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Abstract
In this paper, a class of Nicholson-type delay systems with impulsive effects is
considered. First, an equivalence relation between the solution (or positive periodic
solution) of a Nicholson-type delay system with impulsive effects and that of the
corresponding Nicholson-type delay system without impulsive effects is established.
Then, by applying the cone fixed point theorem, some criteria are established for the
existence and uniqueness of positive periodic solutions of the given systems. Finally,
an example and its simulation are provided to illustrate the main results. Our results
extend and improve greatly some earlier works reported in the literature.
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1 Introduction
To describe the population of the Australian sheep-blowfly and to agree with the experi-
mental data obtained in [], Gurney et al. [] proposed the following Nicholson blowflies
model:

N ′(t) = –δN(t) + PN(t – τ )e–aN(t–τ ), (.)

where N(t) is the size of the population at time t, P is the maximum per capita daily egg
production, 

a is the size at which the population reproduces at its maximum rate, δ is
the per capita daily adult death rate, and τ is the generation time. Nicholson’s blowflies
model and many generalized Nicholson’s blowflies models have attracted more attention
because of their extensively realistic significance; see [–]. Recently, in order to describe
the models of marine protected areas and B-cell chronic lymphocytic leukemia dynamics,
which are examples of Nicholson-type delay differential systems, Berezansky et al. [],
Wang et al. [], and Liu [] studied the following Nicholson-type delay systems:

{
N ′

(t) = –α(t)N(t) + β(t)N(t) +
∑m

j= cj(t)N(t – τj(t))e–γj(t)N(t–τj(t)),
N ′

(t) = –α(t)N(t) + β(t)N(t) +
∑m

j= cj(t)N(t – τj(t))e–γj(t)N(t–τj(t)),
(.)

where αi(t),βi(t), cij(t),γij(t), τij(t) ∈ C(R, (,∞)), i = , , j = , , . . . , m. For constant coeffi-
cients and delays, Berezansky et al. [] presented several results for the permanence and
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globally asymptotic stability of system (.). Supposing that αi(t), βi(t), cij(t), γij(t), and
τij(t) are almost periodic functions, Wang et al. [] obtained some criteria to ensure that
the solutions of system (.) converge locally exponentially to a positive almost periodic
solution. Furthermore, Liu [] established some criteria for the existence and uniqueness
of a positive periodic solution of system (.) by applying the method of the Lyapunov
function.

However, species living in certain medium might undergo abrupt change of state at cer-
tain moments, and this occurs due to some seasonal effects such as weather change, food
supply, and mating habits. That is to say, besides delays, impulsive effects likewise exist
widely in many evolution processes. In the last two decades, the theory of impulsive dif-
ferential equations has been extensively investigated due to its widespread applications
[–].

Therefore, it is more realistic to investigate Nicholson-type delay systems with impul-
sive effects. However, to the best of our knowledge, few authors [] have considered the
conditions for existence and uniqueness of positive periodic solution for system (.) with
impulsive effects. Thus, techniques and methods on the existence and uniqueness of a
positive periodic solution for system (.) with impulsive effects should be developed and
explored.

In this paper, we consider the following class of Nicholson-type delay systems with im-
pulsive effects:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′
(t) = –α(t)y(t) + β(t)y(t) +

∑m
j= cj(t)y(t – τj(t))e–γj(t)y(t–τj(t)),

y′
(t) = –α(t)y(t) + β(t)y(t) +

∑m
j= cj(t)y(t – τj(t))e–γj(t)y(t–τj(t)),

t ≥ t > , t �= tk ,
yi(t+

k ) = ( + bk)yi(tk), t ≥ t, t = tki = , , k = , , . . . ,

(.)

where αi(t),βi(t), cij(t),γij(t), τij(t) ∈ C([,∞), (,∞)), i = , , j = , , . . . , m. �yi(tk) =
yi(t+

k ) – yi(t–
k ) are the impulses at moments tk .

In Equation (.), we shall use the following hypotheses:

(H)  < t < t < t < · · · , ti, i = , , . . . are fixed impulsive points with limk→∞ tk = ∞;
(H) {bk} is a real sequence, and bk > –, k = , , . . . ;
(H) αi(t), βi(t), cij(t), γij(t), τij(t), and

∏
<tk <t( + bk) are periodic functions with common

period ω > , i = , , j = , , . . . , m, k = , , . . . .

