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Abstract
We consider an undamped second order in time evolution equation. For any positive
value of the initial energy, we give sufficient conditions to conclude nonexistence of
global solutions. The analysis is based on a differential inequality. The success of our
result is based in a detailed analysis which is different from the ones commonly used
to prove blow-up. Several examples are given improving known results in the
literature.
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1 Introduction
Consider the following abstract wave equation:

Putt + Au = F (u), t ∈ (, T), ()

with the initial data

u() = u, ut() = v. ()

In order to study the problem above, we shall consider the following functional frame-
work. We assume that the operators P : HP → H ′

P , A : V → V ′, are linear, continuous,
positive, and symmetric, where V ⊂ HP ⊂ H are linear subspaces of the Hilbert space H
with the inner product (·, ·) and the norm ‖ · ‖. Here, H ′

P , V ′ are the corresponding dual
spaces, and we identify H = H ′. The operator P defines a bilinear form and a norm in HP ,
as follows P : HP × HP →R, by

P(u, w) ≡ (Pu, w)HP×H′
P

, ‖u‖
P ≡P(u, u), ∀u, w ∈ HP .

Also, the operator A defines a bilinear form and a norm in V by

A(u, w) ≡ (Au, w)V×V ′ , ‖u‖
V ≡A(u, u), ∀u, w ∈ V .
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Moreover, we assume that there exists c >  such that

(H) ‖u‖
V ≥ c‖u‖

P , ∀u ∈ V .

The nonlinear source term F : V ⊂ H → H is a potential operator, with potential G : V →
R such that F () = , and satisfies

(H)
(
F (u), u

)
– rG(u) ≥ , ∀u ∈ V ,

where r >  is a constant. Moreover, along with solutions, d
dtG(u(t)) = (F (u(t)), ut(t)).

2 Framework and previous results
We shall present some properties of a class of solutions of problem ()-(). In this func-
tional framework, we assume that the following local existence and uniqueness theorem
holds.

Theorem . For every initial data (u, v) ∈ H ≡ V × HP , there exists T > , and a
unique local solution (u, v) 
→ (u, v) ∈ C([, T);H), v(t) ≡ d

dt u(t) such that problem ()-
() is satisfied in the following sense:

d
dt

P
(
v(t), w

)
+ A

(
u(t), w

)
=

(
F

(
u(t)

)
, w

)
, ()

a.e. in (, T) and for every w ∈ V . Furthermore, the following energy equation holds:

E
(
u(t), v(t)

)
= E

(
u(t), v(t)

) ≡ 

∥∥v(t)

∥∥
P + J

(
u(t)

)
, T > t ≥ t ≥ , ()

J
(
u(t)

) ≡ 

∥
∥u(t)

∥
∥

V – G
(
u(t)

)
. ()

Remark . Problem ()-() is invariant if we reverse the time direction: t 
→ –t. The so-
lution backwards (u(t), v(t)), t < , with the initial data (u, v) corresponds to the solution
forwards (u(–t), –v(–t)), –t > , with the initial data (u, –v).

If the solution (u, v) is independent of time, then v =  and u is called an equilibrium.
Furthermore, u satisfies

A(u, w) =
(
F (u), w

)

for every w ∈ V . In particular, if w = u,

A(u, u) =
(
F (u), u

)
,

that is,

I(u) ≡ ‖u‖
V –

(
F (u), u

)
= .

