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1 Introduction and preliminary results
Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H . We
denote by Bh(H) the real subspace of all self-adjoint operators on H . Bounds of X ∈ Bh(H)
are defined by m := inf{〈Xξ , ξ 〉 : ξ ∈ H ,‖ξ‖ = } and M := sup{〈Xξ , ξ 〉 : ξ ∈ H ,‖ξ‖ = }.

A continuous real valued function f defined on an interval I is said to be operator convex
if f (λX + ( – λ)Y ) ≤ λf (X) + ( – λ)f (Y ) for all self-adjoint operators X, Y with spectra
contained in I and all λ ∈ [, ]. If the function f is operator convex, then the so-called
Jensen operator inequality f (�(X)) ≤ �(f (X)) holds for any unital positive linear mapping
� on B(H) and any X ∈ Bh(H) with spectrum contained in I . Many other versions of
Jensen’s operator inequality can be found in [, ].

Assume furthermore that (�, . . . ,�n) is an n-tuple of positive linear mappings �i :
B(H) → B(K). If in addition

∑n
i= �i(H ) = K , we say that

∑n
i= �i(H ) = K is unital.

Now we give the definition of classes of functions for which we observe Levinson’s op-
erator inequality.

Definition  ([]) Let f ∈ C(I) be a real valued function on an arbitrary interval I in R and
c ∈ I◦, where I◦ is the interior of I .

We say that f ∈Kc
(I) (resp. f ∈Kc

(I)) if there exists a constant α such that the function
F(t) = f (t) – α

 t is concave (resp. convex) on I ∩ (–∞, c] and convex (resp. concave) on
I ∩ [c,∞). (See Figure .)

Moreover, we say that f ∈ •
Kc

(I) (resp. f ∈ •
Kc

(I)) if there exists a constant α such that the
function F is operator concave (resp. operator convex) on I ∩ (–∞, c] and operator convex
(resp. operator concave) on I ∩ [c,∞).

The class of functions Kc
(I) can be interpreted as functions that are ‘-convex at a

point c’ and extends -convex functions in the following sense: a function is -convex
on I if and only if it is at every c ∈ I◦.
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Figure 1 Continous 3-convex function at a point c.

Next, we will review the history of research of Levison’s inequality.
Levinson [] considered an inequality as follows:
If f : (, c) → R satisfies f ′′′ ≥  and pi, xi, yi, i = , , . . . , n, are such that pi > ,

∑n
i= pi = ,  ≤ xi ≤ c, and

x + y = x + y = · · · = xn + yn = c, ()

then the inequality

n∑

i=

pif (xi) – f (x̄) ≤
n∑

i=

pif (yi) – f (ȳ) ()

holds, where x̄ =
∑n

i= pixi and ȳ =
∑n

i= piyi denote the weighted arithmetic means.
Numerous papers have been devoted to generalizations and extensions of Levinson’s re-

sult. Popoviciu [] showed that the assumptions on the differentiability of f can be weak-
ened for (); to hold it is enough to assume that f is -convex. Bullen [] gave another
proof of Popoviciu’s result rescaled to a general interval [a, b].

Mercer [] made a significant improvement by replacing () with the weaker condition
that the variances of the two sequences are equal:

∑n
i= pi(xi – x̄) =

∑n
i= pi(yi – ȳ).

Witkowski [, ] extended this result in several ways. Firstly, he showed that Levinson’s
inequality can be stated in a more general setting with random variables. Furthermore, he
showed that it is enough to assume that f is -convex and that the assumption of equality
of the variances can be weakened to inequality in a certain direction.

Baloch et al. [] built on and extended the methods of Witkowski []. They introduced
a new class of functions Kc

((a, b)) as in Definition .
Mićić et al. [] built on the methods given in [] on operators. We give Levinson’s opera-

tor inequality for unital fields of positive linear mappings and classes of functions given by
Definition . Moreover, we considered order among quasi-arithmetic means under similar
conditions.

Next, we give the main result in [] for two operators and f ∈ •
Kc

i (I), i = , .

Theorem  Let X, Y ∈ Bh(H) be self-adjoint operators with spectra contained in [m, M]
and [n, N], respectively, such that a < m ≤ M ≤ c ≤ n ≤ N < b. (See Figure .) Let �, � be
normalized positive linear mappings �,� : B(H) → B(K).

If f ∈ •
Kc

((a, b)) and C ≤ C, then

�
(
f (X)

)
– f

(
�(X)

) ≤ C ≤ C ≤ �
(
f (Y )

)
– f

(
�(Y )

)
, ()
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Figure 2 Spectra conditions in Levinson’s inequality for two
operators and an operator 3-convex function.

where

C :=
α


[
�

(
X) – �(X)], C :=

α


[
�

(
Y ) – �(Y )]. ()

But, if f ∈ •
Kc

((a, b)) and C ≥ C holds, then the reverse inequalities are valid in ().

