Prevotella, are removed. The combination of correl-
ation results and ordinations with and without the dom-
inant taxa can be used to compare across other studies
to interpret clusters as driven by the most dominant taxa
or by a deeper community structure.
We believe that using the term “enterotype” to de-

scribe gut communities is misleading because it implies
a microbiome community type shared among samples

Fig. 3 Boxplot of the top 20 taxa across all the studies. The dark horizontal line represents the mean relative abundance, and the box represents
the bounds of the 25th and 75th percentiles
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with the same enterotype designation. We propose the
use of the term “biomarker” to describe the dominant
taxon of the community rather than “enterotypes” to de-
scribe gut microbiomes. Biomarkers serve as a measur-
able indicator of a biological state or environmental
exposure [21]. In this regard, genera such as Prevotella,
Bacteroides, and Bifidobacterium potentially serve as ef-
fective biomarkers of diet and lifestyle. Across the stud-
ies, Prevotella was associated with non-Western, rural
communities, and a plant-based diet rich in polysaccha-
rides and fiber [2, 8, 10, 11, 13, 21]. In each study sam-
pling the gut microbiome of subjects from native or
rural villages (Burkina Faso [8], South Africa [10],
Venezuela and Malawi [11], and Russia [12]), Prevotella
was commonly dominant in the adult samples. In these
same studies, Bacteroides-dominated samples were more
generally associated with samples from US and Euro-
pean subjects eating a Western diet, richer in protein
and fat. Wu et al. [2] graphically illustrated correlations
between Bacteroides and dietary amino acids and fats.
Beyond Prevotella and Bacteroides, additional taxa can

also serve as biomarkers of diet or disease. Bifidobacter-
ium was identified as a dominant bacterium in several
studies [8, 11, 12], especially the gut microbiome of chil-
dren [8, 11]. Bifidobacterium has specific adaptations
that provide a competitive advantage for metabolizing
the specific human milk oligosaccharides found in breast
milk [9]. Various members of the phylum Firmicutes are
associated with plant-derived fiber, amino acids, and fats.
Firmicutes as a phylum, however, is unlikely to be an
effective candidate for a biomarker, as it incorporates a
diversity of genera. David et al. [22] report an increase in
the bile-tolerant bacteria: Alistipes, Bilophila, and Bac-
teroides with an animal-based diet, while Roseburia, Eu-
bacterium, and Ruminococcus were more abundant on a
diet rich in plant polysaccharides. Some of these genera
also have the potential to be biomarkers. Ou et al. [10]
compared African Americans with a high risk of colon
cancer and native Africans with only rare cases of colon
cancer and suggested that Bacteroides, Escherichia, and
Acinetobacter may be possible biomarkers for cancer.
Baxter et al. [23] found correlations between Bacter-
oides, Parabacteroides, Alistipes, and Akkermansia with
increased tumor burden and Clostridiales Cluster XIVa
(which includes Roseburia and Faecalibacterium) with
decreased tumor burden. Fusobacterium has also been
associated with colon cancer [24]. The use of specific
bacterial taxa to characterize the ecological roles of mi-
crobial community members was recently described by
Trosvik and de Muinck [25]. They employed ecological
concepts of keystone and foundation taxa, which com-
plement their utility as biomarkers. Designation as key-
stone and foundation taxa requires knowledge of their
causative role in a community, whereas biomarkers only

need to demonstrate a correlation with diet, lifestyle, or
disease state.
We have demonstrated that the “enterotypes” of the

human gut microbiome do not represent recurrent mi-
crobial communities across the diversity of human pop-
ulations, nor do they represent two distinguishable
communities when Bacteroides and Prevotella are re-
moved from the analysis. We propose that the dominant
taxa associated with the original “enterotypes” hypoth-
esis, Bacteroides and Prevotella, as well as other taxa
such as Bifidobacterium, Fusobacterium, and various
Clostridiales genera, are more accurately understood as
biomarkers. The many correlative studies of the gut
microbiome and associations with diet, environment,
and disease can be made more useful by moving beyond
basic ordination plots to rigorously assessing their sensi-
tivity and specificity as biomarkers of lifestyle and dis-
ease in clinical subpopulations.

