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1 Introduction

Two- and three-dimensional elliptic partial differential equations (PDEs) play a pivotal
role in different fields of science and technology. High-order compact schemes (HOC) are
used for the solution of the Helmholtz equation and other elliptic PDEs [2, 3]. Consider
the two-dimensional (2D) Helmholtz equation

Uge + Uy + Ku=f(x,9), (1) €, 6))

where €2 is a rectangular domain and k is a wave number. The forcing function f(x, y) and
the solution u(x, y) have the required continuous differentiability up to a specific order. The
equation has many real-world applications like elasticity, electromagnetic waves, acoustic
wave scattering, weather and climate prediction, water wave propagation, noise reduction
in silencers, and radar scattering. In this paper, we use a finite-difference approximation
on nonuniform grids in discrete domain to obtain a scheme up to fourth-order accuracy.
We also considered the Helmholtz equation with constant value of k.

Equation (1) has been solved by different techniques such as finite-difference method
(FDM) [4], fast-Fourier-transform-based (FFT) methods [5], finite-element method
(FEM) [6], the spectral-element method [7], compact finite-difference method [8], and

© 2016 Ghaffar et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13662-016-0745-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0745-2&domain=pdf
mailto:altafdir@gmail.com

Ghaffar et al. Advances in Difference Equations (2016) 2016:19 Page 2 of 16

multigrid methods [9]. The multigrid method based on HOC schemes is among the most
efficient iterative techniques for solving PDEs [10, 11].

In FDM the number of mesh points will be enlarged to increase the accuracy; however,
it will also increase the computational time. The Helmholtz equation is solved by FEM
and spectral-element method, but the limitations of these methods are of high computa-
tional cost [7]. Many iterative techniques for the Helmholtz equation suffer due to their
slow convergence. The investigation on fast iterative methods to efficiently solve the large
algebraic systems arising from high-order difference schemes for PDEs is more attractive.
Multigrid methods together with the HOC schemes on uniform mesh sizes are developed
in [11-14]. In most cases where sudden changes occur in a flow, the step sizes have to be
rectified over the entire domain. Under these situations, where points are concentrated in
the regions of sharp variation, local mesh refinement procedures [1, 2, 9, 15-17] are nec-
essary, thus dramatically reducing the computational time and computer storage. Ge and
Cao [1, 18] developed a multigrid method with HOC scheme on nonuniform grids for solv-
ing 2D convection diffusion equation and 3D Poisson equation. This paper is based on ap-
proach that an interpolation operator and a projection operator that are suited for a HOC
scheme using nonuniform mesh are represented by a transformation-free HOC scheme
on nonuniform grids. The main focus in this paper is to develop a multigrid method based
on a HOC scheme on nonuniform grids for solving of the 2D Helmholtz equation. To the
best of our knowledge, the 2D Helmholtz equation is not solved by a multigrid method
based on a HOC scheme on nonuniform grids.

2 HOC scheme on nonuniform grids
Consider a square domain (x,y) € [a;,a,] X [b1, by]. Discretization is performed on two-
dimensional nonuniform gird points. The interval [a;, a,] is divided into subintervals

ap = X0, X1,%2, - .-, XN, = 42, b1 =y0,y1,)2,-- YN, = ba.
In the x-direction, consider /, = “47*, and the forward and backward step sizes are given
X

by

hfx =Xip1 — X = Qthx, Npe =% — %1 = Opihy, 1<i<N,-1

by-by
Ny’

Similarly in the y-direction, &, =
hpy = yjn = y; = Ophy, hyy =yj = yj1 =Opyhy, 1<j<N,-L

Furthermore, o, = Qfxgbx: Bsx = Qfx + Opy, and yy = Qfx — Op,. If Qfx =0p =1 (hfx = Npy, hfy =
hpy), then the grids turn to be uniform. The approximate values of a function u(x,y) at
interior grid points (x;,y;) are represented by u, and the estimated values of other eight
neighboring points are determined by u;, i =1,2,3,...,8, as in Figure 1.