Here and in the sequel, we assume that a product equals unit if the number of factors is
equal to zero.

Let τ = max{τ+
ij }, τ+

ij = max≤t≤ω τij(t), i = , , j = , , . . . , m. If yi(t) is defined on [t –τ ,σ ]
with t,σ ∈ R, then we define yt ∈ C([–τ , ], R) as yt = (y

t , y
t ) where yi

t(θ ) = yi(t + θ ) for
θ ∈ [–τ , ] and i = , .

Due to the biological interpretation of system (.), only positive solutions are meaning-
ful and admissible. Thus, we shall only consider the admissible initial conditions:

yit (s) = ϕi(s), s ∈ [–τ , ], (.)

where ϕi(s) ∈ C([–τ , ], (,∞)). We write y(t) = yt(t,ϕ) for a solution of the initial value
problems (.) and (.).
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The remaining parts of this paper is organized as follows. In Section , we introduce
some notation, definitions, and lemmas. In Section , we first establish the equivalence
between the solution (or positive periodic solution) of a Nicholson-type delay system with
impulses and that of the corresponding Nicholson-type delay system without impulses.
Then, we give some criteria ensuring the existence and uniqueness of positive periodic
solutions of Nicholson-type delay systems with and without impulses. In Section , an
example and its simulation are provided to illustrate our results obtained in the previous
sections. Finally, some conclusions are drawn in Section .

2 Preliminaries
For convenience, in the following discussion, we always use the notation

g– = min
≤t≤ω

g(t), g+ = max
≤t≤ω

g(t),

where g is a continuous ω-periodic function defined on R.

Definition . A function y(t) = (y(t), y(t))T defined on [t –τ ,∞) is said to be a solution
of Equation (.) with initial condition (.) if

(i) y(t) is absolutely continuous on the intervals (t, t] and (tk , tk+], k = , , . . . ;
(ii) for all tk , k = , , . . . , y(t+

k ) and y(t–
k ) exist, and y(t–

k ) = y(tk);
(iii) y(t) satisfies the differential equation of (.) in [t,∞)\{tk} and the impulsive

conditions for all t = tk , k = , , . . . ;
(iv) yit (s) = ϕi(s), s ∈ [–τ , ].

Under hypotheses (H)-(H), we consider the following Nicholson-type delay systems
without impulsive effects:

⎧⎪⎨
⎪⎩

x′
(t) = –α(t)x(t) + β(t)x(t) +

∑m
j= pj(t)x(t – τj(t))e–qj(t)x(t–τj(t)),

x′
(t) = –α(t)x(t) + β(t)x(t) +

∑m
j= pj(t)x(t – τj(t))e–qj(t)x(t–τj(t)),

t ≥ t > ,
(.)

with initial conditions

xit (s) = ϕi(s) for s ∈ [–τ , ],ϕ ∈ C
(
[–τ , ], (,∞)

)
, (.)

where

pij(t) =
∏

t–τij(t)≤tk <t

( + bk)–cij(t) and qij(t) =
∏

<tk <t–τij(t)

( + bk)γij(t),

i = , , j = , , . . . , m.
By a solution x(t) of Equation (.) with initial condition (.) we mean an absolutely

continuous function x(t) = (x(t), x(t))T defined on [t,∞) satisfying Equation (.) for
t ≥ t and initial condition (.) on [–τ , ].

Similarly to the method of [], we have the following:

Lemma . Assume that (H)-(H) hold. Then
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(i) if x(t) = (x(t), x(t))T is a solution (or positive ω-periodic solution) of Equation (.)
with initial condition (.), then y(t) = (

∏
<tk <t( + bk)x(t),

∏
<tk <t( + bk)x(t))T is a so-

lution (or positive ω-periodic solution) of Equation (.) with initial condition (.) on
[–τ ,∞);

(ii) if y(t) = (y(t), y(t))T is a solution (or positive ω-periodic solution) of Equation (.)
with initial condition (.), then x(t) = (

∏
<tk <t( + bk)–y(t),

∏
<tk <t( + bk)–y(t))T is a

solution (or positive ω-periodic solution) of Equation (.) with initial condition (.) on
[–τ ,∞).

