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Introduction
This paper investigates influence of parameters on existence and uniqueness of solu-
tions and equilibria in an age structured model. This model mimics the dynamic of two 
diseases vertically transmitted almost independently with horizontal coinfection and a 
common vaccination strategy. For example Goyal and Murray (2014) notes a decrease 
in Hepatitis B virus (HBv) prevalence as vaccination coverage increases and it is possible 
to eradicate both HBv and HDv (hepatitis D virus) using high vaccination coverage. Age 
structure a added to the continuous time t brings some improvements in the compre-
hension of the disease dynamics. For the case of HBv and HDv, age plays also a great 
role in the vaccination strategy (Goyal and Murray 2014). We follow methods of Djid-
jou et al. (2014), Yang et al. (2014), Brauer et al. (2013) or Inaba (1990) for quantitative 
(wellposedness with semigroup theory) studies. One can see also Castillo-Chavez and 
Feng (1998), Greenhalgh (2010) and references Hadeler and Muller (1996), Kouakep and 
Houpa (2014), Muller (1998, 2000), and Pasquini and Cvjetanović (1988) therein for a 
good review. Most of time in Africa (WHO 2014), vaccination campaigns concern more 
than one disease. This study starts with the case of two diseases and forthcoming works 
will deal with more than two diseases.

We study impact on basic reproduction rate (with a common vaccination strategy) of 
vertical transmission. Our goal is to bring our contribution with quantitative results con-
cerning special cases in the context of non-linear dynamics of infectious diseases (in the 
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context of the “Appendix 1”) and non local boundary conditions. We included vaccina-
tion ignored in Djidjou et al. (2014), vertical transmission neglected in Castillo-Chavez 
and Feng (1998) and show explicitly the basic reproduction rate theoretical shown with 
an equivalent number in term of asymptotic properties (threshold parameter) in Djidjou 
et al. (2014).

The paper is organised as follow: second, third and fourth sections are respectively 
devoted to problem formulations, primary material on the model, some asymptotic 
results with impacts on basic reproduction rate induced by vertical transmission. We 
conclude with a discussion and conclusions.

Problem formulations
In this work we will consider the following model with vaccination for two diseases W 
and Y. (s, v, I, E, R) satisfies (see “Preliminary materials” section for Banach spaces used) 
the following system of equations:

posed for time t > 0, (chronological) age a > 0, µI ,µE ,µ, ǫ ≥ 0, µE ≥ µI with recovery 
rates µI − ǫ1 ≥ 0 and µE − ǫ2 ≥ 0. Here s(t, a) denotes the age-specific density of sus-
ceptibles to the two diseases, E(t) and I(t) denote respectively the age-specific densities 
of infected individuals by diseases Y and W (that can be symptomatic or asymptomatic) 
while R(t) denotes the recovered of both diseases and immunized individuals. v(t, a) is 
the density of vaccinated individuals for both diseases W and Y. We should note that dis-
ease W can make the infection by disease Y easier: that is why we see the possible transi-
tion σ from compartment I to compartment E (see e.g. W = hepatitis B and Y = hepatitis 
D).
�I and �E traduce respectively the proportional influx of new infectives of W- and 

Y-types coming from vertical transmission (see “Appendix 1”). We will track their influ-
ences on basic reproduction rate.

To perform our analysis we shall assume that the contact between individuals is homo-
geneous so that βi(a, a′) ≡ βI > 0 and βe(a, a

′) ≡ βE ≥ 0 and vaccination strategies are 
time-independent �(t, a) ≡ �(a) ≥ 0.

The term �(t) corresponds to the age-specific force of infection and follows the usual 
law of mass-action, that reads as �(t) = βI I(t)+ βEE(t). Here βI and βE respectively 
denote the constant contact transmission rates between W-infected and Y-infected with 
all the susceptibles. �(t, a) is the proportion of susceptibles with age a vaccinated at time 
t. 0 ≤ δ ≤ 1 is the reduction in risk due to prior exposure to vaccination (see Castillo-
Chavez and Feng 1998). That means: δ = 0 corresponds to a perfect vaccine and δ = 1 
corresponds to a totally imperfect vaccine. In addition p ∈ L∞+ (0,∞) is a given function 
such that 0 ≤ p(a) ≤ 1 a.e. Function q (with 0 ≤ q(a) ≤ 1 a.e.) represents the age-specific 

(1)