The Taylor series expansion is performed for appropriate description of a sufficiently
smooth function u(x, y) in the given domain at points 1 and 3, which are

27,2 31,3
0%h 031

X
uy = U + Opchy Oxig + Bfuo + e Bi’uo

Ofht 02 h
S S
+ ;—4 tug + 1;0 2uo + O(Gfihg), (2)
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(a) (b)

Figure 1 Nonuniform grids in xy-plane. (a) Nonuniform grids distribution in xy-plane. (b) Stencil of
nonuniform 2D grids.

02 h? 03 n®
us =Up —behxaxuo + b; % 83 0— bg L 85110
O} ht 6> h>
+PE 9ty — P2 90wy + O(65,KS). (3)

24 7 120

Multiplying equation (2) by 8, and (3) by 6, then adding and solving for the second-order
derivative, which gives

s %
g = (Opstir = Btto + Oputh3) = =" g — E(ﬁﬁ — 3ar) 9 uo

leﬁxh?c

hB
= g0 (B2~ 20780 + O(noh), @

where 1, = B — 5a,(B2 - ), and the second-order central difference operator along the
x-direction is defined as

82M0

LUo = W(beul — Batto + Opciz); (5)

if O = Opx = 1, then equation (5) reduces to uniform grids of the central difference operator.
Hence, the second-order derivative for the x-direction is

hz
Ouo = 8uo — <y 0o — (B ~ 3exe) B uo
h3
- é(ﬂz - Zax)yx 35140 + O(T}xhi), (6)

and the approximation of the second-order derivative for the variable y can be find ac-
cordingly. Therefore, the central difference (CD) scheme for the Helmholtz equation can
be discretized as

5§uo + 8y2u0 + /(2(u0) =fo + To, (7)
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where 1 is the truncation error and is defined as

HE 93 0t 0t
o +L1 “o +H2 “o +L2 “o
ot ay*

To = Hl 3y3

°u 3°u
rHs S e Ont) + ). ©

The equations H;, Hy, H3 and Ly, L,, L3 are defined as

1 1 1 1
Hizghom  Li=ghy, M= phi(fi=sa). L=3h(5 -3a),
1 1
Hj = @hz (,3;% - Zax)yx, L3 = @hi (,3y2 - Zay)yy, ny = 133‘/1 — 5“y(,3y2 _ Oéy).

If 74 is dropped off from equation (7), then the CD scheme for nonuniform grids becomes

(Sil/lo + 8}2,14() + kz(uo) :f(). (9)

2
x

1 1 20px 20, 20 20y,
k2—2<—+—))u0+ U+ o+ Us + Yy, =fy. (10)
( axhy oyl 0y Brh? ! oy Byh3 oty Bl ayByh; +=f

According to the definition of 5, 8y2, the CD scheme can be written as

In equation (10), only five grid points are involved. From the definition of 7y we can see
that when /1, = hy, and g, = hyy, then equation (10) is of second-order accuracy. In order
to improve the accuracy, we consider

83140 83M0
H—F+L——
P dy?

d d 82M0 321/!0 83M0 83M0
= H1—+L1— + - H1—+L1—
ox ay )\ ax2  3y? dx 9y? 9y 0x>

d 0 aﬁ) 2( 8110 auo)

=Hi—+L— -
Vo lay :

ayByhy
2 duy ug dus 2
-L x — By Op, O(h 11
l[axﬂxh,%(”ay B3y 05 ) 0 w
and
84140 0 Ugp
H-
> ot > 9y*

H 82 L 82 32140 82140 (H L ) 3414()
= —+Lh— =+ - +Ly)——
Yox2 " 7 3y? dxz  9y? 2T a2 ay?

92 92 9?2 9?2
:sz-!-l/zj—kz H2 “o +L2 “o
dx? dy? dx? dy?