Proof (i) If x(t) = (x(t), x(t))T is a solution (or positive ω-periodic solution) of Equation
(.) on [t,∞), then it is easy to see that y(t) is absolutely continuous on all intervals (t, t]
and (tk , tk+], k = , , . . . , and for any t �= tk ,

y′
(t) + α(t)y(t) – β(t)y(t) –

m∑
j=

cj(t)y
(
t – τj(t)

)
e–γj(t)y(t–τj(t))

=
∏

<tk <t

( + bk)x′
(t) + α(t)

∏
<tk <t

( + bk)x(t) – β(t)
∏

<tk<t

( + bk)x(t)

–
m∑
j=

cj(t)
∏

<tk <t–τj(t)

( + bk)x
(
t – τj(t)

)
e–γj(t)

∏
<tk <t–τj(t)(+bk )x(t–τj(t))

=
∏

<tk <t

( + bk)

[
x′

(t) + α(t)x(t) – β(t)x(t)

–
m∑
j=

cj(t)
∏

t–τj(t)≤tk <t

( + bk)–x
(
t – τj(t)

)
e–γj(t)

∏
<tk <t–τj(t)(+bk )x(t–τj(t))

]

=
∏

<tk <t

( + bk)

[
x′

(t) + α(t)x(t) – β(t)x(t)

–
m∑
j=

pj(t)x
(
t – τj(t)

)
e–qj(t)x(t–τj(t))

]

= . (.)

Similarly, we have

y′
(t) + α(t)y(t) – β(t)y(t) –

m∑
j=

cj(t)y
(
t – τj(t)

)
e–γj(t)y(t–τj(t)) = . (.)

On the other hand, for every t = tk , k = , , . . . , and tk situated in [,∞),

yi
(
t+
k
)

= lim
t→t+

k

∏
<tj<t

( + bj)xi(t) =
∏

<tj≤tk

( + bj)xi(tk), i = , ,

and

yi(tk) =
∏

<tj<tk

( + bj)xi(tk), i = , .
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Thus, for every t = tk , k = , , . . . ,

yi
(
t+
k
)

= ( + bk)yi(tk), i = , . (.)

Therefore, we arrive at the conclusion that y(t) is the solution (or positive ω-periodic
solution) of Equation (.) with initial condition (.). In fact, if x(t) is the solution (or
positive ω-periodic solution) of Equation (.) with initial condition (.), then yi(t) =∏

<tk <t( + bk)xi(t) = xi(t) = ϕi(t) on [–τ , ], i = , .
(ii) Since y(t) = (y(t), y(t))T is a solution (or positive ω-periodic solution) of Equation

(.) with initial condition (.), it follows that y(t) is absolutely continuous on all intervals
(t, t] and (tk , tk+], k = , , . . . . Therefore, xi(t) =

∏
<tk <t( + bk)–yi(t) is absolutely con-

tinuous on all intervals (t, t] and (tk , tk+], k = , , . . . . Moreover, it follows that, for any
t = tk , k = , , . . . ,

xi
(
t+
k
)

= lim
t→t+

k

∏
<tj<t

( + bj)–yi(t)

=
∏

<tj≤tk

( + bj)–yi
(
t+
k
)

=
∏

<tj<tk

( + bj)–yi(tk) = xi(tk) (.)

and

xi
(
t–
k
)

= lim
t→t–

k

∏
<tj<t

( + bj)–yi(t)

=
∏

<tj<tk

( + bj)–yi
(
t–
k
)

=
∏

<tj<tk

( + bj)–yi(tk) = xi(tk), i = , , (.)

which implies that x(t) is continuous and easy to prove absolutely continuous on [,∞).
Now, similarly to the proof in case (i), we can easily check that x(t) =

∏
<tk <t( + bk)–y(t)

is a solution (or positive ω-periodic solution) of Equation (.) with initial condition (.)
on [–τ ,∞].

From the above analysis we know that the conclusion of Lemma . is true. This com-
pletes the proof. �

Lemma . Suppose that

(H) β+
 β+


α–

 α–


< .

Then every solution x(t) of Equation (.) with (.) and every solution y(t) of Equation
(.) with (.) are positive and bounded on [t,∞).

Proof Clearly, by Lemma ., we only need to prove that every solution x(t) of Equation
(.) with (.) is positive and bounded on [t,∞). In order to show that, we only need to
see Lemma . in [].

