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1 Introduction
A generalization of the metric space can be obtained as a partial-metric space by replacing
the condition d(x, x) =  with the condition d(x, x) ≤ d(x, y) for all x, y in the definition of
the metric. In the year , Czerwik [] introduced the concept of a b-metric space as
another generalization of the concept of metric space. Several authors have focused on
fixed point theorems for a metric space, a partial-metric space, quasi-partial metric space
and a partial b-metric space. For further information on the subject see [–].

The concept of a quasi-partial-metric space was introduced by Karapınar et al. [].
He studied some fixed point theorems on these spaces whereas Shatanawi and Pitea []
studied some coupled fixed point theorems on quasi-partial-metric spaces.

The aim of this paper is to introduce the concept of quasi-partial b-metric spaces which
is a generalization of the concept of quasi-partial-metric spaces. The fixed point results
are proved in setting of such spaces and some examples are given to verify the effectiveness
of the main results.

2 Preliminaries
We begin the section with some basic definitions and concepts.

Definition . ([]) A quasi-partial metric on a non-empty set X is a function q : X ×
X →R

+, satisfying

(QPM) If q(x, x) = q(x, y) = q(y, y), then x = y.
(QPM) q(x, x) ≤ q(x, y).
(QPM) q(x, x) ≤ q(y, x).
(QPM) q(x, y) + q(z, z) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X .

A quasi-partial-metric space is a pair (X, q) such that X is a non-empty set and q is a
quasi-partial metric on X.
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Let q be a quasi-partial metric on the set X. Then

dq(x, y) = q(x, y) + q(y, x) – q(x, x) – q(y, y) is a metric on X.

Lemma . ([]) For a quasi-partial metric q on X,

pq(x, y) =


[
q(x, y) + q(y, x)

]
for all x, y ∈ X is a partial metric on X.

Lemmas . ([–])
(A) A sequence {xn} is Cauchy in a partial-metric space (X, p) if and only if {xn} is

Cauchy in the (corresponding) metric space (X, dp).
(B) A partial-metric space (X, p) is complete if and only if the (corresponding) metric

space (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) =  ⇔ p(x, x) = lim

n→∞ p(x, xn) = lim
n,m→∞ p(xn, xm).

Lemma . ([]) Let (X, q) be a quasi-partial metric space, let (X, pq) be the corresponding
partial-metric space, and let (X, dpq ) be the corresponding metric space. Then the following
statements are equivalent:

(A) The sequence {xn} is Cauchy in (X, q) and (X, q) is complete.
(B) The sequence {xn} is Cauchy in (X, pq) and (X, pq) is complete.
(C) The sequence {xn} is Cauchy in (X, dpq ) and (X, dpq ) is complete.

Also,

lim
n→∞ dq(x, xn) =  ⇔ pq(x, x) = lim

n→∞ pq(x, xn) = lim
n,m→∞ pq(xn, xm)

⇔ q(x, x) = lim
n→∞ q(x, xn) = lim

n,m→∞ q(xn, xm)

= lim
n→∞ q(xn, x) = lim

n,m→∞ q(xm, xn).

Definition . ([]) If T : X → X is any map on X, O(x) = {x, Tx, Tx, . . .} is called the
orbit of x. A mapping G : X → R

+ is T-orbitally lower semi-continuous at x if {xn} is a
sequence in O(x) and lim xn = z implies G(z) ≤ lim inf G(xn).

3 Quasi-partial b-metric space
We introduce the concept of quasi-partial b-metric space here.

Definition . A quasi-partial b-metric on a non-empty set X is a mapping qpb : X ×X →
R

+ such that for some real number s ≥  and all x, y, z ∈ X:

(QPb) qpb(x, x) = qpb(x, y) = qpb(y, y) ⇒ x = y,
(QPb) qpb(x, x) ≤ qpb(x, y),
(QPb) qpb(x, x) ≤ qpb(y, x),
(QPb) qpb(x, y) ≤ s[qpb(x, z) + qpb(y, z)] – qpb(z, z).