(∂t + ∂a +�(a)+ µ)s(t, a) = −�(t)s, t, a > 0,

(∂t + ∂a + µ)v(t, a) = �(a)s(t, a)− δ�(t)v(t, a),

I ′(t) = �(t)

∫ ∞

0
p(a)(s(t, a)+ δv(t, a))da− (νI + σ −�I )I(t),

E′(t) = �(t)

∫ ∞

0
q(a)(s(t, a)+ δv(t, a))da− (νE −�E)E(t)+ σ I(t),

R′(t) = −µR(t)+ (µI − ǫ1)I(t)+ (µE − ǫ2)E(t), t > 0,
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probability to become Y-infected when becoming infected by Y at age a. Function p 
denotes the probability to develop an W-infection when getting the infection W at age a. 
We refer for the exceptional case of hepatitis B to Edmunds et al. (1993) for more expla-
nation on the age-dependence susceptibility to the infection and their estimations from 
data with maximum likelihood or least squares methods. This problem is supplemented 
together with the positive boundary conditions (choosing between i = 1 and i = 2):

where ε(a) = (1− ε(a)) and 0 ≤ ε(a) ≤ 1, for a.e a ≥ 0, 0 ≤ ǫ1 ≤ µI, 0 ≤ ǫ2 ≤ µE and 
l1, l2, l3, l4 ∈ [0; 1]. We consider the fertility rate f as constant while defining the func-
tions f1 : x ∈ R �→ f .x and f2 : x ∈ R �→ � ∈ [0;+∞). Note that the R component of 
the system is decoupled from the other components and has therefore no impact upon 
the long time behaviour of the system. This model is derived from the age structured 
model presented in “Appendix 1”.

Like Republic of Niger’s or Cameroonian Governments (see Ministry 2014) we choose 
the situation with no newborn baby vaccination: v(t, 0) = 0. Technically in most part of 
this work, the maximum lifetime ω will be taken as +∞ (through coefficients’ supports) 
for sake of simplicity.

Preliminary materials
We point out that the case i = 2 with σ = 0 has been partially investigated in Kouakep 
and Houpa (2014) using integrated semigroup theory. We focus later on case i = 1. In 
the sequel ω ∈ (0;+∞]: it represents biologically the human maximum lifetime.

Abstract formulation

Let X be the space defined as X :=
[

L1(0,ω;R)
]2

× R× R× R endowed with the norm 
for ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)

T ∈ X with ω in [0,+∞] and

Let X+ be its positive cone (of X): X+ :=
[

L1+(0,ω;R)
]2

× R+ × R+ × R+ Let us note 
X+ the positive cone of X. It is well known that (X , ‖.‖X ) is a Banach space (Djidjou et al. 
2014). We define the linear operator A : D(A) ⊂ X → X defined by

together with f ∗∗(ϕ) := fi
(∫∞

0 ε(a)[ϕ1(a)+ l1ϕ2(a)]da+ l2ϕ5 + l3ϕ3 + l4ϕ4
)

 and

(2)
s(t, 0) = fi

(∫ ω

0
ε(a)[s(t, a)+ l1v(t, a)]da+ l2R(t)+ l3I(t)+ l4E(t)

)

s(0, a) = s0(a), v(t, 0) = 0, v(0, a) = v0(a), I(0) = I0, E(0) = E0, R(0) = R0

(3)�ϕ�X := �ϕ1�L1(0,ω) + �ϕ2�L1(0,ω) + |ϕ3| + |ϕ4| + |ϕ5|

(4)D(A) =

{

ϕ ∈

[

W 1,1(0,∞)

]2
× R

3

∣

∣

∣

∣

(

ϕ1(0)
ϕ2(0)

)

≡

(

f ∗∗(ϕ)
0

)}

(5)A











ϕ1
ϕ2
ϕ3
ϕ4
ϕ5











≡



















−ϕ′
1
(a)− µϕ1(a)

−ϕ′
2
(a)− µϕ2(a)

−(νI + σ −�I )ϕ3(a)

−(νE −�E)ϕ4(a)

−µϕ5(a)



















,
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as well as the nonlinear Frechet differentiable and locally Lipschitz map F : D(A) → X 
defined by

We set X0 := D(A) and X0+ the positive cone (X0 ∩ X+) of X0. It is easy (see Djidjou 
et al. 2014) to see that if (νI + σ −�I ) ≥ µ and (νE −�E) ≥ µ, then:

1.	 the operator A satisfy Hille–Yosida property: (−µ,∞) ⊂ ρ(A) with 

 Moreover we have for each � > −µ: (1-) (�− A)−1X+ ⊂ X0+;
2.	 A is generator of a C0-semigroup of linear bounded operators;
3.	 the domain D(A) of operator A is dense in X0 := D(A) and A is a closed operator.