Methods
Data compilation
The data for this article were compiled from six previous
studies. We used processed reads for each sample from
the Yatsunenko et al. [11] study that were downloaded
from the MG-RAST website (http://metagenomics.anl.
gov) under the index qiime:850, MG-RAST IDs:
4489349.3 - 4489926.3. The reads were assigned tax-
onomy by comparison against the SILVA database [26]
using GAST [27]. For all other studies, the data source
was a table of taxonomic abundances for each sample.
We received the Ou et al. [10] data directly from the au-
thors. We downloaded the Human Microbiome Project
(HMP) data from the VAMPS website [28] at the Marine
Biological Laboratory (https://vamps.mbl.edu) under the
name HMP_ST_v3v5. We downloaded the Arumugam
et al. [1] datasets from the authors’ website (http://
www.bork.embl.de/Docu/Arumugam_et_al_2011/downlo
ads.html) under the “individual” subcategory of “Genus
and phylum abundance tables of the three datasets.” We
downloaded the Tyakht et al. [12] study data from the
Russian Metagenome Project website (http://www.meta-
genome.ru/files/rus_met/).
The genera represented in the taxonomy tables were

filtered to include only genera whose maximum relative
abundance across all samples was greater than 0.0001 or
0.01 %. We also removed children under the age of 13
from the Yatsunenko et al. data as all other samples from
the combined studies were adult, and we did not want
to add childhood as a confounding variable. The sum-
mary of the data we received and the modifications we
made for each statistical test can be found in supple-
mental materials (Additional file 4: Table S1). The taxo-
nomic assignments made by each study were consistent
with the NIH Human Microbiome Project and standard
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16S databases with consistent taxonomic assignments,
allowing the comparison of taxa across the various
studies [29].
Lozupone et al. [30] analyzed the effectiveness of

meta-study comparisons of human gut samples. Their
reanalysis of the data, using OTUs (which they referred
to as “species-level”), reproduced the results of the
source publications. They specifically demonstrated that
differences between Western and agrarian samples,
along with age and geography, were ample to outweigh
differences in study protocols. In some cases, however,
they could discern study-specific clustering of samples
from healthy Western guts, but the percent explained by
their first two PCoA axes was only 12.5 % combined.
We chose to use genus-level taxonomy rather than
OTUs; the human gut taxa are well-represented in the
16S reference databases, the databases are consistent,
and genus is a coarser-grained analysis, and therefore
less sensitive than 97 % OTUs to differences in study de-
sign. We also note that the great abundance of research
on the human gut microbiome using next-generation se-
quencing techniques is built on the presumption of con-
sistent genus-level results across studies providing an
increasing body of information on the nature of both
healthy and dysbiotic human gut communities.

Separation into microbial communities
We evaluated several methods for separating communi-
ties into their respective mixture components. Bacter-
oides is generally seen at a range of abundances
including low, medium, and high abundances [2, 3, 10].
Prevotella, on the other hand, can have a bimodal behav-
ior, with either a large relative abundance or almost
none at all, especially in smaller studies [14, 15]. Roager
et al. [16] found that the ratio of the logarithm of Prevo-
tella to Bacteroides abundance generated a natural and
distinct split between Prevotella- and Bacteroides-domi-
nated microbial communities in their samples caused by
the bimodal Prevotella distribution [5]. By compiling
multiple studies, we uncovered a full range of Prevotella
abundance, albeit the intermediate range abundances be-
ing less common (Additional file 11: Figure S3). The
combined data therefore did not have a natural break in
relative abundance values, and the log ratio method was
ineffective. We chose instead to simply define Prevo-
tella-dominated and Bacteroides-dominated samples as
any sample in which either Prevotella or Bacteroides was
the most abundant taxon. All remaining samples were
classified together as “Other.” We introduced the Prevo-
tella ratio as the ratio of Prevotella abundance to the
combined abundance of Prevotella and Bacteroides, to
measure the Prevotella abundance relative to Bacteroides
in the samples (a value of 0 is no Prevotella and all Bac-
teroides, and a value of 1 is all Prevotella and no

Bacteroides). This Prevotella ratio provides a continuous
variable for measuring the spectrum of abundance
values, rather than a binary value representing only the
dominant taxon.

Ordination
We performed both NMDS and PCoA with Bray-Curtis,
Morisita-Horn, and Jensen-Shannon Divergence metrics
(ordinate and plot_ordination functions in the phylo-
seq R package [18], and the ellipse package). See Figure
S10 in Additional file 10 for the resulting ordination
plots. Bray-Curtis was computed on the relative abun-
dance. As expected, all methods provided similar results
and we report only the PCoA results in the main paper
(Fig. 1) and include the NMDS plots in the Additional
files 12 and 13 (Figures S6 and S8 show the screeplots of
the eigenvalues/percentage of variances explained). Plot
points were labeled according to their most dominant
taxa—Bacteroides, Prevotella, or other (Fig. 1a), by their
population group within each study (Fig. 1c), or by their
Prevotella ratio (defined above) (Fig. 1b). To illustrate
the impact of the dominant taxon on the ordination of
the microbial communities, we removed both Prevotella
and Bacteroides rows in all the data and reran the ordin-
ation, without rescaling, to illustrate the change in separ-
ation (Fig. 1d).