A quasi-partial b-metric space is a pair (X, qpb) such that X is a non-empty set and
(X, qpb) is a quasi partial b-metric on X. The number s is called the coefficient of (X, qpb).
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For a quasi-partial b-metric space (X, qpb), the function dqpb : X × X →R
+ defined by

dqpb (x, y) = qpb(x, y) + qpb(y, x) – qpb(x, x) – qpb(y, y) is a b-metric on X.

Example . Let X = [, ].
Define qpb(x, y) = |x – y| + x. Here

qpb(x, x) = qpb(x, y) = qpb(y, y) ⇒ x = y as x = |x – y| + x = y gives x = y.

Again, qpb(x, x) ≤ qpb(x, y) as x ≤ |x – y| + x and similarly, qpb(x, x) ≤ qpb(y, x) as x ≤ |y –
x| + y for  < x < y.

Also qpb(x, y) + qpb(z, z) ≤ s[qpb(x, z) + qpb(z, y)] as

|x – y| + x + z ≤ s
[|x – z| + x + |z – y| + z

]
for all s ≥ .

It can be observed that

|x – y| + x + z = |x – z + z – y| + x + z ≤ |x – z| + |z – y| + x + z.

So (X, qpb) is a quasi-partial b-metric space with s ≥ .

Example . Let X = [,∞).
Define qpb : X × X → R

+ as qpb(x, y) = ln(xy). Then (X, qpb) is a quasi-partial b-metric
space.

Let qpb(x, x) = qpb(x, y) = qpb(y, y) ⇒ ln(x) = ln(xy) = ln(y) ⇒ x = y.
Let x, y ∈ X. Without loss of generality x ≤ y ⇒ ln x ≤ ln y ⇒  ln x ≤ ln x + ln y ⇒

ln(x) ≤ ln x + ln y.
Thus, qpb(x, x) ≤ qpb(x, y).
Similarly qpb(x, x) ≤ qpb(y, x).
For (QPb) we have

qpb(x, y) = ln x + ln y

≤ s ln x + s ln y since s ≥  and also ln x ≥  and ln y ≥ 

≤ s ln x + s ln y +  ln z(s – ) since ln z ≥  and s –  ≥ 

= s
{

qpb(x, z) + qpb(z, y)
}

– qpb(z, z).

Example . Let X = [, π
 ] and define qpb : X × X →R

+ as

qpb(x, y) = sin x + sin y.

Then (X, qpb) is a quasi-partial b-metric space.

Lemma . Let (X, qpb) be a quasi-partial b-metric space. Then the following hold:
(A) If qpb(x, y) =  then x = y.
(B) If x 	= y, then qpb(x, y) >  and qpb(y, x) > .
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The proof is similar to the case of quasi-partial-metric space [].

Lemma . Every quasi-partial space is a quasi-partial b-metric space. But the converse
does not need to be true.

Definition . Let (X, qpb) be a quasi-partial b-metric. Then:
(i) A sequence {xn} ⊂ X converges to x ∈ X if and only if

qpb(x, x) = lim
n→∞ qpb(x, xn) = lim

n→∞ qpb(xn, x).

(ii) A sequence {xn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞ qpb(xn, xm) and lim

n,m→∞ qpb(xm, xn) exist (and are finite).

(iii) The quasi-partial b-metric space (X, qpb) is said to be complete if every Cauchy
sequence {xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that

qpb(x, x) = lim
n,m→∞ qpb(xm, xn) = lim

n,m→∞ qpb(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x ∈ X if, for every ε > , there
exists δ >  such that f (B(x, δ)) ⊂ B(f (x), ε).

Lemma . Let (X, qpb) be a quasi-partial b-metric space and (X, dqpb ) be the correspond-
ing b-metric space. Then (X, dqpb ) is complete if (X, qpb) is complete.