Standard methodologies apply to provide (1) and (2) (see Pazy 1983) and (3) is due to 
the fact that the operator A is generator of a C0-semigroup of linear bounded operators 
(see Corollary 2.5 in Pazy 1983). Therefore, one obtains that System (1)–(2) re-writes as 
the following densely defined Cauchy problem

Existence and uniqueness of solutions

For arbitrary φ0 ∈ X0+, we solve (8) as mild solution of the integrated equation (see Djid-
jou et al. 2014): φ(t) = φ0 + A

∫ t
0 φ(s)ds +

∫ t
0 F(φ(s))ds , ∀t ≥ 0. We obtain the follow-

ing lemma.

Lemma 1  Assume that ε ∈ L∞+ (0,ω;R), �I ≤ ǫ1 and �E ≤ ǫ2, then:

(a)	� The operator A is generator of a C0-semigroup of linear bounded operators and the 
domain D(A) of operator A is dense in X0 and A is a closed operator.

(b)	� Moreover, the nonlinear operator F from X to X is continuous and locally Lipschitz.
(c)	� (8) generates a strongly continuous positive semiflow {U(t)}t≥0 on X0+. This means 

that for each x = φ(0) ∈ X0+, the continuous map t → U(t)x defined from [0,∞) 
into X0+ is a weak solution of (8), that is (for the integrated problem)

(d)	� It satisfies the following bounded-dissipative estimates for each x = φ(0) ∈ X0+ 
(with ω = +∞ for sake of simplicity) and each t ≥ 0: 

(6)F











ϕ1
ϕ2
ϕ3
ϕ4
ϕ5











=



















−(βIϕ3 + βEϕ4 +�(a))ϕ1(a)

�(a)ϕ1(a)− δ(βIϕ3 + βEϕ4)ϕ2

(βIϕ3 + βEϕ4)
�∞

0
p(a)(ϕ1(a)+ δϕ2(a))da

(βIϕ3 + βEϕ4)
�∞

0
q(a)(ϕ1(a)+ δϕ2(a))da+ σϕ3(a)

(µI − ǫ1)ϕ3(a)+ (µE − ǫ2)ϕ4(a)



















.

(7)�(�− A)−1�L(X) ≤
1

�+ µ
, ∀� > −µ.

(8)
dφ(t)

dt
= Aφ(t)+ F(φ(t)), φ(0) = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)

T

∫ t

0
φ(s)ds ∈ D(A), ∀t ≥ 0, φ(t) = x + A

∫ t

0
φ(s)ds +

∫ t

0
F(φ(s))ds, ∀t ≥ 0.

(9)�x�Xe
−�t ≤ �U(t)x�X ≤

�x�X

�

(

1− e−�t
)

+ �x�Xe
−�t ,
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	 or

	 with � = µ+min{(ǫ1 −�I ), (ǫ2 −�E)}, and � = µ+max{(ǫ1 −�I ), (ǫ2 −�E)}.
(e)	� Theorem  1.4 in Pazy (1983) proves that for φ0 ∈ X0+ =

[

L
1
+(0,ω; [0,+∞))

]2

×[0,+∞)3 there exists a unique bounded continuous solution φ to the integrated 
problem defined on [0,+∞) with values in X0+.

Proof  The proof of [a− b− c − e] is rather standard. Indeed it is easy to check that 
operator A satisfies the Hille–Yosida property. Then standard methodologies apply 
to provide the existence and uniqueness of mild solution for System (1)–(2) (see for 
instance Djidjou et al. 2014, Pazy 1983 and the references therein).

We define the total population P(t) at time t by P(t) =
∫ +∞

0
(φ1(t, a)+ φ2(t, a))da

+φ3(t)+ φ4(t)+ φ5(t) and use the fact that P(0) = �x�X. The proof of [d] is immediate 
from the integration of the Eqs. (1)–(2) using formal differentiation of P(t) in respect to t 
and assumptions made: ε ∈ L∞+ (0,ω;R), �I ≤ ǫ1 and �E ≤ ǫ2.� �

Remark 1  Under assumptions of Lemma 1, one could show that the semiflow {U(t)}t≥0 
is asymptotically smooth on X by using results derived by Sell and You (2002).