In particular u =  is an equilibrium. The set of equilibria u �=  with minimal energy E
is called ground state, and the corresponding minimal value of the energy is denoted by
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d > , see []. The sign of I(u) characterizes either blow-up in finite time or boundedness
of solutions for small energies. Indeed, by means of the potential well method which works
for energies E(u, v) < d, blow-up and boundedness properties are proved for nonlinear
wave and Klein-Gordon equations in [] if I(u) <  and I(u) > , respectively. After the
work of Payne and Sattinger [], several contributions have been published proving blow-
up and globality of solutions of various types of equations by means of the potential well
method. In particular, for generalized Boussinesq equations, we mention [–]. The qual-
itative behavior for high energies, E(u, v) ≥ d, is unknown. Under sufficient conditions
that involve upper bounds of the initial energy E(u, v), there are several recent works that
prove blow-up of solutions of equations of the type () with high initial energies. Some of
these results are particular cases of the one that we shall prove here. See the examples and
references in the last section of this work. Our main result is obtained by means of the
detailed analysis of a differential inequality. We do not apply any of the results known in
the literature about differential inequalities commonly used to prove blow-up. See, for in-
stance, [–] and the references therein for an account. However, we consider that these
known results do not exploit the complete consequences of the differential inequalities
involved. The purpose of this work is to get further in their analysis.

3 Main result
Here, we give sufficient conditions to get nonexistence of global solutions for any E(u, v)
positive; however, these results are more relevant for E(u, v) ≥ d. To that end, we inves-
tigate the consequences of a differential inequality.

By means of the orthogonal decomposition of the velocity, introduced in [],

v =
P(v, u)
‖u‖

P
u + h,

where P(u, h) = , we define the functional

Q(u, v) ≡ |P(v, u)|
‖u‖

P
.

That is,

‖v‖
P = ‖h‖

P + Q(u, v). ()

This decomposition allows us to get sufficient conditions for nonexistence of global solu-
tions for any positive value of the initial energy. Define

�(u, v) ≡ c�(u) + Q(u, v), �(u) ≡ ‖u‖
P ,

where c >  is the embedding constant of V ⊂ HP in H(). We also define the function ηq,
for q ≥ , by

ηq(u, v) ≡ 

�(u, v) –

c
r
�(u)

(
c�(u)

�(u, v)

)q

.
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We notice that the function q 
→ ηq(u, v) is strictly increasing for q ≥  whenever
Q(u, v) > . Now, we define a strictly decreasing function λ 
→ μλ(u, v), for  < λ < ,
by

μλ(u, v) ≡ 

�(u, v) –

c
r
�(u)

(
r – 

r – λ

c�(u)
�(u, v)

) r–


, ()

and with the property that μλ(u, v) → η r–


(u, v) if λ → . Moreover, η r–


(u, v) <
μλ(u, v). Several recent works have studied some equations of the type () and showed
blow-up of solutions with initial energies such that E(u, v) ≤ ηq(u, v) for two particular
values q =  and q = r–

 . See [, , –]. Here, we shall prove that for any initial energy
such that η r–


(u, v) < E(u, v) ≤ μλ(u, v), there exist initial data for which the corre-

sponding solution is not global. Furthermore, we shall prove that for any positive initial
energy there are initial data implying nonexistence of global solutions. We notice that if
the energy is lower than or equal to μλ(u, v), it holds that

E(u, v) <


�(u, v).

This inequality appears in the main result that we present here in order to prove nonexis-
tence of global solutions and is equivalent to

‖h‖
P + ‖u‖

V < c‖u‖
P + G(u),

where h ≡ v – P(u,v)
‖u‖

P
u.

Theorem . Consider any solution of problem ()-() in the sense of Theorem .. Assume
(H), (H) and

‖u‖P > , P(u, v) > . ()

Hence, Q(u, v) > , and there exists a nonempty interval

IQ(u,v) ≡ (αQ(u,v),βQ(u,v)) ⊂
(

,


�(u, v)

)
,

which is constructed in the proof. If

E(u, v) ∈ IQ(u,v), then TMAX < ∞,

where TMAX is the maximal time of existence of the solution. Moreover,

Q(u, v) 
→ |IQ(u,v)| = βQ(u,v) – αQ(u,v)

is strictly increasing, and as Q(u, v) → ∞, then IQ(u,v) approaches the interval (,

�(u, v)). That is,

lim
Q(u,v)→∞

∣∣
∣∣βQ(u,v) –



�(u, v)

∣∣
∣∣ =  = lim

Q(u,v)→∞
αQ(u,v).
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Then, as Q(u, v) is the larger set of initial energies that produces nonexistence of global
solutions, the largest initial energy with this property is closer to 

�(u, v). In particular,
for any initial energy such that η r–


(u, v) < E(u, v) ≤ μλ(u, v), for some  < λ < , the

solution is not global.

