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Background
The dynamic relationship between predators and their preys has long been and will con-
tinue to be one of the dominant themes in both ecology and mathematical ecology due 
to its universal existence and importance. Leslie (1948, 1958) introduced the following 
two species Leslie–Gower predator–prey model:

where x(t), y(t) stand for the population (the density) of the prey and the predator at time 
t, respectively. The parameters r1 and r2 are the intrinsic growth rates of the prey and 
the predator, respectively. b1 measures the strength of competition among individuals 
of species x. The value r1

b1
 is the carrying capacity of the prey in the absence of predation. 

The predator consumes the prey according to the functional response p(x) and grows 
logistically with growth rate r2 and carrying capacity r2xa2  proportional to the population 
size of the prey (or prey abundance). The parameter a2 is a measure of the food quantity 
that the prey provides and converted to predator birth. The term y/x is the Leslie–Gower 
term which measures the loss in the predator population due to rarity (per capita y/x) of 
its favorite food. Leslie model is a predator–prey model where the carrying capacity of 
the predator is proportional to the number of prey, stressing the fact that there are upper 
limits to the rates of increase in both prey x and predator y, which are not recognized in 
the Lotka–Volterra model.
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Abstract 

We propose a modified Leslie–Gower predator–prey model with Holling-type II 
schemes and a prey refuge. The structure of equilibria and their linearized stability is 
investigated. By using the iterative technique and further precise analysis, sufficient 
conditions on the global attractivity of a positive equilibrium are obtained. Our results 
not only supplement but also improve some existing ones. Numerical simulations 
show the feasibility of our results.
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As was pointed out by Aziz-Alaoui and Daher (2003), in the case of severe scarcity, 
y can switch over to other populations but its growth will be limited by the fact that its 
most favorite food x is not available in abundance. In order to solve such deficiency in 
system (1), Aziz-Alaoui and Daher (2003) proposed and studied the following predator–
prey model with modified Leslie–Gower and Holling-type II schemes:

where r1, b1, r2, a2 have the samemeaning as in system (1). a1 is the maximum value 
which per capita reduction rate of x can attain; k1 and k2 measure the extent to which 
environment provides protection to prey x and to predator y respectively. They obtained 
the boundedness and global stability of positive equilibrium of system (1). Since then, 
many scholars considered system (2) and its non-autonomous versions by incorporating 
delay, impulses, harvesting, stochastic perturbation and so on (see, for example, Yu 2012; 
Nindjin et al. 2006; Yafia et al. 2007, 2008; Nindjin and Aziz-Alaoui 2008; Gakkhar and 
Singh 2006; Guo and Song 2008; Song and Li 2008; Zhu and Wang 2011; Liu and Wang 
2013; Kar and Ghorai 2011; Huo et al. 2011; Li et al. 2012; Liu et al. 2013; Gupta and 
Chandra 2013; Ji et al. 2009, 2011; Yu 2014; Yu and Chen 2014; Yue 2015). In particular, 
Yu (2012) studied the structure, linearized stability and the global asymptotic stability of 
equilibria of (2) and obtained the following result (see Theorem 3.1 in Yu 2012):

Theorem 1 Assume that

hold, where M =
r1k1−a1L

b1k1
 and L =

r1r2+b1r2k2
a2b1

, then system (2) has a unique positive equi-
librium which is globally attractive.

As was pointed out by Kar (2005), mite predator–prey interactions often exhibit spa-
tial refugia which afford the prey some degree of protection from predation and reduce 
the chance of extinction due to predation. In Kar (2005), Tapan Kumar Kar had con-
sidered a predator–prey model with Holling type II response function and a prey ref-
uge. The author obtained conditions on persistent criteria and stability of the equilibria 
and limit cycle for the system. For more works on this direction, one could refer to Kar 
(2005), Srinivasu and Gayatri (2005), Ko and Ryu (2006), Huang et al. (2006), Kar (2006), 
González-Olivares and Ramos-Jiliberto (2003), Ma et al. (2009), Chen et al. (2009, 2010, 
2012), Ji and Wu (2010), Tao et al. (2011) and the references cited therein.