Furthermore, from the proof of Lemma . in [] we also obtain the following conclu-
sions: Under the condition (H), for every solution x(t) = (x(t), x(t))T of Equation (.)
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with (.), when t > t,

max
t≤s≤t

x(s) ≤
(

 –
β+

 β+


α–
 α–



)–

×
[
ϕ() +

m∑
j=

p+
j

α–
 q–

je
+

β+


α–


(
ϕ() +

m∑
j=

p+
j

α–
 q–

je

)]
� b (.)

and

max
t≤s≤t

x(s) ≤
(

 –
β+

 β+


α–
 α–



)–

×
[
ϕ() +

m∑
j=

p+
j

α–
 q–

je
+

β+


α–


(
ϕ() +

m∑
j=

p+
j

α–
 q–

je

)]
� b. (.)

�

Lemma . (Cone fixed point theorem []) Suppose that �, � are open bounded sub-
sets in Banach space X, and θ ∈ �, � ⊂ �. Let P be a cone in X, and T : P∩(� \�) → P
be a completely continuous operator. If

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂� and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂�, or
(ii) ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂� and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂�,

then the operator T has at least one fixed point in P ∩ (� \ �).

3 Existence and uniqueness of positive periodic solution
For ease of exposition, throughout this paper, we adopt the following notation:

|xi|∞ = max
≤t≤ω

∣∣xi(t)
∣∣, x(t) =

(
x(t), x(t)

)T , i = , .

We denote by X the set of all continuously ω-periodic functions x(t) defined on R, i.e.,
X = {x(t)|x(t) = (x(t), x(t))T ∈ C(R, R), x(t + ω) = x(t)}, and denote

‖x‖ = max
{|x|∞, |x|∞

}
.

Then, X endowed with the norm ‖x‖ is a Banach space. Let P be the cone of X defined by
P = {x(t) ∈ X|x(t) ≥ , t ∈ [t, t + ω]}.

Define the operator T by

(Tx)(t) =

( ∫ t+ω

t G(t, s)[β(s)x(s) +
∑m

j= pj(s)x(s – τj(s))e–qj(s)x(s–τj(s))] ds∫ t+ω

t G(t, s)[β(s)x(s) +
∑m

j= pj(s)x(s – τj(s))e–qj(s)x(s–τj(s))] ds

)
, (.)

where

G(t, s) =
e
∫ s

t α(u) du

e
∫ ω

 α(u) du – 
, G(t, s) =

e
∫ s

t α(u) du

e
∫ ω

 α(u) du – 
, s ∈ [t, t + ω].

It is easy to check that Equation (.) has positive ω-periodic solution if and only if the
operator T has a fixed point in P = {x(t) ∈ X|x(t) > , t ∈ [t, t + ω]}. In addition, we have
 < Ni � 

e
∫ ω
 αi(u) du–

= Gi(t, t) ≤ Gi(t, s) ≤ Gi(t, t + ω) = e
∫ ω
 αi(u) du

e
∫ ω
 αi(u) du–

� Mi, i = , .

Lemma . Assume that (H)-(H) hold. Then T : P → P is completely continuous.
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Proof First, we prove T : P → P. From (H) we know that αi(t), i = , , are continuous
ω-periodic functions. Further, we find

Gi(t + ω, s + ω) = Gi(t, s), s ∈ [t, t + ω]. (.)

In view of (H), (.), (.), and the definition of P, for any x ∈ P and t ∈ R, we have

(Tx)(t + ω) =
∫ t+ω

t+ω

G(t + ω, s)

[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

=
∫ t+ω

t
G(t + ω, u + ω)

[
β(u + ω)x(u + ω)

+
m∑
j=

pj(u + ω)x
(
u + ω – τj(u + ω)

)
e–qj(u+ω)x(u+ω–τj(u+ω))

]
du

=
∫ t+ω

t
G(t, u)

[
β(u)x(u) +

m∑
j=

pj(u)x
(
u – τj(u)

)
e–qj(u)x(u–τj(u))

]
du

= (Tx)(t).

Similarly, we have

(Tx)(t + ω) = (Tx)(t).

In addition, it is clear that Tx ∈ C(R, R) and (Tx)(t) ≥  for any x ∈ P, t ∈ R. Hence, Tx ∈ P
for any x ∈ P. Thus, T : P → P.