Proof This theorem is special case of [], Theorem , for k = n = . For the sake of com-
pleteness, we give the proof.

Let f ∈ •
Kc

((a, b)). So there is a constant α such that F(t) = f (t) – α
 t is operator concave

on [m, M] ⊂ (a, c]. Jensen’s inequality for an operator concave function implies

 ≤ F
(
�(X)

)
– �

(
F(X)

)
= f

(
�(X)

)
–

α


�(X) – �

(
f (X)

)
+

α


�

(
X).

It follows that

�
(
f (X)

)
– f

(
�(X)

) ≤ C. ()

Similarly, since F is operator convex on [n, N] ⊂ [c, b), then Jensen’s inequality for an
operator convex function implies

 ≤ �
(
F(Y )

)
– F

(
�(Y )

)
= �

(
f (Y )

)
–

α


�

(
Y ) – f

(
�(Y )

)
+

α


�(Y ).

It follows that

C ≤ �
(
f (Y )

)
– f

(
�(Y )

)
. ()

Combining inequalities () and () and taking into account that C ≤ C we obtain the
desired inequality (). �

Applying Theorem  we obtain a version of Levinson’s inequality with more operators
as follows.

Corollary  ([], Theorem ) Let (X, . . . , Xk ) be a k-tuple and (Y, . . . , Yk ) be a k-tuple
of self-adjoint operators Xi, Yj ∈ Bh(H) with spectra contained in [m, M] and [n, N], re-
spectively, such that a < m ≤ M ≤ c ≤ n ≤ N < b. Let (�, . . . ,�k ) be a unital k-tuple and
(�, . . . ,�k ) be a unital k-tuple of positive linear mappings �i,�j : B(H) → B(K).

If f ∈ •
Kc

((a, b)) and D ≤ D, then

k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

≤ D ≤ D ≤
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

()
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holds, where

D :=
α



[ k∑

i=

�i
(
X

i
)

–

( k∑

i=

�i(Xi)

)]

,

D :=
α



[ k∑

i=

�i
(
Y 

i
)

–

( k∑

i=

�i(Yi)

)]

.

()

If f ∈ •
Kc

((a, b)) and D ≥ D holds, then the reverse inequalities are valid in ().

Proof This result is proven directly in [], Theorem , using Jensen’s operator inequal-
ity on the sum of the operators. We will give the proof by applying Theorem . We
set X̃ = diag(X, . . . , Xk ) and Ỹ = diag(Y, . . . , Yk ). Then X̃ ∈ Bh(H ⊕ · · · ⊕ H︸ ︷︷ ︸

k

) and Ỹ ∈

Bh(H ⊕ · · · ⊕ H︸ ︷︷ ︸
k

), with spectra contained in [m, M] and [n, N], respectively. Also, we

set �̃(diag(A, . . . , Ak )) =
∑k

i= �i(Ai) and �̃(diag(B, . . . , Bk )) =
∑k

i= �i(Bi). Then �̃ :
B(H ⊕ · · · ⊕ H︸ ︷︷ ︸

k

) → B(K) and �̃ : B(H ⊕ · · · ⊕ H︸ ︷︷ ︸
k

) → B(K) are normalized positive linear

mappings. We have

C̃ =
α


[
�̃

(
X̃) – �̃(X̃)] =

α



[ k∑

i=

�i
(
X

i
)

–

( k∑

i=

�i(Xi)

)]

= D

and

C̃ =
α


[
�̃

(
Ỹ ) – �̃(Ỹ )] =

α



[ k∑

i=

�i
(
Y 

i
)

–

( k∑

i=

�i(Xi)

)]

= D.

Applying Theorem  on X̃, Ỹ , �̃, �̃ and taking into account that D � D implies C̃ � C̃,
we obtain the desired inequalities () or their reverse inequalities. �

In this paper, as a continuation of the above consideration, we will observe other results
as regards Levinson’s operator inequality and its converse. We give a few examples for
power functions.

2 Converse of Levinson’s operator inequality
In this section we give the converse of inequalities () and () for f ∈ Kc

i (I), i = , . First,
for convenience we introduce some abbreviations.

Let f : [m, M] → R, m < M, such that F(t) = f (t) – α
 t, α ∈ R, be a convex or a con-

cave function. We denote a linear function through the points (m, F(m)) and (M, F(M)) by
f line
α,[m,M], i.e.

f line
α,[m,M](t) =

M – t
M – m

f (m) +
t – m

M – m
f (M) –

α


(
(M + m)t – mM

)
, t ∈R,

and the slope of the line through (m, F(m)) and (M, F(M)) by kα,f [m,M], i.e.

kα,f [m,M] =
f (M) – f (m)

M – m
–

α


(M + m).
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Figure 3 Spectra conditions in the converse of Levinson’s
inequality for two operators and a 3-convex function.

