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Abstract
In this paper, we study the multiplicity results of positive solutions for a fractional
elliptic system involving both concave-convex and critical growth terms. With the
help of the Nehari manifold and the Ljusternik-Schnirelmann category, we prove that
the problem admits at least cat(�) + 1 distinct positive solutions.
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1 Introduction and the main result
In this paper, we are concerned with the number of positive solutions of the fractional
elliptic system:

(Eλ,μ)

⎧
⎪⎨

⎪⎩

(–�) s
 u = λ|u|q–u + α

α+β
|u|α–u|v|β in �,

(–�) s
 v = μ|v|q–v + β

α+β
|u|α|v|β–v in �,

u = v =  on ∂�,

where � is a bounded set in R
N with smooth boundary, N > s with s ∈ (, ) fixed,  < q < ,

λ,μ > , α,β >  satisfy α + β = ∗
s = N

N–s , ∗
s is the fractional Sobolev critical exponent, and

(–�) s
 is the fractional Laplacian. These types of operators are the infinitesimal genera-

tors of Lévy stable diffusion process and arise in anomalous diffusions in plasmas, flames
propagation and chemical reactions in Liquids, population dynamics, geophysical fluid
dynamics, and American options in finance; see [, ].

In recent years, a great deal of attention has been focused on studying of problems in-
volving fractional Sobolev spaces and corresponding nonlocal equations, both from a pure
mathematical point of view and for concrete applications. We refer to [–] for the sub-
critical case and to [–] for the critical case. In particular, set α + β = p ≤ ∗

s , λ = μ,
and u = v, (Eλ,μ) reduces to the following fractional elliptic equation with concave-convex
nonlinearities:

(Eλ)

{
(–�) s

 u = λ|u|q–u + |u|p–u in �,
u =  on ∂�,
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Goyal and Sreenadh [] studied the existence and multiplicity of non-negative solutions
to (Eλ). Moreover, by Nehari manifold and fibering maps, Chen and Deng [] obtained
the existence of multiple solutions to (Eλ) for subcritical case and critical case. For the
fractional Laplacian system with concave-convex nonlinearities, He et al. [] proved that
(Eλ,μ) permits at least two positive solutions when the pair of parameters (λ,μ) belongs to
a certain subset of R. Similar results were taken by Chen and Deng []. The tool of them
is the decomposition of the Nehari manifold.

Motivated by the results mentioned above, the purpose of this article is to get a better
information on the number of positive solutions of (Eλ,μ), for λ,μ >  small enough, via
the tools of the variational theory and the Ljusternik-Schnirelmann category theory. We
refer the reader to [–] for similar results to (Eλ,μ) for Laplacian operator. Our main
result can be stated as follows.

Theorem . There exists �∗ >  such that if λ,μ ∈ (,�∗), (Eλ,μ) has at least cat(�) + 
distinct positive solutions. Here cat(�) denotes the Ljusternik-Schnirelmann category of �

in itself.

Remark . If � is a general domain, cat(�) ≥ , and Theorem . is the main result of
[, ].

Remark . Concerning regularity, one can get an a priori estimate for the solutions to
(Eλ,μ) and hence obtain, as in [], Proposition ., u, v ∈ C∞(�) for s = , u, v ∈ C,s(�) if
 < s <  and u, v ∈ C,s– if  < s < .

This paper is organized as follows: In Section , we introduce some notations and pre-
liminaries. In Section , we give some technical results which are crucial to the proof of
Theorem .. In Section , we give the proof of Theorem ..

2 Notations and preliminaries
In this section, we collect preliminary facts for future reference. First of all, let us write
the standard notations which we will use in this paper. We denote the upper half-space in
R

N+
+ by

R
N+
+ :=

{
(x, y); (x, x, . . . xN , y) ∈R

N+, y > 
}

.

Denote the half cylinder with base � by C� = � × (,∞) ⊂R
N+
+ and its lateral boundary

by ∂LC� = ∂� × [,∞). We shall use C (Ci, i = , , . . .) to denote any positive constant.
Let ϕj, λj be the eigenfunctions and eigenvectors of –� in � with zero Dirichlet bound-

ary data. The fractional Laplacian (–�) s
 is defined in the space of functions

H
s


 (�) :=

{

u =
∞∑

j=

ajϕj ∈ L(�);‖u‖
H

s


 (�)
=

( ∞∑

j=

a
j λ

s

j

) 


< ∞
}

,

and ‖u‖
H

s


 (�)
= ‖(–�) s

 u‖L(�). The dual space H– s
 (�) is defined in the standard way as

well as the inverse operator (–�)– s
 .
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Definition . We say that (u, v) ∈ H
s


 (�) × H
s


 (�) is a solution of (Eλ,μ) if the identity

∫

�

(–�)
s
 u(–�)

s
 ϕ + (–�)

s
 v(–�)

s
 ϕ dx

=
∫

�

(
λ|u|q–uϕ + μ|v|q–vϕ

)
dx +

α

α + β

∫

�

|u|α–u|v|βϕ dx

+
β

α + β

∫

�

|u|α|v|β–vϕ dx

holds for all (ϕ,ϕ) ∈ H
s


 (�) × H
s


 (�).

