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1 Introduction

A generalization of the metric space can be obtained as a partial-metric space by replacing
the condition d(x,x) = 0 with the condition d(x,x) < d(x, y) for all x, y in the definition of
the metric. In the year 1993, Czerwik [1] introduced the concept of a b-metric space as
another generalization of the concept of metric space. Several authors have focused on
fixed point theorems for a metric space, a partial-metric space, quasi-partial metric space
and a partial b-metric space. For further information on the subject see [2-16].

The concept of a quasi-partial-metric space was introduced by Karapinar et al. [17].
He studied some fixed point theorems on these spaces whereas Shatanawi and Pitea [18]
studied some coupled fixed point theorems on quasi-partial-metric spaces.

The aim of this paper is to introduce the concept of quasi-partial b-metric spaces which
is a generalization of the concept of quasi-partial-metric spaces. The fixed point results
are proved in setting of such spaces and some examples are given to verify the effectiveness
of the main results.

2 Preliminaries
We begin the section with some basic definitions and concepts.

Definition 2.1 ([17]) A quasi-partial metric on a non-empty set X is a function g : X x
X — R*, satisfying

(QPMy) If q(x,%) = q(x,y) = q(,y), then x = y.

(QPM2) q(x,%) < q(x,).

(QPM3) g(x,%x) < q(y,x).

(QPMy) q(x,y) + q(z,2) < q(x,2) + q(z,y) for all x,y,z € X.

A quasi-partial-metric space is a pair (X, q) such that X is a non-empty set and g is a
quasi-partial metric on X.
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Let g be a quasi-partial metric on the set X. Then

d,(x,9) = q(x,5) + g, %) — q(x,x) — q(y,) is a metric on X.

Lemma 2.1 ([17]) For a quasi-partial metric q on X,

1
Pex,y) = 3 [q(x,y) +4(, x)] forall x,y € X is a partial metric on X.

Lemmas 2.2 ([19-21])
(A) A sequence {x,} is Cauchy in a partial-metric space (X, p) if and only if {x,} is
Cauchy in the (corresponding) metric space (X, d,,).
(B) A partial-metric space (X, p) is complete if and only if the (corresponding) metric
space (X, d,,) is complete. Moreover,

lim d,(x,x,) =0 <& plx,x) = lim p(x,x,) = lim  p(x,,x).
n— 00 n— 00 n,m— 00

Lemma2.3 ([17]) Let (X, q) be a quasi-partial metric space, let (X, p;) be the corresponding
partial-metric space, and let (X, d,) be the corresponding metric space. Then the following
Statements are equivalent:

(A) The sequence {x,} is Cauchy in (X, q) and (X, q) is complete.

(B) The sequence {x,} is Cauchy in (X, p,) and (X, p,) is complete.

(C) The sequence {x,} is Cauchy in (X, dy,) and (X, dy,) is complete.
Also,

lim d,(x,%,) =0 &  pg(x,x) = lim p,(x,x,) = lim p,(x,,%,)

n— 00
& qlx) = lim g(x,x,) = Hm  g(x,,x,)
n— 00 n,m—00
= lim g(x,,x) = lim q(x,,x,).
n—00 n,m— 00
Definition 2.2 ([17]) If T : X — X is any map on X, O(x) = {x, Tx, T?x,...} is called the

orbit of x. A mapping G : X — R* is T-orbitally lower semi-continuous at x if {x,} is a
sequence in O(x) and limx,, = z implies G(z) < liminf G(x,,).

3 Quasi-partial b-metric space
We introduce the concept of quasi-partial b-metric space here.

Definition 3.1 A quasi-partial b-metric on a non-empty set X is a mapping gpp : X x X —
R* such that for some real number s > 1 and all x,y,z € X:

(QPby) gpp(x,x) = qps(x,y) = qpp(y,y) = x =y,
(QPby) gpp(x,x) < qpp(x,y),

(QPbs) gpp(x,x) < qpy(y,%),

(QPbs) qpy(x,y) < slqps(x,2) + qps(y,2)] — qps(z, 2).