Next, we give the converse of Levinson’s operator inequality for two operators.

Theorem  Let X, Y , m, M, n, N , �, � , C, C be as in Theorem  and m < M, n < N .
Let mx, Mx (mx ≤ Mx), and ny, Ny (ny ≤ Ny) be bounds of the operators �(X) and �(Y ),
respectively. (See Figure .)

If f ∈Kc
((a, b)) and C ≥ C, then

�
(
f (X)

)
– f

(
�(X)

)
+ βK ≥ C ≥ C ≥ �

(
f (Y )

)
– f

(
�(Y )

)
+ βK , ()

where

β = max
mx≤t≤Mx

{

f (t) –
α


t – f line

α,[m,M](t)
}

≥ , ()

β = min
ny≤t≤Ny

{

f (t) –
α


t – f line

α,[n,N](t)
}

≤ . ()

The constants β, β exist for any α, m, M, mx, Mx and n, N , ny, Ny.
The value of the constant β is β = f (t) – α

 t
 – f line

α,[m,M](t), where t may be determined
as follows:

• if f ′
–(t) – αt ≤ kα,f [m,M] for every t ∈ (mx, Mx), then t = mx,

• if f ′
–(t) – αt ≥ kα,f [m,M] ≥ f ′

+(t) – αt for some t ∈ (mx, Mx), then t = t,
• if f ′

+(t) – αt ≥ kα,f [m,M] for every t ∈ (mx, Mx), then t = Mx.
The value of β can be determined as β if we replace m, M, mx, Mx by n, N , ny, Ny, respec-
tively, and with reverse inequality signs.

In the dual case, if f ∈ Kc
((a, b)) and C ≤ C holds, then the reverse inequalities are

valid in (), where β ≤  with min instead of max in () and β ≥  with max instead of
min in (). The value of the constants β and β can be determined as above with reverse
inequality signs.

Proof We will give the proof for f ∈ Kc
((a, b)). So there is a constant α such that F(t) =

f (t) – α
 t is concave on [m, M] ⊂ (a, c]. The converse of Jensen’s operator inequality gives

(see [], Theorem .)

�
(
F(X)

)
– F

(
�(X)

) ≥ min
mx≤t≤Mx

{

f line
α,[m,M](t) – f (t) –

α


t

}

K

⇒ �
(
f (X)

)
–

α


�

(
X) – f

(
�(X)

)
+

α


�(X) + βK ≥ 

⇒ �
(
f (X)

)
– f

(
�(X)

)
+ βK ≥ C. ()
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Similarly, since F is operator convex on [n, N] ⊂ [c, b), then Jensen’s operator inequality
gives (see [], Theorem .)

�
(
F(Y )

)
– F

(
�(Y )

) ≤ max
ny≤t≤Ny

{

f line
α,[n,N](t) – f (t) –

α


t

}

⇒ �
(
f (Y )

)
–

α


�

(
Y ) – f

(
�(Y )

)
+

α


�(Y ) + βK ≤ 

⇒ C ≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK . ()

Combining inequalities () and () and taking into account C ≥ C we obtain the de-
sired inequality (). We obtain β = f (t)– α

 t
 – f line

α,[m,M](t), where t is determined as in the
statement of Theorem , by applying [], Theorem ., to β = – minmx≤t≤Mx{f line

α,[m,M](t) –
f (t) + α

 t}. Analogously we get β = f (t) – α
 t

 – f line
α,[n,N](t). �

Remark  Let the assumptions of Theorem  be satisfied. If C ≥ C, f is strictly concave
differentiable on [m, c] and strictly convex differentiable on [c, N], then () holds for

β = f (x) –
α


x

 – f line
α,[m,M](x) ≤ f (x̄) –

α


x̄

 – f line
α,[m,M](x̄),

β = f (y) –
α


y

 – f line
α,[n,N](y) ≥ f (ȳ) –

α


ȳ

 – f line
α,[n,N](ȳ),

where x may be determined as follows:
• if f ′(mx) – αmx ≤ kα,f [m,M], then x = mx,
• if f ′(mx) – αmx ≥ kα,f [m,M] ≥ f ′(Mx) – αMx, then x is the unique solution of the

equation f ′(t) – αt = kα,f [m,M],
• if f ′(Mx) – αMx ≥ kα,f [m,M], then x = Mx,

and x̄ is the unique solution in (m, M) of the equation f ′(t) – αt = kα,f [m,M].
The values of y, ȳ can be determined as x, x̄, if we replace m, M, mx, Mx by n, N , ny,

Ny, respectively, and with reverse inequality signs.