82142 2M0 32

2 d Uy 2
~ (Hy +L2)[% 5 (eby a0 ) +O(hy)]o (12)




Ghaffar et al. Advances in Difference Equations (2016) 2016:19

Applying the central difference scheme to equation (11), we have

83140 331/!0
Hi— + L ——
s T dy3
9 - -
:Hl f Llﬁ— (2 Hl ho i +L1 o ~ ta
ox dy Bxhy Byh,

H 2 9 Us — — U3 9 Mg—u7)>
o (o () -2 () - ()
2 Us — — Uy Ue — U7
_Ll[axﬁxh% <9 ( Byhy ) ﬂx( Byhy )+6f”< Byhy ))} 13)

Similarly, equation (12) will be

34140 84140
Hy—— + L
2gxr T2 dy*
82f0 0 fO Opxtt1 — Bxto + 9fx”3
= Hy—= + Ly— — 2k*H.
2ox T2 nfrl?
91, Uy — /3 Ug + 9f Uy, 4(1‘12 + Lg)
—2K*Ly [ = 2 — ) - ObyOpths — O + Oy
2( Ofy,Byh§ axayﬂxﬁyh,%hi [( byUbxUs byﬁyUZ by foG)
+ (ﬂyebxul + ﬂyﬁxuo - ,Byefxb%) + (efyebxu8 - nyﬁxuél + efyefxu7)]' (14)

Through central difference schemes, the first- and second-order derivatives in equations
(12), (13) can be approximated. Now combining equations (7) and (8) with equations (12)
and (13), the nine-point HOC scheme on nonuniform mesh points for two-dimensional

Helmholtz equation (1) can be written as

9 9 d
ZAM, f0+H1ﬁ Llﬁ Hziuza;.

- (15)

The coefficients of the LHS in equation (15) are given as

A 1 1 2KH, 2Kk’L, 4(Hy+ L)
= — + pa— p— ,
0 o h2 ocyh§ oh? ayhf axotyhfchﬁ
20p 2H, 2k H, 0, /<2H1 4 + Lo) By O

A =

CBIE Bl wBIR | B e B2
26, N 2k2L0), . KL 2L, 4(Hh+ Lz)ﬁxeby’

ozy,Byh§ ozyﬁyh§ Byhy  axByh2h, ozxayﬁxﬁyhfch;
205 2k Hap  K*Hy Lo 4(H, + Lz)ﬂyefx,

axfuhy Bk Bihe  oyBihihy ooy BiByiihy
25  2KL6y KLy Lo 2h 4(Hy + Ly) B0y

aByh2 B2 Byhy  aByhthy, Bk
2H10py s 2L10px s 4(Hy + Lz)beth,

ayByBehahy  oxBiByhihy  awonBByhihy

Ay =

As =

Ay =

As =

Page 5 of 16
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2L 2Hi0y  AlHs L0,
BBy, ayBbyhh? oy B2k
gy 2l 26y A(Hy L)
BB, BB IR BB
Uy _"2Hh0 2ibp  A(Hs + Lo)0p0

Olylgxﬁyhxhjz, - ax,Bx,Byh?chy ’ axayﬂxﬂyh§h§ ’

It is easier to know that this scheme has third to fourth order of accuracy from expansion

of 1.

3 Multigrid method
The multigrid method is one of the most efficient and fastest methods for solving PDEs.
In the multigrid method, the rate of convergence is independent of the mesh size. This
method is more effective for solving large-scale sparse linear systems obtained from the
discretization of elliptic PDEs [9, 10, 19—22]. The main principle of the multigrid method
is to smoothen the error on coarse grid level using basic iterative methods such as Jacobi or
Gauss-Seidel method, etc. The multigrid method consists of three important components
that are relaxation, restriction, and interpolation operators. These are applied as ‘a single
iteration of a multigrid cycle comprised of manipulating the error by the application of
relaxation method, fixing the residuals on the coarse grid level, solving the error equation
on the coarse grid and adjusting the correction of coarse grid up to the fine grid level.
Some specific methods have been applied for the solution of the 2D and 3D Helmholtz
equations with HOC schemes on uniform grids [2—4, 6, 8,12, 13]. A full weighting restric-
tion operator and the standard bilinear interpolation operator are used as the inter-grid
transfer operators. But in the case of nonuniform grids, these restriction and interpolation
operators cannot be used; so new restriction and interpolation operators for nonuniform
grids are proposed by Ge and Cao [1] by using the area law developed by Liu [23]. In the
following section, we give out the derivation of the two operators for the completeness.