Associated with (Eλ,μ) we consider the energy functional

Jλ,μ(u, v) :=



∫

�

(∣
∣(–�)

s
 u

∣
∣ +

∣
∣(–�)

s
 v

∣
∣)dx

–

q

∫

�

(
λ|u|q + μ|v|q)dx –


∗

s

∫

�

|u|α|v|β dx.

This functional is well defined in H
s


 (�) × H
s


 (�), and, moreover, the critical points of
Jλ,μ correspond to weak solutions of (Eλ,μ).

To treat the nonlocal problem (Eλ,μ), we will study a corresponding extension prob-
lem, which allows us to investigate (Eλ,μ) by studying a local problem via classical varia-
tional methods. We define the extension operator and fractional Laplacian for functions
in H

s


 (�).

Definition . Given a function u ∈ H
s


 (�), we define its s-harmonic extension ω = Es(u)
to the cylinder C� as a solution to the problem

⎧
⎪⎨

⎪⎩

div(y–s∇ω) =  in C�,
ω =  on ∂LC�,
ω = u on � × {},

and

(–�)
s
 u(x) = –Ks lim

y→+
y–s ∂ω

∂y
(x, y),

where Ks is a normalization constant.

The extension function ω(x, y) belongs to the space Hs
,L(C�) = C∞

 (� × [,∞)), with

‖ω‖Hs
,L(C�) =

(

Ks

∫

C�

y–s|∇ω| dx dy
) 


.

The extension operator is an isometry between H
s


 (�) and Hs
,L(C�), namely,

‖ω‖Hs
,L(C�) = ‖u‖

H
s


 (�)
, ∀u ∈ H

s


 (�). (.)
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With this extension, we can transform (Eλ,μ) into the following local problem:

(̂Eλ,μ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– div(y–s∇ω) = , – div(y–s∇ω) =  in C�,
ω = ω =  on ∂LC�,
∂ω
∂νs = λ|ω|q–ω + α

α+β
|ω|α–ω|ω|β on C� × {},

∂ω
∂νs = λ|ω|q–ω + β

α+β
|ω|α|ω|β–ω on C� × {},

ω = u, ω = v on C� × {},

where

∂ωi

∂νs := –Ks lim
y→+

y–s ∂ωi

∂y
, i = , .

In the following, we will study (̂Eλ,μ) in the framework of the Sobolev space H =
Hs

,L(C�) × Hs
,L(C�) using the standard norm

∥
∥(ω,ω)

∥
∥

H =
(

Ks

∫

�

y–s(|∇ω| + |∇ω|
)

dx dy
) 


.

An energy solution to (̂Eλ,μ) is a function (ω,ω) ∈ H satisfying

Ks

∫

C�

y–s∇ω∇ϕ dx dy + Ks

∫

C�

y–s∇ω∇ϕ dx dy

=
∫

�×{}

(
λ|ω|q–ωϕ + μ|ω|q–ωϕ

)
dx

+
α

α + β

∫

�×{}
|ω|α–ω|ω|βϕ dx +

β

α + β

∫

�×{}
|ω|α|ω|β–ωϕ dx

for all (ϕ,ϕ) ∈ H .
If (ω,ω) satisfies (̂Eλ,μ), then the trace (u, v) = (ω(·, ),ω(·, )) is a solution of (Eλ,μ).

The converse is also true. Therefore, both formulations are equivalent.
The associated energy functional to (̂Eλ,μ) is

Iλ,μ(ω,ω) =


∥
∥(ω,ω)

∥
∥

H –

q

∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx

–


∗
s

∫

�×{}
|ω|α|ω|β dx.

Clearly, critical points of Iλ,μ in H correspond to critical points of Jλ,μ in H
s


 (�) × H
s


 (�).
In the following lemmas, we will list some relevant inequalities from [, ].

Lemma . For every  ≤ r ≤ ∗
s , and every ω ∈ Hs

,L(C�), we have

(∫

�×{}
|ω|r dx

) 
r
≤ C

∫

C�

y–s|∇ω| dx dy (.)

for some positive constant C. Furthermore, the space Hs
,L(C�) is compactly embedded into

Lr(�), for every r < ∗
s .
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Remark . When r = ∗
s , the best constant is denoted by S(s, N), that is,

S(s, N) := inf
ω∈Hs

,L(C�)\{}

∫

C�
y–s|∇ω| dx dy

(
∫

�×{} |ω|∗
s dx)


∗s

. (.)

It is not achieved in any bounded domain and, for all ω ∈ Hs(RN+
+ ),

S(s, N)
(∫

RN ×{}
|ω|∗

s dx
) 

∗s ≤
∫

R
N+
+

y–s|∇ω| dx dy, (.)

S(s, N) is achieved for � = R
N by the functions ωε which are the s-harmonic extensions of

uε(x) :=
ε

(N–s)


(ε + |x|)
(N–s)


, ε > , x ∈R

N . (.)

The constant S(s, N) given in (.) takes the exact value

S(s, N) =
π

s
 �( –s

 )�( N+s
 )(�( N

 ))
s
N

�( s
 )�( N–s

 )(�(N))
s
N

,

and it is achieved for � = R
N by the functions ωε = Es(uε).

We consider the following minimization problem:

Ss,α,β := inf
(ω,ω)∈H\{(,)}

∫

C�
y–s(|∇ω| + |∇ω|) dx dy

(
∫

�×{} |ω|α|ω|β dx)


∗s
. (.)