A quasi-partial b-metric space is a pair (X,gpp) such that X is a non-empty set and
(X, gpp) is a quasi partial b-metric on X. The number s is called the coefficient of (X, gp;).
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For a quasi-partial b-metric space (X, gpy), the function dp, : X x X — R* defined by

Aap, (%, 9) = qpp(%,9) + qpp(y, %) — qpu(x, %) — gps(y, y) is a b-metric on X.

Example 3.1 Let X = [0,1].
Define gp;(x,y) = |x — y| + x. Here

apr(x,x) = qpp(x,y) = qpp(,y) = x=y asx=|x—y|+x=ygivesx=y.

Again, gpp(x,x) < qpp(x,y) as ¥ < |x — y| + x and similarly, gp,(x, x) < qpp(y,x) as x < |y —
x| +yfor0<x<y.

Also qpy(x,y) + qpi(2,2) < slqpp(x,2) + qps(2,y)] as
lx—yl+x+z<s[lx—zl+x+|z—y|+z] foralls>1.
It can be observed that
X—yl+x+z=|lx—z+z—y|+x+z<|x—z|+|z—y|+x+z.
So (X, gpp) is a quasi-partial b-metric space with s > 1.

Example 3.2 Let X = [1, 00).
Define gpp : X x X — R* as gpp(x,y) = In(xy). Then (X, gpp) is a quasi-partial b-metric
space.

Let gpp(x, x) = qpp(x,¥) = qps(y,y) = In(x*) = In(xy) = In(y?) = x = y.
Let x,y € X. Without loss of generality x <y = Inx <Ilny = 2Inx < Inx + Iny =
In(x?) <Inx +Iny.
Thus, gpp(x,x) < gpp(x,y).
Similarly gpy(x, %) < gpp(y,x).
For (QPby) we have
qpy(x,y) =Inx +Iny

<slnx+slny sinces>1andalso Inx>0and Iny>0

<slnx+slny+2Inz(s—1) since Inz>0ands-1>0

= s{qps(x,2) + qpi(2,9)} — qps (2, 2).

Example 3.3 Let X = [0, 7] and define gp;, : X x X — R* as

qpy(x,y) = sinx + siny.
Then (X, qpp) is a quasi-partial b-metric space.

Lemma 3.4 Let (X, qpy) be a quasi-partial b-metric space. Then the following hold.:
(A) If qpp(x,y) =0 then x = y.
(B) Ifx #y, then qpy(x,y) > 0 and qpp(y,x) > 0.



Gupta and Gautam Fixed Point Theory and Applications (2015) 2015:18 Page 4 of 12

The proof is similar to the case of quasi-partial-metric space [17].

Lemma 3.5 Every quasi-partial space is a quasi-partial b-metric space. But the converse
does not need to be true.

Definition 3.2 Let (X, gp;) be a quasi-partial b-metric. Then:
(i) A sequence {x,} C X converges to x € X if and only if

qapy(%, %) = lim gpy(x,%,) = lim gpy (%, %).
n—0o0 n—00
(i) A sequence {x,} C X is called a Cauchy sequence if and only if

lim gpy(x,,x,) and lim gpp(x,,,x,) exist (and are finite).

1,M—> 00 1,M—> 00

(iii) The quasi-partial b-metric space (X, gps) is said to be complete if every Cauchy
sequence {x,} C X converges with respect to 7, to a point x € X such that

qpp(x,x) = lim qpy Ky %) = lim qpsXus X))

(iv) A mapping f : X — X is said to be continuous at xo € X if, for every ¢ > 0, there
exists § > 0 such that f(B(xo,8)) C B(f (xo), &).

Lemma 3.6 Let (X, qpy) be a quasi-partial b-metric space and (X, d,p,) be the correspond-
ing b-metric space. Then (X, dp,) is complete if (X, qpy) is complete.

Proof Since (X, gpyp) is complete, every Cauchy sequence {x,} in X converges with respect
to 74, to a point x € X such that

qpy(x,x) = lim gpp(x,, %) = Hm gpp (X, %) 1)
n,m—00 n,m— 00

Consider a Cauchy sequence {x,} in (X, dg,, ). We will show that {x,} is Cauchy in (X, gpp).
Since {x,} is Cauchy in (X, dyp, ), limy, ;- oo dgp, (X4, %) exists and is finite.