From Lemma 1 and above Remark 1, one deduces using the results of Hale (1989), 
Smith and Thieme (2011), and Magal and Zhao (2005) the following results:

Lemma 2  Assume that ε ∈ L∞+ (0,ω;R), �I ≤ ǫ1 and �E ≤ ǫ2. The semiflow {U(t)}t≥0 
provided by Lemma1 has a non-empty compact global attractor A ⊂ X0+. It means that 
A is compact, invariant and attracts all bounded set B ⊂ X0+, such that for each B ⊂ X0+ 
bounded subset, one has d(U(t)B,A) → 0 as t → ∞ where d(B, A) denotes the semi dis-
tance from B to A defined by d(B,A) = supy∈B infx∈A �y− x�X .

Asymptotic properties: impact on basic reproduction rate of vaccination 
efficiency and vertical transmission
In all this section we assume that ε ∈ L∞(0,ω;R), �I < ǫ1 and �E < ǫ2. We will see that 
the basic reproduction rate R0 is a decrease function of � as noticed by Goyal and Mur-
ray (2014).

We denote by R�
0  the basic reproduction rate with vertical transmission and vaccina-

tion for the new model (1)–(2). Then R�
0 := R�

0 (vert) has the value

where a1 := (νI + σ −�I ), a2 := (νE −�E) and a3 := a1a2.

Steady states (DFE and EE)

Here we provide some information on steady states for (1)–(2).

(10)�x�Xe
−�t ≤ �U(t)x�X ≤

�x�X

µ

(

1− e−µt
)

+ �x�Xe
−µt ,

(11)

[∫ ∞

0

(

βI p(a)

a1
+

βEq(a)

a2
+

βEσp(a)

a3

)

× (sF (a)+ δvF (a))da

]
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Lemma 3  Assume that ∀u ∈ {I ,E}, �u < νu. The following holds true:

(i)	� If R�
0 ≤ 1, then System (1)–(2)-(i = 1) has a unique stationary state

	 where

	 and vF (a) =
∫ a
0 �(s)sF (s)exp(−µ(a− s))ds.

(ii)	� If R�
0 > 1, then system (1)–(2)-(i = 1) has two stationary states: Disease free equilib-

rium (DFE) xF ∈ X+ and Endemic Equilibrium (EE) xE = (sE(.), vE(.), IE ,EE ,RE)
T 

with

	 where �E > 0 is the unique solution of the equation

Rewriting Eq. (13) provides (see also Inaba 2001) a coupled integral equations system. 
The existence and uniqueness of continuous solutions (sE , vE , IE ,EE ,RE) for this type of 
Volterra like system is given by Gurtin and MacCamy (1974) (see a special case in “DFE 
special case (s*, v*, I* = 0, E* = 0, R* = 0): integral equation” and “EE special case (s*, v*, 
I* ≠ E* ≠ 0, R* ≠ 0): integral equation” sections in “Appendix 2”.

Threshold number explained as basic reproduction rate

We recall R�
0  the basic reproduction rate with vertical transmission and vaccination for 

the model (1)–(2) (see “Appendix 1”). Clearly it is denoted R�
0 := R�

0 (vert) with the value

xF = (sF (a), vF (a), 0, 0, 0)
T ∈ X+

(12)

sF (a) = fi

(∫ ∞

0
(1− ε(u))[sF (u)+ l1vF (u)]da

)

× exp

(

−µa−

∫ a

0
�(s)ds

)

, a ≥ 0,

(13)

sE(a) = fi

(∫ ∞

0
ε(s)[sE(s)+ l1vE(s)]ds

+ l2RE + l3IE + l4EE)× exp

(

−(�E + µ)a−

∫ a

0
�(s)ds

)

,

vE(a) =

∫ a

0
�(s)sE(s)exp(−(δ�E + µ)(a− s))ds,

IE =
�E

νI + σ −�I

∫ ∞

0
p(a)(sE(a)+ δvE(a))da,

EE =
�E

νE −�E

∫ ∞

0
q(a)(sE(a)+ δvE(a))da+

σ

νE −�E
IE

RE =
(µI − ǫ1)

µ
IE +

(µE − ǫ2)

µ
EE .