From [], we establish a relationship between S(s, N) and Ss,α,β .

Lemma . For the constants S(s, N) and Ss,α,β introduced in (.) and (.), we have

Ss,α,β =
((

α

β

) β
α+β

+
(

β

α

) α
α+β

)

S(s, N).

In particular, the constant Ss,α,β is achieved for � = R
N .

To proceed, we introduce the Nehari manifold of Iλ,μ by setting

Nλ,μ =
{

(ω,ω) ∈ H\{(, )
}

; I ′
λ,μ(ω,ω)(ω,ω) = 

}
.

This enables us to construct homotopies between � and certain levels of Iλ,μ. Clearly,
(ω,ω) ∈ Nλ,μ if and only if

∥
∥(ω,ω)

∥
∥

H =
∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx +

∫

�×{}
|ω|α|ω|β dx.
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On the Nehari manifold Nλ,μ, from Lemma . and the Young inequality, we have

Iλ,μ(ω,ω) =
(




–


∗
s

)
∥
∥(ω,ω)

∥
∥

H –
(


q

–


∗
s

)∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx

≥
(




–


∗
s

)
∥
∥(ω,ω)

∥
∥

H –
(


q

–


∗
s

)

(λ + μ)C
∥
∥(ω,ω)

∥
∥q

H (.)

≥ –(λ + μ)/(–q)C, (.)

where C denotes positive constants (possibly different) independent of (ω,ω) ∈ H . Let

ψλ,μ(ω,ω) := I ′
λ,μ(ω,ω)(ω,ω)

=
∥
∥(ω,ω)

∥
∥

H –
∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx –

∫

�×{}
|ω|α|ω|β dx. (.)

Then, for (ω,ω) ∈ Nλ,μ,

ψ ′
λ,μ(ω,ω)(ω,ω) = ( – q)

∥
∥(ω,ω)

∥
∥

H –
(
∗

s – q
)
∫

�×{}
|ω|α|ω|β dx (.)

=
(
 – ∗

s
)∥
∥(ω,ω)

∥
∥

H

+
(
∗

s – q
)
∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx. (.)

Similar to the method used in [, ], we split Nλ,μ into three parts:

N+
λ,μ =

{
(ω,ω) ∈ Nλ,μ;ψ ′

λ,μ(ω,ω)(ω,ω) > 
}

;

N
λ,μ =

{
(ω,ω) ∈ Nλ,μ;ψ ′

λ,μ(ω,ω)(ω,ω) = 
}

;

N–
λ,μ =

{
(ω,ω) ∈ Nλ,μ;ψ ′

λ,μ(ω,ω)(ω,ω) < 
}

.

In the sequel, we shall use �∗ to denote different small parameters. Then we have the
following results.

Lemma . Suppose that (ω,ω) is a local minimizer for Iλ,μ on Nλ,μ. Then, if (ω,ω) /∈
N

λ,μ, (ω,ω) is a critical point of Iλ,μ.

Lemma . There exists �∗ >  such that, for each λ,μ ∈ (,�∗), we have N
λ,μ = ∅.

By Lemma ., for λ,μ ∈ (,�∗), we write Nλ,μ = N+
λ,μ ∪ N–

λ,μ and define

α+
λ,μ = inf

(ω,ω)∈N+
λ,μ

Iλ,μ(ω,ω); α–
λ,μ = inf

(ω,ω)∈N–
λ,μ

Iλ,μ(ω,ω).

Set

tmax =
(

( – q)‖(ω,ω)‖
H

(∗
s – q)

∫

�×{} |ω|α|ω|β dx

) 
∗s –

> .

Then we have the following result.
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Lemma . For each (ω,ω) ∈ H with
∫

�×{} |ω|α|ω|β dx > , there exist unique  < t+ <
tmax < t– such that (t+ω, t+ω) ∈ N+

λ,μ, (t+ω, t+ω) ∈ N+
λ,μ, (t–ω, t–ω) ∈ N–

λ,μ and

Iλ,μ
(
t+ω, t+ω

)
= inf

≤t≤tmax
Iλ,μ(tω, tω); Iλ,μ

(
t–ω, t–ω

)
= sup

t≥
Iλ,μ(tω, tω).

Lemma . If λ,μ ∈ (,�∗), then
(i) α+

λ,μ < ,
(ii) α–

λ,μ ≥ δ for some δ > .

For the proofs of Lemmas .-., the reader is referred to [, ] for similar proofs.

Remark . From Lemmas . and ., it is easy to know that if (ω,ω) ∈ N–
λ,μ,

∫

�×{}
|ω|α|ω|β dx > .

Next we establish that Iλ,μ satisfies the (PS)c-condition under some restriction on the
level of (PS)c-sequences in the following.

Lemma . For each λ,μ ∈ (,�∗), Iλ,μ satisfies the (PS)c-condition for c ∈ (–∞,α+
λ,μ +

s
N (KsSs,α,β)N/s).