Example  Let �,� , X, Y , m, M ≥ , n, N ≥ , mx, Mx, ny, Ny be as in Theorem .
We will apply Theorem  putting f (t) = tp on (, c] and f (t) = dtq on [c,∞), where c > 

and d = cp–q.
(i) If p ∈ (–∞, ]∪[,∞), q ∈ [, ], and α = , then f ∈Kc

([,∞)). So, () and the reverse
of () give

�
(
Xp) – �(X)p + β◦

 K ≤  ≤ d�
(
Y q) – d�(Y )q + αK ≤ β◦

 K ,

where

β◦
 = min

mx≤t≤Mx

{

tp –
M – t
M – m

mp –
t – m

M – m
Mp

}

≤ ,

β◦
 = d · max

ny≤t≤Ny

{

tq –
N – t
N – n

nq –
t – n
N – n

Nq
}

≥ .
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(ii) If p, q ∈ (–∞, ] ∪ [, ], p – p ≥ q – q, and α = cp–(p – p + q – q)/, then

d

dt

(

tp –
α


t

)

= p(p – )tp– – α ≥ p(p – )cp– – α ≥ , if  ≤ t ≤ c,

d

dt

(

cp–qtq –
α


t

)

= q(q – )cp–qtq– – α ≤ q(q – )cp– – α ≤ , if t ≥ c.

So, f ∈Kc
([,∞)). If

( <) C :=
α


[
�

(
X) – �(X)] ≤ C :=

α


[
�

(
Y ) – �(Y )],

then the reverse of () gives

�
(
Xp) – �(X)p + βK ≤ C ≤ C ≤ d�

(
Y q) – d�(Y )q + βK ,

where

β = min
mx≤t≤Mx

{

tp –
M – t
M – m

mp –
t – m

M – m
Mp +

α


(
(M + m)t – mM – t)

}

≤ ,

β = max
ny≤t≤Ny

{

d
(

tq –
N – t
N – n

nq –
t – n
N – n

Nq
)

+
α


(
(N + n)t – nN – t)

}

≥ .

(iii) If p, q ∈ [, ] ∪ [,∞), p – p ≤ q – q, and α = cp–(p – p + q – q)/, then

d

dt

(

tp –
α


t

)

≤ p(p – )cp– – α ≤ , if  ≤ t ≤ c,

d

dt

(

cp–qtq –
α


t

)

≥ q(q – )cp– – α ≥ , if t ≥ c.

So, f ∈Kc
([,∞)). If C ≥ C, then () gives

�
(
Xp) – �(X)p + γK ≥ C ≥ C ≥ d�

(
Y q) – d�(Y )q + γK ,

where γ ≥  is defined similar to β with max instead of min and γ ≤  is defined similar
to β with min instead of max.

Remark  Let the assumptions of Theorem  be satisfied. If f ∈ •
Kc

((a, b)) and C ≥ C,
we obtain the following extension of ():

C + βK ≥ �
(
f (X)

)
– f

(
�(X)

)
+ βK ≥ C ≥ C

≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK ≥ C + βK . ()

In the dual case, if f ∈ •
Kc

((a, b)) and C ≤ C, then the reverse inequalities are valid in ().

Applying Theorem  we obtain a version of the converse of Levinson’s inequality with
more operators.
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Corollary  Let Xi, �i (i = , . . . , k), Yj, �j (j = , . . . , k), m, M, n, N , D, D be as in
Corollary . Let mx, Mx (mx ≤ Mx), and ny, Ny (ny ≤ Ny) be bounds of the operators
X =

∑k
i= �i(Xi) and Y =

∑k
i= �i(Yi), respectively. If f ∈Kc

((a, b)) and D ≥ D, then

k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

+ βK

≥ D ≥ D ≥
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

+ βK , ()

where β and β are as in Theorem .
If f ∈Kc

((a, b)) and D ≤ D holds, then the reverse inequalities are valid in () with β

and β as in Theorem  in the dual case.

Proof We use the same technique as in the proof of Corollary . We omit the details. �

Remark  Applying Corollary  to positive linear mappings �i,� : B(H) → B(K) de-
termined by �i : B �→ piB, i = , . . . , k, and �i : B �→ qiB, i = , . . . , k, we obtain the fol-
lowing obvious result with convex combinations of the operators Xi, i = , . . . , k, and Yj,
j = , . . . , k:

Let Xi, Yj be operators as in Corollary , such that a < mx ≤ Mx ≤ c ≤ my ≤ My < b
for some a, b, c ∈ R. Let (p, . . . , pk ) be a k-tuple and (q, . . . , qk ) be a k-tuple of positive
scalars such that

∑k
i= pi =  and

∑k
j= qj = .