Proof Since (X, qpb) is complete, every Cauchy sequence {xn} in X converges with respect
to τqpb to a point x ∈ X such that

qpb(x, x) = lim
n,m→∞ qpb(xn, xm) = lim

n,m→∞ qpb(xm, xn). ()

Consider a Cauchy sequence {xn} in (X, dqpb ). We will show that {xn} is Cauchy in (X, qpb).
Since {xn} is Cauchy in (X, dqpb ), limn,m→∞ dqpb (xn, xm) exists and is finite.

Also, dqpb (xn, xm) = qpb(xn, xm) + qpb(xm, xn) – qpb(xn, xn) – qpb(xm, xm).
Clearly, limn,m→∞ qpb(xn, xm) and limn,m→∞ qpb(xm, xn) exist and are finite.
Therefore, {xn} is a Cauchy sequence in (X, qpb). Now, since (X, qpb) is complete, the

sequence {xn} converges with respect to τqpb to a point x ∈ X such that () holds.
For {xn} to be convergent in (X, dqpb ) we will show that dqpb (x, x) = limn→∞ dqpb (x, xn).
If follows from the definition of dqpb that dqpb (x, x) = . Also,

lim
n→∞ dqpb (x, xn) = lim

n→∞ qpb(x, xn) + lim
n→∞ qpb(xn, x) – lim

n→∞ qpb(xn, xn) – lim
n→∞ qpb(x, x)

=  by () and definition of convergence in (X, qpb).

Hence, dqpb (x, x) = limn→∞ dqpb (x, xn). �

In [] Karapınar et al. proved a fixed point theorem on quasi-partial-metric space. Mo-
tivated by this, we have generalized the results on a quasi-partial b-metric space.
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4 The main results
Theorem . Let (X, qpb) be a quasi-partial b-metric space, and let T : X → X. Then the
following hold:

(A) There exists φ : X →R
+ such that

qpb(x, Tx) ≤ φ(x) – φ(Tx) for all x ∈ X if and only if
∞∑

n=

qpb
(
Tnx, Tn+x

)
converges for all x ∈ X.

(B) There exists φ : X →R
+ such that

qpb(x, Tx) ≤ φ(x) – φ(Tx) for all x ∈ O(x) if and only if
∞∑

n=

qpb
(
Tnx, Tn+x

)
converges for all x ∈ O(x).

Proof (A) Let x ∈ X, and let

qpb(x, Tx) ≤ φ(x) – φ(Tx).

Define the sequence {xn}∞n= in the following way:

x = x and xn+ = Txn = Tn+x, for all n = , , , . . . .

Set zn(x) =
∑n

k= qpb(xk , xk+) =
∑n

k= qpb(Tkx, Tk+x). Then

zn(x) ≤
n∑

k=

[
φ
(
Tkx

)
– φ

(
Tk+x

)]

=
[
φ(x) – φ(Tx)

]
+ · · · +

[
φ
(
Tnx

)
– φ

(
Tn+x

)]

=
[
φ(x) – φ

(
Tn+x

)] ≤ φ(x) = φ(x). ()

Thus, () implies that {zn(x)} is bounded. Also {zn(x)} is non-decreasing and hence con-
vergent. Therefore,

∑∞
n= qpb(Tnx, Tn+x) converges.

Conversely, define

φ(x) =
∞∑

n=

qpb
(
Tnx, Tn+x

)
and zn(x) =

n∑

k=

qpb
(
Tkx, Tk+x

)
.

Then

φ(Tx) =
∞∑

n=

qpb
(
Tn+x, Tn+x

)
and zn(Tx) =

n∑

k=

qpb
(
Tk+x, Tk+x

)
.

Using these definitions, we get

zn(x) – zn(Tx) =
n∑

k=

qpb
(
Tkx, Tk+x

)
–

n∑

k=

qpb
(
Tk+x, Tk+x

)

= qpb(x, Tx) – qpb
(
Tn+x, Tn+x

)
. ()
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Since
∑∞

n= qpb(Tnx, Tn+x) converges for all x ∈ X,

lim
n→∞ zn(x) = φ(x) and lim

n→∞ qpb
(
Tnx, Tn+x

)
= .