Proof Let {(ω,n,ω,n)} ⊂ H be a (PS)c-sequence for Iλ,μ and c ∈ (–∞,α+
λ,μ + s

N (KsSs,α,β)N/s).
Note (.), it is easy to see that {(ω,n,ω,n)} is bounded in H . Thus, there exists a sub-
sequence still denoted by {(ω,n,ω,n)} and (ω,ω) ∈ H such that (ω,n,ω,n) ⇀ (ω,ω)
weakly in H . Furthermore, we get

•
∫

�×{}

(
λ|ω,n|q + μ|ω,n|q

)
dx =

∫

�×{}

(
λ|ω|q + μ|ω|q

)
dx + o();

• ∥
∥(ω,n – ω,ω,n – ω)

∥
∥

H =
∥
∥(ω,n,ω,n)

∥
∥

H –
∥
∥(ω,ω)

∥
∥

H + o();

•
∫

�×{}
|ω,n – ω|α|ω,n – ω|β dx

=
∫

�×{}
|ω,n|α|ω,n|β dx –

∫

�×{}
|ω|α|ω|β dx + o().

Moreover, we can obtain I ′
λ,μ(ω,ω) = . Since Iλ,μ(ω,n,ω,n) = c+o() and I ′

λ,μ(ω,n,ω,n) =
o(), we deduce that



∥
∥(ω,n – ω,ω,n – ω)

∥
∥

H –


∗
s

∫

�×{}
|ω,n – ω|α|ω,n – ω|β dx

= c – Iλ,μ(ω,ω) + o() (.)

and

o() = I ′
λ,μ(ω,n,ω,n)(ω,n – ω,ω,n – ω)

=
(
I ′
λ,μ(ω,n,ω,n) – I ′

λ,μ(ω,ω)
)
(ω,n – ω,ω,n – ω)

=
∥
∥(ω,n – ω,ω,n – ω)

∥
∥

H –
∫

�×{}
|ω,n – ω|α|ω,n – ω|β dx + o().
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Now we may assume that

∥
∥(ω,n – ω,ω,n – ω)

∥
∥

H → l and
∫

�×{}
|ω,n – ω|α|ω,n – ω|β dx → l as n → ∞

for some l ∈ [, +∞).
Suppose l �= . Using (.) and passing to the limit as n → ∞, we have

l ≥ KsSs,α,β l


∗s ,

that is,

l ≥ (KsSs,α,β)N/s. (.)

Then by (.)-(.) and (ω,ω) ∈ Nλ,μ ∪ {},

c = Iλ,μ(ω,ω) +
(




–


∗
s

)

l ≥ α+
λ,μ +

s
N

(KsSs,α,β)N/s,

which contradicts the definition of c. Hence l = , and the proof is completed. �

Lemma . For λ,μ ∈ (,�∗), the functional Iλ,μ has a minimizer ((ω)+
λ,μ, (ω)+

λ,μ) ∈ N+
λ,μ

and it satisfies:
(i) Iλ,μ((ω)+

λ,μ, (ω)+
λ,μ) = α+

λ,μ;
(ii) ((ω)+

λ,μ, (ω)+
λ,μ) is a positive solution of (̂Eλ,μ);

(iii) Iλ,μ((ω)+
λ,μ, (ω)+

λ,μ) →  as λ,μ → ;
(iv) limλ,μ→ ‖((ω)+

λ,μ, (ω)+
λ,μ)‖H = .

Proof (i)-(ii) are consequences of []. It follows from (.) and Lemma . that

 > Iλ,μ
(
(ω)+

λ,μ, (ω)+
λ,μ

) ≥ –(λ + μ)/(–q)C.

We obtain Iλ,μ((ω)+
λ,μ, (ω)+

λ,μ) →  as λ,μ → .
Now we show (iv). By (i)-(iii),

 = lim
λ,μ→

Iλ,μ
(
(ω)+

λ,μ, (ω)+
λ,μ

)

= lim
λ,μ→

(
s

N
∥
∥
(
(ω)+

λ,μ, (ω)+
λ,μ

)∥
∥

H

–
(


q

–


∗
s

)∫

�×{}

(
λ
∣
∣(ω)+

λ,μ
∣
∣q + μ

∣
∣(ω)+

λ,μ
∣
∣q)dx

)

. (.)

Since Iλ,μ is coercive and bounded below on Nλ,μ, ((ω)+
λ,μ, (ω)+

λ,μ) is bounded in H and
so that

lim
λ,μ→

∫

�×{}

(
λ
∣
∣(ω)+

λ,μ
∣
∣q + μ

∣
∣(ω)+

λ,μ
∣
∣q)dx = . (.)

Therefore, we obtain the desired result. �
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3 Some technical results
In this section, we shall introduce some useful results which are crucial for the proof of
Theorem ..

Lemma . Let {(ω,n,ω,n)} ⊂ H be a non-negative function sequence with

∫

�×{}
|ω,n|α|ω,n|β dx =  and

∥
∥(ω,n,ω,n)

∥
∥

H → KsSs,α,β .

Then there exists a sequence {(yn, εn)} ⊂R
N ×R

+ such that

(
W,n(x), W,n(x)

)
:=

(
Es

(
ε

N–s


n ω,n(εnx + yn, )
)
, Es

(
ε

N–s


n ω,n(εnx + yn, )
))

contains a convergent subsequence denoted again by {(W,n(x), W,n(x))} such that

(
W,n(x), W,n(x)

) → (W, W) in H .

Moreover, we have εn →  and yn → y ∈ � as n → ∞.

Proof Let Zn,(x) = ω,n(x, ), Zn,(x) = ω,n(x, ), we have

∫

�

|Zn,|α|Zn,|β dx =  and ‖Zn,‖
Hs

(�) + ‖Zn,‖
Hs

(�) → KsSα,β as n → ∞.