Corollary . Consider any solution of problem ()-() in the sense of Theorem .. Assume
(H) and (H). For any positive constant Ẽ, we can always find initial data u, v satisfying
() with the initial energy E(u, v) = Ẽ such that the corresponding solution is not global.

Remark . For the proof of this theorem, some differential inequality is employed to
prove that the solution only exists up to a finite time: T < ∞. The estimate of the maximal
time of existence by this means is not always optimal, that is, in general T > TMAX. See [–
] for more discussion. The technique described above belongs to the so-called functional
method. That is, some functional in terms of a norm of the solution defined in the sense
of Theorem . satisfies a differential inequality that necessarily implies that such norm
blows up in finite time. Consequently, the solution cannot be global. This method has
been used by many authors to show nonexistence of solutions of a wide class of equations.
See, for instance, [] for an early reference where a concavity argument is used. See also
[–] and the references therein for an account of important contributions in the field,
where several differential inequalities are studied. Here, we get further in the analysis of
the differential inequality involved.

4 Proofs

Proof of Theorem . We assume that the solution is global, then we construct a differ-
ential inequality for any t ≥  in terms of � and get a contradiction. Since d

dt �(u(t)) =
P(u(t), v(t)), then by (), energy equation ()-(), hypotheses (H), (H) and (), we get

d

dt �
(
u(t)

)
= 

(∥∥v(t)
∥
∥
P – I

(
u(t)

))

= 
(∥∥v(t)

∥∥
P – I

(
u(t)

))
+ rE(u, v) – rE(u, v)

≥ (r + )Q
(
u(t), v(t)

)
+ (r – )

∥
∥u(t)

∥
∥

V – rE(u, v)

≥ r + 


( d
dt �(u(t)))

�(u(t))
+ c(r – )�

(
u(t)

)
– rE(u, v).

Then

d

dt

(
�– r–


(
u(t)

))

≤ –
(r – )


c�– r–


(
u(t)

)
+

r(r – )


E(u, v)�– r+


(
u(t)

)
.

We define J (t) ≡ �– r–
 (u(t)), hence the following differential inequality holds:

d

dt J (t) ≤ –
(r – )


cJ (t) +

r(r – )


E(u, v)J (t)
r+
r– .
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According to hypothesis (),

d
dt

J (t) = –
r – 


�– r+


(
u(t)

) d
dt

�
(
u(t)

)
= –

r – 


∥
∥u(t)

∥
∥– r+


P P

(
u(t), v(t)

)
< ,

for t ≥ , close to zero. Consequently, a first integral of the differential inequality is

(
d
dt

J (t)
)

≥ (r – )



(
J r

r– (t)E(u, v) –
c

J (t)

)
+ C(u, v), ()

where

C(u, v) ≡
(

d
dt

J ()
)

–
(r – )



(
J r

r– ()E(u, v) –
c

J ()

)
.

If j(t) ≡ J (t), then the right-hand side of () is equal to

(r – )



(
j

r
r– (t)E(u, v) –

c


j(t)
)

+ C(u, v).

We define, for s ≥ ,

K(s) ≡ (r – )



(
s

r
r– E(u, v) –

c


s
)

+ C(u, v).

We shall prove that there exists a constant κ(u, v) >  such that

K(s) ≥ κ(u, v) > , ∀s ≥ . ()

Consequently,

(
d
dt

J (t)
)

≥ κ(u, v) > , ∀t ≥ , ()

and then

d
dt

J (t) ≤ –κ(u, v) < , ∀t ≥ .

Hence,

 ≤ J (t) ≤ –κ(u, v)t + J (), ∀t ≥ ,

which is impossible for any t > J ()
κ(u,v) . Then the solution cannot be global, TMAX < ∞, and

the solution is not global.
Now, we prove that () holds. Indeed, we notice that the function K attains a minimum

at s ≡ ( c(r–)
rE(u,v) ) r–

 > . Then

K(s) ≥K(s), ∀s ≥ .
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On the other hand,

K(s) =
(r – )



(
s

r
r–
 E(u, v) –

c


s

)
+ C(u, v)

= –(r – )
(

c(r – )
r

) r


E–( r–
 )(u, v) + C(u, v).