(14)

1 =

∫ ∞

0

(

βI

νI + σ −�I
p(a)+

βE

νE −�E
q(a)

+
βEσp(a)

(νE −�E)(νI + σ −�I )

)

(sE(a)+ δvE(a))da

(15)

[∫ ∞

0

(

βI p(a)

a1
+

βEq(a)

a2
+

βEσp(a)

a3

)

× (sF (a)+ δvF (a))da

]
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where a1 := (νI + σ −�I ), and a2 := (νE −�E) with a3 := a1a2. We recall the basic 
reproduction rate for our model with vertical transmission without vaccination

and the basic reproduction rate for our model without vaccination and transition σ = 0 
nor vertical transmission

or the basic reproduction rate R�
0 (novert) for our model with vaccination but vertical 

transmission and transition σ = 0 excluded [see also Kouakep and Houpa (2014) with 
�E = 0, �I = 0 and i = 2] is given by

Remark 2  It is obvious that the vertical transmission increases the basic reproduc-
tion rate if ∀u ∈ {I ,E}, �u < ǫd(u) ≤ µu ≤ νu [more deaths than births, d(I) = 1 and 
d(E) = 2]. We focus on the case (i = 1).

Theorem 1  Assume that ( νE ≤ �E or νI + σ ≤ �I ) and h := µ+ νI + νE − (�I +�E)

> 0. Then System (1)–(2)-(i = 1) has a unique stationary state (see integral equations in 
Gurtin and MacCamy 1974; Krasnov et al. 1977) xF = (sF (a), vF (a), 0, 0, 0)

T ∈ X+ where

a ≥ 0 and vF (a) =
∫ a
0 �(s)sF (s)exp(−µ(a− s))ds. Moreover, under its assumptions, 

results in Lemma 1 and Remark 1 on asymptotically smoothness of semiflow hold with 
this modification:

Remark 3  Authors like El-Doma (2006) choose to rewrite solution of the PDE (1)–
(2) (i = 1) along characteristics and then construct a Lipschitz operator whose unique 
global in time fixed point will be the solution in Hadamard sense of the PDE.

Discussion
The works of Castillo-Chavez and Feng (1998) and Djidjou et al. (2014) are more gen-
eral by considering age-dependent death rates and birth fertility. But, our work con-
nects these two important works in some of their complementary lacks and strength 
in order to study the impact on basic reproduction rate (with influence vertical trans-
mission) of a common vaccination strategy inducing the stability of steady states of two 
related diseases. We saw that the basic reproduction rate R0 is a decrease function of � 
confirming the decrease in Hepatitis B virus (HBv) prevalence as vaccination coverage 

(16)R0
0(vert) :=

[∫ ∞

0

(

βI

a1
p(a)+

βE

a2
q(a)+

βEσ

a3
p(a)

)

sF (a)da

]

(17)R0
0(novert) :=

[∫ ∞

0

(

βI

νI
p(a)+

βE

νE
q(a)

)

sF (a)da

]

(18)

[∫ ∞

0

(

βI

νI
p(a)+

βE

νE
q(a)

)

(sF (a)+ δvF (a))da

]

(19)sF (a) = fi

(∫ ∞

0
ε(u)[sF (u)+ l1vF (u)]du

)

× e−
(

µa+
∫ a
0 �(s)ds

)

(20)�x�Xe
−�t ≤ �U(t)x�X ≤

�x�X

h

(

1− e−ht
)

+ �x�Xe
−ht ,
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increases (Goyal and Murray 2014): it is then possible to eradicate both HBv and HDv 
(hepatitis D virus) using high vaccination coverage. In further work we will include 
migrations in the infected individuals’ classes. One could biologically suspect the cases 
(νu ≤ �u, ∀u ∈ {E, I}) in Lemma 1 to be critical since we would like to avoid blow-up 
of solutions in order to obtain global in time solutions. We said nothing in the cases: 
νE > �E > ǫ2 or νI + σ > �I > ǫ1 What arises in Theorem 1 if h = 0?