By the proof of Lemma ., we know that {Zn,} and {Zn,} are minimizing sequences
for the critical Sobolev inequality in the form (.). Thus we deduce from [], The-
orem  and [], Theorem , that there exist a sequence of points {yn} ⊆ R

N and a
sequence of numbers {εn} ⊂ (,∞) such that Ẑn,(x) = ε

N–s


n Zn,(εnx + yn) → Ẑ(x) and
Ẑn,(x) = ε

N–s


n Zn,(εnx + yn) → Ẑ(x) in Hs(RN ) as n → ∞. Moreover, we have εn → 
and yn → y ∈ � as n → ∞. Denote W,n = Es(Ẑn,), W,n = Es(Ẑn,) and W = Es(Ẑ),
W = Es(Ẑ). Then we obtain the result. �

Lemma . Suppose that X is a Hilbert manifold and F ∈ C(X,R). Assume that, for c ∈R

and K ∈N:
(i) F(x) satisfies the (PS)c condition for c ≤ c,

(ii) cat({x ∈ X; F(x) ≤ c}) ≥ K .
Then F(x) has at least K critical points in {x ∈ X; F(x) ≤ c}.

Proof See [], Theorem .. �

Up to translations, we may assume that  ∈ �. Moreover, in the following, we fix r > 
such that Br = {x ∈R

N ; |x| < r} ⊂ � and the sets

�+
r :=

{
x ∈ R

N ; dist(x,�) < r
}

, �–
r :=

{
x ∈ �; dist(x, ∂�) > r

}

are both homotopically equivalent to �.
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Noting Remark ., below we can define the continuous map � : N–
λ,μ →R

N by setting

�(ω,ω) :=

∫

�×{} x|ω|α|ω|β dx
∫

�×{} |ω|α|ω|β dx
.

Denote

cλ,μ := α+
λ,μ +

s
N

(KsSs,α,β)N/s

and

N–
λ,μ(cλ,μ) :=

{
(ω,ω) ∈ N–

λ,μ; Iλ,μ(ω,ω) ≤ cλ,μ
}

.

Lemma . There exists �∗ >  such that if λ,μ ∈ (,�∗) and (ω,ω) ∈ N–
λ,μ(cλ,μ),

�(ω,ω) ∈ �+
r .

Proof By way of contradiction, let λn,μn → , {(ω,n,ω,n)} ⊂ N–
λn ,μn (cλn ,μn ) and �(ω,n,

ω,n) /∈ �+
r . From (.), we see that {(ω,n,ω,n)} is bounded and

∫

�×{}(λn|ω,n|q +
μn|ω,n|q) dx → . Thus,

lim
n→∞ Iλn ,μn (ω,n,ω,n) = lim

n→∞
s

N
∥
∥(ω,n,ω,n)

∥
∥

H

= lim
n→∞

s
N

∫

�×{}
|ω,n|α|ω,n|β dx

≤ s
N

(KsSs,α,β)N/s. (.)

Defining

(W,n, W,n) =
(

ω,n

(
∫

�×{} |ω,n|α|ω,n|β dx)/(α+β) ,
ω,n

(
∫

�×{} |ω,n|α|ω,n|β dx)/(α+β)

)

,

we see that
∫

�×{} |W,n|α|W,n|β dx = . By (.) and the definition of Ss,α,β , we obtain

lim
n→∞

∥
∥(W,n, W,n)

∥
∥

H = KsSs,α,β .

By Lemma ., there is a sequence {(yn, εn)} ∈R
N ×R

+ such that εn → , yn → y ∈ � and
(Es(ε

N–s


n W,n(εnx + yn)), Es(ε
N–s


n W,n(εnx + yn))) → (W, W) in H as n → ∞.

Considering ϕ ∈ C∞
 (RN ) such that ϕ(x) = x in �, we infer

�(ω,n,ω,n)

=

∫

�×{} x|ω,n|α|ω,n|β dx
∫

�×{} |ω,n|α|ω,n|β dx
=

∫

RN ×{} ϕ(x)|W,n|α|W,n|β dx
∫

RN ×{} |W,n|α|W,n|β dx

=

∫

RN ×{} ϕ(εnx + yn)|Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx
∫

RN ×{} |Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx
.



Fan Boundary Value Problems  (2016) 2016:196 Page 11 of 18

Moreover, by the Lebesgue theorem, we have

∫

RN ×{} ϕ(εnx + yn)|Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx
∫

RN ×{} |Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx
→ y ∈ �,

as n → ∞, so that limn→∞ �(ω,n,ω,n) = y ∈ �, in contradiction with �(ω,n,ω,n) /∈ �+
r .
�

Next, we will use ωε = Es(uε), the family of minimizers to the inequality (.), where uε

is given in (.). Let η ∈ C∞(C�),  ≤ η(x, y) ≤  and for small fixed ρ ,

η(x, y) =

⎧
⎨

⎩

, (x, y) ∈ B+
ρ


:= {(x, x, . . . , xN , y);
√

x
 + x

 + · · · + x
N + y < ρ

 , y > },
, (x, y) /∈ B+

ρ := {(x, x, . . . , xN , y);
√

x
 + x

 + · · · + x
N + y < ρ, y > }.