If f ∈Kc
((a, b)) and P ≤ Q, then

k∑

i=

pif (Xi) – f (X̄) + βK ≤ P ≤ Q ≤
k∑

j=

qjf (Yj) – f (Ȳ ) + βK ,

where β and β are as in Theorem ,

P :=
α



k∑

i=

pi(Xi – X̄), Q :=
α



k∑

j=

qj(Yj – Ȳ ),

and X̄ :=
∑k

i= piXi, Ȳ :=
∑k

j= qjYj denote the weighted arithmetic means of the operators.

3 Refined Levinson’s operator inequality
In this section we obtain a refinement of Levison’s operator inequality () given in Section 
under weaker conditions.

The absolute value of B ∈ B(H) is defined by |B| = (B∗B)/.
For convenience, we introduce the abbreviations 	̄ and δ as follows:
• 	̄ ≡ 	̄B(m, M) := 

 K – 
M–m |B – m+M

 K |,
where B ∈ Bh(H) is a self-adjoint operator, � is a normalized positive linear mapping and
m, M (m < M) are some scalars such that spectra Sp(X) ⊆ [m, M]. Since mK ≤ B ≤ MK ,
we have – M–m

 K ≤ B – m+M
 K ≤ M–m

 K and  ≤ |�(B) – m+M
 K | ≤ M–m

 K . It follows
	̄ ≥ .

• δ ≡ δf ,α(m, M) := f ( m+M
 ) – f (m) – f (M) + α

 (M – m),
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Figure 4 Spectra conditions in a refined
Levinson’s inequality for two operators and a
3-convex function.

where f : [m, M] →R is a continuous function and α ∈R. Obviously, if F(t) = f (t) – α
 t is

concave (resp. convex) then δ ≥  (resp. δ ≤ ).
First, we give refined Levinson’s operator inequality for two pairs of operators.

Theorem  Let �,� : B(H) ⊕ B(H) → B(K) be normalized mappings such that
�(diag(B, B)) = �(B) + �(B) and �(diag(B, B)) = �(B) + �(B), where �, �,
�, � are positive linear mappings.

Let X = diag(X, X), Y = diag(Y, Y), where X, X, Y, Y ∈ Bh(H) are self-adjoint opera-
tors with spectra Sp(X) ⊆ [m, M], Sp(X) ⊆ [m, M], Sp(Y) ⊆ [n, N], Sp(Y) ⊆ [n, N]
M < m, N < n. Let a < m ≤ M ≤ mx ≤ Mx ≤ m ≤ M ≤ c ≤ n ≤ N ≤ ny ≤ Ny ≤
n ≤ N < b, where mx, Mx and ny, Ny are bounds of �(X) and �(Y ), respectively. (See
Figure .)

If f ∈Kc
((a, b)) and C ≤ C (see ()), then

�
(
f (X)

)
– f

(
�(X)

) ≤ �
(
f (X)

)
– f

(
�(X)

)
+ δX̄ ≤ C

≤ C ≤ �
(
f (Y )

)
– f

(
�(Y )

)
+ δȲ ≤ �

(
f (Y )

)
– f

(
�(Y )

)
, ()

where δ = δf ,α(m̄, M̄) ≥ , X̄ = 	̄�(X)(m̄, M̄) ≥  for arbitrary numbers m̄ ∈ [M, mx], M̄ ∈
[Mx, m], m̄ < M̄ and δ = δf ,α(n̄, N̄) ≤ , Ȳ = 	̄�(Y )(n̄, N̄) ≥  for arbitrary numbers n̄ ∈
[N, ny], N̄ ∈ [Ny, n], n̄ < N̄ .

But, if f ∈ Kc
((a, b)) and C ≥ C holds, then the reverse inequalities are valid in (),

with δ ≤  and δ ≥ .

Proof We will give the proof for f ∈Kc
((a, b)). Since F(t) = f (t)– α

 t is concave on [m, c] ⊂
(a, c] for some constant α, the refined Jensen’s operator inequality for a concave function
implies (see [], Theorem )

F
(
�(X)

) ≥ �
(
F(X)

)
+ δ̃X̄ ≥ �

(
F(X)

)

⇒ C ≥ �
(
f (X)

)
– f

(
�(X)

)
+ δX̄ ≥ �

(
f (X)

)
– f

(
�(X)

)
, ()

since  ≤ δ̃ = F( m̄+M̄
 ) – F(m̄) – F(M̄) = δf ,α(m̄, M̄) = δ and

X̄ =



K –


M̄ – m̄

∣
∣
∣
∣�(X) + �(X) –

m̄ + M̄


K

∣
∣
∣
∣ = 	̄�(X)(m̄, M̄).
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Similarly, since F is convex on [c, N] ⊂ [c, b) for some constant α, the refined Jensen’s
operator inequality for a convex function implies (see [], Theorem )

F
(
�(Y )

) ≤ �
(
F(Y )

)
– δ̃Ȳ ≥ �

(
F(Y )

)

⇒ C ≤ �
(
f (Y )

)
– f

(
�(Y )

)
+ δȲ ≤ �

(
f (Y )

)
– f

(
�(Y )

)
, ()

since  ≤ δ̃ = F(N̄) + F(N̄) – F( n̄+N̄
 ) = –δf ,α(n̄, N̄) = –δ and

Ȳ =



K –


N̄ – n̄

∣
∣
∣
∣�(Y) + �(Y) –

n̄ + N̄


K

∣
∣
∣
∣ = 	̄�(Y )(n̄, N̄).