Conclusions
The main objective of this work is study the impact of vertical transmission on basic 
reproduction rates in the case of coinfection like HBV(hepatitis B)/HDV(hepatitis D) 
co-infection. We found that vertical transmission increases the basic reproduction rate. 
Beside this, we studied the influence of the influx by migration on the wellposedness of 
the mathematical problem: there is a trade-off between entries balanced by mortalities 
and wellposedness for long term dynamic of our age-structured model. Some asymp-
totic relations between the mean of the fertility rate and other biological parameters are 
derived in endemic or free epidemic situations (“Appendices 1 and 2”). A perspective 
could be to introduce diffusion in our model and evaluate a minimal speed for travelling 
wave solutions.
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Appendix 1: Age structured model
Our model is derived (through I(t) :=

∫∞

0 i(t, a)da, E(t) :=
∫∞

0 e(t, a)da and 
R(t) :=

∫∞

0 r(t, a)da) from:

posed for time t > 0, (chronological) age a > 0, µI ,µE ,µ, ǫ ≥ 0, µE ≥ µI with recov-
ery rates µI − ǫ1 ≥ 0 and µE − ǫ2 ≥ 0. Here s(t, a) denotes the age-specific density of 
susceptibles to the two diseases, e(t, a) and i(t, a) denote respectively the age-specific 

(21)

(∂t + ∂a +�(t, a)+ µ)s(t, a) = −�0(t, a)s(t, a),

(∂t + ∂a + µ)v(t, a) = �(t, a)s(t, a)− δ�0(t, a)v(t, a),

(∂t + ∂a + (µI + µ))i(t, a) = �0(t, a)p(a)× (s(t, a)+ δv(t, a))− σ i(t, a),

(∂t + ∂a + µE + µ)e(t, a) = �0(t, a)q(a)× (s(t, a)+ δv(t, a))+ σ i(t, a),

(∂t + ∂a + µ)r(t, a) = (µI − ǫ1)i(t, a)+ (µE − ǫ2)e(t, a),
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densities of infected individuals by diseases W and Y. The term �0(t, a) corresponds to 
the age-specific force of infection reads as

νI := µI + µ and νE := µE + µ and considering the fertility rate f as constant 
while defining the functions f1 : x ∈ R �→ f .x and f2 : x ∈ R �→ � ∈ [0;+∞) with 
wk ,c(t, a) = k .i(t, a)+ c.e(t, a) and

The “sanitary” coefficient ε(a) ∈ [0; 1] describes the facility for an individual of age a to 
transmit vertically disease. If ε = 0 the person can not transmit vertically the disease 
(he/she is “clean”). If ε = 1 the person surely transmits vertically the disease (he/she is 
“totally infective”). ε(a) = (1− ε(a)).
f(a) is the fertility rates while b ∈ L∞+ (0,∞) is a given function such that 0 ≤ b(a) ≤ 1, 

for a.e a ≥ 0 and initial positive data s(0, a) = s0(a) and

b(a) is the specific probability to born susceptible.

Appendix 2: Averaged fertility rate
DFE special case (s∗, v∗, I∗ = 0, E∗ = 0, R∗ = 0): integral equation

Straightforward computations lead for a > 0 to:

By setting i = 1, ε(u) = 1− αexp(−γu),∀u ≥ 0 and l1 = 1 with w∗ := s∗ + v∗, one 
obtains:

by setting a degenerated kernel (see Krasnov et al. 1977, p. 59–72) as

�0(t, a) =

∫ ∞

0

[

βi(a, a
′)i(t, a′)+ βe(a, a

′)e(t, a′)
]

da′.

(22)

s(t, 0) =

∫ ∞

0
f (a)b(a)

(

ε(t, a)[s(t, a)+ l1r(t, a)]+ w1,1(t, a)
)

da,

i(t, 0) = �I

∫ ∞

0
i(t, a′)da′ : wk ,c ≡ w1,0

e(t, 0) = �E

∫ ∞

0
e(t, a′)da′ : wk ,c ≡ w0,1

r(t, 0) = 0, (no immunity at birth),

(23)i(0, a) = i0(a), e(0, a) = e0(a), r(0, a) = r0(a), v(0, a) = v0(a).

(24)

s∗(a) = fi

(∫ ∞

0
ε(u)

[

s∗(u)+ l1v
∗(u)

]

du

)

exp

(

−µa−

∫ a

0
�(s)ds

)

,

s∗(0) = fi

(∫ ∞

0
ε(u)

[

s∗(u)+ l1v
∗(u)

]

du

)

,

v∗(a) =

∫ a

0
�(s)s∗(s)exp(−µ(a− s))ds

v∗(0) = 0, E∗ = I∗ = R∗ = 0.