Correlations and differential abundance analyses
The number of DNA reads returned by next-generation
sequencing for a bacterial sample does not reflect the
absolute abundance of bacteria in the original sample.
The total number of reads for each sample is effectively
arbitrary and therefore represents only the relative not
the actual abundance of DNA sequences. Unfortunately,
relative abundance data are not statistically sufficient to
accurately assess internal microbiome interactions [18],
but as several of the studies only provided these propor-
tions and not the original read numbers, we proceeded
using relative abundance and took several precautions to
avoid the biases this can induce. Since relative abun-
dance values must always tally to 100 %, also known as
compositional data, values within a sample are not inde-
pendent and can lead to false negative correlations with
parametric methods such as Pearson’s correlation. Non-
parametric methods, such as Spearman’s correlation, are
preferred in these types of analyses. We used the Spear-
man nonparametric method in R [31] (function cor.test)
on the relative abundance matrices of the Prevotella-
dominated and Bacteroides-dominated samples from all
studies. We then confirmed our findings using SparCC
which was developed by Friedman et al. [17] specifically
to evaluate correlations within compositional data and
remove false correlations through randomized bootstrap
trials. We used SparCC with default parameters,
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generating 100 bootstrap files on all samples. For the
studies for which sequence counts were available, the
Malawi, Venezuela, and American study [11] and the
HMP study of healthy Americans [15], we ran both
SparCC [32] and nbinomTest of DESeq2 package [18]
on the count data. To include datasets with only relative
abundance data in the SparCC analysis, we multiplied the
relative abundances by 10,000 to normalize sample counts
to 10,000 reads, as per the recommendations of the
SparCC authors. The choice of 10,000 meant that relative
abundances as low as 0.0001 (0.01 %) were included.
While converting from relative abundances to integer
values of read counts would bias taxa that had a low abun-
dance in samples that had been rarefied, none of the
methods of the original studies included rarefaction. The
correlations were run on the Prevotella-dominated and
Bacteroides-dominated samples for each individual study
independently and then on the compiled group of all stud-
ies. In all three methods, we defined statistically significant
correlations as having a positive correlation coefficient
and a multiple-experiments adjusted p value of less than
or equal to 0.05 using the Benjamini-Hochberg algorithm
(function p.adjust in R). We defined biologically significant
correlations useful for developing a microbial community
definition to be between community members with a
mean abundance ≥0.02 (2 %) and a prevalence of 75 %
(present in at least 75 % of the samples at ≥0.01 relative
abundance. Bacteria with lower abundances or preva-
lences may perform important functions in the gut; they
are not informative in a defining the overall community
structure.
For the proportionality analysis, the Lovell et al. [19]

proposed proportionality algorithm was applied to a
table containing all the relative abundances for all the
data sets with a modification to accommodate the large
number of zero values in this very sparse data. Zero
values were replaced by randomly generated uniform
values between 10^(−8) and 2.10^(−8). Values that had a
resulting phi value <0.01 were considered significant.

Availability of supporting data
The data and the R script will be available at a permanent
url for the html files associated to the article on publica-
tion (see the Rmd and html files have been deposited at
the permanent url http://purl.stanford.edu/fs506ff9976).

Endnotes
1Combining “enteric” from the Greek word for intes-

tine, and the English word “type” meaning category.
Here, we use the term as originally intended.

2PCoA and MDS are abbreviations for Principal Coor-
dinates Analysis and Multidimensional Scaling, two
names for the same ordination method which aims to
provide low dimensional Euclidean representations of

multivariate data for which a specific distance has been
measured.

3NMDS designates non-metric multidimensional scal-
ing, a non-parametric version of MDS that aims to pro-
vide a Euclidean graphical representation of the data
points where the distances between points have the
same order as those in the original data.

Additional files

Additional file 1: Figure S1. PCoA plots using the Bray distance metric
with all the samples in the study colored by the origin of the data.
(PDF 39 kb)

Additional file 2: Figure S10. PCoA plot with all the samples except
the Yatsunenko study colored by the most prominent taxon. A) Distance
calculated using the Jensen-Shannon divergence (JSD) and B) distance
calculated using Morisita-Horn. (PDF 17 kb)

Additional file 3: Figure S7. PCoA plots using the Bray distance metric
with only the Yatsunenko study. A) Samples colored by their most
prominent taxon. If the sample is dominated neither by Prevotella nor
Bacteroides, it is classified as other. B) Samples are colored by their value
for the Prevotella ratio (relative abundance of Prevotella/[Bacteroides +
Prevotella]) on a spectrum with red indicating no Prevotella and purple no
Bacteroides. C) Samples are colored by population of origin. D) The Bray
distance has been recalculated without the relative abundances of
Bacteroides and Prevotella. Samples are colored by most prominent taxon
in the original samples distributions (same as in plot A). (PDF 27 kb)