Combining inequalities () and () we obtain the desired inequality (). �

Example  Let �i,�i, Xi, Yi, mi, Mi ≥ , ni, Ni ≥ , i = , , �, � , X, Y , mx, Mx, ny, Ny be
as in Theorem .

We will use the same technique as in Example  and we will apply Theorem  putting
f (t) = tp on (, c], f (t) = dtq on [c,∞), where c >  and d = cp–q.

(i) If p ∈ [, ], q ∈ (–∞, ] ∪ [,∞), and α = , then f ∈Kc
([,∞)). So, () gives

�
(
Xp) – �(X)p + δX̄ ≤  ≤ d�

(
Y q) – d�(Y )q + δȲ ,

where

δ = –p(m̄ + M̄)p – m̄p – M̄p ≥ , X̄ =



K –


M̄ – m̄

∣
∣
∣
∣�(X) –

M̄ + m̄


K

∣
∣
∣
∣ ≥ ,

δ = d
(
–q(n̄ + N̄)q – n̄q – N̄q) ≤ , Ȳ =




K –


N̄ – n̄

∣
∣
∣
∣�(Y ) –

N̄ + n̄


K

∣
∣
∣
∣ ≥ .

(ii) If p, q ∈ [, ] ∪ [,∞), p – p ≤ q – q, and α = cp–(p – p + q – q)/, then f ∈
Kc

([,∞)). If

C :=
α


[
�

(
X) – �(X)] ≤ C :=

α


[
�

(
Y ) – �(Y )],

then () gives

�
(
Xp) – �(X)p + δX̄ ≤ C ≤ C ≤ d�

(
Y q) – d�(Y )q + δȲ ,

where

δ = –p(m̄ + M̄)p – m̄p – M̄p + α(M̄ – m̄)/ ≥ ,

δ = d
(
–q(n̄ + N̄)q – n̄q – N̄q) + α(N̄ – n̄)/ ≤ ,

and X̄, Ȳ ≥  as in the case (i).
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(iii) If p, q ∈ (–∞, ] ∪ [, ], p – p ≥ q – q, and α = cp–(p – p + q – q)/, then f ∈
Kc

([,∞)). If C ≥ C (> ), then () gives

�
(
Xp) – �(X)p + δX̄ ≥ C ≥ C ≥ d�

(
Y q) – d�(Y )q + δȲ ,

where δ ≥ , δ ≤ , and X̄, Ȳ ≥  as in the case (ii).
The first and the last inequality in () are obvious, so we omit them.

Levinson’s operator inequality () holds with the weaker condition: f ∈ Kc
(I) and with

spectra conditions (see [], Theorem ). Next, applying Theorem  we obtain a refinement
of this inequality. The proof is the same as for Corollary  and we omit the details.

Corollary  Let (�, . . . ,�k ) be a unital k-tuple and (�, . . . ,�k ) be a unital k-tuple
of positive linear mappings �i,�j : B(H) → B(K). Let (X, . . . , Xk ) be a k-tuple and
(Y, . . . , Yk ) be a k-tuple of self-adjoint operators Xi and Yj ∈ Bh(H) with spectra contained
in [mi, Mi] and [nj, Nj], respectively, such that

a < mi ≤ Mi ≤ c ≤ nj ≤ Nj < b, i = , . . . , k, j = , . . . , k,

(mx, Mx) ∩ [mi, Mi] = ∅, i = , . . . , k, (my, My) ∩ [nj, Nj] = ∅, j = , . . . , k,

m < M, n < N ,

where mx, Mx and ny, Ny are bounds of X =
∑k

i= �i(Xi) and Y =
∑k

i= �i(Yi), respectively,
and

m := max{Mi|Mi ≤ mx, i = , . . . , k}, M := min{mi|mi ≥ Mx, i = , . . . , k},
n := max{Ni|Ni ≤ ny, i = , . . . , k}, N := min{ni|ni ≥ Ny, i = , . . . , k}.