(25)
w∗(a) =

∫ ∞

0
w∗(u)f (u)(1− ε(u))du× exp(−µa), a > 0,

w∗(0) = s∗(0).
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with some regularity on ε) or with f (a) ≡ f ≥ 0

This is a second type homogeneous Fredholm equation. We have: 
∫∞

0

∫∞

0 k(a,u)dadu 
finite. Krasnov et  al. (1977) justify existence of solutions w∗ with associated 
characteristics value(s) f. By setting again (in the special case f (u) ≡ f ≥ 0, 
ε(u) = 1− αexp(−γu)) ≥ 0 , and k(a,u) = αexp(−(γu+ µa)) with 0 ≤ γ ,α ≤ 1 we get

In fact, we could biologically and mathematically replace 
∫∞

0

∫∞

0  by 
∫ ω

0

∫ ω

0  with ω the 
maximal human admissible lifetime (e.g. ω = 140 years). Rewriting Eq. (24) along char-
acteristics provides (see also Inaba 2001) a coupled integral equations system. The exist-
ence and uniqueness of continuous solutions (s∗, v∗) for this type of Volterra like system 
is also given by Gurtin and MacCamy (1974).

Let consider the problem

where f is a characteristic value. We found f =

(

γ+µ

(1−e−(γ+µ)ω)α

)

 associated to the eigen-
function m∗(a) = exp(−µa). If ω → ∞, then f →

(

γ+µ
α

)

.

EE special case (s∗, v∗, I∗ �= 0, E∗ �= 0, R∗ �= 0): integral equation

Straightforward computations lead for a > 0 to:

By setting i = 1, δ ≈ 1, ε(u) = 1− αexp(−γu),∀u ≥ 0 and l1 = 1 with w∗ := s∗ + v∗, one 
obtains:

by setting a degenerated kernel (see Krasnov et al. 1977, p. 59–72) as

with some regularity on ε) or with f (a) ≡ f ≥ 0

k(a,u) = (1− ε(u))exp(−µa)

(26)w∗(a) = f

∫ ∞

0
k(a,u)w∗(u)du, a > 0, w∗(0) = s∗(0).

(27)w∗(a) = f

∫ ∞

0
k(a,u)w∗(u)du, a > 0,

(28)w∗(a) = f

∫ ω

0
k(a,u)w∗(u)du, a > 0

(29)

s∗(a) = fi

(∫ ∞

0
ε(u)

[

s∗(u)+ l1v
∗(u)

]

du

)

× exp

(

−µa−

∫ a

0
�(s)ds

)

,

s∗(0) = fi

(∫ ∞

0
ε(u)

[

s∗(u)+ l1v
∗(u)

]

du

)

,

v∗(a) =

∫ a

0
�(s)s∗(s)exp(−µ(a− s))ds

v∗(0) = 0, E∗, I∗,R∗ > 0.

(30)
w∗(a) =

∫ ∞

0
w∗(u)f (u)(1− ε(u))du× exp(−(µ+ �E)a), a > 0,

w∗(0) = s∗(0).

k1(a,u) = (1− ε(u))exp(−(µ+ �E)a)
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Krasnov et  al. (1977) justify existence of solutions w∗ with associated characteristic 
value(s) f.

By setting again (in the special case f (u) ≡ f ≥ 0, ε(u) = 1− αexp(−γu)), and 
k1(a,u) = αexp(−(γu+ (µ+ �E)a)) with 0 ≤ γ ≤ 1 we get

Let consider the problem

where f is a characteristic value. We found f =

(

γ+µ+�E
(

1−e−(γ+µ+�E )ω
)

α

)

 associated to the 

eigenfunction m∗(a) = exp(−(µ+ �E)a). If ω → ∞, then f →

(

γ+µ+�E
α

)

.

Received: 20 November 2015   Accepted: 4 April 2016

References
Brauer F, Shuai Z, van den Driessche P (2013) Dynamics of an age-of-infection cholera model. Math Biosci Eng 10(5 & 

6):1335–1349
Castillo-Chavez C, Feng Z (1998) Global stability of an age-structure model for TB and its applications to optimal vaccina-

tion strategies. Math Biosci 151:135–154
Djidjou DR, Tewa JJ, Bowong S (2014) Analysis of an age-structured SIL model with demographics process and vertical 

transmission. Special issue CARI’12 in ARIMA J 17:23–52
Edmunds WJ, Medley GF, Nokes DJ, Hall AJ, Whittle HC (1993) The influence of age on the development of the hepatitis B 

carrier state. Proc R Soc Lond B Biol Sci 253:197–201
El-Doma M (2006) Analysis of an SIRS age-structured epidemic model with vaccination and vertical transmission of 

disease. AAM 1(1):36–61. http://pvamu.edu/pages/398/asp
Goyal A, Murray JM (2014) The Impact of vaccination and antiviral therapy on hepatitis B and hepatitis D epidemiology. 