3.1 Restriction operator
The principle of developing restriction operator is based on the evaluation of the residuals
on the coarse grid level with the use of residuals on the fine grid level. In the multigrid
method, Liu developed a law for the restriction of the residual [23], known as the area law.
For every point on the coarse grid level, there are corresponding eight fine grid points
surrounding it. On the coarse grid, there is a contribution of different degree between the
reference grid points and the corresponding surrounding grid points on the fine grids,
and a full weighting restriction operator for nonuniform grids is constructed on the base
of area law. These points are shown for convenience in Figure 1. The basic idea for get-
ting the full weighting restriction operator of each grid point is to analyze the weighting
coefficients of the residuals. On the coarse grids, the reference point (i, ) of the fine grids
have the major contribution to it, so the corresponding weighting coefficient is evaluated
by ag/a. At that instant, we noticed that the grid points near the reference point (i,j) have
much more contributions than those far away from it. For instance, the weighting coeffi-
cient of the point (i + 1,/) is given by as/a, that of the point (i — 1,/) by a;/a, and so on. Now
suppose that r;; is the residual at the fine grid point (i, j) and that 7;; is the corresponding
residual at the coarse grid point (i, ). It is very simple to see that i = 2i and j = 2j; thus, the
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full weighting restriction operator on nonuniform grids can be written as in [1]:

_ 1
rij = ; [ﬂori,j +airi,; + drlij1 + asrizj + aalija

+asli1,j-1 + A6Tis1,j-1 T A7Fiv1j41 T “8’"1‘—1,141]’ (16)
in which
1

a= (hfx + hbx) X (hfy + hby), ao = E(hfx + hbx) X (hfy + hb)’)’

1 1
a = (e x Oy + ), a2 =y Ut + ),

1 1
as = Z(hbx x (hp + hby)), as = Z(hb;v x (hp + hbx))’

1
as = E(hfx X hg), ag = —(hpx X hy),

N =

1
ar; = Z(hfx X hby)¢ ag = (hbx S hby)'

If the step size reduces to equal size, then the total area is divided into sixteen equal
small parts by the grid lines and half-grid lines. Denoting the area of each part by a, we
obtain that ag = 4a, a1 = a» = az = a4 = 2a, and a5 = ag = a; = ag = a. Due to this situation,
the restriction operator will reduced to the full weighting operator on equal mesh sizes
[24]:

_ 1
ri; = E[‘M,j + 2('”;'71,;‘ + T+ il + ri,/’—l) + (ri+1,j+1 +ricpj t Vivpj-1 Vz>1,;>1)]~

3.2 Interpolation operator

For the construction of an interpolation operator, we use a similar strategy. We observed
that when grid points are shifted from coarse level to the fine level, at that instant, the
grids points on the coarse level are the grid points on fine level. These grid points are
shifted directly from the coarse grid level to the fine grid level. The interpolation operator
is expressed as r;; = r;;. Thus, the points on the fine grid are interpolated with their own
neighboring points on the coarse level. The formula for error correction along the x- and

y-directions are interpolated as [1]

1 _ -
rio1j = m (hfo?_Lj + hbx"}j);
ri,i—l = m(kfyﬁy}71 + hbyl_’z}).