Also, dgp,, (%, %) = qPbXn, %m) + qPLXim» %) — G X, Xn) = GPB (%) Xn)-

Clearly, limy, - 0o qPb (%1, %) and 1imy, s 00 gP5 (X, %) €xist and are finite.

Therefore, {x,} is a Cauchy sequence in (X, gp,). Now, since (X, gp) is complete, the
sequence {x,} converges with respect to 7,,,to a point x € X such that (1) holds.

For {x,} to be convergent in (X, d,,,) we will show that d,, (x,x) = lim,_, oo dgp, (%, X,,).

If follows from the definition of d,, that d,, (x,x) = 0. Also,

lim dgp, (x,%,) = im gpy(x,x,) + im gpy(x,,x) — Uim gpy(xs,x,) — lim gpp(x, x)
n— 00 n—o00 n— 00 n—0o0 n— 00
=0 by (1) and definition of convergence in (X, gpp).
Hence, dgp, (%, %) = lim,,_, o dgp, (%, %). O

In [17] Karapinar et al. proved a fixed point theorem on quasi-partial-metric space. Mo-
tivated by this, we have generalized the results on a quasi-partial b-metric space.
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4 The main results
Theorem 4.1 Let (X, qpy) be a quasi-partial b-metric space, and let T : X — X. Then the
following hold:

(A) There exists ¢ : X — R* such that

qpy(x, Tx) < ¢(x) — d(Tx) forallx € X ifand only if

o0
Z qpy(T"x, T"*'x) converges for all x € X.
n=0

(B) There exists ¢ : X — R* such that
qpy(x, Tx) < ¢(x) — ¢(Tx) forallx € O(x) if and only if

Z qpb( T"x, T"”x) converges for all x € O(x).
n=0

Proof (A) Letx € X, and let
qpp(x, Tx) < ¢(x) — ¢(Tx).
Define the sequence {x,}32, in the following way:

x0=x and x,q=Tx,=T""%, foralln=0,1,2,....

Set z,,(x) = Y 1o aPp Xk %x1) = D g0 aPs(T* %0, TF %) Then

n

2u(®) <D [B(T %0) — ¢ (T"*"%0) ]

k=0
= [¢(x0) = P(Txo)] +- - + [¢(T"0) — (T x0) ]
= [p(x0) — ¢(T""'x0)] < p(x0) = P (). )

Thus, (2) implies that {z,(x)} is bounded. Also {z,(x)} is non-decreasing and hence con-
vergent. Therefore, Y - gps(T"x, T""'x) converges.
Conversely, define

o n
¢@) => qps(T"x,T""'x) and z,(x) = Y _ qpy(T*x, T""'x).
n=0 =0
Then
i n
¢(Tx) = qub(T”+1x, Tn+2x) and  z,(Tx) = Z qpb(Tk+lx, Tk+2x).
n=0 k=0
Using these definitions, we get

n n
Zu(%) — 2,(Tx) = Z apy(TFx, T"'x) - Z apy (T, T x)
k=0 k=0

= qpy(x, Tx) — qpy (T %, T"x). 3)
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Since Y qps(T"x, T"x) converges for all x € X,

lim z,(x) = ¢(x) and lim qpb(T"x, T”*lx) =0.
Letting n — oo in (3) gives gpp(x, Tx) = ¢ (x) — $(Tx).
(B) It can easily be proved using part (A). d

Example 4.1 Let X = [0,1]. Define gpy(x,y) = |x — y| + |x].

Then gpy(x,y) satisfies all conditions of quasi-partial b-metric space. It is also quasi-
partial metric. But for x #y, gpy(x,) # qpu(y, x) and gpy(x, x) # 0 for x # 0. So gp;, is not a
partial metric or a quasi-metric. Define T': X — X as Tx = § for all x € X. Then the series

>0 qpe(T"x, T"1x) is convergent. Indeed,

oo oo
1 X X
qub(Tnx’ "« qub(?)n 3n+1> Z 3_ - 3n+1 3
n=0
o0 o0
2 5 5 1 5
B i A D A S )
3n+l 3n 3n+l 3 1- 1 2
n=0 n=0 3

Then the conditions of Theorem 4.1 are satisfied for ¢(x) = % Indeed

2x 5x
x—Z ‘? +|x|=?=¢(x)—¢(Tx).