Second, we show that T : P → P is completely continuous. Obviously, T : P → P is con-
tinuous. Since supu≥ ue–u = 

e , by (.) and (.), for any x ∈ P and t ∈ [t, t + ω], we have

(Tx)(t) =
∫ t+ω

t
G(t, s)

[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≤ M

∫ ω



[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≤ Mω

[
β+

 b +
m∑
j=

p+
j

q–
je

]
� B (.)

and

(Tx)(t) =
∫ t+ω

t
G(t, s)

[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≤ M

∫ ω



[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≤ Mω

[
β+

 b +
m∑
j=

p+
j

q–
je

]
� B. (.)
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Moreover,

∣∣(Tx)′(t)
∣∣ =

∣∣∣∣∣G(t, t + ω)

[
β(t + ω)x(t + ω) +

m∑
j=

pj(t + ω)x
(
t + ω – τj(t + ω)

)

× e–qj(t+ω)x(t+ω–τj(t+ω))

]

– G(t, t)

[
β(t)x(t) +

m∑
j=

pj(t)x
(
t – τj(t)

)
e–qj(t)x(t–τj(t))

]

– α(t)
∫ t+ω

t
G(t, s)

[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

∣∣∣∣∣
=

∣∣∣∣∣–α(t)(Ax)(t) +

[
β(t)x(t) +

m∑
j=

pj(t)x
(
t – τj(t)

)
e–qj(t)x(t–τj(t))

]∣∣∣∣∣
≤α+

 B + β+
 b +

m∑
j=

p+
j

q–
je

. (.)

Similarly, we have

∣∣(Tx)′(t)
∣∣ ≤ α+

 B + β+
 b +

m∑
j=

p+
j

q–
je

. (.)

In view of (.)-(.), {Tx : x ∈ P} is a family of uniformly bounded and equicontinuous
functions on [t, t + ω]. By the Ascoli-Arzela theorem, T : P → P is compact. Therefore,
T : P → P is completely continuous. The proof of Lemma . is complete. �

Theorem . Assume that (H)-(H) hold. Then Equation (.) with (.) has at least one
positive ω-periodic solution.

Proof By (.) and (.), for any x ∈ P and t > t, we have

(Tx)(t) ≤ B and (Tx)(t) ≤ B.

Therefore,

‖Tx‖ ≤ max{B, B} � B > . (.)

For any x ∈ P and t > t, we have

(Tx)(t) =
∫ t+ω

t
G(t, s)

[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≥ N

∫ ω



[
β(s)x(s) +

m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds. (.)

Let τ– = minj=,,...,m{τ–
j , τ–

j}. There are two possible cases to consider.
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Case . τ– ≥ ω. In view of (.), we have

(Tx)(t) ≥ N

∫ ω



[ m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≥ Nω

m∑
j=

p–
jϕ

–
 e–q+

jϕ
+
 � A > ,

where ϕ–
 = min–τ≤s≤ ϕ(t), ϕ+

 = max–τ≤s≤ ϕ(t).
Case . τ– < ω. In view of (.), we have

(Tx)(t) ≥ N

∫ τ–



[ m∑
j=

pj(s)x
(
s – τj(s)

)
e–qj(s)x(s–τj(s))

]
ds

≥ Nτ
–

m∑
j=

p–
jϕ

–
 e–q+

jϕ
+
 � A > .

Therefore,

(Tx)(t) ≥ min{A, A}� A > .

Similarly, we have

(Tx)(t) ≥ min{A, A}� A > ,

where A = Nω
∑m

j= p–
jϕ

–
 e–q+

jϕ
+
 , A = Nτ

– ∑m
j= p–

jϕ
–
 e–q+

jϕ
+
 , ϕ–

 = min–τ≤s≤ ϕ(t),
ϕ+

 = max–τ≤s≤ ϕ(t).
Then, for any x ∈ P and t > t,

‖Tx‖ ≥ min{A, A} � A > . (.)

Let

� =
{

x ∈ X : ‖x‖ < A
}

and

� =
{

x ∈ X : ‖x‖ < B
}

.

Clearly, � and � are open bounded subsets in X, and θ ∈ X, � ⊂ �. By Lemma .,
T : P ∩ (� \ �) → P is completely continuous.

If x ∈ P ∩ ∂�, which implies that ‖x‖ = B, then from (.) we have ‖Tx‖ ≤ B, and hence
‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂�.