If f ∈Kc
((a, b)) and D ≤ D (see ()), then

k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

≤
k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

+ δX̄ ≤ D

≤ D ≤
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

≤
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

+ δȲ , ()

where δ = δf ,α(m̄, M̄) ≥ , X̄ = 	̄X(m̄, M̄) ≥  for arbitrary numbers m̄ ∈ [m, mx], M̄ ∈
[Mx, M], m̄ < M̄ and δ = δf ,α(n̄, N̄) ≤ , Ȳ = 	̄Y (n̄, N̄) ≥  for arbitrary numbers n̄ ∈ [n, ny],
N̄ ∈ [Ny, N], n̄ < N̄ .

But, if f ∈ Kc
((a, b)) and D ≥ D holds, then the reverse inequalities are valid in (),

with δ ≤  and δ ≥ .
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4 Refined converse of Levinson’s operator inequality
In this section we obtain a refined converse of Levison’s operator inequality () given in
Section .

For convenience, we introduce the abbreviation

	̃ ≡ 	̃�,B(m, M) := �

(



H –


M – m

∣
∣
∣
∣B –

m + M


H

∣
∣
∣
∣

)

,

where B ∈ Bh(H) is a self-adjoint operator, � is a normalized positive linear mapping and
m, M (m < M) are some scalars such that spectra Sp(X) ⊆ [m, M]. Obviously, 	̃ ≥ .

First, we give a refinement of () for two pairs of operators.

Theorem  Let �,� : B(H) ⊕ B(H) → B(K) be normalized mappings such that
�(diag(B, B)) = �(B) + �(B) and �(diag(B, B)) = �(B) + �(B), where �,
�, �, � are positive linear mappings. Let X = diag(X, X), Y = diag(Y, Y), where
X, X, Y, Y ∈ Bh(H) are self-adjoint operators with spectra Sp(X), Sp(X) ⊆ [m, M],
Sp(Y), Sp(Y) ⊆ [n, N], such that a < m ≤ M ≤ c ≤ n ≤ N < b. Let mx, Mx and ny, Ny

be bounds of the operators �(X) and �(Y ), respectively (see Figure ). If f ∈Kc
((a, b)) and

C ≥ C (see ()), then

�
(
f (X)

)
– f

(
�(X)

)
+ βK

≥ �
(
f (X)

)
– f

(
�(X)

)
+ βK – δX̃ ≥ C

≥ C ≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK – δỸ ≥ �

(
f (Y )

)
– f

(
�(Y )

)
+ βK , ()

where β, β are defined as in Theorem , δ = δf ,α(m, M) ≥ , X̃ = 	̃�,X(m, M) ≥ , δ =
δf ,α(n, N) ≤ , and Ỹ = 	̃� ,Y (n, N) ≥ .

If f ∈ Kc
((a, b)) and C ≤ C holds, then the reverse inequalities are valid in (), with

δ ≤  and δ ≥  and β and β as in Theorem  in the dual case.

Proof We will give the proof for f ∈Kc
((a, b)). Since F(t) = f (t) – α

 t is concave on [m, c] ⊂
(a, c] for some constant α, the refined converse of Jensen’s inequality for a concave function
implies (see [], Theorem )

�
(
F(X)

)
– F

(
�(X)

) ≥ min
mx≤t≤Mx

{

f line
α,[m,M](t) – f (t) –

α


t

}

K –˜̃δX̃

⇒ �
(
f (X)

)
–

α


�

(
X) – f

(
�(X)

)
+

α


�(X) + βK +˜̃δX̃ ≥ 

⇒ �
(
f (X)

)
– f

(
�(X)

)
+ βK – δ̃X̃ ≥ C, ()

since  ≥˜̃δ = F(m) + F(M) – F( m+M
 ) = –δf ,α(m, M) = –̃δ and

X̃ =



K –


M – m

{

�

(∣
∣
∣
∣X –

m + M


H

∣
∣
∣
∣

)

+ �

(∣
∣
∣
∣X –

m + M


H

∣
∣
∣
∣

)}

=



K –


M – m
�

(∣
∣
∣
∣X –

m + M


H

∣
∣
∣
∣

)

= �

(



H –


M – m

∣
∣
∣
∣X –

m + M


H

∣
∣
∣
∣

)

= 	̃�,X(m, M).
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Similarly, since F is convex on [c, N] ⊂ [c, b) for some constant α, the refined converse of
Jensen’s inequality for a convex function implies (see [], Theorem )

�
(
F(Y )

)
– F

(
�(Y )

) ≤ max
ny≤t≤Ny

{

f line
α,[n,N](t) – f (t) –

α


t

}

–˜̃δỸ

⇒ �
(
f (Y )

)
–

α


�

(
Y ) – f

(
�(Y )

)
+

α


�(Y ) + βK +˜̃δỸ ≤ 

⇒ C ≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK – δ̃Ỹ , ()

since  ≤˜̃δ = F(n) + F(N) – F( n+N
 ) = –δf ,α(n, N) = –̃δ and

Ỹ = �

(



H –


N – n

∣
∣
∣
∣Y –

n + N


H

∣
∣
∣
∣

)

= 	̃� ,Y (n, N).