PLoS One 9(10):e110143
Greenhalgh D (2010) Age-structured models and optimal control in mathematical epidemiology: a survey. In: Optimal 

control of age-structured populations in economy, demography and the environment. Routledge Explorations in 
Environmental Economics. Routledge, Taylor & Francis Group, pp 174–206

Gurtin ME, MacCamy RC (1974) Non-linear age-dependant population dynamics. Arch Ration Mech Anal 54:281–300
Hale JK (1989) Asymptotic behavior of dissipative systems. AMS, Providence
Hadeler KP, Muller J (1996) Vaccination in age structured populations II: optimal vaccination strategies. In: Isham V, 

Medley G (eds) Models for infectious human diseases: their structure and relation to data. Cambridge University, 
Cambridge, pp 102–114

Inaba H (1990) Threshold and stability results for an age-structured epidemic model. J Math Biol 28:411–434
Inaba H (2001) Kermack and MacKendrick revisited: the variable susceptibility model for infectious diseases, Japan. J Ind 

Appl Math 18:273–292
Krasnov M, Kisselev A, Makarenko G (1977) Équations intégrales: problèmes et exercices. MIR, French trad
Kouakep TY, Houpa DDE (2014) Optimal test strategies for hepatitis B vaccination with no vertical transmission. Gen Math 

Notes 20(1):19–26
Magal P, McCluskey CC, Webb GF (2010) Liapunov functional and global asymptotic stability for an infection-age model. 

Appl Anal 89:1109–1140
Magal P, Zhao X-Q (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math 

Anal 37:251–275
Ministry of Public Health of Cameroon, Plan D’introduction du vaccin contre l’Hépatite virale B dans le PEV de routine 

2005–2009. http://www.gavialliance.org/country/cameroon/documents/proposals/vaccine-introduction-plan-for-
nvs---hep-b-support--cameroon--fran%C3%A7ais-/. Accessed Feb 2014

Muller J (1998) Optimal vaccination patterns in age-structured populations. SIAM J Appl Math 59(1):222–241

(31)w∗(a) = f

∫ ∞

0
k1(a,u)w

∗(u)du, a > 0, w∗(0) = s∗(0).

(32)w∗(a) = f

∫ ∞

0
k1(a,u)w

∗(u)du, a > 0,

(33)w∗(a) = f

∫ ω

0
k1(a,u)w

∗(u)du, a > 0

http://pvamu.edu/pages/398/asp
http://www.gavialliance.org/country/cameroon/documents/proposals/vaccine-introduction-plan-for-nvs---hep-b-support--cameroon--fran%C3%A7ais-/
http://www.gavialliance.org/country/cameroon/documents/proposals/vaccine-introduction-plan-for-nvs---hep-b-support--cameroon--fran%C3%A7ais-/


Page 12 of 12Oumarou and Kouakep ﻿SpringerPlus  (2016) 5:452 

Muller J (2000) Optimal vaccination patterns in age-structured populations: endemic case. Math Comput Model 
31:149–160

Pasquini P, Cvjetanović B (1988) Mathematical models of hepatitis B infection. Ann Ist Super Sanitá 24(2):245–250
Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, Berlin
Sell GR, You Y (2002) Dynamics of evolutionary equations. Springer, New York
Smith HL, Thieme HR (2011) Dynamical systems and population persistence. AMS, Providence
WHO, Media Center. http://www.who.int/mediacentre/factsheets/. Accessed 01 Aug 2014
Yang J, Qiu Z, Li X (2014) Global stability of an age-structured cholera model. Math Biosci Eng 11(3):641–665

http://www.who.int/mediacentre/factsheets/

	Vertical transmission and reproduction rate: modeling a common strategy for two related diseases
	Abstract 
	Introduction
	Problem formulations
	Preliminary materials
	Abstract formulation
	Existence and uniqueness of solutions

	Asymptotic properties: impact on basic reproduction rate of vaccination efficiency and vertical transmission
	Steady states (DFE and EE)
	Threshold number explained as basic reproduction rate

	Discussion
	Conclusions
	Authors’ contributions
	References