Although many authors have considered the dynamic behaviors of the modified Les-
lie–Gower model (Yu 2012; Nindjin et al. 2006; Yafia et al. 2007, 2008; Nindjin and Aziz-
Alaoui 2008; Gakkhar and Singh 2006; Guo and Song 2008; Song and Li 2008; Zhu and 
Wang 2011; Liu and Wang 2013; Kar and Ghorai 2011; Huo et al. 2011; Li et al. 2012; Liu 
et al. 2013; Gupta and Chandra 2013; Ji et al. 2009, 2011; Yu 2014; Yu and Chen 2014; 
Yue 2015) and predator–prey with a prey refuge (Kar 2005; Srinivasu and Gayatri 2005; 

(2)
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a1y
x+k1
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y,

a1r1r2 + a1b1r2k2 < a2b1r1k1, (C1)

2a2b1M + (a2b1k1 − a2r1 − a1r2) > 0, (C2)
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Ko and Ryu 2006; Huang et al. 2006; Kar 2006; González-Olivares and Ramos-Jiliberto 
2003; Ma et al. 2009; Chen et al. 2009, 2010, 2012; Ji and Wu 2010; Tao et al. 2011), as far 
as we know, there are almost no literatures discussing the modified Leslie–Gower model 
with a prey refuge. Stimulated by the works of Kar (2005), Srinivasu and Gayatri (2005), 
Ko and Ryu (2006), Huang et al. (2006), Kar (2006), González-Olivares and Ramos-Jilib-
erto (2003), Ma et al. (2009), Chen et al. (2009, 2010, 2012), Ji and Wu (2010), Tao et al. 
(2011), we will extend model (2) by incorporating a refuge protecting mx of the prey, 
where m ∈ [0, 1) is constant. This leaves (1−m)x of the prey available to the predator, 
and modifying system (2) accordingly to the system:

system (2) is the special case of (3) with m = 0, i.e. there is no prey refuge. By using itera-
tive technique and further precise analysis, we finally obtain the following main results:

Theorem 2 Suppose that

holds, then system (3) has a unique positive equilibrium (x∗, y∗) which is globally 
attractive.

Theorem 2 shows that limt→∞ x(t) = x∗, limt→∞ y(t) = y∗. Notice that x∗ and y∗ are 
only dependent with the coefficients of system (3), and independent of the solution of 
system (3). Thus we can get the following result:

Corollary 1 Suppose that C3 holds, then system (2) is permanent.

When m = 0 that is there is no prey refuge, (3) becomes to (2) and C3 becomes to C1, 
so as a direct corollary of Theorem 2, we have:

Corollary 2 Suppose that C1 holds, then system (2) has a unique positive equilibrium 
which is globally attractive.

Comparing with Theorem 1, it follows from Corollary 2 that C2 is superfluous, so our 
results improve the main results in Yu (2012). Moreover, when consider the case of no 
alternate prey, so k2 = 0 (this is often called the Holling-Tanner model), by the similar 
proof of Theorem 2, we can obtain:

Corollary 3 Suppose that

holds, then system (3) with k2 = 0 has a unique positive equilibrium (x∗, y∗) which is glob-
ally attractive.

(3)















ẋ(t) =
�

r1 − b1x −
a1(1−m)y
(1−m)x+k1

�

x,

ẏ(t) =
�

r2 −
a2y

(1−m)x+k2

�

y.

a1(1−m)2r1r2 + a1(1−m)b1r2k2 < a2b1r1k1, (C3)

a1(1−m)2r1r2 < a2b1r1k1, (C4)
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The remaining part of this paper is organized as follows. In section “Nonnegative equi-
libria and their linearized stability”, we discuss the structure of nonnegative equilibria 
to  (3) and their linearized stability. We prove the main result (i.e. Theorem  2) of this 
paper in section “Global attractivity of a positive equilibrium”. Then, in section “Exam-
ples and numeric simulations”, a suitable example together with its numeric simulations 
is given to illustrate the feasibility of the main results. We end this paper by a briefly 
discussion.

Nonnegative equilibria and their linearized stability
Obviously, (3) has three boundary equilibria, E0 = (0, 0), E1 = (

r1
b1
, 0) , and  

E2 =
(

0, r2k2a2

)

. Set B � a1r2(1−m)2 − a2r1(1−m)+ a2b1k1 and � � B2
− 4(1−m)

a2b1[(1−m)a1r2k2 − a2r1k1]. As for the existence of positive equilibria and linearized 
stability of equilibria, similar to the discussion in Yu (2012), we have the following 
results:

Case 1. Suppose one of the following conditions holds.