Combining inequalities () and () we obtain the desired inequality (). �

Example  Let �i, �i, Xi, Yi, i = , , m, M ≥ , n, N ≥ , �, � , X, Y , mx, Mx, ny, Ny be as
in Theorem .

We will apply Theorem  putting f (t) = tp on (, c], f (t) = dtq on [c,∞), where c >  and
d = cp–q.

(i) If p ∈ (–∞, ] ∪ [,∞), q ∈ [, ], and α = , then reverse of () gives

�
(
Xp) – �(X)p + β◦

 K – δX̃ ≤  ≤ d�
(
Y q) – d�(Y )q + β◦

 K – δỸ ,

where β◦
 , β◦

 are as in Example (i), and

δ = –p(m + M)p – mp – Mp ≥ , X̃ =



K –


M – m
�

(∣
∣
∣
∣X –

M + m


H

∣
∣
∣
∣

)

,

δ = d
(
–q(n + N)q/ – nq – Nq) ≤ , Ỹ =




K –


N – n
�

(∣
∣
∣
∣Y –

N + n


H

∣
∣
∣
∣

)

.

(ii) If p, q ∈ (–∞, ] ∪ [, ], p – p ≥ q – q, and α = cp–(p – p + q – q)/, then f ∈
Kc

([,∞)). If

( <) C :=
α


[
�

(
X) – �(X)] ≤ C :=

α


[
�

(
Y ) – �(Y )],

then the reverse of () gives

�
(
Xp) – �(X)p + βK – δX̃ ≤ C ≤ C ≤ d�

(
Y q) – d�(Y )q + βK – δỸ ,

where β, β are as in Example (ii),

δ = –p(m + M)p – mp – Mp + α(M – m)/ ≥ ,

δ = d
(
–q(n + N)q – nq – Nq) + α(N – n)/ ≤ 

and X̃ , Ỹ are as in the case (i).
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(iii) If p, q ∈ [, ] ∪ [,∞), p – p ≤ q – q, and α = cp–(p – p + q – q)/, then f ∈
Kc

([,∞)). If C ≥ C, then () gives

�
(
Xp) – �(X)p + γK – δX̃ ≥ C ≥ C ≥ d�

(
Y q) – d�(Y )q + γK – δỸ ,

where γ ≥  is defined similar to β with max instead of min and γ ≤  is defined similar
to β with min instead of max, and δ ≤ , δ ≥ , X̃ , Ỹ are as in the case (ii).

The first and the last inequality in () are obvious, so we omit them.

Remark  Let the assumptions of Theorem  be satisfied. If f ∈ •
Kc

([m, N]) and C ≥ C,
we obtain the following extension of ():

C + βK ≥ �
(
f (X)

)
– f

(
�(X)

)
+ βK

≥ �
(
f (X)

)
– f

(
�(X)

)
+ βK – δX̄ ≥ C

≥ C ≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK – δȲ

≥ �
(
f (Y )

)
– f

(
�(Y )

)
+ βK ≥ C + βK . ()

But, if f ∈ •
Kc

((a, b)) and C ≤ C, then the reverse inequalities are valid in ().

Applying Theorem  we obtain a refinement of (). We omit the proof.

Corollary  Let (�, . . . ,�k ) be a unital k-tuple and (�, . . . ,�k ) be a unital k-tuple
of positive linear mappings �i,�j : B(H) → B(K). Let (X, . . . , Xk ) be a k-tuple and
(Y, . . . , Yk ) be a k-tuple of self-adjoint operators Xi and Yj ∈ Bh(H) with spectra con-
tained in [m, M] and [n, N], respectively, such that a < m ≤ M ≤ c ≤ n ≤ N < b. Let mx, Mx

and ny, Ny be bounds of X =
∑k

i= �i(Xi) and Y =
∑k

i= �i(Yi), respectively.
If f ∈Kc

((a, b)) and D ≥ D (see ()), then

k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

+ βK

≥
k∑

i=

�i
(
f (Xi)

)
– f

( k∑

i=

�i(Xi)

)

– δX̃ + βK ≥ D

≥ D ≥
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

+ βK – δỸ

≥
k∑

i=

�i
(
f (Yi)

)
– f

( k∑

i=

�i(Yi)

)

+ βK , ()

where β and β are defined as in Theorem , δ = δf ,α(m, M) ≥ , X̃ =
∑k

i= 	̃�i ,Xi (m, M) ≥
, δ = δf ,α(n, N) ≤ , and Ỹ =

∑k
i= 	̃�i ,yi (n, N) ≥ .

If f ∈ Kc
((a, b)) and D ≤ D holds, then the reverse inequalities are valid in (), with

δ ≤  and δ ≥  and β and β as in Theorem  in the dual case.
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