Also,

C(u, v) =
(

r – 


)

‖u‖–(r+)
P

∣∣P(u, v)
∣∣

–
(r – )



(
‖u‖–r

P E(u, v) –
c

‖u‖–(r–)

P

)
.

Then K(s) >  if and only if

(r – )
(

c(r – )
r

) r


E–( r–
 )(u, v) +

(r – )


‖u‖–r

P E(u, v)

<
(

r – 


)(
‖u‖–r

P
|P(u, v)|

‖u‖
P

+ c‖u‖–(r–)
P

)
,

which is equivalent to

E(u, v) +
(

c(r – )
r

) r–
 c�(u)

r

(
�(u)

E(u, v)

) r–


<


�(u, v). ()

We define, for s ≥ ,

M(s) ≡ s +
(

c(r – )
r

) r–
 c�(u)

r

(
�(u)

s

) r–


. ()

We notice that M(s) → ∞ as, either s →  or s → ∞, and M attains a minimum at
s ≡ r–

r c�(u). Hence,

M(s) ≥M(s) =



c�(u), ∀s ≥ .

Moreover, according to (), Q(u, v) = �(u, v)–c�(u) > , and hence there exist exactly
two different roots of M(s) = 

�(u, v), denoted by αQ(u,v) and βQ(u,v) such that

 < αQ(u,v) < s < βQ(u,v) <


�(u, v)

and




c�(u) < M(s) <


�(u, v), ∀s ∈ IQ(u,v) ≡ (αQ(u,v),βQ(u,v)), s �= s.
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Furthermore, by the strict monotonicity ofM for s < s and s > s, it follows that if Q(u, v)
grows, then the interval IQ(u,v) grows and approaches (, 

�(u, v)). In particular,

lim
Q(u,v)→∞

∣∣
∣∣



�(u, v) – βQ(u,v)

∣∣
∣∣ =  = lim

Q(u,v)→∞
αQ(u,v).

Then condition () holds for κ(u, v) ≡K(s), which is strictly positive if and only if ()
holds, that is, if and only if the initial energy satisfies

M
(
E(u, v)

)
<



�(u, v),

and this is possible if and only if E(u, v) ∈ IQ(u,v). This proves that the maximal time of
existence must be finite.

Finally, we shall prove that if the initial data satisfy (), there exists IQ(u,v) such that
it contains the interval (η r–


(u, v),μλ(u, v)) for some  < λ < , and hence any initial

energy here produces nonexistence of global solutions. It is enough to show that

M
(
μλ(u, v)

)
<



�(u, v). ()

Indeed, according to () and () and after some calculations, this holds if and only if


r


μλ(u, v)

<


r – λ


�(u, v)

,

which is true if and only if

μλ(u, v) >
r – λ

r
�(u, v).

And this is characterized by

c
r
�(u)

(
r – 

r – λ

c�(u)
�(u, v)

) r–


<
λ

r
�(u, v).

Finally, this holds if and only if

(
c�(u)

�(u, v)

)r

< λ
(

r – λ

r – 

)r–

.

Notice that μ(u, v) = η r–


. Then, in the case λ = , the inequality is true because
Q(u, v) > . In order to improve the inequality for some  < λ < , we use the fact that
Q(u, v) > , and then we choose λ such that

λ ≡
(

c�(u)
�(u, v)

)r

.

Since λ < λ( r–λ
r– )r–, then () holds; and consequently, any initial energy within the in-

terval η r–


(u, v) < E(u, v) ≤ μλ(u, v) produces that the solution is not global. �
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Remark . We notice that there exists some λ∗ ∈ (, ) such that

βQ(u,v) = μλ∗ (u, v),

where λ∗ is uniquely defined by

λ∗ =
(

c�(u)
�(u, v)

) r

(

r – 
r – λ∗

) r–


.