(i)  m > 1− a2r1k1
a1r2k2

.

(ii)  m = 1− a2r1k1
a1r2k2

and B < 0.

(iii) m < 1−
a2r1k1
a1r2k2

, B < 0, and � = 0.

Then (3) has a unique positive equilibrium E3,1 = (x3,1, y3,1) with x3,1 = −B+
√
�

2(1−m)a2b1
 and 

y3,1 =
r2((1−m)x3,1+k2)

a2
.

Case 2. If m < 1− a2r1k1
a1r2k2

, B  <  0, and � > 0, then (3) has two positive equilibria 
E3,± = (x3,±, y3,±), where x3,± =

−B±
√
�

2(1−m)a2b1
 and y3,± =

r2((1−m)x3,±+k2)
a2

.
Case 3. If no condition in Case 1 or Case 2 holds, then (3) has no positive equilibrium.

Proposition 1 (i)      Both E0 and E1 are unstable.
(ii)         E2 is locally asymptotically stable if m < 1− a2r1k1

a1r2k2
 while it is unstable if 

m > 1− a2r1k1
a1r2k2

.
(iii)        The positive equilibrium E3,1 in Case 1(i)(ii) is stable if 2b1(1−m)

x
2
3,1

− (r1(1−m)− r2(1−m)− b1k1)x3,1 + k1r2 > 0.
(iv)        The positive equilibrium E3,− is unstable while the posi-

tive equilibrium E3,+ = (x3,+, y3,+) is stable if 2b1(1−m)

x
2
3,+

− (r1(1−m)− r2(1−m)− b1k1)x3,+ + k1r2 > 0.

When m = 0 that is there is no prey refuge, Proposition 1 becomes to Propositions 2.1 
and 2.2 in Yu (2012). Thus our results supplement the exist ones. In the coming section, 
we will prove the main result (i.e. Theorem 2) of this paper.

Global attractivity of a positive equilibrium
In this section, we first introduce several lemmas which will be useful in proving the 
main result (i.e. Theorem 2) of this paper.
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Lemma 1 (Chen et  al. 2007) If a > 0, b > 0 and ẋ ≥ x(b− ax), when t ≥ 0 and 
x(0) > 0, we have:

If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) > 0, we have:

Now, we prove the main result of this paper.

Proof of Theorem 2 Let (x(t), y(t))T be any positive solution of (3). From condition (C3), 
we can choose a small enough ε > 0 such that

The first equation of (3) yields

By applying Lemma 1 to (5) leads to

Hence, for above ε > 0, there exists a T1 > 0 such that

(6) together with the second equation of (3) leads to

From (7), according to Lemma 1, we can obtain

Thus, for above ε, there exists a T2 ≥ T1, such that

lim inf
t→+∞

x(t) ≥
b

a
.

lim sup
t→+∞

x(t) ≤
b

a
.

(4)

a2b1r1k1 − a1(1−m)2r1r2 − a1(1−m)b1r2k2

a2b1k1

−

(

a1(1−m)2r2

a2k1
+

a1(1−m)

k1

)

ε > 0.

(5)ẋ(t) ≤ (r1 − b1x)x.

lim sup
t→+∞

x(t) ≤
r1

b1
.

(6)x(t) ≤
r1

b1
+ ε

�

=M
(1)
1 .

(7)ẏ(t) ≤

(

r2 −
a2y

(1−m)M
(1)
1 + k2

)

y, for all t ≥ T1.

lim sup
t→+∞

y(t) ≤
r2

(

(1−m)M
(1)
1 + k2

)

a2
.

(8)y(t) ≤
r2

(

(1−m)M
(1)
1 + k2

)

a2
+ ε

�

=M
(1)
2 , for all t ≥ T2.
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(8) together with the first equation of (3) leads to

According to (4), we can obtain

Therefore, by Lemma 1 and (9), we have

Hence, for above ε, there exists a T3 ≥ T2, such that

From (11) and the second equation of system (3), we know that for t ≥ T3,

Applying Lemma 1 to (12) leads to

That is, for above ε, there exists a T4 > T3 such that

From (6), (8), (11) and (13), for t ≥ T4, we have

(9)ẋ(t) ≥

(

r1 − b1x −
a1(1−m)M

(1)
2

k1

)

x, for all t ≥ T2.