Letting n → ∞ in () gives qpb(x, Tx) = φ(x) – φ(Tx).
(B) It can easily be proved using part (A). �

Example . Let X = [, ]. Define qpb(x, y) = |x – y| + |x|.
Then qpb(x, y) satisfies all conditions of quasi-partial b-metric space. It is also quasi-

partial metric. But for x 	= y, qpb(x, y) 	= qpb(y, x) and qpb(x, x) 	=  for x 	= . So qpb is not a
partial metric or a quasi-metric. Define T : X → X as Tx = x

 for all x ∈ X. Then the series
∑∞

n= qpb(Tnx, Tn+x) is convergent. Indeed,

∞∑

n=

qpb
(
Tnx, Tn+x

)
=

∞∑

n=

qpb

(
x
n ,

x
n+

)
=

∞∑

n=

∣
∣∣
∣

x
n –

x
n+

∣
∣∣
∣ +

∣
∣∣
∣

x
n

∣
∣∣
∣

=
∞∑

n=

∣
∣∣
∣

x
n+

∣
∣∣
∣ +

∣
∣∣
∣

x
n

∣
∣∣
∣ =

∞∑

n=

x
n+ =

x


· 
 – 


=

x


.

Then the conditions of Theorem . are satisfied for φ(x) = x
 . Indeed

qpb(x, Tx) = qpb

(
x,

x


)
=

∣
∣∣∣x –

x


∣
∣∣∣ + |x| =

∣
∣∣∣
x


∣
∣∣∣ + |x| =

x


= φ(x) – φ(Tx).

The next result gives conditions for the existence of fixed points of operators on quasi-
partial b-metric space.

Theorem . Let (X, qpb) and (Y , qpb) be complete quasi-partial b-metric spaces. Let also
T : X → X, R : X → Y , and φ : R(X) →R

+. If there exist x ∈ X and c >  such that

max
{

qpb(y, Ty), cqpb(Ry, RTy)
} ≤ φ(Ry) – φ(RTy) ()

for all y ∈ O(x), then the following hold:
(A) limn→∞ Tnx = z exists.
(B) Tz = z if and only if G(x) = qpb(x, Tx) is T-orbitally lower semi-continuous at x.
(C) qpb(x, Tnx) ≤ sn–φ(Rx).
(D) For m > n, qpb(Tnx, Tmx) ≤ sm–n[φ(RTnx)].

Proof (A) Let x ∈ X. Define the sequence {xn}∞n= as follows:

x = x and xn+ = Txn = Tn+x, for all n = , , , . . . .

We will show that {xn}∞n= is Cauchy.
Using (QPb), we get

qpb(xn, xn+) ≤ s
{

qpb(xn, xn+) + qpb(xn+, xn+)
}

– qpb(xn+, xn+)

≤ s
{

qpb(xn, xn+) + qpb(xn+, xn+)
}

()
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and, similarly,

qpb(xn, xn+) ≤ s
{

qpb(xn, xn+) + qpb(xn+, xn+)
}

– qpb(xn+, xn+)

≤ s{qpb(xn, xn+) + qpb(xn+, xn+)
}

+ s
{

qpb(xn+, xn+)
}

. ()

Now,

qpb(xn, xn+) ≤ s
{

qpb(xn, xn+) + qpb(xn+, xn+)
}

– qpb(xn+, xn+)

≤ s{qpb(xn, xn+) + qpb(xn+, xn+)
}

+ s{qpb(xn+, xn+)
}

+ s
{

qpb(xn+, xn+)
}

.