Moreover,

βQ(u,v) < μλ(u, v) for λ < λ∗

and

βQ(u,v) > μλ(u, v) for λ > λ∗.

In the last case, if αQ(u,v) < E(u, v) ≤ μλ(u, v), P(u, v) > , and ‖u‖P > , the solu-
tion blows up in finite time. On the other hand, if μλ∗ (u, v) ≤ E(u, v) ≤ μλ(u, v), for
λ ≤ λ∗, we do not know the qualitative behavior of the solution.

If the potential well method is applicable, as in the examples in the next section,
there exist conditions characterizing blow-up when E(u, v) < d as we mentioned in
the Introduction. In this situation, the blow-up problem when E(u, v) ≤ αQ(u,v) is re-
solved as follows. (i) αQ(u,v) < d, here the characterization for blow-up when E(u, v) ≤
αQ(u,v) < d is given by the potential well method. (ii) αQ(u,v) ≥ d, here the characteri-
zation for blow-up is given by the potential well method only for E(u, v) < d, and for
d ≤ E(u, v) ≤ αQ(u,v) blow up can be proved like in [, ].

However, for any positive constant Ẽ, we can always find initial data u, v satisfying
() with the initial energy E(u, v) = Ẽ and with Q(u, v) >  sufficiently large so that
Ẽ ∈ IQ(u,v); and consequently, the corresponding solution blows up in finite time, as is
stated in Corollary ..

Proof of Corollary . Because of (), Q(u, v) >  can be chosen sufficiently large so that
E(u, v) ∈ IQ(u,v). Indeed, we recall that if Q(u, v) is very large, then IQ(u,v) is close to
(, 

�(u)). That is, given ε >  small, there exists Q(u, v) >  large such that

 < αQ(u,v) ≤ ε and  <


�(u, v) – βQ(u,v) ≤ ε.

Hence, in order to have E(u, v) ∈ IQ(u,v), it is enough that

ε < E(u, v) <


�(u, v) – ε,

which is equivalent to

Q(u, v) + ‖h‖
P + ‖u‖

V > G(u) + ε
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and

‖h‖
P + ‖u‖

V + ε < c‖u‖
P + G(u),

where h ≡ v – P(u,v)
‖u‖

P
u. We choose initial data such that

Q(u, v) > G(u) > ‖u‖
V ≥ c‖u‖

P >  max{c, }ε > ‖h‖
P .

That is, large initial velocity v, with very small component h, large component Q(u, v),
and displacement u such that the nonlinear source dominates ‖u‖

V but is smaller than
Q(u, v). Then αQ(u,v) < E(u, v) < βQ(u,v). �

Remark . For small energies, the potential well method characterizes the qualitative
behavior of any solution in terms of the sign of I(u), see [–]. For high energies, previous
results conclude qualitative properties based in part on the sign of I(u), see [–]. By
means of the invariance of some sets, along with the solution, it is proved in [, , ] that
I(u) <  holds under sufficient conditions on (u, v) that imply blow-up. Here, we do not
have invariance properties, and we need to analyze when Theorem . implies I(u) < .
Energy satisfies the inequality E(u, v) < βQ(u,v), where βQ(u,v) = 

 (�(u, v)–g(u, v)),
and g(u, v) >  is a function that decreases as Q(u, v) increases. Consequently, such a
condition on the initial energy is ‖h‖

P + ‖u‖
V < c‖u‖

P + G(u) – g(u, v). Equiva-
lently, I(u) < c‖u‖

P – ‖h‖
P – g(u, v) + G(u) – (F (u), u). By (H), (F (u), u) –

G(u) ≥ (r – )G(u) > . Hence, I(u) < –‖h‖
P – g(u, v) + c‖u‖

P – (r – )G(u). Then
I(u) <  if the displacement is such that the nonlinear source (r – )G(u) dominates the
term c‖u‖

P . Apparently, for high energies, the sign of I(u) is not a sufficient condition
to conclude nonexistence of global solutions, but it is a necessary one.