(10)

r1 −
a1(1−m)M

(1)
2

k1
= r1 −

a1(1−m)r2

a2k1

(

(1−m)r1

b1
+ k2

)

−
a1(1−m)

k1

(

r2(1−m)

a2
+ 1

)

ε

=
a2b1r1k1 − a1(1−m)2r1r2 − a1(1−m)b1r2k2

a2b1k1

−

(

a1(1−m)2r2

a2k1
+

a1(1−m)

k1

)

ε > 0,

lim inf
t→+∞

x(t) ≥
r1 −

a1(1−m)M
(1)
2

k1

b1
.

(11)x(t) ≥
r1 −

a1(1−m)M
(1)
2

k1

b1
− ε

�

=m
(1)
1 , for all t ≥ T3.

(12)ẏ(t) ≥

(

r2 −
a2y

(1−m)m
(1)
1 + k2

)

y.

lim inf
t→+∞

y(t) ≥
r2

(

(1−m)m
(1)
1 + kl2

)

a2
.

(13)y(t) ≥
r2

(

(1−m)m
(1)
1 + k2

)

a2
− ε

�

=m
(1)
2 , for all t ≥ T4.

(14)0 < m
(1)
1 ≤ x(t) ≤ M

(1)
1 , 0 < m

(1)
2 ≤ y(t) ≤ M

(1)
2 .
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(14) together with the first equation of (3) leads to

From (10) and (14), we have

Therefore, similarly to the analysis of (5–6), for above ε, there exists a T5 > T4 such that

Compare (6) with (15), one can get

Substituting (15) into the second equation of system (3), we have

Applying Lemma 1 to the above inequality leads to

Thus, for above ε, there exists a T6 ≥ T5, such that

From (8), (16) and (18) , we have

Substituting (11) and (18) into the first equation of system (3), we obtain

ẋ(t) ≤

(

r1 − b1x −
a1(1−m)m

(1)
2

(1−m)M
(1)
1 + k1

)

x, for all t ≥ T4.

r1 −
a1(1−m)m

(1)
2

(1−m)M
(1)
1 + k1

> r1 −
a1(1−m)m

(1)
2

k1
≥ r1 −

a1(1−m)M
(1)
2

k1
> 0.

(15)x(t) ≤

r1 −
a1(1−m)m

(1)
2

(1−m)M
(1)
1 +k1

b1
+

ε

2

�

=M
(2)
1 .

(16)M
(2)
1 < M

(1)
1 .

(17)ẏ(t) ≤

(

r2 −
a2y

(1−m)M
(2)
1 + k2

)

y, for all t ≥ T5.

lim sup
t→+∞

y(t) ≤
r2

(

(1−m)M
(2)
1 + k2

)

a2
.

(18)y(t) ≤
r2

(

(1−m)M
(2)
1 + k2

)

a2
+

ε

2

�

=M
(2)
2 , for all t ≥ T6.

(19)M
(2)
2 < M

(1)
2 .

ẋ(t) ≥

(

r1 − b1x −
a1(1−m)M

(2)
2

(1−m)m
(1)
1 + k1

)

x, for all t ≥ T6.
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According to (10) and (19), we have

Thus, similarly to the above analysis, for above ε, there exists a T7 ≥ T6, such that

From (11), (19) and (20) , we have

It follows from (20) and the second equation of system (3) that

Thus, similarly to the above analysis, for above ε, there exists a T8 ≥ T7, such that

From (13), (21) and (23) , we have

Therefore, it follows from (14), (16), (19), (21) and (24) that

Repeating the above procedure, we get four sequences M(n)
i , m(n)

i , i = 1, 2, n = 1, 2, . . ., 
such that

Now, We go to show that the sequences M(n)
i  are non-increasing, and the sequences m(n)

i , 
are non-decreasing for i = 1, 2 by induction. Firstly, from (25), we immediately get

r1 −
a1(1−m)M

(2)
2

(1−m)m
(1)
1 + k1

> r1 −
a1(1−m)M

(1)
2

k1
> 0

(20)x(t) ≥

r1 −
a1(1−m)M

(2)
2

(1−m)m
(1)
1 +k1

b1
−

ε

2

�

=m
(2)
1 , for all t ≥ T7.

(21)m
(1)
1 < m

(2)
1 .

(22)ẏ(t) ≥

(

r2 −
a2y

(1−m)m
(2)
1 + k2

)

y, for all t ≥ T7.