+ x| =
3

X
qpi(x, Tx) = qpy (x §> =

The next result gives conditions for the existence of fixed points of operators on quasi-

partial b-metric space.

Theorem 4.2 Let (X, qpy) and (Y, qpy) be complete quasi-partial b-metric spaces. Let also
T:X—X,R:X— Y,and ¢ : R(X) —> R*. Ifthere exist x € X and c > 0 such that

max{qpy(y, Ty), cqps(Ry, RTy)} < ¢(Ry) — p(RTY) (4)

forally € O(x), then the following hold:
(A) lim,,_, o T"x = z exists.
(B) Tz =z if and only if G(x) = qpp(x, Tx) is T-orbitally lower semi-continuous at x.
Q) gpplx, T"x) < "' p(Rx).
(D) Form>n, qpp(T"x, T"x) < s""[¢(RT"x)].

Proof (A) Let x € X. Define the sequence {x,};°; as follows:
xo=x and x,1=Tx,=T""%, foralln=0,1,2,....

We will show that {x,}32; is Cauchy.
Using (QPby), we get

4Py % %ni2) < ${qPp(Fns Xni1) + G061 %n12) } — GPB K1, %1)

< s{app (o %1) + qPbEna1, %n42) | (5)
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and, similarly,

apb(Xns %ne3) < ${qPb %0 Xni2) + qPL K2 %n43) | — AP (Fne2s Xni2)

< s*{app (o Xni1) + qP6Kni1, %ni2) } + ${qPH (Ens2s %) |- (6)

Now,

aPbXns %nia) < S{qPp (s %ns3) + AP (Fns3: Xnra) } — GPB K3, %ne3)
= 53 {qph(xm xn+1) + qpb(xrﬁl: xn+2)} + Sz{qpb(xmz; xn+3)}

+ 5{qpp sz, %nsa) }.
On generalization, we get

m—n—l{

qpb(xn’xm) =S qpb(xm xn+1) + qpb(xn+1’xn+2)}

+ Sm_n_2{qpb(xn+2)xn+3)} LA S{qpb(xm—l’xm)}

< Sm—n—l {qpb (Tnx, Tn+1x) +qpp (TVH—lx, Tn+2x) }
+ sm_”_z{qpb(T"+2x, Tn+3x)} Foeeet S{qpb(Tm_lx, me)}

m-1

= Z s’"‘k{qpb(Tkx, Tk“x)} + 8" L gpy (% X))
1

=

=n

¥

=Y " Mapy(T %, T %)} + 5" gqpp (e, 2a1) — 87" qpp (K X1

3

>
=

—

3

1

=Y " Mapy(T %, T'%) } = s qpp (0 %11) |:1 - ;}

>
N

N
L

IA

Sm_k{qpb(Tkx, Tk”x)} for m > n. )

=n

>

Set z,(x) = X (o 8" {app(T x, T ).
From (4) we have

sm_k{qpb(Tkx, Tk”x)} < gk max{qpb(Tkx, Tk”x), cqpp (RTkx, RTk”x)}

<" M¢(RT x) — p(RT*"'x)} forallk=0,1,... (8)

= z(®) < Y " F{p(RT ) — ¢(RT ') }

k=0

<s"P(Rx) — " Pp(RTx) + s" p(RTx) — s"‘_1¢(RT2x) e
+ Sm—n+1¢ (RTnx) _ Sm—n¢ (RTrHIx)

=5"p(Rx) — " " (RT" %)

<s"¢(Rx). )
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= Zsm‘”{ qpy(T"x, T""'x)} is convergent.
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Taking the limit as #, m — oo in (7), we get
lim gpy(xn, %) = lim (Zm—l(x) - Zn—l(x)) =
m,n— 00 m,n— 00
Using similar arguments,

lim gpp(x,x,) =0
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(10)

(11)

Thus the sequence {x,} is Cauchy in (X, gpy). Since (X, gpy)is complete, (X, d,,,) is also

complete by Lemma 2.3, and hence lim,,_, oc dgp, (T"%,2) = 0, lim,_, oo T"x = z.