5 Some examples
5.1 Nonlinear Klein-Gordon equation

utt(x, t) – 
u(x, t) + mu(x, t) = F
(
u(x, t)

)
, (x, t) ∈R

N × (, T),

where m >  is a constant. Consider the initial data

u(x, ) = u(x), ut(x, ) = v(x), x ∈R
N .

We can assume without loss of generality that m = . A typical example of the source
term is

F (u) ≡ μ|u|r–u,

where μ >  is a constant. Hence,

G(u) =
μ

r
‖u‖r

r ,

where ‖ · ‖r is the norm in Lp(RN ), and hypothesis (H) holds. Here, P = Id is an iden-
tity operator. Hence H = HP = L(RN ), Au = –
u + u, V = H(RN ). Then hypothesis (H)
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holds with c ≡ . Theorem . is true and nonexistence of global solutions is due to blow-
up; see, for instance, [, , ]. Consequently, by Theorem . and Corollary . for every
positive initial energy E(u, v), where

E(u, v) ≡ 

(‖v‖

 + ‖∇u‖
 + ‖u‖


)

–
μ

r
‖u‖r

r ,

there exist initial data such that

‖u‖ > , (u, v) > 

imply blow-up in finite time in the norm of H, and by energy equation blow-up occurs
also in the Lp(RN ) norm. This result is new in the literature. Several sufficient conditions,
more restrictive than ours, have been given before. Indeed, in [, ] blow-up is proved
for the initial energy such that E(u, v) < η and E(u, v) ≤ η r–


(u, v), respectively. In

[, ], initial energy must satisfy even a more restrictive condition. As we observed in the
remark that follows the proof of Theorem ., our result shows that blow-up can occur for
initial energies E(u, v) > η r–


(u, v).

5.2 Nonlinear wave equation

utt(x, t) – 
u(x, t) = F
(
u(x, t)

)
, (x, t) ∈ � × (, T),

where � ⊂R
N is a bounded and open domain with smooth boundary, supplemented with

the homogeneous Dirichlet boundary conditions

u(x, t) = , (x, t) ∈ ∂� × (, T),

and the initial data

u(x, ) = u(x), ut(x, ) = v(x), x ∈ �.

We consider the same nonlinear source term as that in the last example. Also, the same
blow-up results are concluded here. Indeed, P = Id is an identity operator. Hence H = HP =
L(�). Moreover, Au = –
u, V = H

(�). Then hypothesis (H) holds by the Poincaré in-
equality: ‖u‖H

(�) ≥ √
c‖u‖L(�) for all u ∈ H

(�). Theorem . is true if F (u) ∈ L(�) for
u ∈ H

(�), and nonexistence of global solutions is due to blow-up; see, for instance, [,
, , , ]. Consequently, by Theorem . and Corollary . for every positive initial
energy E(u, v), where

E(u, v) ≡ 

(‖v‖

 + ‖∇u‖

)

–
μ

r
‖u‖r

r ,

there exist initial data such that

‖u‖ > , (u, v) > 

imply blow-up in finite time in the norm of H, and by energy equation blow-up occurs
also in the Lp(�) norm. Again, this result is new for high energies. Several sufficient con-
ditions, more restrictive than ours, have been given before; see, for instance, [, , , ]
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where initial energy must satisfy a condition more restrictive than E(u, v) < η(u, v).
Our result shows that blow-up can occur for initial energies E(u, v) > ηq,  < q ≤ r–

 . See
[, ] for different sufficient conditions.

5.3 Generalized Boussinesq equation

utt(x, t) – β
u(x, t) – β
utt(x, t) + β

u(x, t) + mu(x, t) + 
F

(
u(x, t)

)
= ,

for (x, t) ∈ R
N × (, T), where βi > , i = , , , m >  are constants, and with the initial data

u(x, ) = u(x), ut(x, ) = v(x), x ∈R
N .

Also, a typical example of the source term is

F (u) ≡ μ|u|r–u.