(23)y(t) ≥
r2

(

(1−m)m
(2)
1 + k2

)

a2
−

ε

2

�

=m
(2)
2 , for all t ≥ T8.

(24)m
(1)
2 < m

(2)
2 .

(25)

0 < m
(1)
1 < m

(2)
1 ≤ x(t) < M

(2)
1 ≤ M

(1)
1 ,

0 < m
(1)
2 < m

(2)
2 ≤ y(t) ≤ M

(2)
2 < M

(1)
2 , for all t ≥ T8.

(26)

M
(n)
1 =

r1 −
a1(1−m)m

(n−1)
2

(1−m)M
(n−1)
1 +k1

b1
+

ε

n
, M

(n)
2 =

r2

(

(1−m)M
(n)
1 + k2

)

a2
+

ε

n

m
(n)
1 =

r1 −
a1(1−m)M

(n)
2

(1−m)m
(n−1)
1 +k1

b1
−

ε

n
, m

(n)
2 =

r2

(

(1−m)m
(n)
1 + k2

)

a2
−

ε

n

M
(2)
i < M

(1)
i , m

(2)
i > m

(1)
i , i = 1, 2.
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Let us suppose that for n,

By direct computation, one can obtain

Therefore, we have that

Hence, the limits of M(n)
i  and m(n)

i , i = 1, 2, n = 1, 2, . . . exist. Denote that

Hence x ≥ x, y ≥ y. Letting n → +∞ in (26), we immediately

It follows from (28) that

Multiplying the second equality of (29) by −1 and adding it to the first equality of (29), we 
have

We claim x = x. Otherwise, x �= x and

M
(n)
i < M

(n−1)
i , m

(n)
i > m

(n−1)
i , i = 1, 2.

(27)

M
(n+1)
1 =

r1 −
a1(1−m)m

(n)
2

(1−m)M
(n)
1 +k1

b1
+

ε

n+ 1
<

r1 −
a1(1−m)m

(n−1)
2

(1−m)M
(n−1)
1 +k1

b1
+

ε

n
= M

(n)
1

M
(n+1)
2 =

r2

(

(1−m)M
(n+1)
1 + k2

)

a2
+

ε

n+ 1
<

r2

(

(1−m)M
(n)
1 + k2

)

a2
+

ε

n
= M

(n)
2

m
(n+1)
1 =

r1 −
a1(1−m)M

(n+1)
2

(1−m)m
(n)
1 +k1

b1
−

ε

n+ 1
<

r1 −
a1(1−m)M

(n)
2

(1−m)m
(n−1)
1 +k1

b1
−

ε

n
= m

(n)
1

m
(n+1)
2 =

r2

(

(1−m)m
(n+1)
1 + k2

)

a2
−

ε

n+ 1
<

r2

(

(1−m)m
(n)
1 + k2

)

a2
−

ε

n
= m

(n)
2

0 < m
(1)
1

< m
(2)
1

< · · · < m
(n)
1

< x(t) < M
(n)
1

< · · · < M
(2)
1

< M
(1)
1

,

0 < m
(1)
2

< m
(2)
2

< · · · < m
(n)
2

< y(t) < M
(n)
2

< · · · < M
(2)
2

< M
(1)
2

,

lim
n→+∞

M
(n)
1 = x, lim

n→+∞
m

(n)
1 = x, lim

n→+∞
M

(n)
2 = y, lim

n→+∞
m

(n)
2 = y.

(28)

r1 − b1x −
a1(1−m)y

(1−m)x + k1
= 0, r2 −

a2y

(1−m)x + k2
= 0

r1 − b1x −
a1(1−m)y

(1−m)x + k1
= 0, r2 −

a2y

(1−m)x + k2
= 0

(29)

a2(r1 − b1x)((1−m)x + k1) = a1r2(1−m)((1−m)x + k2),

a2(r1 − b1x)((1−m)x + k1) = a1r2(1−m)((1−m)x + k2).

(x − x)
(

a1r2(1−m)2 + a2r1(1−m)− a2b1k1 − a2b1(1−m)(x + x)
)

= 0.