We take ρ < r
 small enough such that

B+
ρ(x – z, y) ⊂ C�

for all z ∈ �–
r , where

B+
ρ(x – z, y) :=

{
(x, x, . . . , xN , y);

√
(x – z) + (x – z) + · · · + (xN – zN ) + y ≤ ρ, y ≥ 

}
.

Assume

vε,z = η(x – z, y)ωε(x – z, y) = η(x – z, y)Es
(
uε(x – z)

)
, z ∈ �–

r ,

where uε is defined in (.). We obtain from []

‖vε,z‖
Hs

,L(C�) = Ks

∫

R
N+
+

y–s|∇ωε| dx dy + O
(
εN–s), (.)

∫

�×{}
|vε,z|∗

s dx =
∫

RN ×{}
|ωε|∗

s dx + O
(
εN)

=
∫

RN

(
ε

ε + |x|
)N

dx + O
(
εN)

. (.)

Then we have the following.

Lemma . There exist ε,σ (ε) >  such that, for ε ∈ (, ε) and σ ∈ (,σ (ε)), we have

sup
t≥

Iλ,μ
(
(ω)+

λ,μ + t
√

αvε,z, (ω)+
λ,μ + t

√
βvε,z

)
< cλ,μ – σ uniformly in z ∈ �–

r ,

where ((ω)+
λ,μ, (ω)+

λ,μ) is a local minimum in Lemma .. Furthermore, there exists
t–
(λ,μ,ε,z) >  such that

(
(ω)+

λ,μ + t–
(λ,μ,ε,z)

√
αvε,z, (ω)+

λ,μ + t–
(λ,μ,ε,z)

√
βvε,z

) ∈ N–
λ,μ(cλ,μ – σ )
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and

�
(
(ω)+

λ,μ + t–
(λ,μ,ε,z)

√
αvε,z, (ω)+

λ,μ + t–
(λ,μ,ε,z)

√
βvε,z

) ∈ �+
r .

Proof Since

Iλ,μ
(
(ω)+

λ,μ + t
√

αvε,z, (ω)+
λ,μ + t

√
βvε,z

)

=
Ks



∫

C�

y–s(∣∣∇(
(ω)+

λ,μ + t
√

αvε,z
)∣
∣ +

∣
∣∇(

(ω)+
λ,μ + t

√
βvε,z

)∣
∣)dx dy

–

q

∫

�×{}

(
λ
∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣q

+ μ
∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣q)dx

–


∗
s

∫

�×{}

∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣α

× ∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣β dx

=


∥
∥
(
(ω)+

λ,μ, (ω)+
λ,μ

)∥
∥

H + t α + β


‖vε,z‖

Hs
,L(C�)

+ tKs

(∫

C�

∇(ω)+
λ,μ∇(

√
αvε,z) dx dy +

∫

C�

∇(ω)+
λ,μ∇(

√
βvε,z) dx dy

)

–

q

∫

�×{}

(
λ
∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣q

+ μ
∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣q)dx

–


∗
s

∫

�×{}

∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣α

× ∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣β dx

≤ Iλ,μ
(
(ω)+

λ,μ, (ω)+
λ,μ

)
+ t α + β


‖vε,z‖

Hs
,L(C�)

–


∗
s

∫

�×{}

∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣α

× ∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣β dx +


∗

s

∫

�×{}

∣
∣(ω)+

λ,μ
∣
∣α

∣
∣(ω)+

λ,μ
∣
∣β dx

+


∗
s

∫

�×{}
α
∣
∣(ω)+

λ,μ
∣
∣α–∣∣(ω)+

λ,μ
∣
∣β

(
t
√

αη(x – z, )uε(x – z)
)

dx

+


∗
s

∫

�×{}
β
∣
∣(ω)+

λ,μ
∣
∣α

∣
∣(ω)+

λ,μ
∣
∣β–(t

√
βη(x – z, )uε(x – z)

)
dx

= α+
λ,μ + K(t), (.)

where

K(t) = t α + β


‖vε,z‖

Hs
,L(C�)

–


∗
s

∫

�×{}

∣
∣(ω)+

λ,μ + t
√

αη(x – z, )uε(x – z)
∣
∣α
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× ∣
∣(ω)+

λ,μ + t
√

βη(x – z, )uε(x – z)
∣
∣β dx

+


∗
s

∫

�×{}

∣
∣(ω)+

λ,μ
∣
∣α

∣
∣(ω)+

λ,μ
∣
∣β dx

+


∗
s

∫

�×{}
α
∣
∣(ω)+

λ,μ
∣
∣α–∣∣(ω)+

λ,μ
∣
∣β

(
t
√

αη(x – z, )uε(x – z)
)

dx

+


∗
s

∫

�×{}
β
∣
∣(ω)+

λ,μ
∣
∣α

∣
∣(ω)+

λ,μ
∣
∣β–(t

√
βη(x – z, )uε(x – z)

)
dx.

In the following we shall show that

sup
t≥

K(t) <
s

N
(KsSs,α,β)N/s for ε >  small enough.

It is easy to see that

lim
t→

K(t) = .

Thus, for all ε sufficiently small, there exists t >  such that

K(t) <
s

N
(KsSs,α,β)N/s for all t ∈ (, t]. (.)