On generalization, we get

qpb(xn, xm) ≤ sm–n–{qpb(xn, xn+) + qpb(xn+, xn+)
}

+ sm–n–{qpb(xn+, xn+)
}

+ · · · + s
{

qpb(xm–, xm)
}

≤ sm–n–{qpb
(
Tnx, Tn+x

)
+ qpb

(
Tn+x, Tn+x

)}

+ sm–n–{qpb
(
Tn+x, Tn+x

)}
+ · · · + s

{
qpb

(
Tm–x, Tmx

)}

=
m–∑

k=n+

sm–k{qpb
(
Tkx, Tk+x

)}
+ sm–n–qpb(xn, xn+)

=
m–∑

k=n

sm–k{qpb
(
Tkx, Tk+x

)}
+ sm–n–qpb(xn, xn+) – sm–nqpb(xn, xn+)

=
m–∑

k=n

sm–k{qpb
(
Tkx, Tk+x

)}
– sm–nqpb(xn, xn+)

[
 –


s

]

≤
m–∑

k=n

sm–k{qpb
(
Tkx, Tk+x

)}
for m > n. ()

Set zn(x) =
∑n

k= sm–k{qpb(Tkx, Tk+x)}.
From () we have

sm–k{qpb
(
Tkx, Tk+x

)} ≤ sm–k max
{

qpb
(
Tkx, Tk+x

)
, cqpb

(
RTkx, RTk+x

)}

≤ sm–k{φ
(
RTkx

)
– φ

(
RTk+x

)}
for all k = , , . . . ()

⇒ zn(x) ≤
n∑

k=

sm–k{φ
(
RTkx

)
– φ

(
RTk+x

)}

≤ smφ(Rx) – smφ(RTx) + smφ(RTx) – sm–φ
(
RTx

)
+ · · ·

+ sm–n+φ
(
RTnx

)
– sm–nφ

(
RTn+x

)

= smφ(Rx) – sm–nφ
(
RTn+x

)

≤ smφ(Rx). ()
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Thus,
∑∞

k= sm–k{qpb(Tkx, Tk+x)} is convergent.

⇒
∞∑

n=

sm–n{qpb
(
Tnx, Tn+x

)}
is convergent.

Taking the limit as n, m → ∞ in (), we get

lim
m,n→∞ qpb(xn, xm) = lim

m,n→∞
(
zm–(x) – zn–(x)

)
= . ()

Using similar arguments,

lim
m,n→∞ qpb(xm, xn) = . ()

Thus the sequence {xn} is Cauchy in (X, qpb). Since (X, qpb)is complete, (X, dqpb ) is also
complete by Lemma ., and hence limn→∞ dqpb (Tnx, z) = , limn→∞ Tnx = z.

Further, limn→∞ qpb(Tnx, Tn+x) =  and hence limn→∞ qpb(Tnx, Tn+x) = qpb(z, z) = .
(B) Assume that Tz = z and that xn is a sequence in O(x) with xn → z.
By Lemma .,

lim
n→∞ dqpb (z, xn) =  ⇔ qpb(z, z) = lim

n→∞ qpb(z, xn) = lim
n,m→∞ qpb(xn, xm). ()

Then G(z) = qpb(z, Tz) = qpb(z, z) ≤ limn→∞ inf qpb(xn, Txn) = limn→∞ inf G(xn).
Thus G is T-orbitally lower semi-continuous at x.
Conversely, suppose that xn = Tnx → z and that G is T-orbitally lower semi-continuous

at x. Then

 ≤ qpb(z, Tz) = G(z) ≤ lim
n→∞ inf G(xn) = lim

n→∞ inf qpb
(
Tnx, Tn+x

)

= lim
n→∞ inf qpb(xn, xn+) = qpb(z, z) = . ()

By Lemma ., we have Tz = z.
(C) We have, from (QPb) and (),

qpb
(
x, Tx

) ≤ s
{

qpb(x, Tx) + qpb
(
Tx, Tx

)}
– qpb(Tx, Tx)

≤ s
{

qpb(x, Tx) + qpb
(
Tx, Tx

)}
,

qpb
(
x, Tx

) ≤ s
{

qpb
(
x, Tx

)
+ qpb

(
Tx, Tx

)}
– qpb

(
Tx, Tx

)

≤ s
[
s
{

qpb(x, Tx) + qpb
(
Tx, Tx

)}
+ qpb

(
Tx, Tx

)]

≤ s{qpb(x, Tx) + qpb
(
Tx, Tx

)}
+ s

{
qpb

(
Tx, Tx

)}
.