In case of central grid points, we use four grid points around them on the coarse grid
level to interpolate as follows [1]:

ri—l,j—l = (Slxyr?_l,}‘_l + Sny’?j_l + SSxy’Zj + S4xy7?_1,}‘)r

Sxy
where

Sxy = (hfx + hbx) X (hfy + hby): Slxy = hfx X hfy;

S2xy = hbx X hfy, ngy = hbx X hby, S4xy = hfx X hby.
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When the grid sizes become equal, then the interpolation operator reduces to the bilinear

interpolation on equal step sizes [24]:

tij =151 i1 = 5(’7_1,}‘ +T57)s

1 _ _ o
—(’7‘—1,}‘-1 + 135y + 55+ Tig)-

Fathyh T g J-1+ T+ Tij

Tij-1= ij-1 T Fij

5
3.3 Relaxation operator (smoother)

In the multigrid method, the relaxation operator is an important operator. Its work is not
to remove the errors, but to damp the high-frequency components of the errors on the
present grid level. A simple smoother (Gauss-Seidel relaxation) method can efficiently
remove the errors in all directions for simple isotropic problems [7, 20], but in case of
anisotropic and boundary layer problems, the line Gauss-Seidel [19, 21] and alternating
line Gauss-Seidel methods [1, 25-27] are shown to be more robust smoothers. In this
paper, we use three relaxations to smooth the residuals on each coarse grid such as the
line Gauss-Seidel relaxation, natural Gauss-Seidel relaxation, and Red-black Gauss-Seidel

relaxation.

4 Numerical experiments

In order to check the effectiveness of the present method, some problems are chosen. The
V-cycle multigrid method is used with zero initial guess, and the process is stopped when
the Euclidean norm of the residual vector is reduced by 107° on the finest grid level. The
effectiveness of the multigrid method with HOC scheme and CD scheme (10) is presented.
The reported errors are the /,-norms of the errors between the computed solution and the

exact solution on finest grid. The order of accuracy for a difference scheme is defined as

Error(N;)
Order = 10g2 m,

where Error(N;) and Error(N;) are the maximum absolute errors approximated for two
different grids with N; + 1 and N, + 1 points in both direction, whereas N; is half of N,. We

use the /;-norm for comparison of the numerical solution and the exact solution, which is

defined as

Ilel| !
el = —
TN

where e;; is the error vector defined as, e;; = u;; — v;j, and v;; is the discrete approximation
of u;; which implies that u;; = v;; + O(h)*. First, we use different grid sizes from 8> to 128>
to compute the accuracy order.

The /;-norms of the error and accuracy order for the same value of A and different values
of N, k are presented in Tables 1 and 2. We consider the case where N =16 and N = 32
for the accuracy order of the scheme. We also examined the behavior of the scheme for
different values of k. The scheme is sensitive for 4 < k < 5. If we increase the value of
k =1,000, then the error does not decrease further. The scheme behaves robustly with
respect to the wave number k. However, for any value of N and k, overall, the error does
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Table 1 The number of multigrid V-cycles with two schemes and different values of

k=10,50,100,500, 1,000 and A =-0.9 for Example 1, where e = 107>

k N=16 N=32 N=64 N=128
DS 10 34623 245046  2.1089%°  32161e™
50  27134e 23692  1.9880e 173227
100 1.7091e™ 167006  14650e  13705¢™
500  1.1898e™  1.1662e>  1.1497¢™  1.1403e7
1,000  1.1697e  13534e™  19545¢™  1.6564e7
HOC 10 7.2104e™ 11268 99271  93180¢”’
50 52183¢°  16971e 9912860  9.3345¢”
100 36107¢°  16881e™  75263¢°  92791e”
500  2.1945e7 15213  7.6298¢°  84423¢”
1,000  43177¢°  22813e> 21970  99281¢”’