If x ∈ P ∩ ∂�, which implies that ‖x‖ = A, then from (.) we have ‖Tx‖ ≥ A, and hence
‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂�.

By Lemma . the operator T has at least one fixed point in P ∩ (� \ �), i.e., Equation
(.) with (.) has at least one ω-periodic solution. Since θ∈P ∩ (� \ �), Equation (.)
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with (.) has at least one positive ω-periodic solution. Therefore, Equation (.) with (.)
has at least one positive ω-periodic solution by Lemma .. This completes the proof of
Theorem .. �

Theorem . Let (H)-(H) hold. Suppose further that the following condition holds:

(H) α–
i – β+

i –
∑m

j= p+
ij > , i = , .

Then Equation (.) with (.) has a unique positive ω-periodic solution.

Proof By Theorem . we know that Equation (.) with (.) has at least one positive ω-
periodic solution. Thus, in order to prove Theorem ., we only need to prove the unique-
ness of a positive ω-periodic solution for Equation (.) with (.).

The following proof is similar to that of Theorem . in [].
Assume that x(t) and x̃(t) are two positive ω-periodic solutions of Equation (.). Set

zi(t) = xi(t) – x̃i(t), where t ∈ [t – τ ,∞), i = , . Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z′
(t) = –α(t)z(t) + β(t)z(t) +

∑m
j= pj(t)[x(t – τj(t))e–qj(t)x(t–τj(t))

– x̃(t – τj(t))e–qj(t)̃x(t–τj(t))],
z′

(t) = –α(t)z(t) + β(t)z(t) +
∑m

j= pj(t)[x(t – τj(t))e–qj(t)x(t–τj(t))

– x̃(t – τj(t))e–qj(t)̃x(t–τj(t))], t ≥ t > .

(.)

Set

i(u) = –
(
α–

i – u
)

+ β+
i +

m∑
j=

p+
ije

uτ+
i , u ∈ [, ], τ+

i = max
≤j≤m

τ+
ij , i = , .

Clearly, i(u), i = , , are continuous functions on [, ]. From (H) we have

i() = –α–
i + β+

i +
m∑
j=

p+
ij < , i = , .

Hence, we can choose two constants η >  and  < λ ≤  such that

i(λ) =
(
λ – α–

i
)

+ β+
i +

m∑
j=

p+
ije

λτ+
i < –η < , i = , . (.)

Consider the Lyapunov functions

V(t) =
∣∣z(t)

∣∣eλt , V(t) =
∣∣z(t)

∣∣eλt .

Calculating the upper right derivative of Vi(t) (i = , ) along the solution z(t) of (.), we
obtain

D+(
V(t)

) ≤
[(

λ – α(t)
)∣∣z(t)

∣∣ + β(t)
∣∣z(t)

∣∣ +
m∑
j=

pj(t)
∣∣x

(
t – τj(t)

)
e–qj(t)x(t–τj(t))

– x̃
(
t – τj(t)

)
e–qj(t)̃x(t–τj(t))∣∣]eλt for all t ≥ t, (.)
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and

D+(
V(t)

) ≤
[(

λ – α(t)
)∣∣z(t)

∣∣ + β(t)
∣∣z(t)

∣∣ +
m∑
j=

pj(t)
∣∣x

(
t – τj(t)

)
e–qj(t)x(t–τj(t))

– x̃
(
t – τj(t)

)
e–qj(t)̃x(t–τj(t))∣∣]eλt for all t ≥ t. (.)

We claim that there is M >  such that

Vi(t) =
∣∣zi(t)

∣∣eλt ≤ M for all t > t, i = , . (.)

Otherwise, one of the following cases must occur.
Case . There exists T > t such that

V(T) = M and Vi(t) < M for all t ∈ [t – τ , T], i = , . (.)

Case . There exists T > t such that

V(T) = M and Vi(t) < M for all t ∈ [t – τ , T], i = , . (.)

We will need the inequality

∣∣xe–x – ye–y∣∣ ≤ |x – y| for x, y ∈ [, +∞). (.)

Indeed, by the mean value theorem we have

∣∣xe–x – ye–y∣∣ =
∣∣∣∣ – ξ

eξ

∣∣∣∣ · |x – y|, where ξ is between x and y.