On generalization, we get

qpb
(
x, Tnx

)

≤ sn–{qpb(x, Tx) + qpb
(
Tx, Tx

)}
+ sn–{qpb

(
Tx, Tx

)}
+ · · ·

+ s
{

qpb
(
Tn–x, Tnx

)}
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≤ sn–{qpb(x, Tx)
}

+ sn–{qpb
(
Tx, Tx

)}
+ sn–{qpb

(
Tx, Tx

)}
+ · · ·

+ s
{

qpb
(
Tn–x, Tnx

)}

≤ sn–{φ(Rx) – φ(RTx)
}

+ sn–{φ(RTx) – φ
(
RTx

)}

+ sn–{φ
(
RTx

)
– φ

(
RTx

)}
+ · · · + s

{
φ
(
RTn–x

)
– φ

(
RTnx

)}

≤ sn–φ(Rx) – sn–φ
(
RTx

)
+ sn–φ

(
RTx

)
– sn–φ

(
RTx

)
+ · · ·

+ sφ
(
RTn–x

)
– sφ

(
RTnx

)

≤ sn–φ(Rx) – sφ
(
RTx

)
– sφ

(
RTn–x

)
– sφ

(
RTnx

)

≤ sn–φ(Rx). ()

(D) From () we get

qpb(xn, xm) ≤
m–∑

k=n

sm–k{qpb
(
Tkx, Tk+x

)}
for m > n.

Note that

m–∑

k=n

sm–kqpb
(
Tkx, Tk+x

)

≤
m–∑

k=n

sm–k[φ
(
RTkx

)
– φ

(
RTk+x

)]

= sm–nφ
(
RTnx

)
– sm–nφ

(
RTn+x

)
+ sm–n–φ

(
RTn+x

)

– sm–n–φ
(
RTn+x

)
+ · · · + sφ

(
RTm–x

)
– sφ

(
RTmx

)

= sm–nφ
(
RTnx

)
– sφ

(
RTn+x

)
– sφ

(
RTm–x

)
– sφ

(
RTmx

)

≤ sm–nφ
(
RTnx

)
. ()

Here,  ≤ qpb(xn, xm) = qpb(Tnx, Tmx) ≤ sm–nφ(RTnx) for m > n. �

Example . Let X = Y = [, ]. Define qpb(x, y) = |x – y| + x. Then qpb is a quasi-partial
b-metric with s = . Also define T : X → X as T(x) = x

 ; R : X → Y as R(x) = x, and φ :
R(X) →R

+ as φ(x) = x. Then for c =  and x ∈ [, ] we have

max
{

qpb(y, Ty), cqpb(Ry, RTy)
}

= max

{
qpb

(
y,

y


)
, qpb(y, y)

}

= max

{∣∣
∣∣y –

y


∣∣
∣∣ + y, |y – y| + y

}

= max

{
y


, y
}

= y < y = φ(y) – φ(y)

= φ(Ry) – φ(RTy).

We now prove that (A), (B), (C), and (D) of the above theorem hold:
(A) limn→∞ Tnx = limn→∞ x

n =  = z (say).
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So limn→∞ Tnx = z exists.
(B) By (A) part above, z = .
Therefore T(z) = T() =  = z holds trivially.
Hence whenever G(x) = qpb(x, Tx) is T-orbitally lower semi-continuous at x then Tz = z.
Conversely, let Tz = z and we show that G is T-orbitally lower semi-continuous at x, i.e.,

G(z) ≤ lim inf G(xn) ∀{xn} ⊆ O(x), xn → z.