Table 2 The number of multigrid V-cycles with two schemes and different values of

k =10,50,100,500, 1,000 and A = 0.9 for Example 2, where e™> = 10~3

k N=16 N=32 N=64 N=128
DS 10 84161e3 421043 926106  26041e™
50  83413¢73 42390  98707¢  2.1374e™
100 779173 4754063 86342 197927
500 7.6893¢  3.6964e7>  74763¢™  14136e7
1,000 76712e3  38533¢3  9.1249¢  2.2693¢7°
HOC 10 3.8844e™ 286006 87210e”  53421e”’
50  3.2736e°  29751e® 81872  53453¢”
100 3.1673¢™  22360e® 82453¢°  52198¢7
500  29764e  1.7590e°  7.9678¢° 54340
1,000  47337¢°  32187¢° 79711  52891¢”’

not increase. One of the important advantages of this scheme is the execution time. The
computed results show that the line Gauss-Seidel method takes less CPU time than the

other smoothers.

Example 1 Consider the following elliptic PDE with the source term:

Uy + Uyy + Ku =f(x,9),

flxy) = (K =10%7%) [x — y(1 - y)] + 198¢7°%;

O0<x<1,0<y<],

the boundary conditions are given by the analytic solution, that is,

u(x,y) = e 100% [y(l -y) - x]

This problem has a steep boundary layer along x = 0; therefore, we are using nonuniform
grids along the x-axis, which are accumulating near x = 0, and uniform grids along the
y-axis with the following stretching function [28]:

i A (i j
X =—+—sin| — |, Y=
N, 7 \N, N,

where X is a stretching parameter and controls the tightness of the grid points in the
x-direction. When X < 0, more grid points are accumulated to the boundary x = 0 and to
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Table 3 The error norms and order of accuracy of the two schemes for Example 1, where

e>=107, |le|l2, k=10,N=16,32,64,128

Page 10 of 16

N A 162 322 642 1282 Order
CDS 00 609824  49180e™* 99082 79118 0310
02 4.1044e%  31322e*  7.1160e 50032 0392
04 25100e*  1.7200e*  6.7640e  39155¢™ 0545
-06 8.1398¢™  6.1021e™  43302¢  24203¢™ 0415
-08 58197¢ 50295  3.0955¢>  1.5064e” 0531
-09 34623¢™  24504e™ 21089 32161e™ 0210
HOC 00 48122e™ 36113¢*  94102e™ 58410 0414
02 1.1438¢*  10661e 63918  4.1235¢  0.101
04 9.1100e 61818  32561e™  19760e™ 0559
06 7.1398¢° 45502  1.6021e  62030e°  0.650
08 47341e  88061e®  7.6660e° 3.7210e  0.242
09 72104  1.1268e°  9.9271e° 93180’ 2677
0.12 ““
012
0.08 0.08
F \
2006 2006
0.04
0.04
0.02
0.02
0
0 1
1
y
X
(2)
014+ 014+
0.12 | 012
041 \ 0.1
0.08 0.08
§o.oe §ooe
3 3

0.04

0.02

-0.02
1

A =-0.8for Example 1.

-0.02
1

Figure 2 Computed solutions through HOC and CDS schemes for problem 1. (a) Exact solution.
(b) Computed solution from HOC scheme with uniform grids. (c) HOC scheme on nonuniform grids. (d) CDS
scheme on nonuniform grids. The error vector e = u;; — v, and N = 32 is the number of nodes, and k = 10 and
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Table 4 The number of multigrid V-cycles and CPU time with two schemes and different
relaxation methods with 322 for Example 1

Scheme A Line GS Red-black GS Natural GS
Iterations  CPU Iterations  CPU Iterations  CPU
(@B 0.0 9 0334 10 0350 12 1.840
-02 10 0362 11 0432 13 1.920
-04 10 1400 12 1860 15 2.940
-06 11 1.521 12 2032 17 3.660
-08 21 2230 36 4564 43 6.583
-09 33 3345 43 7216 55 8.000
HOC 0.0 9 0.300 9 0810 12 1.832
-02 10 0340 11 0830 12 1.980
-04 1 0810 12 1767 14 2.200
-06 11 0900 12 2203 18 3.80
-08 12 1.800 13 3720 22 4.960
-09 15 2200 21 6318 33 6.550