Further, lim,,_, o gpp(T"x, T"*'x) = 0 and hence lim,,_. .. gps(T"x, T"*'x) = qpy (2, 2) =

(B) Assume that 7z = z and that x,, is a sequence in O(x) with x,, — z.
By Lemma 3.6,

lim dg,, (z,%,) =0 & qpu(z,2) = lim gpp(z,x,) = Lim  qpy(x,, %m).
n—0o0 n,m— 00

n—00

Then G(Z) = qpb(z; TZ) = qpb(z; Z) =< hmn—>oo infqpb(xnr Txn) = hmn—)oo lnfG(xn)
Thus G is T-orbitally lower semi-continuous at x.

(12)

Conversely, suppose that x,, = T"x — z and that G is T-orbitally lower semi-continuous

at x. Then
0 < gps(z, Tz) = G(z) < lim inf G(x,) = lim infgqpy(T"x, T""x)
n— 00 n—0oQ
= n]ggo inf gpp(%, %n11) = qpi(z,2) = 0

By Lemma 3.4, we have Tz = z.
(C) We have, from (QPb,) and (4),

apy (%, T*x) < s{qps(x, Tx) + qpy(Tx, T?x)} - qpy(Tx, Tx)

A

s{qpp(x, Tx) + qpp(Tx, T?x)},

{
{

s{q b(x% T x) + qph(sz, T )} - qpb(sz, sz)
[s

IA

apy (%, Tx)

IA

s|s {qpb x, Tx) + qpb(Tx, T?x )} + qpb(sz, TSx)]

s*{apu(x, Tx) + qpy (Tx, T?x)} + s{qps (T%x, T?x)}.

| /\

On generalization, we get

apy (%, T"%)
<" Happ(x, Tx) + qpp(Tx, T?x) } + 5" {qps (T%x, T°x) } +

+s{qps (T" "%, T"x) }

(13)
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=5 Hapole T} + 5" Haps (T, T%) } + 5" {qpy(T°%, Tx) } + -
+s{qpy(T" ', T"x) }

<5 {p(Rx) - H(RTx)} + 5" {$(RTx) - $(RTx)}
+5"{P(RT%) - ¢(RTx)} + - + 5[ (RT""'x) - p (RT"x) }

<" 1P(RY) = 5" $(RT?) +5" ¢ (RT?x) = 5" (RT ) + -+
+5¢(RT""x) - s¢(RT"'x)

< " Lp(Rx) - s¢p(RTx) — sp (RT" ) — sp(RT"x)

<5"'¢(Rx). (14)

(D) From (7) we get

m-1

qpy(Fns Xm) < Zsm_k{qpb(Tkx, %)} for m>n.
k=n

Note that

m-1

Zsm—kqpb (Tkx, Tk+1x)
k=n

< ykismk [¢(RT*x) — ¢ (RT**'x)]

— Sm—nd)(RTnx) _ Sm—n¢(RTn+lx) + Sm—n—l¢(RTn+lx)
— "G (RT™ %) + -+ + s¢p (RT™x) — s¢p(RT""x)
= s"""cj)(RT"x) —s¢ (RT"+1x) —s¢ (RT'”_lx) —s¢ (RT’"x)
<s""$(RT"x). (15)
Here, 0 < qpp(xy, %) = qpp(T"x, T"x) < 8" " ¢(RT"x) for m > n. O
Example 4.2 Let X = Y = [0,1]. Define gp;(x,y) = |x — y| + x. Then gp,, is a quasi-partial

b-metric with s = 1. Also define T: X — X as T(x) = 3; R: X — Y as R(x) = 3x, and ¢ :
R(X) — R* as ¢(x) = 3x. Then for ¢ =1 and x € [0, 1] we have

max{qp,(y, T9), cqpy(Ry, RTy)} = max{ gp;, (y, %) qps(3y,y) }

y
= max ‘y—g + 9,13y =y +3y}

5
= max %,5}1} =5y <6y =¢3y) - ¢(y)

= ¢(Ry) — ¢(RTy).