For ξ > , we have | –ξ

eξ | = ξ–
eξ ≤ 

e < , and for  ≤ ξ ≤ , we have | –ξ

eξ | = –ξ

eξ ≤ . Therefore,
inequality (.) holds.

In case , in view of (.) and inequality (.), (.) implies that

 ≤ D+(
V(T) – M

) ≤
[(

λ – α(T)
)∣∣z(T)

∣∣ + β(T)
∣∣z(T)

∣∣

+
m∑
j=

pj(T)
∣∣x

(
T – τj(T)

)
e–qj(T)x(T–τj(T))

– x̃
(
T – τj(T)

)
e–qj(T)̃x(T–τj(T))∣∣]eλT

=

[(
λ – α(T)

)∣∣z(T)
∣∣ + β(T)

∣∣z(T)
∣∣ +

m∑
j=

pj(T)
qj(T)

× ∣∣qj(T)x
(
T – τj(T)

)
e–qj(T)x(T–τj(T))

– qj(T)̃x
(
T – τj(T)

)
e–qj(T)̃x(T–τj(T))∣∣]eλT
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≤ (
λ – α(T)

)∣∣z(T)
∣∣eλT + β(T)

∣∣z(T)
∣∣eλT

+
m∑
j=

pj(T)
∣∣z

(
T – τj(T)

)∣∣eλ(T–τj(T))eλτj(T)

≤
[(

λ – α–

)

+ β+
 +

m∑
j=

p+
je

λτ+


]
M.

Thus,

(
λ – α–


)

+ β+
 +

m∑
j=

p+
je

λτ+
 ≥ ,

which contradicts (.). Hence, (.) holds.
In case , in view of (.) and (.), (.) yields that

 ≤ D+(
V(T) – M

) ≤
[(

λ – α(T)
)∣∣z(T)

∣∣ + β(T)
∣∣z(T)

∣∣

+
m∑
j=

pj(T)
∣∣x

(
T – τj(T)

)
e–qj(T)x(T–τj(T))

– x̃
(
T – τj(T)

)
e–qj(T)̃x(T–τj(T))∣∣]eλT

=

[(
λ – α(T)

)∣∣z(T)
∣∣ + β(T)

∣∣z(T)
∣∣ +

m∑
j=

pj(T)
qj(T)

× ∣∣qj(T)x
(
T – τj(T)

)
e–qj(T)x(T–τj(T))

– qj(T)̃x
(
T – τj(T)

)
e–qj(T)̃x(T–τj(T))∣∣]eλT

≤ (
λ – α(T)

)∣∣z(T)
∣∣eλT + β(T)

∣∣z(T)
∣∣eλT

+
m∑
j=

pj(T)
∣∣z

(
T – τj(T)

)∣∣eλ(T–τj(T))eλτj(T)

≤
[(

λ – α–

)

+ β+
 +

m∑
j=

p+
je

λτ+


]
M.

Thus,

(
λ – α–


)

+ β+
 +

m∑
j=

p+
je

λτ+
 ≥ ,

which contradicts (.). Hence, (.) holds. It follows that

∣∣zi(t)
∣∣ < Me–λt for all t > t, i = , . (.)
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In view of (.) and the periodicity of z(t), we have

zi(t) = xi(t) – x̃i(t) =  for all t ∈ [t – τ ,∞), i = , .

This completes the proof. �

Remark . In Theorems . and ., the conditions that ensure the existence and unique-
ness of a positive ω-periodic solution for Nicholson-type delay systems with and without
impulses are simple and easily to test, which is less conservative than the conditions re-
quired in some previous works [, ]. Moreover, the main results in this paper are totally
different from that of [].

4 An example
Example . Consider the following impulsive Nicholson-type system with delays

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
(t) = –( + sin π t)y(t) + ( + cos π t)y(t) + ( 

 + 
 | sinπ t|)y(t – e| cosπ t|)

× e–( 
 +| sinπ t|)y(t–e| cosπ t|)

+ ( 
 – 

 | sinπ t|)y(t – e| sinπ t|)e–( 
 +| cosπ t|)y(t–e| sinπ t|),

y′
(t) = –( + cos π t)y(t) + ( + sin π t)y(t) + ( 

 + 
 | cosπ t|)y(t – e| sinπ t|)

× e–( 
 +| cosπ t|)y(t–e| sinπ t|)

+ ( 
 – 

 | cosπ t|)y(t – e| cosπ t|)e–( 
 +| sinπ t|)y(t–e| cosπ t|), t ≥ ,

yi(t+
k ) = ( + bk)yi(tk), i = , , k = , , . . . ,

(.)

with initial condition

yi(s) = ln( + t)) = ϕi(t), t ∈ [–e, ], i = , , (.)

where bk = sin π
 k – , and tk = k, k = , , . . . .