Additional file 4: Table S1. Summary of the data received for each
data set, as well as the format in which the data was used for the
multivariate and proportionality analyses. (DOCX 81 kb)

Additional file 5: RDATAand RMD.tar.gz is a zipped file of all the data
and R markdown files to reproduce all the analyses done in the article
and is the files can be found at : <http://purl.stanford.edu/fs506ff9976>.
(ZIP 11504 kb)

Additional file 6: Figure S2. Bacteroides distributions within each
population. The sample quantiles are represented on the x-axis and all
samples are plotted on the same graph. The black line represents all the
samples scaled together on the x-axis. The green points are from the
Native African vs. African American Ou et al. study, the yellow points are
from the Russian Urban vs Rural Tyakht et al. study, the pink points are
from the Malawi, Venezuela, US Yatsunenko et al. study, the red points
are from the Mixed Europe and Asia Arumugam et al. study, the blue
points are from the European Arumugam et al. study, and the light blue
points are from the NIH Human Microbiome Project study. (PDF 19 kb)

Additional file 7: Figure S11. Boxplot of the top 20 taxa across studies
not including the Yatsunenko study. The dark horizontal line represents
the mean relative abundance and the box represents the bounds of the
25th and 75th percentiles. (PDF 25 kb)

Additional file 8: Figure S4. NMDS plots using the Bray distance
metric with all the samples except for the Yatsunenko study samples.
A) Samples colored by their most prominent taxon. If the sample is
dominated neither by Prevotella nor Bacteroides, it is classified as other.
B) Samples are colored by their value for the Prevotella ratio (relative
abundance of Prevotella/[Bacteroides + Prevotella]) on a spectrum with red
indicating no Prevotella and purple no Bacteroides. C) Samples are colored
by population of origin. D) The Bray distance has been recalculated
without the relative abundances of Bacteroides and Prevotella. Samples
are colored by most prominent taxon in the original samples
distributions (same as in plot A). (PDF 46 kb)

Additional file 9: Figure S5. A) Same PCoA plot using the Bray
distance metric as in the main paper, except looking at the 3rd and 4th
axis, with samples colored by their most prominent taxa. B) Same MDS
plot as in A, but with samples colored based on their value for the
Prevotella ratio on a spectrum with red indicating no Prevotella and
purple no Bacteroides. C) Same PCoA plot with samples colored based on
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population of origin. D) PCoA plot using the Bray distance metric with
the Bacteroides and Prevotella relative abundances taken out. Colored by
most prominent taxa in the samples before the removal of Prevotella and
Bacteroides. (PDF 47 kb)

Additional file 10: Figure S9. NMDS plots using the Bray distance
metric with only the Yatsunenko study. A) Samples colored by their most
prominent taxon. If the sample is dominated neither by Prevotella nor
Bacteroides, it is classified as other. B) Samples are colored by their value
for the Prevotella ratio (relative abundance of Prevotella/[Bacteroides +
Prevotella]) on a spectrum with red indicating no Prevotella and purple no
Bacteroides. C) Samples are colored by population of origin. D) The Bray
distance has been recalculated without the relative abundances of
Bacteroides and Prevotella. Samples are colored by most prominent taxon
in the original samples distributions (same as in plot A). (PDF 28 kb)

Additional file 11: Figure S3. Prevotella distributions within each
population. The x-axis represents the sample quantiles and all the
samples are plotted on the same graph. The black line represents all the
samples scaled together on the x-axis. The green points are from the
Native African vs. African American Ou et al. study, the yellow points are
from the Russian Urban vs Rural Tyakht et al. study, the pink points are
from the Malawi, Venezuela, US Yatsunenko et al. study, the red points
are from the Mixed Europe and Asia Arumugam et al. study, the dark
blue points are from the European Arumugam et al. study, and the light
blue points are from the NIH Human Microbiome Project study.
(PDF 16 kb)

Additional file 12: Figure S6. Relative variances explained by the PCoA
axes from the PCoA analyses. A) PCoA variances explained by the axes
used in the Fig. 1a, b and c and Figure S5ABC. B) PCoA variances axes
used in the adjusted sample plots in Fig. 1d and Figure S5D, which had
its Bacteroides and Prevotella relative abundances removed. (PDF 4 kb)

Additional file 13: Figure S8. Relative variances explained by the
PCoA axes from the PCoA analyses A) Relative variances explained by the
PCoA axes used in the Additional file 7: Figure S7ABC. B) Relative
variances explained by the PCoA axes used in the adjusted sample plot
in Additional file 7: Figure S7D, which had its Bacteroides and Prevotella
relative abundances removed. (PDF 4 kb)
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