the boundary x =1for A > 0.If A = 0, then the grids reduced to be uniform. When A = —-0.8
and the grid numbers are 322, the grid distribution in the xy-plane is shown in Figure 1.
The estimated accuracy and maximum absolute error with different stretching parameter
A are presented in Table 3. We see that when A = 0, the results are very poor. A more ac-
curate solution and order of convergence are obtained from HOC and CD schemes with
decreasing stretching parameter A on nonuniform grids. We observe that when A = —0.8,
the solution obtained with HOC scheme is more accurate, but when A further decreases
to —0.9, the accuracy decreases. This situation is not wondering because putting more
grids in the boundary layer area will necessarily cause lack of mesh points in the other
regions of the domain. Figure 2 indicates the configuration of solution in the xy-plane.
Table 4 shows the /;-norm of the error, CPU timing, and the order of accuracy for differ-
ent stretching parameters A in problem 1. It is also obvious from the results that the line
Gauss-Seidel relaxation is the most efficient smoother with the least multigrid V-cycle
numbers for such type of problems. (a) shows the exact solution, (b) the solution obtained
from HOC scheme on uniform grids, (c) the computed solution obtained from a HOC
scheme on nonuniform grids, and (d) the computed solution of CD scheme on nonuni-
form grids.

Example 2 Consider the PDE with a source term f(x, y),
uxx+uyy+k2u =f(xy), O<xy<l (19)

Its analytic solution is

(1 _ elOO(x—l))(l _ eloo(y—l))

(1 — 1002

ulx, y) =

The source function is determined by the analytic solution with the boundary layers
along x =1 and y = 1. Hence, nonuniform grids along the coordinate directions with accu-
mulation near x = 1, y =1 is used by the following stretching formula:

i A, (i
x=—+ —sin| — |,
N, =« N,
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Figure 3 Nonuniform grids distribution in the

xy-plane, 322, 1 =0.8.
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Table 5 The error norms and order of accuracy of the two schemes for Example 2, where
e3=1073, |lell2, k=10, N=16,32,64,128

N A 162 322 642 1282 Order

CDS 00 520022  48890e2 3.2290e2  7.1098¢  0.089
02 344212  22213¢2  1.1180e2 53112e3 0631
04  25541e2 1700272  1.1040e™2  3.1255¢™%  0.587
06 1.1983¢2  72100e>  4.1033¢3  6.1043¢> 0732
08 5.1287¢3 19520673  7.1530e  1.6054e™ 0999
09 84161e3 421043 926106  26041e>  1.393

HOC 00 421222 332113 74412¢% 58234e% 3664
02 1121862 16601e> 633184  47715¢> 2756
04 971107  6.1218¢% 36152¢  3.1961e® 3987
06 3932864  41155e>  26001e®  23087e°  3.256
08 37022¢™ 186766  52260e” 33350 4309
09 3.8844e  28600e® 872107 53421e”’ 3763

jooh (ﬂi)
¥j=—+—sin|{ = |.
N, = N,

When A gets closer to 1, more grids are accumulated near x =1, y = 1. When 1 = 0.8
and the grids size is 322, the grids distribution is given in Figure 3. Table 5 indicates the
error norms and order of accuracy for different stretching parameters A for problem 2.
The value of A changes from 0.0 to 0.9. We observe that in nonuniform grids with in-
creasing the stretching parameter A, more and more grids accumulate into the bound-
ary layers; consequently, more accurate results are obtained from HOC and CD schemes.
The rate of convergence continuously increases with the increase of 1. We observe that
when A = 0.8, a considerably most accurate solution is obtained with the HOC scheme,
but when A increases to 0.9, it leads to decrease in accuracy. Figure 4 shows the contours
of the exact solution in the xy-plane. Table 6 and Table 7 list the number of multigrid
V-cycles and the corresponding CPU time in seconds for solving problem 2 on the 162,
322, 642, and 1282 grids. (a) represents the exact solution, (b) the solution obtained by
the HOC scheme on uniform grids, (c) the computed solution by the CD scheme on uni-
form grids, and (d) the solution obtained by the HOC scheme on nonuniform grids with
A =0.8.
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Figure 4 Computed solution obtained from HOC and CDS schemes for problem 2. (a) Exact solution.
(b) Computed solution by HOC scheme on uniform grids. (c) CDS scheme on uniform grids. (d) HOC scheme