We now prove that (A), (B), (C), and (D) of the above theorem hold:
(A) lim, o0 T"x = lim,,, o 37 = 0 = z (say).
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So lim,,_, oo T"x = z exists.

(B) By (A) part above, z = 0.

Therefore T'(z) = T(0) = 0 = z holds trivially.

Hence whenever G(x) = gp,(x, Tx) is T-orbitally lower semi-continuous at x then 7z = z.

Conversely, let Tz = z and we show that G is T-orbitally lower semi-continuous at x, i.e.,
G(z) <liminfG(x,) V{x,} C Ox),x, — z.
Let {x,} € O(x) be a sequence converging to z. Then

G(2) = qpi(z, T2) = qpp(2,2) = z

5 5
= 2% (as z= 0) = liminf 22"
3 3

2% X
= hmlnf?" + X, = liminf Xy — En + X,

=liminfgpy (x,,, %) = liminf gpy(x,,, Tx,) = liminf G(x,,).

Hence G(z) = liminf G(x,,).

X
X - —

3Vl
=¢(3x) = " 1p(Rx) wheres=1.

X 1
(C) gps(x, T"x) =qpb<x,§) = +x:x<2—§> <x(9) VneN

(D) Let m > n then

Corollary 4.3 Let (X, qpy) be a complete quasi-partial b-metric space. Let T : X — X and
¢ : X — R*. Suppose that there exists x € X such that

apy(, Ty) < ¢(y) — ¢(Ty)  for all y € O(x).

Then the following hold:
(A) lim,,_, o T"x = z exists.
(B) Tz =z if and only if G(x) = qps(x, Tx) is T-orbitally lower semi-continuous at x.
Q) gpplx, T"x) < 5" ¢(x).
(D) Form>n, qpp(T"x, T"x) < s""¢(T"x).

Proof Take Y =X, R=1,and c =1 in Theorem 4.2. O
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Corollary 4.4 Let (X,qpy) be a complete quasi-partial b-metric space, and let 0 < k < 1.
Suppose that T : X — X and that there exists x € X such that

aps(Ty, T?) < kqpy(y, Ty)  for all y € O(x). (16)

Then the following hold:
(A) lim,,_ 0 T"x = z exists.
(B) Tz =z if and only if G(x) = qps(x, Tx) is T-orbitally lower semi-continuous at x.
(C) aqpyls, T"x) < S qpy(x, Ta).

Proof Set ¢(y) = ﬁqpb(y, Ty) for y € O(x).
Let y = T"x in (16). Then

qpb (Tn+1x’ Tn+2x) < kqpb(T”x, Tn+1x)
and
qpb(T”x, T"*lx) — kqpy ( T"x, T”*lx) <qpp ( T"x, T"*lx) - qpb(T"+1x, T”*zx).
Thus, gpy(T"x, T"*'x) < 1 [qps(T"x, T"*'x) — qpp(T" %, T"2x)] or qps(y, Ty) < [$(y) -
o(1y)].
(A)-(C) follow immediately from Corollary 4.3. O
Corollary 4.5 Let (X,qpp) be a complete quasi-partial b-metric space where qpy, is con-

tinuous. Let T : X — X and ¢ : X — R* is continuous. Suppose that there exists x € X such
that

qpe(y, Ty) < ¢(y) — ¢(Ty) forall y € O(x).

Then the following hold.:
(A) lim,,_, o T"x = z exists.
(B) qp(z,2) < s¢(2).

Proof In Theorem 4.2(D) takingm=n+1,R=1,c=1,and Y = X,
aps(T"x, T"'x) < s[¢(RT"x)].

Now taking limn — oo
nli)rgo qph(T”x, T”*lx) < lim s[¢(T”x)],

n—00

qpy(z,2) < sp(2). 0
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