Let f (t) =
∏

<tk <t( + bk) =
∏

<tk <t sin π
 k . Then

f (t + ) =
∏

<tk <t+

sin π
 k =

∏
<tk≤

sin π
 k ·

∏
<tk <t+

sin π
 k

= 
∑

k= sin π
 k ·

∏
<tk <t

sin π
 (k–) =  ·

∏
<tk <t

sin π
 k = f (t),

which implies that f (t) is a periodic function with period .
Since α(t) =  + sin π t, α(t) =  + cos π t, β(t) =  + cos π t, β(t) =  + sin π t, we

have α–
 = α–

 = , β+
 = β+

 = , and thus β+
 β+


α–

 α–


= 
 < .

It is obvious that

p(t) =
∏

t–e| cosπ t|≤tk <t

sin π
 k

(



+


| sinπ t|

)
,

p(t) =
∏

t–e| sinπ t|≤tk <t

sin π
 k

(



–


| sinπ t|

)
,

p(t) =
∏

t–e| sinπ t|≤tk <t

sin π
 k

(



+


| cosπ t|

)
,
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Figure 1 The dynamic behavior of the system (4.1) with the initial condition (4.2). (a) Time-series of the
y1, y2 of system (4.1) without impulsive effects for t ∈ [0, 20]. (b) Phase portrait of solutions of system (4.1)
without impulsive effects for t ∈ [3, 20]. (c) Times-series of the y1, y2 of impulsive system (4.1) for t ∈ [0, 20].
(d) Phase portrait of solutions of impulsive system (4.1) for t ∈ [5, 20].

p(t) =
∏

t–e| cosπ t|≤tk <t

sin π
 k

(



–


| cosπ t|

)
,

q(t) =
∏

<tk <t–e| cosπ t|
sin π

 k
(




+ | sinπ t|
)

,

q(t) =
∏

<tk <t–e| sinπ t|
sin π

 k
(




+ | cosπ t|
)

,

q(t) =
∏

<tk <t–e| sinπ t|
sin π

 k
(




+ | cosπ t|
)

,

q(t) =
∏

<tk <t–e| cosπ t|
sin π

 k
(




+ | sinπ t|
)

.

Therefore,

α–
i – β+

i –
∑

j=

p+
ij =




> , i = , .

It follows from Theorem . that Equation (.) with initial condition (.) has a unique
-periodic solution. This fact is verified by the numerical simulation in Figure .
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Remark . System (.) is a simple form of impulsive Nicholson-type system with delays.
Since q–

 = q–
 = 

 > , q–
 = q–

 = 
 > , it is clear that the condition of Theorem . in []

and Theorem . in [] are not satisfied. Therefore, all the results obtained in [, ] and
the references therein cannot be applicable to system (.). This implies that the results of
this paper are essentially new.

5 Conclusion
In this paper, a class of Nicholson-type delay systems with impulsive effects are investi-
gated. First, an equivalence relation between the solution (or positive periodic solution)
of a Nicholson-type delay system with impulses and that of the corresponding Nicholson-
type delay system without impulses is established. Then, by applying the cone fixed point
theorem, some criteria are established for the existence and uniqueness of a positive pe-
riodic solution of the given system. The fixed point theorem in cones is very popular in
investigation of positive periodic solutions to impulsive functional differential equations
[, ]. Our results imply that under the appropriate linear periodic impulsive pertur-
bations, the Nicholson-type delay systems with impulses preserve the original periodic
property of the Nicholson-type delay systems without impulses. Finally, an example and
its simulation are provided to illustrate the main results. It is worth noting that there are
only very few results [] on Nicholson-type delay systems with impulses, and our results
extend and improve greatly some earlier works reported in the literature. Furthermore,
our results are important in applications of periodic oscillatory Nicholson-type delay sys-
tems with impulsive control.
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