From [], Lemma ., we see that there exist C(α), C(β) >  such that

(a + b)α(c + d)β ≥ aαcβ + aαdβ + bαcβ + bαdβ + C(α)aα–bcβ + C(α)aα–bdβ

+ C(β)bαcβ–d + C(β)aαcβ–d + C(α)C(β)aα–bcβ–d

for any a, b, c, d > . Consequently,

K(t) ≤ t ∗
s


‖vε,z‖

Hs
,L(C�) –

α
α
 β

β


∗
s

t∗
s

∫

�×{}
|vε,z|∗

s dx – C

∫

�×{}
|vε,z|∗

s – dx (.)

with some constant C > . Note that

∫

�×{}
|vε,z|∗

s – dx

=
∫

�×{}

∣
∣η(x – z, )uε(x – z)

∣
∣∗

s – dx

=
∫

Bρ

[
η(x, )ε N–s



(ε + |x|) N–s


] N+s
N–s

dx

≥
∫

Bρ

ε
N+s



εN+s(ε + |x|) N+s


εN dx

= Cε
N–s



∫ ρ



rN–

( + r) N+s


dr

= Cε
N–s

 (.)
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for some C, C > . It follows from (.)-(.) that

K(t) ≤ t ∗
s


‖vε,z‖

Hs
,L(C�) –

α
α
 β

β


∗
s

t∗
s

∫

�×{}
|vε,z|∗

s dx – Cε
N–s



≤ s
N

( (α + β)‖vε,z‖
Hs

,L(C�)

(
∫

�×{} α
α
 β

β
 |vε,z|∗

s dx)


∗s

) N
s

– Cε
N–s



=
s

N

(((
α

β

) β
α+β

+
(

β

α

) α
α+β

)Ks
∫

R
N+
+

y–s|∇ωε| dx dy + O(εN–s)

(
∫

RN ( ε

ε+|x| )N dx + O(εN ))


∗s

) N
s

– Cε
N–s



=
s

N
(KsSs,α,β)

N
s + O

(
εN–s) – Cε

N–s


<
s

N
(KsSs,α,β)

N
s (.)

for ε sufficiently small and t ∈ [t, +∞). Noting the compactness of �–
r , it follows from

(.)-(.) and (.) that there exist ε,σ (ε) >  such that, for ε ∈ (, ε) and σ ∈ (,σ (ε)),
we have

sup
t≥

Iλ,μ
(
(ω)+

λ,μ + t
√

αvε,z, (ω)+
λ,μ + t

√
βvε,z

)
< cλ,μ – σ uniformly in z ∈ �–

r .

Arguing as the proof of [], Lemma ., we conclude that there exists t–
(λ,μ,ε,z) >  such

that

(
(ω)+

λ,μ + t–
(λ,μ,ε,z)

√
αvε,z, (ω)+

λ,μ + t–
(λ,μ,ε,z)

√
βvε,z

) ∈ N–
λ,μ(cλ,μ – σ ).

Moreover, we obtain from Lemma .

�
(
(ω)+

λ,μ + t–
(λ,μ,ε,z)

√
αvε,z, (ω)+

λ,μ + t–
(λ,μ,ε,z)

√
βvε,z

) ∈ �+
r

for λ,μ ∈ (,�∗). �

From Lemma ., we can define the map γ : �–
r → N–

λ,μ(cλ,μ – σ ) defined by

γ (z) :=
(
(ω)+

λ,μ + t–
(λ,μ,ε,z)

√
αvε,z, (ω)+

λ,μ + t–
(λ,μ,ε,z)

√
βvε,z

)
.

Furthermore, by Lemma . and Lemma .(iv), we can define the map �λ,μ : N–
λ,μ(cλ,μ –

σ ) →R
N by setting

�λ,μ(ω,ω) :=

∫

�×{} x|ω – (ω)+
λ,μ|α|ω – (ω)+

λ,μ|β dx
∫

�×{} |ω – (ω)+
λ,μ|α|ω – (ω)+

λ,μ|β dx
.

Then, for each z ∈ �–
r , note that uε(x) is radial, we have

(�λ,μ ◦ γ )(z) = z.
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Next we define the map Hλ,μ : [, ] × N–
λ,μ(cλ,μ – σ ) → R

N by

Hλ,μ
(
t, (ω,ω)

)
= t�λ,μ(ω,ω) + ( – t)�λ,μ(ω,ω).

Lemma . For each ε ∈ (, ε), there exists �∗ >  such that if λ,μ,σ ∈ (,�∗),

Hλ,μ
(
[, ] × N–

λ,μ(cλ,μ – σ )
) ⊂ �+

r .

Proof Suppose by contradiction that there exist tn ∈ [, ], λn,μn,σn → , and (ω,n,ω,n) ∈
N–

λn ,μn (cλn ,μn – σn) such that

Hλn ,μn

(
tn, (ω,n,ω,n)

)
/∈ �+

r for all n.

Furthermore, we can assume that tn → t ∈ [, ]. Then by Lemma .(iv) and argue as in
the proof of Lemma ., we have

Hλn ,μn

(
tn, (ω,n,ω,n)

) → z ∈ � as n → ∞,

which is a contradiction. �

4 Proof of Theorem 1.1
We begin with the following lemma.

Lemma . If (ω,ω) is a critical point of Iλ,μ on N–
λ,μ, then it is a critical point of Iλ,μ in H .