(30)a2b1(1−m)(x + x) = a1r2(1−m)2 + a2r1(1−m)− a2b1k1
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Substituting (30) into (29), we have

Thus, x and x are two positive solutions of the following equation

Simplifying (31), one can get

where D = a2(a1(1−m)2r1r2+a1(1−m)b1r2k2−a2b1r1k1)+a1r2(1−m)(a1r2(1−m)2

−a2b1k1). (H1) shows that a1(1−m)2r1r2 + a1(1−m)b1r2k2 − a2b1r1k1 < 0 and 
a1r2(1−m)2 − a2b1k1 < 0. Hence, D < 0, that is, Eq. (31) does not have two positive solu-
tions. So x = x and consequently, y = y. Obviously, C3 implies a1(1−m)r2k2 < a2r1k1 or 
m > 1− a2r1k1

a1r2k2
, that is, condition (i) of Case 1 holds. Thus (3) has a unique positive equi-

librium (x∗, y∗) and (x∗, y∗) also satisfies (28). Therefor x = x = x∗ and y = y = y∗, that is 
to say

and this completes the proof.  �

Examples and numeric simulations
Consider the following example:

In this case, we have r1 = 11, b1 = 5, a1 = 4,m = 0.4, k1 = 6.5, r2 = 8, a2 = 2, k2 = 2 
and B = a1r2(1−m)2−a2r1(1−m)+a2b1k1 = 63.32,� = B2

−4(1−m)a2b1[(1−m)

a1r2k2 − a2r1k1] = 6519.8, so

By simple computation, we also have

Thus, conditions in Theorem  2 are satisfied, hence, system (33) has a unique positive 
equilibrium E∗

= (x∗, y∗) which is globally attractive. Numerical simulation also con-
firms our result (see Fig. 1).

a22b1(r1 − b1x)((1−m)x + k1) = a1r2(1−m)(a1r2(1−m)2 + a2r1(1−m)

− a2b1k1 + a2b1k2 − a2b1(1−m)x),

a22b1(r1 − b1x)((1−m)x + k1) = a1r2(1−m)(a1r2(1−m)2 + a2r1(1−m)

− a2b1k1 + a2b1k2 − a2b1(1−m)x).

(31)

a22b1(r1 − b1x)((1−m)x + k1) = a1r2(1−m)(a1r2(1−m)2 + a2r1(1−m)

− a2b1k1 + a2b1k2 − a2b1(1−m)x).

(32)a22b
2
1(1−m)x2 + a2b1(a2b1k1 − a2r1(1−m)− a1r2(1−m)2)x + D = 0,

lim
t→∞

x(t) = x∗, lim
t→∞

y(t) = y∗.

(33)

ẋ =

(

11− 5x −
2.4y

0.6x + 6.5

)

x,

ẏ =

(

8−
2y

0.6x + 2

)

y.

x∗ =
−B+

√
�

2(1−m)a2b1
≈ 1.4521, y∗ =

r2((1−m)x∗ + k2)

a2
≈ 11.485.

a1(1−m)2r1r2 + a1(1−m)b1r2k2 − a2b1r1k1 = −396.28 < 0.
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Conclusion
In this paper, we consider a modified Leslie–Gower predator–prey model with Hol-
ling-type II schemes and a prey refuge. The structure of equilibria and their linearized 
stability is investigated. Morever, by using the iterative technique and further pre-
cise analysis, sufficient conditions on the global attractivity of a positive equilibrium 
are obtained. When m = 0 that is there is no prey refuge, (3) we discussed reduces to 
(2) which was studied by Yu (2012). Yu (2012) have provided a sufficient condition on 
the global asymptotic stability of a positive equilibrium by employing the Fluctuation 
Lemma and obtained Theorem 1. By comparing Theorems 1 with Corollary 2, we find 
that the condition C2 in Theorem 1 is redundant. Thus our results not only supplement 
but also improve some existing ones. The numerical simulation of system (33) verify our 
main results. It follows from Theorem 2 and condition C3 that increasing the amount of 
refuge can ensure the coexistence and attractivity of the two species more easily. This 
is rational, since the existence of alternate prey can prevent the predator from extinc-
tion and increasing the amount of refuge could protect more prey from predation and 
become permanent. Note that for the diffusion/PDE model where refuge can be spatial, 
whether refuge can change global attractivity of the interior equilibrium? This is a fur-
ther problem, which can be studied in the future.
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Fig. 1 Dynamic behavior of the system (33) with the initial condition (x(0), y(0)) = (3, 12)T, (1, 30)T, (10, 0.3)T,  
(8, 15)T and (30, 50)T, respectively
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