Table 6 The number of multigrid V-cycles and CPU time with two schemes and different

relaxation methods with 322 for Example 2

Scheme A Line GS Red-black GS Natural GS
Iterations  CPU Iterations  CPU Iterations  CPU

(@B 00 11 0534 12 0550 12 1.480
-02 11 0562 12 0630 13 1.960
-04 1 0584 12 0980 17 2488
-06 12 1765 13 1382 19 3.600
-08 17 1936 19 1996 33 5.853
-09 27 3145 33 4162 43 6.980

HOC 0.0 9 0.310 9 0532 12 1.330
-0.2 9 0330 10 0572 12 1.860
-04 9 0415 11 0677 13 2.200
-06 10 0970 12 1238 18 2.890
-08 11 1770 16 1720 22 3.973
-09 13 2245 19 4080 23 5.560
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Table 7 The number of multigrid V-cycles and CPU time with two schemes and different

relaxation methods with 322 for Example 2

Scheme Grids Line GS Red-black GS Natural GS
Iterations CPU Iterations CPU Iterations CPU
CDS 82 9 0.060 11 0.140 11 0.800
16> 11 0062 12 0840 11 1392
322 11 0.284 12 1.220 12 2.268
64> 12 2652 13 2842 13 3.230
1282 13 2.920 15 3.296 15 3.838
HOC 8? 8 0.070 8 0532 12 0.720
162 8 0.073 8 0.660 12 0.960
32? 9 0210 9 0977 12 1.862
642 9 2510 10 1322 13 2.890
1282 11 2872 12 2.260 18 3713

Table 8 The error norms and CPU (seconds) for a multigrid method with different discretized
schemes for Example 3, |le||2, k=10

N CDSscheme CPU (seconds) Order HOCscheme Order
4 7.5620e72 0.060 2.01 632204 240
8  32228¢73 0.074 455 83311e™ 292
16 4.0644e™ 0.088 298 3.2034e7° 470
32 81510 1.03 231 8.1284¢”7 197
64 203890 1.80 532 7.3819¢78 346
128 55090e” 2.90 143 6.1901¢78 0.25

Example 3 Consider the Helmholtz equation with a source function f(x, y),

uxx+uyy+k2u:f(x,y), 0<xy<2,

2_ 2
flx,y) = (ZI(T_]T> sin(?) sin(?),

with the Dirichlet boundary condition. Its analytic solution is

u(x,y) = sin(y> sin(ﬂ).
2 2

We observe that the exact solution does not show high variations; therefore, nonuniform

(20)

grids are not necessary. Uniform grids are used for this problem to check the effectiveness
of the multigrid method. The results obtained from the HOC and CD schemes are pre-
sented. The reported error is the error norm over the discretized grid points on the finest
grid level. Table 8 lists the number of multigrid V-cycles and the corresponding CPU time
in seconds for solving problem 3 on the 162, 322, 642, and 1282 grids. We can see that, for
this problem, the multigrid method is very efficient and all the smoothers work well.

5 Conclusion

In this paper, we have proposed a transformation-free high-order compact finite-differ-
ence scheme on nonuniform grids for solution of the 2D Helmholtz equation to get up to
fourth-order accuracy. Furthermore, we have applied the multigrid method based on the
HOC scheme on nonuniform grids, which solved the resulting system efficiently. In the
case of boundary layer problems with suitable grid stretching ratios, the accuracy is up to
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fourth order for the HOC scheme and second order for the CD scheme. Numerical results
show that the multigrid method with HOC scheme has the required accuracy and is faster
than the CD scheme.
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