Let {xn} ⊆ O(x) be a sequence converging to z. Then

G(z) = qpb(z, Tz) = qpb(z, z) = z

=
z


(as z = ) = lim inf
xn



= lim inf
xn


+ xn = lim inf

∣
∣∣
∣xn –

xn



∣
∣∣
∣ + xn

= lim inf qpb

(
xn,

xn



)
= lim inf qpb(xn, Txn) = lim inf G(xn).

Hence G(z) = lim inf G(xn).

(C) qpb
(
x, Tnx

)
= qpb

(
x,

x
n

)
=

∣∣
∣∣x –

x
n

∣∣
∣∣ + x = x

(
 –


n

)
< x() ∀n ∈ N

= φ(x) = sn–φ(Rx) where s = .

(D) Let m > n then

qpb
(
Tnx, Tmx

)
= qpb

(
x
n ,

x
m

)
=

∣∣∣
∣

x
n –

x
m

∣∣∣
∣ +

x
n

=
x
n

[
 –


m–n

]
<

x
n () ∀n ∈ N

= φ

(
x

n–

)
= φ

(
Tnx

)
= sm–n[φ

(
RTnx

)]
where s = .

Corollary . Let (X, qpb) be a complete quasi-partial b-metric space. Let T : X → X and
φ : X →R

+. Suppose that there exists x ∈ X such that

qpb(y, Ty) ≤ φ(y) – φ(Ty) for all y ∈ O(x).

Then the following hold:
(A) limn→∞ Tnx = z exists.
(B) Tz = z if and only if G(x) = qpb(x, Tx) is T-orbitally lower semi-continuous at x.
(C) qpb(x, Tnx) ≤ sn–φ(x).
(D) For m > n, qpb(Tnx, Tmx) ≤ sm–nφ(Tnx).

Proof Take Y = X, R = I , and c =  in Theorem .. �
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Corollary . Let (X, qpb) be a complete quasi-partial b-metric space, and let  < k < .
Suppose that T : X → X and that there exists x ∈ X such that

qpb
(
Ty, Ty

) ≤ kqpb(y, Ty) for all y ∈ O(x). ()

Then the following hold:
(A) limn→∞ Tnx = z exists.
(B) Tz = z if and only if G(x) = qpb(x, Tx) is T-orbitally lower semi-continuous at x.
(C) qpb(x, Tnx) ≤ sn–

–k qpb(x, Tx).

Proof Set φ(y) = 
–k qpb(y, Ty) for y ∈ O(x).

Let y = Tnx in (). Then

qpb
(
Tn+x, Tn+x

) ≤ kqpb
(
Tnx, Tn+x

)

and

qpb
(
Tnx, Tn+x

)
– kqpb

(
Tnx, Tn+x

) ≤ qpb
(
Tnx, Tn+x

)
– qpb

(
Tn+x, Tn+x

)
.

Thus, qpb(Tnx, Tn+x) ≤ 
–k [qpb(Tnx, Tn+x) – qpb(Tn+x, Tn+x)] or qpb(y, Ty) ≤ [φ(y) –

φ(Ty)].
(A)-(C) follow immediately from Corollary .. �

Corollary . Let (X, qpb) be a complete quasi-partial b-metric space where qpb is con-
tinuous. Let T : X → X and φ : X →R

+ is continuous. Suppose that there exists x ∈ X such
that

qpb(y, Ty) ≤ φ(y) – φ(Ty) for all y ∈ O(x).

Then the following hold:
(A) limn→∞ Tnx = z exists.
(B) qp(z, z) ≤ sφ(z).

Proof In Theorem .(D) taking m = n + , R = I , c = , and Y = X,

qpb
(
Tnx, Tn+x

) ≤ s
[
φ
(
RTnx

)]
.

Now taking lim n → ∞

lim
n→∞ qpb

(
Tnx, Tn+x

) ≤ lim
n→∞ s

[
φ
(
Tnx

)]
,

qpb(z, z) ≤ sφ(z). �
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