Applying (–
)– to the equation above, we get

(
(–
)– + βId

)
utt(x, t) +

(
–β
 + m(–
)– + βId

)
u(x, t) = F

(
u(x, t)

)

for (x, t) ∈R
N × (, T). Then

Pu =
(
(–
)– + βId

)
u, Au =

(
–β
 + m(–
)– + βId

)
u,

and H = L(RN ), HP = {u ∈ L(RN ) : (–
)– 
 u ∈ L(RN )}, V = {u ∈ H(RN ) : (–
)– 

 u ∈
L(RN )}. Moreover, if

‖u‖
∗ = (u, u)∗ ≡ (

(–
)– 
 u, (–
)– 

 u
)

,

then

‖u‖
P = ‖u‖

∗ + β‖u‖
, ‖u‖

V = β‖∇u‖
 + m‖u‖

∗ + β‖u‖
.

Consequently, hypothesis (H) holds with c ≡ min{m, β
β

}. Theorem . is true, and nonex-
istence of global solutions is due to blow-up; see, for instance, [, ]. Then, by Theorem .
and Corollary . for every positive initial energy E(u, v), where

E(u, v) ≡ 

(‖v‖

∗ + β‖v‖
 + β‖∇u‖

 + m‖u‖
∗ + β‖u‖


)

–
μ

r
‖u‖r

r ,

there exist initial data such that

‖u‖
∗ + β‖u‖

 > , (u, v)∗ + β(u, v) > 

imply blow-up in finite time in the norm of H, and by energy equation blow-up occurs
also in the Lp(RN ) norm. This result improves the ones known in the literature. Indeed, in
[] blow-up is proved for initial energies E(u, v) ≤ η(u, v). We proved that blow-up
can occur for initial energies E(u, v) > ηq,  < q ≤ r–

 .
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5.4 Sixth order generalized Boussinesq equation

utt(x, t) – 
u(x, t) – 
utt(x, t) + 
u(x, t) + 
utt(x, t) + u(x, t) + 
F
(
u(x, t)

)
= ,

for (x, t) ∈R
N × (, T), and the initial data

u(x, ) = u(x), ut(x, ) = v(x), x ∈R
N .

Here, we normalized the coefficients to one. Also, we consider the same nonlinear source
term as in the last example. See, for instance, [, ] for the existence and uniqueness of
solutions. Here,

Pu = Au =
(
–
 + (–
)– + Id

)
u,

and we take H = L(RN ), HP = V = {u ∈ H(RN ) : (–
)– 
 u ∈ L(RN )}. Also,

‖u‖
P = ‖u‖

V = ‖∇u‖
 + ‖u‖

∗ + ‖u‖
.

Hence, hypothesis (H) holds with c ≡ . By Theorem . and Corollary . for every
positive initial energy E(u, v), where

E(u, v) ≡ 

(‖∇v‖

 + ‖v‖
∗ + ‖v‖

 + ‖∇u‖
 + ‖u‖

∗ + ‖u‖

)

–
μ

r
‖u‖r

r ,

there exist initial data such that

‖∇u‖
 + ‖u‖

∗ + ‖u‖
 > , (∇u,∇v) + (u, v)∗ + (u, v) > 

imply blow-up in finite time in the norm ofH, and by energy equation blow-up occurs also
in the Lp(RN ) norm. We notice that previous results in the literature are improved. Indeed,
in [, ] blow-up is proved for initial energy such that E(u, v) < η and E(u, v) ≤ η r–


,

respectively. We showed that blow-up can occur for initial energies E(u, v) > η r–


.

6 Conclusions
By means of a detailed analysis of a differential inequality, we proved that for any positive
value of the initial energy of problem ()-(), we can always find initial data satisfying

‖u‖P > , P(u, v) > 

such that the solution, in the sense of Theorem ., exists only for a finite time. Those initial
data are chosen such that the interval IQ(u,v) is large enough. That is, we can always have

E(u, v) ∈ IQ(u,v).

We applied our main theorem to several equations and exhibited that our result improves
the ones for blow-up published in the literature.
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