Proof Assume (ω,ω) ∈ N–
λ,μ, then I ′

λ,μ(ω,ω)(ω,ω) = . On the other hand,

I ′
λ,μ(ω,ω) = θψ ′

λ,μ(ω,ω) (.)

for some θ ∈R, where ψλ,μ is defined in (.).
Remark that (ω,ω) ∈ N–

λ,μ, and so ψ ′
λ,μ(ω,ω)(ω,ω) < . Thus by (.),

 = θψ ′
λ,μ(ω,ω)(ω,ω),

which implies that θ = , consequently I ′
λ,μ(ω,ω) = . �

Below we denote by IN–
λ,μ

the restriction of Iλ,μ on N–
λ,μ.

Lemma . Any sequence {(ω,n,ω,n)} ⊂ N–
λ,μ such that IN–

λ,μ
(ω,n,ω,n) → c ∈ (–∞, cλ,μ)

and I ′
N–

λ,μ
(ω,n,ω,n) →  contains a convergent subsequence for all λ,μ ∈ (,�∗).

Proof By hypothesis there exists a sequence {θn} ⊂R such that

I ′
λ,μ(ω,n,ω,n) = θnψ

′
λ,μ(ω,n,ω,n) + o().

Recall that (ω,n,ω,n) ∈ N–
λ,μ and so

ψ ′
λ,μ(ω,n,ω,n)(ω,n,ω,n) < .
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If ψ ′
λ,μ(ω,n,ω,n)(ω,n,ω,n) → , we see from (.) and (.) that there are two positive

numbers C, C independent of (ω,n,ω,n) and λ, μ such that

∥
∥(ω,n,ω,n)

∥
∥

H ≤ C
∥
∥(ω,n,ω,n)

∥
∥∗

s
H + o() and

∥
∥(ω,n,ω,n)

∥
∥

H ≤ (λ + μ)C
∥
∥(ω,n,ω,n)

∥
∥q

H + o()

or

∥
∥(ω,n,ω,n)

∥
∥

H ≥ C
– 

∗s –
 + o() and

∥
∥(ω,n,ω,n)

∥
∥

H ≤ (λ + μ)


–q c


–q
 + o().

If λ,μ >  is sufficiently small, this is impossible. Thus we may assume that ψ ′
λ,μ(ω,n,

ω,n)(ω,n,ω,n) → l <  as n → ∞. Since I ′
λ,μ(ω,n,ω,n)(ω,n,ω,n) = , we conclude that

θn →  and, consequently, I ′
λ,μ(ω,n,ω,n) → . Using this information we have

Iλ,μ(ω,n,ω,n) → c ∈ (–∞, cλ,μ) and I ′
λ,μ(ω,n,ω,n) → ,

so by Lemma . the proof is complete. �

Lemma . If λ,μ,σ ∈ (,�∗), then

cat
(
N–

λ,μ(cλ,μ – σ )
) ≥ cat(�).

Proof Suppose that

N–
λ,μ(cλ,μ – σ ) = A ∪ · · · ∪ An,

where Aj, j = , . . . , n, is closed and contractible in N–
λ,μ(cλ,μ – σ ), i.e., there exists hj ∈

C([, ] × Aj, N–
λ,μ(cλ,μ – σ )) such that

hj(, z) = z and hj(, z) = ω for all z ∈ Aj,

where ω ∈ Aj is fixed. Consider Bj := γ –(Aj),  ≤ j ≤ n. The sets Bj are closed and

�–
r = B ∪ · · · ∪ Bn.

Noting Lemma ., we define the deformation gj : [, ] × Bj → �+
r by setting

gj(t, y) := Hλ,μ
(
t, hj

(
t,γ (y)

))

for λ,μ,σ ∈ (,�∗). Note that

gj(, y) := Hλ,μ
(
, hj

(
,γ (y)

))
= y for all y ∈ Bj
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and

gj(, y) := Hλ,μ
(
, hj

(
,γ (y)

))
= �λ,μ(ω) ∈ �+

r .

Thus the sets Bj are contractible in �+
r . It follows that

cat(�) = cat�+
r

(
�–

r
) ≤ n. �

Now, we can give the proof of Theorem ..

Proof of Theorem . Applying Lemmas . and ., IN–
λ,μ

satisfies (PS)c condition for all
c ∈ (–∞, cλ,μ). Then, by Lemmas . and ., IN–

λ,μ
contains at least cat(�) critical points

in N–
λ,μ(cλ,μ – σ ). Hence, we deduce from Lemma . that Iλ,μ has at least cat(�) critical

points in N–
λ,μ. Moreover, by Lemma . and N+

λ,μ ∩ N–
λ,μ = ∅, Iλ,μ has at least cat(�) + 

critical points in H . If we change the definition of Jλ,μ as follows:

Jλ,μ(u, v) :=



∫

�

(∣
∣(–�)

s
 u

∣
∣ +

∣
∣(–�)

s
 v

∣
∣)dx

–

q

∫

�

(
λuq

+ + μvq
+
)

dx –


∗
s

∫

�

uα
+vβ

+ dx, (.)

where u+ = max{u, } and v+ = max{v, }. Then all the steps of our paper for (.). Thus we
see that Jλ,μ has at least cat(�) +  non-negative critical points. By the maximum principle
[], we complete the proof. �
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